1
|
Wang W, Zhou K, Wang L, Qin Q, Liu H, Qin L, Yang M, Yuan L, Liu C. Aging in chronic lung disease: Will anti-aging therapy be the key to the cure? Eur J Pharmacol 2024; 980:176846. [PMID: 39067566 DOI: 10.1016/j.ejphar.2024.176846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Chronic lung disease is the third leading cause of death globally, imposing huge burden of death, disability and healthcare costs. However, traditional pharmacotherapy has relatively limited effects in improving the cure rate and reducing the mortality of chronic lung disease. Thus, new treatments are urgently needed for the prevention and treatment of chronic lung disease. It is particularly noteworthy that, multiple aging-related phenotypes were involved in the occurrence and development of chronic lung disease, such as blocked proliferation, telomere attrition, mitochondrial dysfunction, epigenetic alterations, altered nutrient perception, stem cell exhaustion, chronic inflammation, etc. Consequently, senescent cells induce a series of pathological changes in the lung, such as immune dysfunction, airway remodeling, oxidative stress and regenerative dysfunction, which is a critical issue that needs special attention in chronic lung diseases. Therefore, anti-aging interventions may bring new insights into the treatment of chronic lung diseases. In this review, we elaborate the involvement of aging in chronic lung disease and further discuss the application and prospects of anti-aging therapy.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Kai Zhou
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Leyuan Wang
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Qiuyan Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Huijun Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle and Hunter Medical Research Institute, Callaghan, New South Wales, Australia
| | - Lin Yuan
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| | - Chi Liu
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, Hunan, China; Basic and Clinical Research Laboratory of Major Respiratory Diseases, Central South University, Changsha, Hunan, China; National Experimental Teaching Demonstration Center for Medical Function, China.
| |
Collapse
|
2
|
Ioachimescu OC. State of the art: Alternative overlap syndrome-asthma and obstructive sleep apnea. J Investig Med 2024; 72:589-619. [PMID: 38715213 DOI: 10.1177/10815589241249993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
In the general population, Bronchial Asthma (BA) and Obstructive Sleep Apnea (OSA) are among the most prevalent chronic respiratory disorders. Significant epidemiologic connections and complex pathogenetic pathways link these disorders via complex interactions at genetic, epigenetic, and environmental levels. The coexistence of BA and OSA in an individual likely represents a distinct syndrome, that is, a collection of clinical manifestations attributable to several mechanisms and pathobiological signatures. To avoid terminological confusion, this association has been named alternative overlap syndrome (vs overlap syndrome represented by the chronic obstructive pulmonary disease-OSA association). This comprehensive review summarizes the complex, often bidirectional links between the constituents of the alternative overlap syndrome. Cross-sectional, population, or clinic-based studies are unlikely to elucidate causality or directionality in these relationships. Even longitudinal epidemiological evaluations in BA cohorts developing over time OSA, or OSA cohorts developing BA during follow-up cannot exclude time factors or causal influence of other known or unknown mediators. As such, a lot of pathophysiological interactions described here have suggestive evidence, biological plausibility, potential or actual directionality. By showcasing existing evidence and current knowledge gaps, the hope is that deliberate, focused, and collaborative efforts in the near-future will be geared toward opportunities to shine light on the unknowns and accelerate discovery in this field of health, clinical care, education, research, and scholarly endeavors.
Collapse
|
3
|
Li Y, Yin H, Yuan H, Wang E, Wang C, Li H, Geng X, Zhang Y, Bai J. IL-10 deficiency aggravates cell senescence and accelerates BLM-induced pulmonary fibrosis in aged mice via PTEN/AKT/ERK pathway. BMC Pulm Med 2024; 24:443. [PMID: 39261827 PMCID: PMC11389321 DOI: 10.1186/s12890-024-03260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is an aging-related progressive lung disorder. The aged lung undergoes functional and structural changes termed immunosenescence and inflammaging, which facilitate the occurrence of fibrosis. Interleukin-10 (IL-10) is a potent anti-inflammatory and immunoregulatory cytokine, yet it remains unclear how IL-10 deficiency-induced immunosenescence participates in the development of PF. METHODS Firstly we evaluated the susceptibility to fibrosis and IL-10 expression in aged mice. Then 13-month-old wild-type (WT) and IL-10 knockout (KO) mice were subjected to bleomycin(BLM) and analyzed senescence-related markers by PCR, western blot and immunohistochemistry staining of p16, p21, p53, as well as DHE and SA-β-gal staining. We further compared 18-month-old WT mice with 13-month-old IL-10KO mice to assess aging-associated cell senescence and inflamation infiltration in both lung and BALF. Moreover, proliferation and apoptosis of alveolar type 2 cells(AT2) were evaluated by FCM, immunofluorescence, TUNEL staining, and TEM analysis. Recombinant IL-10 (rIL-10) was also administered intratracheally to evaluate its therapeutic potential and related mechanism. For the in vitro experiments, 10-week-old naïve pramily lung fibroblasts(PLFs) were treated with the culture medium of 13-month PLFs derived from WT, IL-10KO, or IL-10KO + rIL-10 respectively, and examined the secretion of senescence-associated secretory phenotype (SASP) factors and related pathways. RESULTS The aged mice displayed increased susceptibility to fibrosis and decreased IL-10 expression. The 13-month-old IL-10KO mice exhibited significant exacerbation of cell senescence compared to their contemporary WT mice, and even more severe epithelial-mesenchymal transition (EMT) than that of 18 month WT mice. These IL-10 deficient mice showed heightened inflammatory responses and accelerated PF progression. Intratracheal administration of rIL-10 reduced lung CD45 + cell infiltration by 15%, including a 6% reduction in granulocytes and a 10% reduction in macrophages, and increased the proportion of AT2 cells by approximately 8%. Additionally, rIL-10 significantly decreased α-SMA and collagen deposition, and reduced the expression of senescence proteins p16 and p21 by 50% in these mice. In vitro analysis revealed that conditioned media from IL-10 deficient mice promoted SASP secretion and upregulated senescence genes in naïve lung fibroblasts, which was mitigated by rIL-10 treatment. Mechanistically, rIL-10 inhibited TGF-β-Smad2/3 and PTEN/PI3K/AKT/ERK pathways, thereby suppressing senescence and fibrosis-related proteins. CONCLUSIONS IL-10 deficiency in aged mice leads to accelerated cell senescence and exacerbated fibrosis, with IL-10KO-PLFs displaying increased SASP secretion. Recombinant IL-10 treatment effectively mitigates these effects, suggesting its potential as a therapeutic target for PF.
Collapse
Affiliation(s)
- Yinzhen Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hui Yin
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
- Department of Thoracic Surgery, The First Affiliated Hospital of Shaoyang University, Shaoyang, 422000, China
| | - Huixiao Yuan
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Enhao Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Chunmei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Hongqiang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Xuedi Geng
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University, Shanghai, 200092, China
| | - Ying Zhang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
4
|
Somekawa K, Watanabe K, Seki K, Muraoka S, Izawa A, Kaneko A, Otsu Y, Hirata M, Kubo S, Tanaka K, Nagasawa R, Matsumoto H, Murohashi K, Fuji H, Aoki A, Horita N, Hara Y, Kobayashi N, Kudo M, Kaneko T. Efficacy and safety of benralizumab in elderly patients with severe eosinophilic asthma. Eur Clin Respir J 2024; 11:2384173. [PMID: 39077553 PMCID: PMC11285213 DOI: 10.1080/20018525.2024.2384173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
Background Biologics are the important drugs for severe asthma, but clinical trials included few elderly patients. Data on the safety and efficacy of benralizumab in elderly asthma patients are limited. Methods This clinical study was a multicentre, retrospective, observational study at two hospitals. Patients aged ≥18 years diagnosed with severe asthma treated with benralizumab were included. Elderly patients were defined as those aged 70 years or older. Efficacy and safety were then analyzed in elderly and non-elderly patients. The primary endpoints were the annual number of asthma exacerbations for efficacy and the discontinuation rate due to adverse events for safety. Results Between August 2016 and October 2022, 61 patients were enrolled; 10 patients were excluded, and 51 (22 elderly, 29 non-elderly) patients were analyzed. In elderly patients, the annual number of asthma exacerbations before treatment with benralizumab (pre-benralizumab) was 3.78, and the number during treatment with benralizumab was 1.26, a decrease of 2.52 (95% confidence interval [CI], 1.3 to 3.74, p < 0.001). In non-elderly patients, the annual number of asthma exacerbation in the pre-benralizumab period was 3.24, and during treatment with benralizumab it was 0.68, a decrease of 2.56 (95% CI, 1.3 to 3.82, p < 0.001). There was no significant difference in discontinuation due to treatment-related adverse events (elderly vs non-elderly, 2 (9%) vs 0 (0%), p = 0.18). Conclusion Benralizumab reduced the annual number of asthma exacerbations and was well tolerated in elderly patients.
Collapse
Affiliation(s)
- Kohei Somekawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Keisuke Watanabe
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Kenichi Seki
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Minami-ku, Japan
| | - Suguru Muraoka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Ami Izawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Ayami Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Yukiko Otsu
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Momo Hirata
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Sousuke Kubo
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Katsushi Tanaka
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Ryo Nagasawa
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Hiromi Matsumoto
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Kota Murohashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Hiroaki Fuji
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Ayako Aoki
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Nobuyuki Horita
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Yu Hara
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Nobuaki Kobayashi
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| | - Makoto Kudo
- Respiratory Disease Center, Yokohama City University Medical Center, Yokohama, Minami-ku, Japan
| | - Takeshi Kaneko
- Department of Pulmonology, Yokohama City University Graduate School of Medicine, Yokohama, Kanazawa-ku, Japan
| |
Collapse
|
5
|
Feng G, Jia Y, Zhao G, Meng F, Wang T. Risk factors for postoperative pulmonary complications in elderly patients undergoing video-assisted thoracoscopic surgery lobectomy under general anesthesia: a retrospective study. BMC Surg 2024; 24:153. [PMID: 38745149 PMCID: PMC11091990 DOI: 10.1186/s12893-024-02444-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND The objective of this study is to identify and evaluate the risk factors associated with the development of postoperative pulmonary complications (PPCs) in elderly patients undergoing video-assisted thoracoscopic surgery lobectomy under general anesthesia. METHODS The retrospective study consecutively included elderly patients (≥ 70 years old) who underwent thoracoscopic lobectomy at Xuanwu Hospital of Capital Medical University from January 1, 2018 to August 31, 2023. The demographic characteristics, the preoperative, intraoperative and postoperative parameters were collected and analyzed using multivariate logistic regression to identify the prediction of risk factors for PPCs. RESULTS 322 patients were included for analysis, and 115 patients (35.7%) developed PPCs. Multifactorial regression analysis showed that ASA ≥ III (P = 0.006, 95% CI: 1.230 ∼ 3.532), duration of one-lung ventilation (P = 0.033, 95% CI: 1.069 ∼ 4.867), smoking (P = 0.027, 95% CI: 1.072 ∼ 3.194) and COPD (P = 0.015, 95% CI: 1.332 ∼ 13.716) are independent risk factors for PPCs after thoracoscopic lobectomy in elderly patients. CONCLUSION Risk factors for PPCs are ASA ≥ III, duration of one-lung ventilation, smoking and COPD in elderly patients over 70 years old undergoing thoracoscopic lobectomy. It is necessary to pay special attention to these patients to help optimize the allocation of resources and enhance preventive efforts.
Collapse
Affiliation(s)
- Guang Feng
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yitong Jia
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Guanxu Zhao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Fanqi Meng
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tianlong Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
6
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
7
|
Wan R, Srikaram P, Xie S, Chen Q, Hu C, Wan M, Li Y, Gao P. PPARγ attenuates cellular senescence of alveolar macrophages in asthma-COPD overlap. Respir Res 2024; 25:174. [PMID: 38643159 PMCID: PMC11032609 DOI: 10.1186/s12931-024-02790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. METHODS Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. RESULTS The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. CONCLUSION The findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.Key words ACO, Asthma, COPD, Macrophages, Senescence, PPARγ.
Collapse
Affiliation(s)
- Rongjun Wan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Prakhyath Srikaram
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Shaobing Xie
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Chengping Hu
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuanyuan Li
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.
- The Johns Hopkins Asthma & Allergy Center, 5501 Hopkins Bayview Circle, Room 3B.71, Baltimore, MD, 21224, USA.
| |
Collapse
|
8
|
Wan R, Srikaram P, Xie S, Chen Q, Hu C, Wan M, Li Y, Gao P. PPARγ Attenuates Cellular Senescence of Alveolar Macrophages in Asthma- COPD Overlap. RESEARCH SQUARE 2024:rs.3.rs-4009724. [PMID: 38496493 PMCID: PMC10942556 DOI: 10.21203/rs.3.rs-4009724/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Asthma-chronic obstructive pulmonary disease (COPD) overlap (ACO) represents a complex condition characterized by shared clinical and pathophysiological features of asthma and COPD in older individuals. However, the pathophysiology of ACO remains unexplored. We aimed to identify the major inflammatory cells in ACO, examine senescence within these cells, and elucidate the genes responsible for regulating senescence. Bioinformatic analyses were performed to investigate major cell types and cellular senescence signatures in a public single-cell RNA sequencing (scRNA-Seq) dataset derived from the lung tissues of patients with ACO. Similar analyses were carried out in an independent cohort study Immune Mechanisms Severe Asthma (IMSA), which included bulk RNA-Seq and CyTOF data from bronchoalveolar lavage fluid (BALF) samples. The analysis of the scRNA-Seq data revealed that monocytes/ macrophages were the predominant cell type in the lung tissues of ACO patients, constituting more than 50% of the cells analyzed. Lung monocytes/macrophages from patients with ACO exhibited a lower prevalence of senescence as defined by lower enrichment scores of SenMayo and expression levels of cellular senescence markers. Intriguingly, analysis of the IMSA dataset showed similar results in patients with severe asthma. They also exhibited a lower prevalence of senescence, particularly in airway CD206 + macrophages, along with increased cytokine expression (e.g., IL-4, IL-13, and IL-22). Further exploration identified alveolar macrophages as a major subtype of monocytes/macrophages driving cellular senescence in ACO. Differentially expressed genes related to oxidation-reduction, cytokines, and growth factors were implicated in regulating senescence in alveolar macrophages. PPARγ (Peroxisome Proliferator-Activated Receptor Gamma) emerged as one of the predominant regulators modulating the senescent signature of alveolar macrophages in ACO. Collectively, the findings suggest that senescence in macrophages, particularly alveolar macrophages, plays a crucial role in the pathophysiology of ACO. Furthermore, PPARγ may represent a potential therapeutic target for interventions aimed at modulating senescence-associated processes in ACO.
Collapse
Affiliation(s)
| | | | | | | | | | - Mei Wan
- Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
9
|
Prokunina O, Ishmael FT. Identification of biologic-responsive phenotypes in elderly people with eosinophilic asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100196. [PMID: 38155862 PMCID: PMC10753088 DOI: 10.1016/j.jacig.2023.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/03/2023] [Accepted: 09/03/2023] [Indexed: 12/30/2023]
Abstract
Background Asthma in the elderly is not as well studied as in younger age groups. Age-related immunosenescence may result in diminished TH2 inflammation, which raises a question about whether asthma in elderly patients responds well to anti-TH2 asthma biologics. Objective We sought to determine whether asthma in elderly people has different TH2 biomarkers and clinical features compared to nonelderly people, and if disease in the 2 age groups responds differently to anti-TH2 biologics. We also aimed to identify treatment-responsive phenotypes with clinical and biomarker features that could be used to predict best response to biologics. Methods A retrospective chart review was conducted for 56 patients (30 elderly [age ≥62 years] and 26 nonelderly [ages 18-59 years] subjects) with severe asthma treated with dupilumab or benralizumab. Differences in baseline characteristics and response to treatment were analyzed. A hierarchical cluster analysis was also performed to identify treatment-responsive phenotypes. Significance threshold was P = .05 for all analyses. Results Baseline characteristics and TH2 biomarkers (blood eosinophil level, total IgE, aeroallergen sensitivity) were similar between elderly and nonelderly subjects. The disease in both groups responded well to biologics (improvement in ACT scores, decreased exacerbations, decreased need for prednisone), but no significant response difference was found based on age groups. Cluster analysis identified 3 phenotypes, as follows: cluster 1, youngest age, moderate eosinophil levels, lowest total IgE, few environmental allergies, and least response to biologics; cluster 2, intermediate age, lowest eosinophil level, highest IgE level, many environmental allergies, and an intermediate response to biologics; and cluster 3, oldest ages, highest eosinophil levels, high total IgE, few environmental allergies, and best response to biologics. These results confirm trends seen in another study utilizing cluster analyses showing that subjects with highest levels of IgE and eosinophils responded better to biologic treatment for asthma. Conclusion Elderly people with asthma should be considered for biologic therapy no differently than younger people. There may be subgroups of patients with different biologic responses based on age, allergenicity, IgE, and eosinophil levels that could be used to predict treatment response.
Collapse
Affiliation(s)
- Olga Prokunina
- Pennsylvania State University College of Medicine, University Park Program, State College, Pa
| | - Faoud T. Ishmael
- Pennsylvania State University College of Medicine, University Park Program, State College, Pa
- Mount Nittany Physician Group, State College, Pa
| |
Collapse
|
10
|
Kang T, Xi Y, Lu S, Qian T, Du M, Shi X, Hou X. Association between serum uric acid levels and lung function in the NHANES cohort (2007-2012): A cross-sectional analysis of a diverse American population. Int J Rheum Dis 2024; 27:e15043. [PMID: 38287539 DOI: 10.1111/1756-185x.15043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
BACKGROUND Hyperuricemia has been linked to various health conditions. However, the relationship between uric acid (UA) levels and lung function remains debated. METHODS In a cross-sectional study of 6750 participants aged 20-69 from NHANES, we assessed UA levels and lung function (FVC and FEV1). We conducted regression analyses while adjusting for potential confounders. RESULTS After accounting for factors like age, sex, BMI, smoking, and more, we found a negative association between UA FVC and FEV1. Specifically, for every 0.1 mg/dL increase in UA, FEV1 decreased by 15.265 mL, and FVC decreased by 24.46 mL. No association was observed with FEV1/FVC. Subgroup analyses revealed similar negative correlations among various groups, particularly in non-Hispanic Black females under 60. CONCLUSION Serum UA levels are inversely associated with FEV1 and FVC in the American population, with a notable impact on non-Hispanic Black females under 60.
Collapse
Affiliation(s)
- Tianlun Kang
- Department of Rheumatism, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yajing Xi
- Department of Rheumatism, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Siyi Lu
- Department of Rheumatism, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tangliang Qian
- Department of Rheumatism, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Mengmeng Du
- Department of Rheumatism, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojun Shi
- Department of Rheumatism, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiujuan Hou
- Department of Rheumatism, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Bang E, Hwangbo H, Kim MY, Ji SY, Kim DH, Shim JH, Moon SK, Kim GY, Cheong J, Choi YH. Urban aerosol particulate matter promotes mitochondrial oxidative stress-induced cellular senescence in human retinal pigment epithelial ARPE-19 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104211. [PMID: 37423393 DOI: 10.1016/j.etap.2023.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Environmental exposure to urban particulate matter (UPM) is a serious health concern worldwide. Although several studies have linked UPM to ocular diseases, no study has reported effects of UPM exposure on senescence in retinal cells. Therefore, this study aimed to investigate the effects of UPM on senescence and regulatory signaling in human retinal pigment epithelial ARPE-19 cells. Our study demonstrated that UPM significantly promoted senescence, with increased senescence-associated β-galactosidase activity. Moreover, both mRNA and protein levels of senescence markers (p16 and p21) and the senescence-associated secretory phenotype, including IL-1β, matrix metalloproteinase-1, and -3 were upregulated. Notably, UPM increased mitochondrial reactive oxygen species-dependent nuclear factor-kappa B (NF-κB) activation during senescence. In contrast, use of NF-κB inhibitor Bay 11-7082 reduced the level of senescence markers. Taken together, our results provide the first in vitro preliminary evidence that UPM induces senescence by promoting mitochondrial oxidative stress-mediated NF-κB activation in ARPE-19 cells.
Collapse
Affiliation(s)
- EunJin Bang
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Hyun Hwangbo
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Min Yeong Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Seon Yeong Ji
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea
| | - Da Hye Kim
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan 58554, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung-Ang University, Ansung 17546, Republic of Korea
| | - Gi-Young Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jaehun Cheong
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Republic of Korea; Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Republic of Korea.
| |
Collapse
|
12
|
Sato S, Suzuki Y, Kikuchi M, Rikimaru M, Saito J, Shibata Y. Sputum Neurturin Levels in Adult Asthmatic Subjects. J Asthma Allergy 2023; 16:889-901. [PMID: 37671183 PMCID: PMC10476664 DOI: 10.2147/jaa.s421742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/12/2023] [Indexed: 09/07/2023] Open
Abstract
Background Neurturin (NRTN) is a neurotrophic factor that was originally identified in the development and maintenance of neural cells. Recent studies involving NRTN knockout mice have reported its anti-inflammatory effects in allergic airway conditions. However, the role of NRTN in human asthma has not yet been identified. Objective The purposes of the present study were to confirm the presence of NRTN in the airways and to investigate the clinical and pathogenetic roles of NRTN in asthma. Methods The NRTN levels in the induced sputum were measured by enzyme-linked immunosorbent assay (ELISA). Relationships between NRTN and clinical characteristics, asthma control status, and airway inflammation were assessed. Results Sixty-four asthmatic subjects were enrolled in the study. All asthmatic subjects had detectable sputum NRTN levels, with a mean (SD) level of 2.03 (1.29) ng/mL. The sputum NRTN levels had significant positive correlations with sputum eosinophil and exhaled nitric oxide levels and were significantly higher in the atopic subjects than in the non-atopic subjects. No significant difference in sputum NRTN levels were observed for asthma control status and asthma exacerbation. In sputum inflammatory analyses, sputum NRTN level was positively correlated with interleukin (IL)-5 and IL-13 levels, and negatively correlated with matrix metalloproteinase (MMP)-9 level. Conclusion It is plausible that sputum NRTN could serve as a new marker for Type 2 airway inflammation, implicating its role in the process of airway remodeling in asthma. Future studies should investigate the clinical relevance of sputum NRTN level in prospective analyses.
Collapse
Affiliation(s)
- Suguru Sato
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuhito Suzuki
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masami Kikuchi
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Mami Rikimaru
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Junpei Saito
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
13
|
Jaramillo-Rangel G, Chávez-Briones MDL, Ancer-Arellano A, Miranda-Maldonado I, Ortega-Martínez M. Back to the Basics: Usefulness of Naturally Aged Mouse Models and Immunohistochemical and Quantitative Morphologic Methods in Studying Mechanisms of Lung Aging and Associated Diseases. Biomedicines 2023; 11:2075. [PMID: 37509714 PMCID: PMC10377355 DOI: 10.3390/biomedicines11072075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Aging-related molecular and cellular alterations in the lung contribute to an increased susceptibility of the elderly to devastating diseases. Although the study of the aging process in the lung may benefit from the use of genetically modified mouse models and omics techniques, these approaches are still not available to most researchers and produce complex results. In this article, we review works that used naturally aged mouse models, together with immunohistochemistry (IHC) and quantitative morphologic (QM) methods in the study of the mechanisms of the aging process in the lung and its most commonly associated disorders: cancer, chronic obstructive pulmonary disease (COPD), and infectious diseases. The advantage of using naturally aged mice is that they present characteristics similar to those observed in human aging. The advantage of using IHC and QM methods lies in their simplicity, economic accessibility, and easy interpretation, in addition to the fact that they provide extremely important information. The study of the aging process in the lung and its associated diseases could allow the design of appropriate therapeutic strategies, which is extremely important considering that life expectancy and the number of elderly people continue to increase considerably worldwide.
Collapse
Affiliation(s)
- Gilberto Jaramillo-Rangel
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | | | - Adriana Ancer-Arellano
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Ivett Miranda-Maldonado
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| | - Marta Ortega-Martínez
- Department of Pathology, School of Medicine, Autonomous University of Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|
14
|
Shaikh SB, Goracci C, Tjitropranoto A, Rahman I. Impact of aging on immune function in the pathogenesis of pulmonary diseases: potential for therapeutic targets. Expert Rev Respir Med 2023; 17:351-364. [PMID: 37078192 PMCID: PMC10330361 DOI: 10.1080/17476348.2023.2205127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Several immunological alterations that occur during pulmonary diseases often mimic alterations observed in the aged lung. From the molecular perspective, pulmonary diseases and aging partake in familiar mechanisms associated with significant dysregulation of the immune systems. Here, we summarized the findings of how aging alters immunity to respiratory conditions to identify age-impacted pathways and mechanisms that contribute to the development of pulmonary diseases. AREAS COVERED The current review examines the impact of age-related molecular alterations in the aged immune system during various lung diseases, such as COPD, IPF, Asthma, and alongside many others that could possibly improve on current therapeutic interventions. Moreover, our increased understanding of this phenomenon may play a primary role in shaping immunomodulatory strategies to boost outcomes in the elderly. Here, the authors present new insights into the context of lung-related diseases and describe the alterations in the functioning of immune cells during various pulmonary conditions altered with age. EXPERT OPINION The expert opinion provided the concepts on how aging alters immunity during pulmonary conditions, and suggests the associated mechanisms during the development of lung diseases. As a result, it becomes important to comprehend the complex mechanism of aging in the immune lung system.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Chiara Goracci
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ariel Tjitropranoto
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
15
|
Fu T, Liu J, Wang W, Li Y, Wang Y, Cui L, Liu M, Wang W, Ying S, Huang K. Similarities and differences in kinetic characteristics of airways inflammation, formation of inducible bronchial-associated lymphoid tissue and remodeling between young and old murine asthma surrogates induced with house dust mite. Exp Gerontol 2023; 175:112160. [PMID: 37019047 DOI: 10.1016/j.exger.2023.112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
Elderly asthmatics have higher morbidity and mortality compared with those of youngers. It has been shown that there are also some differences in clinic phenomena between young and elderly asthmatics, however, there is lack of the kinetic comparisons of the changes in the development of asthma between two populations. To better understand the specific pathophysiological manifestations in older patients with asthma, we dynamically and parallelly compared pathophysiological changes in the airways and lung tissues between young and old murine asthma surrogates based on sensitization and challenge with house dust mite (HDM). Murine models were established in young (6-8-week-old) and old (16-17-month-old) female wild-type C57BL/6 mice. Our data showed that repetitive HDM exposure induced relatively low type 2 immune responses (airway hyperresponsiveness, eosinophils recruitment, expression of type 2 cytokines, mucus secretion, serum HDM specific immunoglobulin E (IgE) and IgG) in old mice. However, the type 3 immune responses (neutrophils infiltration and IL-17A expression) were enhanced in old HDM exposed mice, which sustained longer and higher than that of young mice. Notably, the relatively weakened allergic inflammation characteristics might be associated with lower numbers of CD20+ B cells and IgE+ cells in the iBALTs in old mice compared with those in young mice. Our data suggest that aging might compromise the ability to induce type 2 immune responses, but enhance type 3 immune responses upon repetitive HDM challenge, which might cause relevant phenomena in old experimental mice and might even be applicable to elderly patients with asthma in the clinic.
Collapse
|
16
|
Lu X, Lu YQ. Editorial: Immunosenescence after sepsis. Front Immunol 2023; 14:1177148. [PMID: 36969160 PMCID: PMC10036857 DOI: 10.3389/fimmu.2023.1177148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Affiliation(s)
- Xuan Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yuan-Qiang Lu
- Department of Emergency Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
- *Correspondence: Yuan-Qiang Lu,
| |
Collapse
|
17
|
Losol P, Sokolowska M, Chang YS. Interactions between microbiome and underlying mechanisms in asthma. Respir Med 2023; 208:107118. [PMID: 36641058 DOI: 10.1016/j.rmed.2023.107118] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/23/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Microbiome primes host innate immunity in utero and play fundamental roles in the development, training, and function of the immune system throughout the life. Interplay between the microbiome and immune system maintains mucosal homeostasis, while alterations of microbial community dysregulate immune responses, leading to distinct phenotypic features of immune-mediated diseases including asthma. Microbial imbalance within the mucosal environments, including upper and lower airways, skin, and gut, has consistently been observed in asthma patients and linked to increased asthma exacerbations and severity. Microbiome research has increased to uncover hidden microbial members, function, and immunoregulatory effects of bacterial metabolites within the mucosa. This review provides an overview of environmental and genetic factors that modulate the composition and function of the microbiome, and the impacts of microbiome metabolites and skin microbiota on immune regulation in asthma.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Medical Research Center, Seoul National University, Seoul, South Korea; Department of Molecular Biology and Genetics, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), Herman-Burchard Strasse 9, CH7265, Davos, Switzerland; Christine Kühne - Center for Allergy Research and Education, Davos, Switzerland
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea; Medical Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
18
|
Challenges in the Management of Asthma in Older Adults. CURRENT TREATMENT OPTIONS IN ALLERGY 2023. [DOI: 10.1007/s40521-023-00331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
19
|
Benfante A, Tomasello A, Gianquinto E, Cicero MN, Scichilone N. Diagnostic and therapeutic approaches for elderly asthma patients: the importance of multidisciplinary and multidimensional management. Expert Rev Respir Med 2023; 17:459-468. [PMID: 37194689 DOI: 10.1080/17476348.2023.2215432] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/15/2023] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Asthma is commonly considered a disease of younger ages; however, it is not infrequent to pose a diagnosis of the disease in older individuals. Although current recommendations do not distinguish between young and old asthmatics in terms of diagnostic and therapeutic approaches, asthma in the elderly may present with peculiar features that contribute to complicate its management. AREAS COVERED The current review focuses on the challenges that arise when approaching an older individual with suspected asthma. Age-associated changes of the lung may complicate the diagnostic approach. Measurement of the forced expiratory volume in the first 6 s (FEV6) in an easier and faster alternative to FVC estimation, and residual volume should always be assessed. Older individuals are often affected by concomitant diseases, both age- and drug-related, that need to be considered when approaching elderly asthmatics, since they can affect the efficacy of the treatment as well as the control of the disease. EXPERT OPINION The potential drug to drug interaction should be routinely investigated, and documented in medical records. The effect of aging on the response to pharmacological therapy in older asthmatics should be explored. Therefore, the need of a multidisciplinary and multidimensional approach to the elderly asthmatics is strongly encouraged.
Collapse
Affiliation(s)
- Alida Benfante
- PROMISE Department, University of Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|