1
|
Dai Y, Wang J, Tao Z, Luo L, Huang C, Liu B, Shi H, Tang L, Ou Z. Highly efficient synthesis of the chiral ACE inhibitor intermediate (R)-2-hydroxy-4-phenylbutyrate ethyl ester via engineered bi-enzyme coupled systems. BIORESOUR BIOPROCESS 2024; 11:99. [PMID: 39402402 PMCID: PMC11473482 DOI: 10.1186/s40643-024-00814-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
(R)-2-Hydroxy-4-phenylbutyric acid ethyl ester ((R)-HPBE) is an essential chiral intermediate in the synthesis of angiotensin-converting enzyme (ACE) inhibitors. Its production involves the highly selective asymmetric reduction of ethyl 2-oxo-4-phenylbutyrate (OPBE), catalyzed by carbonyl reductase (CpCR), with efficient cofactor regeneration playing a crucial role. In this study, an in-situ coenzyme regeneration system was developed by coupling carbonyl reductase (CpCR) with glucose dehydrogenase (GDH), resulting in the construction of five recombinant strains capable of NADPH regeneration. Among these, the recombinant strain E. coli BL21-pETDuet-1-GDH-L-CpCR, where CpCR is fused to the C-terminus of GDH, demonstrated the highest catalytic activity. This strain exhibited an enzyme activity of 69.78 U/mg and achieved a conversion rate of 98.3%, with an enantiomeric excess (ee) of 99.9% during the conversion of 30 mM OPBE to (R)-HPBE. High-density fermentation further enhanced enzyme yield, achieving an enzyme activity of 1960 U/mL in the fermentation broth, which is 16.2 times higher than the volumetric activity obtained from shake flask fermentation. Additionally, the implementation of a substrate feeding strategy enabled continuous processing, allowing the strain to efficiently convert a final OPBE concentration of 920 mM, producing 912 mM of (R)-HPBE. These findings highlight the system's improved catalytic efficiency, stability, and scalability, making it highly suitable for industrial-scale biocatalytic production.
Collapse
Affiliation(s)
- Yanmei Dai
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jinmei Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zijuan Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liangli Luo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Changshun Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Liu
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, 315199, China
| | - Hanbing Shi
- Department of Respiratory Medicine, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihar, China
| | - Lan Tang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Zhimin Ou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
2
|
Naim M, Mohammat MF, Mohd Ariff PNA, Uzir MH. Biocatalytic approach for the synthesis of chiral alcohols for the development of pharmaceutical intermediates and other industrial applications: A review. Enzyme Microb Technol 2024; 180:110483. [PMID: 39033578 DOI: 10.1016/j.enzmictec.2024.110483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 07/23/2024]
Abstract
Biocatalysis has emerged as a strong tool for the synthesis of active pharmaceutical ingredients (APIs). In the early twentieth century, whole cell biocatalysis was used to develop the first industrial biocatalytic processes, and the precise work of enzymes was unknown. Biocatalysis has evolved over the years into an essential tool for modern, cost-effective, and sustainable pharmaceutical manufacturing. Meanwhile, advances in directed evolution enable the rapid production of process-stable enzymes with broad substrate scope and high selectivity. Large-scale synthetic pathways incorporating biocatalytic critical steps towards >130 APIs of authorized pharmaceuticals and drug prospects are compared in terms of steps, reaction conditions, and scale with the corresponding chemical procedures. This review is designed on the functional group developed during the reaction forming alcohol functional groups. Some important biocatalyst sources, techniques, and challenges are described. A few APIs and their utilization in pharmaceutical drugs are explained here in this review. Biocatalysis has provided shorter, more efficient, and more sustainable alternative pathways toward existing small molecule APIs. Furthermore, non-pharmaceutical applications of biocatalysts are also mentioned and discussed. Finally, this review includes the future outlook and challenges of biocatalysis. In conclusion, Further research and development of promising enzymes are required before they can be used in industry.
Collapse
Affiliation(s)
- Mohd Naim
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| | - Mohd Fazli Mohammat
- Centre for Chemical Synthesis & Polymer Technology, Institute of Science (IoS), Kompleks Inspirasi, Universiti Teknologi MARA, Shah Alam, Selangor Darul Ehsan 40450, Malaysia.
| | - Putri Nur Arina Mohd Ariff
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya 466-8555, Japan.
| | - Mohamad Hekarl Uzir
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang 14300, Malaysia.
| |
Collapse
|
3
|
Liang C, Duan X, Gao H, Shahab M, Zheng G. Chemoenzymatic synthesis of (1R,3R)-3-hydroxycyclopentanemethanol: An intermediate of carbocyclic-ddA. J Biosci Bioeng 2024; 138:111-117. [PMID: 38824112 DOI: 10.1016/j.jbiosc.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The synthesis of carbocyclic-ddA, a potent antiviral agent against hepatitis B, relies significantly on (1R,3R)-3-hydroxycyclopentanemethanol as a key intermediate. To effectively produce this intermediate, our study employed a chemoenzymatic approach. The selection of appropriate biocatalysts was based on substrate similarity, leading us to adopt the CrS enoate reductase derived from Thermus scotoductus SA-01. Additionally, we developed an enzymatic system for NADH regeneration, utilising formate dehydrogenase from Candida boidinii. This system facilitated the efficient catalysis of (S)-4-(hydroxymethyl)cyclopent-2-enone, resulting in the formation of (3R)-3-(hydroxymethyl) cyclopentanone. Furthermore, we successfully cloned, expressed, purified, and characterized the CrS enzyme in Escherichia coli. Optimal reaction conditions were determined, revealing that the highest activity occurred at 45 °C and pH 8.0. By employing 5 mM (S)-4-(hydroxymethyl)cyclopent-2-enone, 0.05 mM FMN, 0.2 mM NADH, 10 μM CrS, 40 μM formic acid dehydrogenase, and 40 mM sodium formate, complete conversion was achieved within 45 min at 35 °C and pH 7.0. Subsequently, (1R,3R)-3-hydroxycyclopentanemethanol was obtained through a simple three-step chemical conversion process. This study not only presents an effective method for synthesizing the crucial intermediate but also highlights the importance of biocatalysts and enzymatic systems in chemoenzymatic synthesis approaches.
Collapse
Affiliation(s)
- Chaoqun Liang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Bontac Bio-Engineering (Shenzhen) Co., Ltd., Shenzhen, Guangdong 518107, China
| | - Xiuyuan Duan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hanzi Gao
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Shahab
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guojun Zheng
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Tripathi A, Dubey KD. The mechanistic insights into different aspects of promiscuity in metalloenzymes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:23-66. [PMID: 38960476 DOI: 10.1016/bs.apcsb.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Enzymes are nature's ultimate machinery to catalyze complex reactions. Though enzymes are evolved to catalyze specific reactions, they also show significant promiscuity in reactions and substrate selection. Metalloenzymes contain a metal ion or metal cofactor in their active site, which is crucial in their catalytic activity. Depending on the metal and its coordination environment, the metal ion or cofactor may function as a Lewis acid or base and a redox center and thus can catalyze a plethora of natural reactions. In fact, the versatility in the oxidation state of the metal ions provides metalloenzymes with a high level of catalytic adaptability and promiscuity. In this chapter, we discuss different aspects of promiscuity in metalloenzymes by using several recent experimental and theoretical works as case studies. We start our discussion by introducing the concept of promiscuity and then we delve into the mechanistic insight into promiscuity at the molecular level.
Collapse
Affiliation(s)
- Ankita Tripathi
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
5
|
Honda Malca S, Duss N, Meierhofer J, Patsch D, Niklaus M, Reiter S, Hanlon SP, Wetzl D, Kuhn B, Iding H, Buller R. Effective engineering of a ketoreductase for the biocatalytic synthesis of an ipatasertib precursor. Commun Chem 2024; 7:46. [PMID: 38418529 PMCID: PMC10902378 DOI: 10.1038/s42004-024-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/15/2024] [Indexed: 03/01/2024] Open
Abstract
Semi-rational enzyme engineering is a powerful method to develop industrial biocatalysts. Profiting from advances in molecular biology and bioinformatics, semi-rational approaches can effectively accelerate enzyme engineering campaigns. Here, we present the optimization of a ketoreductase from Sporidiobolus salmonicolor for the chemo-enzymatic synthesis of ipatasertib, a potent protein kinase B inhibitor. Harnessing the power of mutational scanning and structure-guided rational design, we created a 10-amino acid substituted variant exhibiting a 64-fold higher apparent kcat and improved robustness under process conditions compared to the wild-type enzyme. In addition, the benefit of algorithm-aided enzyme engineering was studied to derive correlations in protein sequence-function data, and it was found that the applied Gaussian processes allowed us to reduce enzyme library size. The final scalable and high performing biocatalytic process yielded the alcohol intermediate with ≥ 98% conversion and a diastereomeric excess of 99.7% (R,R-trans) from 100 g L-1 ketone after 30 h. Modelling and kinetic studies shed light on the mechanistic factors governing the improved reaction outcome, with mutations T134V, A238K, M242W and Q245S exerting the most beneficial effect on reduction activity towards the target ketone.
Collapse
Affiliation(s)
- Sumire Honda Malca
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Nadine Duss
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Jasmin Meierhofer
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Analytical Research and Development, MSD Werthenstein BioPharma GmbH, Industrie Nord 1, 6105 Schachen, Switzerland
| | - David Patsch
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Michael Niklaus
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Stefanie Reiter
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
- Manufacturing Science and Technology, Fisher Clinical Services GmbH, Biotech Innovation Park, 2543 Lengnau, Switzerland
| | - Steven Paul Hanlon
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dennis Wetzl
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
- Nonclinical Drug Development, Boehringer Ingelheim International GmbH, Birkendorfer Strasse 65, 88397 Biberach an der Riss, Germany
| | - Bernd Kuhn
- Pharmaceutical Research and Early Development, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Hans Iding
- Process Chemistry and Catalysis, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Rebecca Buller
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland.
| |
Collapse
|
6
|
Guo X, Gao Y, Liu F, Tao Y, Jing H, Wang J, Wu S. A short-chain carbonyl reductase mutant is an efficient catalyst in the production of (R)-1,3-butanediol. Microb Biotechnol 2023; 16:1333-1343. [PMID: 36946330 DOI: 10.1111/1751-7915.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/23/2023] Open
Abstract
R-1,3-butanediol (R-1,3-BDO) is an important chiral intermediate of penem and carbapenem synthesis. Among the different synthesis methods to obtain pure enantiomer R-1,3-BDO, oxidation-reduction cascades catalysed by enzymes are promising strategies for its production. Dehydrogenases have been used for the reduction step, but the enantio-selectivity is not high enough for further organic synthesis efforts. Here, a short-chain carbonyl reductase (LnRCR) was evaluated for the reduction step and developed via protein engineering. After docking result analysis with the substrate 4-hydroxy-2-butanone (4H2B), residues were selected for virtual mutagenesis, their substrate-binding energies were compared, and four sites were selected for saturation mutagenesis. High-throughput screening helped identify a Ser154Lys mutant which increased the catalytic efficiency by 115% compared to the parent enzyme. Computer-aided simulations indicated that after single residue replacement, movements in two flexible areas (VTDPAF and SVGFANK) facilitated the volumetric compression of the 4H2B-binding pocket. The number of hydrogen bonds between the stabilized 4H2B-binding pocket of the mutant enzyme and substrate was higher (from four to six) than the wild-type enzyme, while the substrate-binding energy was decreased (from -17.0 kJ/mol to -29.1 kJ/mol). Consequently, the catalytic efficiency increased by approximately 115% and enantio-selectivity increased from 95% to 99%. Our findings indicate that compact and stable substrate-binding pockets are critical for enzyme catalysis. Lastly, the utilization of a microbe expressing the Ser154Lys mutant enzyme was proven to be a robust process to conduct the oxidation-reduction cascade at larger scales.
Collapse
Affiliation(s)
- Xiaoyan Guo
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, China
| | - Yunfang Gao
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, China
| | - Fangzheng Liu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, China
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Haibo Jing
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology, Beijing, China
| | - Jianjun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sheng Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Asymmetric Synthesis of Enantiomerically Pure Aliphatic and Aromatic D-Amino Acids Catalyzed by Transaminase from Haliscomenobacter hydrossis. Catalysts 2022. [DOI: 10.3390/catal12121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
D-amino acids are valuable building blocks for the synthesis of biologically active compounds and pharmaceuticals. The asymmetric synthesis of chiral amino acids from prochiral ketones using stereoselective enzymes is a well-known but far from exhausted approach for large-scale production. Herein, we investigated a pyridoxal-5′-phosphate-dependent D-amino acid transaminase from Haliscomenobacter hydrossis as a potential biocatalyst for the enzymatic asymmetric synthesis of optically pure aliphatic and aromatic D-amino acids. We studied the catalytic efficiency and stereoselectivity of transaminase from H. hydrossis in the amination of aliphatic and aromatic α-keto acids, using D-glutamate as a source of the amino group. We constructed a one-pot three-enzyme system, which included transaminase and two auxiliary enzymes, hydroxyglutarate dehydrogenase, and glucose dehydrogenase, to produce D-amino acids with a product yield of 95–99% and an enantiomeric excess of more than 99%. We estimated the stability of the transaminase and the cofactor leakage under reaction conditions. It was found that a high concentration of α-keto acids as well as a low reaction temperature (30 °C) can reduce the cofactor leakage under reaction conditions. The obtained results demonstrated the efficiency of transaminase from H. hydrossis in the asymmetric synthesis of enantiomerically pure D-amino acids.
Collapse
|
8
|
Jafar-Nezhad Ivrigh Z, Fahimi-Kashani N, Morad R, Jamshidi Z, Hormozi-Nezhad MR. Toward visual chiral recognition of amino acids using a wide-range color tonality ratiometric nanoprobe. Anal Chim Acta 2022; 1231:340386. [DOI: 10.1016/j.aca.2022.340386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/01/2022]
|
9
|
Zhu C, Yang K, Wang H, Fang Y, Feng L, Zhang J, Xiao Z, Wu X, Li Y, Fu Y, Zhang W, Wang KY, Zhou HC. Enantioseparation in Hierarchically Porous Assemblies of Homochiral Cages. ACS CENTRAL SCIENCE 2022; 8:562-570. [PMID: 35647277 PMCID: PMC9136985 DOI: 10.1021/acscentsci.1c01571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Indexed: 05/17/2023]
Abstract
Efficient enantioselective separation using porous materials requires tailored and diverse pore environments to interact with chiral substrates; yet, current cage materials usually feature uniform pores. Herein, we report two porous assemblies, PCC-60 and PCC-67, using isostructural octahedral cages with intrinsic microporous cavities of 1.5 nm. The PCC-67 adopts a densely packed mode, while the PCC-60 is a hierarchically porous assembly featuring interconnected 2.4 nm mesopores. Compared with PCC-67, the PCC-60 demonstrates excellent enantioselectivity and recyclability in separating racemic diols and amides. This solid adsorbent PCC-60 is further utilized as a chiral stationary phase for high-performance liquid chromatography (HPLC), enabling the complete separation of six valuable pharmaceutical intermediates. According to quantitative dynamic experiments, the hierarchical pores facilitate the mass transfer within the superstructure, shortening the equilibrium time for adsorbing chiral substrates. Notably, this hierarchically porous material PCC-60 indicates remarkably higher enantiomeric excess (ee) values in separating racemates than PCC-67 with uniform microporous cavities. Control experiments confirm that the presence of mesopores enables the PCC-60 to separate bulky substrates. These results uncover the traditionally underestimated role of hierarchical porosity in porous-superstructure-based enantioseparation.
Collapse
Affiliation(s)
- Chengfeng Zhu
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Keke Yang
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hongzhao Wang
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yu Fang
- State
Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of
Chemistry and Chemical Engineering, Hunan
University, Changsha, Hunan 410082, P. R. China
| | - Liang Feng
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Jiaqi Zhang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Zhifeng Xiao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiang Wu
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yougui Li
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yanming Fu
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Wencheng Zhang
- Anhui
Province Key Laboratory of Advanced Catalytic Materials and Reaction
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Kun-Yu Wang
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
10
|
Wang R, Zhang J, Luo Z, Xie T, Xiao Q, Pei X, Wang A. Controllably crosslinked dual enzymes enabled by genetic-encoded non-standard amino acid for efficiently enantioselective hydrogenation. Int J Biol Macromol 2022; 205:682-691. [PMID: 35247424 DOI: 10.1016/j.ijbiomac.2022.02.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/30/2022] [Accepted: 02/26/2022] [Indexed: 12/17/2022]
Abstract
In traditional method for preparing crosslinked enzymes aggregates using glutaraldehyde, random linkage is inevitable, which often destroys the enzyme active sites and severely decreases the activity. To address this issue, using genetic encode expanding, nonstandard amino acids (NSAAs) were inserted into enzyme proteins at the preselected sites for crosslinking. When aldehyde ketone reductase (AKR), alcohol dehydrogenase (ADH) and glucose dehydrogenase (GDH) were utilized as model enzymes, their mutants containing p-azido-L-phenylalanine were bio-orthogonally crosslinked with diyne to form crosslinked dual enzymes (CLDEs) acting as a cascade biological oxidation and reduction system. Then, the resultant self-purified CLDEs were characterized using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM), etc. In the asymmetric synthesis of (S)-1-(2,6-dichloro-3-fluorophenyl) ethanol using CLDEs, high product yield (76.08%), ee value (99.99%) and reuse stability were achieved. The yield and ee value were 12.05 times and 1.39 times higher than those using traditional crosslinked enzyme aggregates, respectively. Thus, controllable insertion NSAAs in number and location can engender reasonable linkage and metal-free self-purification for target enzyme proteins. This facile and sustainable method could be further expanded to other dual and multienzyme systems for cascade biocatalysis.
Collapse
Affiliation(s)
- Ru Wang
- College of Medicine, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jing Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Zhiyuan Luo
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Tian Xie
- College of Medicine, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Qinjie Xiao
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
11
|
Sato H, Yamada R, Watanabe Y, Kiryu T, Kawano S, Shizuma M, Kawasaki H. Deracemization of 1-phenylethanols in a one-pot process combining Mn-driven oxidation with enzymatic reduction utilizing a compartmentalization technique. RSC Adv 2022; 12:10619-10624. [PMID: 35425022 PMCID: PMC8985327 DOI: 10.1039/d2ra01326f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 11/21/2022] Open
Abstract
Racemic 1-phenylethanols were converted into enantiopure (R)-1-phenylethanols via a chemoenzymatic process in which manganese oxide driven oxidation was coupled with enzymatic biotransformation by compartmentalization of the reactions, although the two reactions conducted under mixed conditions are not compatible due to enzyme deactivation by Mn ions. Achiral 1-phenylethanol is oxidized to produce acetophenone in the interior chamber of a polydimethylsiloxane thimble. The acetophenone passes through the membrane into the exterior chamber where enantioselective biotransformation takes place to produce (R)-1-phenylethanol with an enantioselectivity of >99% ee and with 96% yield. The developed sequential reaction could be applied to the deracemization of a wide range of methyl- and chloro-substituted 1-phenylethanols (up to 93%, >99% ee). In addition, this method was applied to the selective hydroxylation of ethylbenzene to afford chiral 1-phenylethanol.
Collapse
Affiliation(s)
- Hirofumi Sato
- Osaka Research Institute of Industrial Science and Technology 1-6-50 Morinomiya, Joto-ku Osaka 536-8553 Japan
| | - Rei Yamada
- Kansai University 3-3-35 Yamatecho, Suita Osaka 564-8680 Japan
| | - Yomi Watanabe
- Osaka Research Institute of Industrial Science and Technology 1-6-50 Morinomiya, Joto-ku Osaka 536-8553 Japan
| | - Takaaki Kiryu
- Osaka Research Institute of Industrial Science and Technology 1-6-50 Morinomiya, Joto-ku Osaka 536-8553 Japan
| | - Shintaro Kawano
- Osaka Research Institute of Industrial Science and Technology 1-6-50 Morinomiya, Joto-ku Osaka 536-8553 Japan
| | - Motohiro Shizuma
- Osaka Research Institute of Industrial Science and Technology 1-6-50 Morinomiya, Joto-ku Osaka 536-8553 Japan
| | - Hideya Kawasaki
- Kansai University 3-3-35 Yamatecho, Suita Osaka 564-8680 Japan
| |
Collapse
|
12
|
Jin T, Lu C, Ham WH, Zhao L, Zheng ZB. Total Synthesis of Natural Products and Medicinal Molecules via Chelation-Controlled Diastereoselective Hydride Reduction of Amino Ketones. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem Rev 2021; 122:3637-3710. [PMID: 34910451 DOI: 10.1021/acs.chemrev.1c00631] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.,Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
14
|
Simić S, Zukić E, Schmermund L, Faber K, Winkler CK, Kroutil W. Shortening Synthetic Routes to Small Molecule Active Pharmaceutical Ingredients Employing Biocatalytic Methods. Chem Rev 2021; 122:1052-1126. [PMID: 34846124 DOI: 10.1021/acs.chemrev.1c00574] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biocatalysis, using enzymes for organic synthesis, has emerged as powerful tool for the synthesis of active pharmaceutical ingredients (APIs). The first industrial biocatalytic processes launched in the first half of the last century exploited whole-cell microorganisms where the specific enzyme at work was not known. In the meantime, novel molecular biology methods, such as efficient gene sequencing and synthesis, triggered breakthroughs in directed evolution for the rapid development of process-stable enzymes with broad substrate scope and good selectivities tailored for specific substrates. To date, enzymes are employed to enable shorter, more efficient, and more sustainable alternative routes toward (established) small molecule APIs, and are additionally used to perform standard reactions in API synthesis more efficiently. Herein, large-scale synthetic routes containing biocatalytic key steps toward >130 APIs of approved drugs and drug candidates are compared with the corresponding chemical protocols (if available) regarding the steps, reaction conditions, and scale. The review is structured according to the functional group formed in the reaction.
Collapse
Affiliation(s)
- Stefan Simić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Erna Zukić
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Luca Schmermund
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Kurt Faber
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Christoph K Winkler
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstraße 28, 8010 Graz, Austria.,Field of Excellence BioHealth─University of Graz, 8010 Graz, Austria.,BioTechMed Graz, 8010 Graz, Austria
| |
Collapse
|
15
|
Sellés Vidal L, Murray JW, Heap JT. Versatile selective evolutionary pressure using synthetic defect in universal metabolism. Nat Commun 2021; 12:6859. [PMID: 34824282 PMCID: PMC8616928 DOI: 10.1038/s41467-021-27266-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - James W. Murray
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - John T. Heap
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK ,grid.4563.40000 0004 1936 8868School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
16
|
Zhu C, Tang H, Yang K, Fang Y, Wang KY, Xiao Z, Wu X, Li Y, Powell JA, Zhou HC. Homochiral Dodecanuclear Lanthanide "Cage in Cage" for Enantioselective Separation. J Am Chem Soc 2021; 143:12560-12566. [PMID: 34342976 DOI: 10.1021/jacs.1c03652] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It is extremely difficult to anticipate the structure and the stereochemistry of a complex, particularly when the ligand is flexible and the metal node adopts diverse coordination numbers. When trivalent lanthanides (LnIII) and enantiopure amino acid ligands are utilized as building blocks, self-assembly sometimes yields rare chiral polynuclear structures. In this study, an enantiopure carboxyl-functionalized amino acid-based ligand with C3 symmetry reacts with lanthanum cations to give a homochiral porous coordination cage, (Δ/Λ)12-PCC-57. The dodecanuclear lanthanide cage has an unprecedented octahedral "cage-in-cage" framework. During the self-assembly, the chirality is transferred from the enantiopure ligand and fixed by the binuclear lanthanide cluster to give 12 metal centers that have either Δ or Λ homochiral stereochemistry. The cage exhibits excellent enantioselective separation of racemic alcohols, 2,3-dihydroquinazolinones, and multiple commercially available drugs. This finding exhibits a rare example of a multinuclear lanthanide complex with a dual-walled topology and homochirality. The highly ordered self-assembly and self-sorting of flexible amino acids and lanthanides shed light on the chiral transformation between different complicated artificial systems that mimic natural enzymes.
Collapse
Affiliation(s)
- Chengfeng Zhu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Haitong Tang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Keke Yang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yu Fang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Zhifeng Xiao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Xiang Wu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yougui Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Joshua A Powell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States.,Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| |
Collapse
|
17
|
Orrego AH, Andrés-Sanz D, Velasco-Lozano S, Sanchez-Costa M, Berenguer J, Guisan JM, Rocha-Martin J, López-Gallego F. Self-sufficient asymmetric reduction of β-ketoesters catalysed by a novel and robust thermophilic alcohol dehydrogenase co-immobilised with NADH. Catal Sci Technol 2021; 11:3217-3230. [PMID: 34094502 PMCID: PMC8111925 DOI: 10.1039/d1cy00268f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/25/2021] [Indexed: 12/04/2022]
Abstract
β-Hydroxyesters are essential building blocks utilised by the pharmaceutical and food industries in the synthesis of functional products. Beyond the conventional production methods based on chemical catalysis or whole-cell synthesis, the asymmetric reduction of β-ketoesters with cell-free enzymes is gaining relevance. To this end, a novel thermophilic (S)-3-hydroxybutyryl-CoA dehydrogenase from Thermus thermophilus HB27 (Tt27-HBDH) has been expressed, purified and biochemically characterised, determining its substrate specificity towards β-ketoesters and its dependence on NADH as a cofactor. The immobilization of Tt27-HBDH on agarose macroporous beads and its subsequent coating with polyethyleneimine has been found the best strategy to increase the stability and workability of the heterogeneous biocatalyst. Furthermore, we have embedded NADH in the cationic layer attached to the porous surface of the carrier. Since Tt27-HBDH catalyses cofactor recycling through 2-propanol oxidation, we achieve a self-sufficient heterogeneous biocatalyst where NADH is available for the immobilised enzymes but its lixiviation to the reaction bulk is avoided. Taking advantage of the autofluorescence of NADH, we demonstrate the activity of the enzyme towards the immobilised cofactor through single-particle analysis. Finally, we tested the operational stability in the asymmetric reduction of β-ketoesters in batch, succeeding in the reuse of both the enzyme and the co-immobilised cofactor up to 10 reaction cycles.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP), CSIC Campus UAM, Cantoblanco 28049 Madrid Spain
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology Severo-Ochoa (UAM-CSIC) Nicolás Cabrera 1 28049 Madrid Spain
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 Donostia San Sebastián Spain
| | - Daniel Andrés-Sanz
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 Donostia San Sebastián Spain
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 Donostia San Sebastián Spain
| | - Mercedes Sanchez-Costa
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology Severo-Ochoa (UAM-CSIC) Nicolás Cabrera 1 28049 Madrid Spain
| | - José Berenguer
- Department of Molecular Biology, Universidad Autónoma de Madrid, Center for Molecular Biology Severo-Ochoa (UAM-CSIC) Nicolás Cabrera 1 28049 Madrid Spain
| | - José M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP), CSIC Campus UAM, Cantoblanco 28049 Madrid Spain
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP), CSIC Campus UAM, Cantoblanco 28049 Madrid Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA) Paseo de Miramón 182 Donostia San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science María Díaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
18
|
Doble MV, Obrecht L, Joosten HJ, Lee M, Rozeboom HJ, Branigan E, Naismith JH, Janssen DB, Jarvis AG, Kamer PCJ. Engineering Thermostability in Artificial Metalloenzymes to Increase Catalytic Activity. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Megan V. Doble
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
| | - Lorenz Obrecht
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
| | - Henk-Jan Joosten
- Bio-Prodict, Nieuwe Marktstraat 54E, 6511 AA Nijmegen, The Netherlands
| | - Misun Lee
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henriette J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Emma Branigan
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
| | - James. H. Naismith
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
- Rosalind Franklin Institute, Harwell Campus, OX11 0FA Didcot, U.K
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Amanda G. Jarvis
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
- School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Rd, Kings Buildings, EH9 3FJ Edinburgh, U.K
| | - Paul C. J. Kamer
- School of Chemistry, University of St Andrews, KY16 9ST St Andrews, U.K
- Bioinspired Homo- & Heterogeneous Catalysis, Leibniz Institute for Catalysis, Albert-Einstein-Straße 29 a, Rostock 18059, Germany
| |
Collapse
|
19
|
Petrovičová T, Gyuranová D, Plž M, Myrtollari K, Smonou I, Rebroš M. Application of robust ketoreductase from Hansenula polymorpha for the reduction of carbonyl compounds. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
20
|
Xie Z, Chen B, Peng F, Liu M, Liu H, Yang G, Han B. Highly Efficient Synthesis of Amino Acids by Amination of Bio-Derived Hydroxy Acids with Ammonia over Ru Supported on N-Doped Carbon Nanotubes. CHEMSUSCHEM 2020; 13:5683-5689. [PMID: 32893503 DOI: 10.1002/cssc.202001561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Indexed: 06/11/2023]
Abstract
The amino acids have extensive applications, and their productions from biomass-derived feedstocks are very attractive. In this work, the synthesis of amino acids by amination of bio-derived hydroxy acids with ammonia over different metallic nano-catalysts supported on various supports is studied. It is found that Ru nano-catalysts on the nitrogen-doped carbon nanotubes (Ru/N-CNTs) have an outstanding performance for the reaction. Different hydroxy acids can be catalytically converted into the corresponding amino acids with yields up to 70.0 % under mild conditions, which is higher than those reported. The reasons for the high efficiency of the catalyst are investigated, and the reaction pathway is proposed on the basis of control experiments.
Collapse
Affiliation(s)
- Zhenbing Xie
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fangfang Peng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingyang Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guanying Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Baydaş Y, Kalay E, Şahin E. Production of enantiomerically enriched chiral carbinols using whole-cell biocatalyst. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1837782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yasemin Baydaş
- Faculty of Engineering, Department of Food Engineering, Bayburt University, Bayburt, Turkey
| | - Erbay Kalay
- Kars Vocational School, Kafkas University, Kars, Turkey
| | - Engin Şahin
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bayburt University, Bayburt, Turkey
| |
Collapse
|
22
|
Gondal HY, Mumtaz S, Abbaskhan A, Mumtaz N, Cano I. New alkoxymethyl-functionalized pyridinium-based chiral ionic liquids: synthesis, characterization and properties. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01135-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Uvarov VM, de Vekki DA. Recent progress in the development of catalytic systems for homogenous asymmetric hydrosilylation of ketones. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121415] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
24
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
25
|
Abstract
Aryl-alcohol oxidases (AAO) constitute a family of FAD-containing enzymes, included in the glucose-methanol-choline oxidase/dehydrogenase superfamily of proteins. They are commonly found in fungi, where their eco-physiological role is to produce hydrogen peroxide that activates ligninolytic peroxidases in white-rot (lignin-degrading) basidiomycetes or to trigger the Fenton reactions in brown-rot (carbohydrate-degrading) basidiomycetes. These enzymes catalyze the oxidation of a plethora of aromatic, and some aliphatic, polyunsaturated alcohols bearing conjugated primary hydroxyl group. Besides, the enzymes show activity on the hydrated forms of the corresponding aldehydes. Some AAO features, such as the broad range of substrates that it can oxidize (with the only need of molecular oxygen as co-substrate) and its stereoselective mechanism, confer good properties to these enzymes as industrial biocatalysts. In fact, AAO can be used for different biotechnological applications, such as flavor synthesis, secondary alcohol deracemization and oxidation of furfurals for the production of furandicarboxylic acid as a chemical building block. Also, AAO can participate in processes of interest in the wood biorefinery and textile industries as an auxiliary enzyme providing hydrogen peroxide to ligninolytic or dye-decolorizing peroxidases. Both rational design and directed molecular evolution have been employed to engineer AAO for some of the above biotechnological applications.
Collapse
Affiliation(s)
- Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
| | - Juan Carro
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain.
| |
Collapse
|
26
|
Zu H, Gu J, Zhang H, Fan A, Nie Y, Xu Y. Highly enantioselective synthesis of (R)-1,3-butanediol via deracemization of the corresponding racemate by a whole-cell stereoinverting cascade system. Microb Cell Fact 2020; 19:125. [PMID: 32513165 PMCID: PMC7282177 DOI: 10.1186/s12934-020-01384-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/30/2020] [Indexed: 11/11/2022] Open
Abstract
Background Deracemization, the transformation of the racemate into a single stereoisomeric product in 100% theoretical yield, is an appealing but challenging option for the asymmetric synthesis of optically pure chiral compounds as important pharmaceutical intermediates. To enhance the synthesis of (R)-1,3-butanediol from the corresponding low-cost racemate with minimal substrate waste, we designed a stereoinverting cascade deracemization route and constructed the cascade reaction for the total conversion of racemic 1,3-butanediol into its (R)-enantiomer. This cascade reaction consisted of the absolutely enantioselective oxidation of (S)-1,3-butanediol by Candida parapsilosis QC-76 and the subsequent asymmetric reduction of the intermediate 4-hydroxy-2-butanone to (R)-1,3-butanediol by Pichia kudriavzevii QC-1. Results The key reaction conditions including choice of cosubstrate, pH, temperature, and rotation speed were optimized systematically and determined as follows: adding acetone as the cosubstrate at pH 8.0, a temperature of 30 °C, and rotation speed of 250 rpm for the first oxidation process; in the next reduction process, the optimal conditions were: adding glucose as the cosubstrate at pH 8.0, a temperature of 35 °C, and rotation speed of 200 rpm. By investigating the feasibility of the step-by-step method with one-pot experiment as a natural extension for performing the oxidation–reduction cascade, the step-by-step approach exhibited high efficiency for this cascade process from racemate to (R)-1,3-butanediol. Under optimal conditions, 20 g/L of the racemate transformed into 16.67 g/L of (R)-1,3-butanediol with 99.5% enantiomeric excess by the oxidation–reduction cascade system in a 200-mL bioreactor. Conclusions The step-by-step cascade reaction efficiently produced (R)-1,3-butanediol from the racemate by biosynthesis and shows promising application prospects.
Collapse
Affiliation(s)
- Han Zu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Jie Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Hui Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Anwen Fan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Yao Nie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China. .,Suqian Industrial Technology Research Institute of Jiangnan University, Suqian, 223814, China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
27
|
Velasco‐Lozano S, Santiago‐Arcos J, Mayoral JA, López‐Gallego F. Co‐immobilization and Colocalization of Multi‐Enzyme Systems for the Cell‐Free Biosynthesis of Aminoalcohols. ChemCatChem 2020. [DOI: 10.1002/cctc.201902404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Susana Velasco‐Lozano
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas Instituto de Sïntesis Química y Catálisis Homogénea (ISQCH-CSIC)University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Javier Santiago‐Arcos
- Heterogeneous biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
| | - José A. Mayoral
- Catálisis Heterogénea en Síntesis Orgánicas Selectivas Instituto de Sïntesis Química y Catálisis Homogénea (ISQCH-CSIC)University of Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Fernando López‐Gallego
- Heterogeneous biocatalysis laboratory Center for Cooperative Research in Biomaterials (CIC biomaGUNE)Basque Research and Technology Alliance (BRTA) Paseo de Miramon 194 20014 Donostia San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Maria Diaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
28
|
dos Santos RAM, Reis AV, Pilau EJ, Porto C, Gonçalves JE, de Oliveira AJB, Gonçalves RAC. The headspace-GC/MS: Alternative methodology employed in the bioreduction of (4S)-(+)-carvone mediated by human skin fungus. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1743692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rogério Aparecido Minini dos Santos
- Department of Pharmacy, University Center of Maringá – Unicesumar, Maringá, Brazil
- Department of Pharmacy, Graduate Program in Pharmaceutical Science, State University of Maringá – UEM, Maringá, Brazil
| | - Adriano Valim Reis
- Department of Pharmacy, Graduate Program in Pharmaceutical Science, State University of Maringá – UEM, Maringá, Brazil
| | | | - Carla Porto
- Program of Master in Science, Technology and Food Safety and Cesumar Institute of Science, Technology and Innovation – ICETI, Maringá, Brazil
| | - José Eduardo Gonçalves
- Program of Master in Science, Technology and Food Safety and Cesumar Institute of Science, Technology and Innovation – ICETI, Maringá, Brazil
- Program of Master in Clean Technology, University Center of Maringá – Unicesumar, Maringá, Brazil
| | - Arildo José Braz de Oliveira
- Department of Pharmacy, Graduate Program in Pharmaceutical Science, State University of Maringá – UEM, Maringá, Brazil
| | | |
Collapse
|
29
|
Efficient enzymatic synthesis of α-keto acids by redesigned substrate-binding pocket of the l-amino acid deaminase (PmiLAAD). Enzyme Microb Technol 2020; 132:109393. [DOI: 10.1016/j.enzmictec.2019.109393] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 11/18/2022]
|
30
|
Li A, Li X, Pang W, Tian Q, Wang T, Zhang L. Fine-tuning of the substrate binding mode to enhance the catalytic efficiency of an ortho-haloacetophenone-specific carbonyl reductase. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02335f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fine-tuning of the substrate binding mode was successfully applied for enhancing the catalytic efficiency of an ortho-haloacetophenone-specific carbonyl reductase.
Collapse
Affiliation(s)
- Aipeng Li
- Research & Development Institute in Shenzhen
- Northwestern Polytechnical University
- 518057 Shenzhen
- China
- School of Life Sciences
| | - Xue Li
- School of Life Sciences
- Northwestern Polytechnical University
- 710072 Xi'an
- China
| | - Wei Pang
- School of Life Sciences
- Northwestern Polytechnical University
- 710072 Xi'an
- China
| | - Qing Tian
- School of Life Sciences
- Northwestern Polytechnical University
- 710072 Xi'an
- China
| | - Ting Wang
- School of Life Sciences
- Northwestern Polytechnical University
- 710072 Xi'an
- China
| | - Lianbing Zhang
- Research & Development Institute in Shenzhen
- Northwestern Polytechnical University
- 518057 Shenzhen
- China
- School of Life Sciences
| |
Collapse
|
31
|
Şahin E. Production of enantiopure chiral aryl heteroaryl carbinols using whole‐cell Lactobacillus paracasei biotransformation. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1707226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Engin Şahin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
| |
Collapse
|
32
|
Uvarov VM, de Vekki DA. First study of rhodium(I) complexes with chiral sulfur-containing terpenoids as catalytic systems for ketone hydrosilylation. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1700376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Vladimir M. Uvarov
- Department of Chemical Technology of Polymers, St. Petersburg State Institute of Technology, St. Petersburg, Russia
| | - Dimitry A. de Vekki
- Department of Chemical Technology of Polymers, St. Petersburg State Institute of Technology, St. Petersburg, Russia
| |
Collapse
|
33
|
Sun D, Liu X, Zhu M, Chen Y, Li C, Cheng X, Zhu Z, Lu F, Qin HM. Efficient Biosynthesis of High-Value Succinic Acid and 5-Hydroxyleucine Using a Multienzyme Cascade and Whole-Cell Catalysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12502-12510. [PMID: 31623431 DOI: 10.1021/acs.jafc.9b05529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Succinic acid (SA) is applied in the food, chemical, and pharmaceutical industries. 5-Hydroxyleucine (5-HLeu) is a promising precursor for the biosynthesis of antituberculosis drugs. Here, we designed a promising synthetic route for the simultaneous production of SA and 5-HLeu by combining l-leucine dioxygenase (NpLDO), l-glutamate oxidase (LGOX), and catalase (CAT). Two bioconversion systems: "a multienzyme cascade catalysis in vitro" (MECCS) and "whole-cell catalysis system" (WCCS) were constructed. A high-activity NpLDO mutant was screened by error-prone polymerase chain reaction (PCR) and showed 6.1-fold improvement of catalytic activity. After optimization of reaction conditions, MECSS yielded 3.15 g/L SA and 3.92 g/L 5-HLeu, while the production of SA and 5-HLeu by the most effective WCSS reached 15.12 and 18.83 g/L, respectively. This is the first attempt to use ferrous iron/α-ketoglutarate-dependent dioxygenases for the simultaneous production of SA and hydroxy-amino-acid. This research provides a tool for industrial production of food of high-value products from low-cost raw materials.
Collapse
Affiliation(s)
- Dengyue Sun
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
| | - Xin Liu
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Menglu Zhu
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Ying Chen
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Chao Li
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Xiaotao Cheng
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Zhangliang Zhu
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
- National Engineering Laboratory for Industrial Enzymes , Tianjin 300457 , People's Republic of China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology , Ministry of Education , Tianjin 300457 , People's Republic of China
- College of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
- Tianjin Key Laboratory of Industrial Microbiology , Tianjin 300457 , People's Republic of China
- National Engineering Laboratory for Industrial Enzymes , Tianjin 300457 , People's Republic of China
| |
Collapse
|
34
|
Zhou H, Meng L, Yin X, Liu Y, Xu G, Wu J, Wu M, Yang L. Artificial Biocatalytic Cascade with Three Enzymes in One Pot for Asymmetric Synthesis of Chiral Unnatural Amino Acids. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haisheng Zhou
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Lijun Meng
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Xinjian Yin
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Yayun Liu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Gang Xu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Jianping Wu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Mianbin Wu
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| | - Lirong Yang
- Institute of Bioengineering; College of Chemical and Biological Engineering; Zhejiang University; 310027 Hangzhou China
| |
Collapse
|
35
|
Morlighem JÉRL, Radis-Baptista G. The Place for Enzymes and Biologically Active Peptides from Marine Organisms for Application in Industrial and Pharmaceutical Biotechnology. Curr Protein Pept Sci 2019; 20:334-355. [PMID: 30255754 DOI: 10.2174/1389203719666180926121722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 09/15/2018] [Indexed: 01/07/2023]
Abstract
Since the beginning of written history, diverse texts have reported the use of enzymatic preparations in food processing and have described the medicinal properties of crude and fractionated venoms to treat various diseases and injuries. With the biochemical characterization of enzymes from distinct sources and bioactive polypeptides from animal venoms, the last sixty years have testified the advent of industrial enzymology and protein therapeutics, which are currently applicable in a wide variety of industrial processes, household products, and pharmaceuticals. Bioprospecting of novel biocatalysts and bioactive peptides is propelled by their unsurpassed properties that are applicable for current and future green industrial processes, biotechnology, and biomedicine. The demand for both novel enzymes with desired characteristics and novel peptides that lead to drug development, has experienced a steady increase in response to the expanding global market for industrial enzymes and peptidebased drugs. Moreover, although largely unexplored, oceans and marine realms, with their unique ecosystems inhabited by a large variety of species, including a considerable number of venomous animals, are recognized as untapped reservoirs of molecules and macromolecules (enzymes and bioactive venom-derived peptides) that can potentially be converted into highly valuable biopharmaceutical products. In this review, we have focused on enzymes and animal venom (poly)peptides that are presently in biotechnological use, and considering the state of prospection of marine resources, on the discovery of useful industrial biocatalysts and drug leads with novel structures exhibiting selectivity and improved performance.
Collapse
Affiliation(s)
- Jean-Étienne R L Morlighem
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| | - Gandhi Radis-Baptista
- Institute for Marine Sciences, Federal University of Ceara, Av da Abolicao 3207. Fortaleza/CE. 60165081, Brazil
| |
Collapse
|
36
|
Zheng X, Cui Y, Li T, Li R, Guo L, Li D, Wu B. Biochemical and structural characterization of a highly active branched-chain amino acid aminotransferase from Pseudomonas sp. for efficient biosynthesis of chiral amino acids. Appl Microbiol Biotechnol 2019; 103:8051-8062. [PMID: 31485690 DOI: 10.1007/s00253-019-10105-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023]
Abstract
Aminotransferases (ATs) are important biocatalysts for the synthesis of chiral amines because of their capability of introducing amino group into ketones or keto acids as well as their high enantioselectivity, high regioselectivity. Among all ATs, branched-chain amino acid aminotransferase (BCAT) can use branched-chain amino acids (BCAAs) as substrate, including L-valine, L-leucine, and L-isoleucine, with α-ketoglutarate to form the corresponding α-keto acids and L-glutamate. Alternatively, BCATs have been used for the biosynthesis of unnatural amino acids, such as L-tert-leucine and L-norvaline. In the present study, the BCAT from Pseudomonas sp. (PsBCAT) was cloned and expressed in Escherichia coli for biochemical and structural analyses. The optimal reaction temperature and pH of PsBCAT were 40 °C and 8.5, respectively. PsBCAT exhibited a comparatively broader substrate spectrum and showed remarkably high activity with bulked aliphatic L-amino acids (kcat up to 220 s-1). Additionally, PsBCAT had activities with aromatic L-amino acids, L-histidine, L-lysine, and L-threonine. This substrate promiscuity is unique for the BCAT family and could prove useful in industrial applications. To analyze the catalytic mechanism of PsBCAT with the broad substrate spectrum, the crystal structure of PsBCAT was also determined. Based on the determined crystal structure, we found some differences in the organization of the substrate binding cavity, which may influence the substrate specificity of the enzyme. Finally, conjugated with the ornithine aminotransferase (OrnAT) to shift the reaction equilibrium towards the product formation, the coupled system was applied to the asymmetric synthesis of L-tert-leucine and L-norvaline. In summary, the structural and functional characteristics of PsBCAT were analyzed in detail, and this information will be conducive to industrial production of enantiopure chiral amino acids by aminotransferase.
Collapse
Affiliation(s)
- Xinxin Zheng
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, People's Republic of China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Lu Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Defeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
37
|
Maria-Solano MA, Iglesias-Fernández J, Osuna S. Deciphering the Allosterically Driven Conformational Ensemble in Tryptophan Synthase Evolution. J Am Chem Soc 2019; 141:13049-13056. [DOI: 10.1021/jacs.9b03646] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Miguel A. Maria-Solano
- CompBioLab group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Javier Iglesias-Fernández
- CompBioLab group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Sílvia Osuna
- CompBioLab group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
38
|
Li A, Yuchi Q, Li X, Pang W, Li B, Xue F, Zhang L. Discovery of a novel ortho-haloacetophenones-specific carbonyl reductase from Bacillus aryabhattai and insight into the molecular basis for its catalytic performance. Int J Biol Macromol 2019; 138:781-790. [PMID: 31351953 DOI: 10.1016/j.ijbiomac.2019.07.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022]
Abstract
To exploit robust biocatalysts for chiral 1-(2-halophenyl)ethanols synthesis, an ortho-haloacetophenones-specific carbonyl reductase (BaSDR1) gene from Bacillus aryabhattai was cloned and expressed in Escherichia coli. The impressive properties regarding BaSDR1 application include preference for NADH as coenzyme, noticeable tolerance against high cosubstrate concentration, and remarkable catalytic performance over a broad pH range from 5.0 to 10.0. The optimal temperature was 35 °C, with a half-life of 3.1 h at 35 °C and 0.75 h at 45 °C, respectively. Notably, BaSDR1 displayed excellent catalytic performance toward various ortho-haloacetophenones, providing chiral 1-(2-halophenyl)ethanols with 99% ee for all the substrates tested. Most importantly, the docking results indicated that the enzyme-substrate interactions and the steric hindrance of halogen atoms act in a push-pull manner in regulating enzyme catalytic ability. These results provide valuable clues for the structure-function relationships of BaSDR1 and the role of halogen groups in catalytic performance, and offer important reference for protein engineering and mining of functional compounds.
Collapse
Affiliation(s)
- Aipeng Li
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518057 Shenzhen, China
| | - Qingxiao Yuchi
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Xue Li
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Wei Pang
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Bin Li
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China
| | - Feng Xue
- School of Marine and Bioengineering, Yancheng Institute of Technology, 224051 Yancheng, China.
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 710072 Xi'an, China.
| |
Collapse
|
39
|
Mayr JC, Grosch JH, Hartmann L, Rosa LFM, Spiess AC, Harnisch F. Resting Escherichia coli as Chassis for Microbial Electrosynthesis: Production of Chiral Alcohols. CHEMSUSCHEM 2019; 12:1631-1634. [PMID: 30762315 DOI: 10.1002/cssc.201900413] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Chiral alcohols constitute important building blocks that can be produced enantioselectively by using nicotinamide adenine dinucleotide (phosphate) [NAD(P)H]-dependent oxidoreductases. For NAD(P)H regeneration, electricity delivers the cheapest reduction equivalents. Enzymatic electrosynthesis suffers from cofactor and enzyme instability, whereas microbial electrosynthesis (MES) exploits whole cells. Here, we demonstrate MES by using resting Escherichia coli as biocatalytic chassis for a production platform towards fine chemicals through electric power. This chassis was exemplified for the synthesis of chiral alcohols by using a NADPH-dependent alcohol dehydrogenase from Lactobacillus brevis for synthesis of (R)-1-phenylethanol from acetophenone. The E. coli strain and growth conditions affected the performance. Maximum yields of (39.4±5.7) % at a coulombic efficiency of (50.5±6.0) % with enantiomeric excess >99 % was demonstrated at a rate of (83.5±13.9) μm h-1 , confirming the potential of MES for synthesis of high-value compounds.
Collapse
Affiliation(s)
- Jeannine C Mayr
- Institute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
| | - Jan-Hendrik Grosch
- Institute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106, Braunschweig, Germany
| | - Lena Hartmann
- Institute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
| | - Luis F M Rosa
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, UFZ Permoserstraße 15, 04318, Leipzig, Germany
| | - Antje C Spiess
- Institute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Braunschweig, Germany
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35a, 38106, Braunschweig, Germany
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research, UFZ Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|
40
|
Serrano A, Sancho F, Viña-González J, Carro J, Alcalde M, Guallar V, Martínez AT. Switching the substrate preference of fungal aryl-alcohol oxidase: towards stereoselective oxidation of secondary benzyl alcohols. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02447b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Using PELE computational simulations the ability to deracemize secondary benzylic alcohols was introduced (by I500M/F501W double mutation) in stereoselective AAO.
Collapse
Affiliation(s)
- Ana Serrano
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | - Ferran Sancho
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
| | | | - Juan Carro
- Centro de Investigaciones Biológicas
- CSIC
- E-28040 Madrid
- Spain
| | - Miguel Alcalde
- Department of Biocatalysis
- Institute of Catalysis
- CSIC
- Madrid
- Spain
| | - Victor Guallar
- Barcelona Supercomputing Center
- E-08034 Barcelona
- Spain
- ICREA
- Barcelona
| | | |
Collapse
|
41
|
Yin X, Liu Y, Meng L, Zhou H, Wu J, Yang L. Rational Molecular Engineering of Glutamate Dehydrogenases for Enhancing Asymmetric Reductive Amination of Bulky α-Keto Acids. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801251] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinjian Yin
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Yayun Liu
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Lijun Meng
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Haisheng Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
42
|
Enantioselective Bioreduction of Prochiral Pyrimidine Base Derivatives by Boni Protect Fungicide Containing Live Cells of Aureobasidium pullulans. Catalysts 2018. [DOI: 10.3390/catal8070290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The enzymatic enantioselective bioreduction of prochiral 1-substituted-5-methyl-3-(2-oxo-2-phenylethyl)pyrimidine-2,4(1H,3H)-diones to corresponding chiral alcohols by Boni Protect fungicide containing live cells of Aureobasidium pullulans was studied. The microbe-catalyzed reduction of bulky-bulky ketones provides enantiomerically pure products (96–99% ee). In the presence of A. pullulans (Aureobasidium pullulans), one of the enantiotopic hydrides of the dihydropyridine ring coenzyme is selectively transferred to the si sides of the prochiral carbonyl group to give secondary alcohols with R configuration. The reactions were performed under various conditions in order to optimize the procedure with respect to time, solvent, and temperature. The present methodology demonstrates an alternative green way for the synthesis of chiral alcohols in a simple, economical, and eco-friendly biotransformation.
Collapse
|
43
|
Recent developments in non-enzymatic catalytic oxidative kinetic resolution of secondary alcohols. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Vahidi AK, Wang Z, Li Z. Facile Synthesis of S
-Substituted L-Cysteines with Nano-sized Immobilized O
-Acetylserine Sulfhydrylase. ChemCatChem 2018. [DOI: 10.1002/cctc.201800577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Akbar K. Vahidi
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Zunsheng Wang
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| |
Collapse
|
45
|
Öksüz S, Şahin E, Dertli E. Synthesis of Enantiomerically Enriched Drug Precursors by Lactobacillus paracasei BD87E6 as a Biocatalyst. Chem Biodivers 2018; 15:e1800028. [PMID: 29667758 DOI: 10.1002/cbdv.201800028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/12/2018] [Indexed: 01/13/2023]
Abstract
Global sales of single enantiomeric drug products are growing at an alarming rate every year. A total of 7 bacterial strains were screened for their ability to reduce acetophenones to its corresponding alcohol. Among these strains Lactobacillus paracasei BD87E6 was found to be the most successful biocatalyst to reduce the ketones to the corresponding alcohols. The reaction conditions were systematically optimized for the reducing agent Lactobacillus paracasei BD87E6, which showed high enantioselectivity and conversion for the bioreduction. The preparative scale asymmetric reduction of 3-methoxyacetophenone (1h) by Lactobacillus paracasei BD87E6 gave (R)-1-(3-methoxyphenyl)ethanol (2h) with 92% yield and 99% enantiomeric excess. Compound 2h could be used for the synthesis of (S)-rivastigmine which has a great potential for the treatment of Alzheimer's disease. This study demonstrates that Lactobacillus paracasei BD87E6 can be used as a biocatalyst to obtain chiral carbinol with excellent yield and selectivity. The whole cell catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that Lactobacillus paracasei BD87E6 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.
Collapse
Affiliation(s)
- Selda Öksüz
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Turkey
| | - Engin Şahin
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Turkey
| | - Enes Dertli
- Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, 69000, Turkey
| |
Collapse
|
46
|
Alsafadi D, Alsalman S, Paradisi F. Extreme halophilic alcohol dehydrogenase mediated highly efficient syntheses of enantiopure aromatic alcohols. Org Biomol Chem 2018; 15:9169-9175. [PMID: 29067382 DOI: 10.1039/c7ob02299a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzymatic synthesis of enantiopure aromatic secondary alcohols (including substituted, hetero-aromatic and bicyclic structures) was carried out using halophilic alcohol dehydrogenase ADH2 from Haloferax volcanii (HvADH2). This enzyme showed an unprecedented substrate scope and absolute enatioselectivity. The cofactor NADPH was used catalytically and regenerated in situ by the biocatalyst, in the presence of 5% ethanol. The efficiency of HvADH2 for the conversion of aromatic ketones was markedly influenced by the steric and electronic factors as well as the solubility of ketones in the reaction medium. Furthermore, carbonyl stretching band frequencies ν (C[double bond, length as m-dash]O) have been measured for different ketones to understand the effect of electron withdrawing or donating properties of the ketone substituents on the reaction rate catalyzed by HvADH2. Good correlation was observed between ν (C[double bond, length as m-dash]O) of methyl aryl-ketones and the reaction rate catalyzed by HvADH2. The enzyme catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that HvADH2 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest.
Collapse
|
47
|
Ewing TA, Kühn J, Segarra S, Tortajada M, Zuhse R, van Berkel WJH. Multigram Scale Enzymatic Synthesis of (R)-1-(4′-Hydroxyphenyl)ethanol Using Vanillyl Alcohol Oxidase. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tom A. Ewing
- Laboratory of Biochemistry; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| | - Jasmin Kühn
- Chiracon GmbH; Biotechnologiepark 14943 Luckenwalde Germany
| | - Silvia Segarra
- Biopolis S. L.; Parc Científic de la Universitat de València; Edificio 2, C/Catedrático Agustín Escardino 9 46980 Paterna Spain
| | - Marta Tortajada
- Biopolis S. L.; Parc Científic de la Universitat de València; Edificio 2, C/Catedrático Agustín Escardino 9 46980 Paterna Spain
| | - Ralf Zuhse
- Chiracon GmbH; Biotechnologiepark 14943 Luckenwalde Germany
| | - Willem J. H. van Berkel
- Laboratory of Biochemistry; Wageningen University & Research; Stippeneng 4 6708 WE Wageningen The Netherlands
| |
Collapse
|
48
|
Nagai T, Sakurai S, Natori N, Hataoka M, Kinoshita T, Inoue H, Hanaya K, Shoji M, Sugai T. Synthesis of enantiomerically enriched drug precursors and an insect pheromone via reduction of ketones using commercially available carbonyl reductase screening kit “Chiralscreen® OH”. Bioorg Med Chem 2018; 26:1304-1313. [DOI: 10.1016/j.bmc.2017.03.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/22/2017] [Accepted: 03/31/2017] [Indexed: 12/31/2022]
|
49
|
Kutner J, Shabalin IG, Matelska D, Handing KB, Gasiorowska O, Sroka P, Gorna MW, Ginalski K, Wozniak K, Minor W. Structural, Biochemical, and Evolutionary Characterizations of Glyoxylate/Hydroxypyruvate Reductases Show Their Division into Two Distinct Subfamilies. Biochemistry 2018; 57:963-977. [PMID: 29309127 PMCID: PMC6469932 DOI: 10.1021/acs.biochem.7b01137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The d-2-hydroxyacid dehydrogenase (2HADH) family illustrates a complex evolutionary history with multiple lateral gene transfers and gene duplications and losses. As a result, the exact functional annotation of individual members can be extrapolated to a very limited extent. Here, we revise the previous simplified view on the classification of the 2HADH family; specifically, we show that the previously delineated glyoxylate/hydroxypyruvate reductase (GHPR) subfamily consists of two evolutionary separated GHRA and GHRB subfamilies. We compare two representatives of these subfamilies from Sinorhizobium meliloti (SmGhrA and SmGhrB), employing a combination of biochemical, structural, and bioinformatics approaches. Our kinetic results show that both enzymes reduce several 2-ketocarboxylic acids with overlapping, but not equivalent, substrate preferences. SmGhrA and SmGhrB show highest activity with glyoxylate and hydroxypyruvate, respectively; in addition, only SmGhrB reduces 2-keto-d-gluconate, and only SmGhrA reduces pyruvate (with low efficiency). We present nine crystal structures of both enzymes in apo forms and in complexes with cofactors and substrates/substrate analogues. In particular, we determined a crystal structure of SmGhrB with 2-keto-d-gluconate, which is the biggest substrate cocrystallized with a 2HADH member. The structures reveal significant differences between SmGhrA and SmGhrB, both in the overall structure and within the substrate-binding pocket, offering insight into the molecular basis for the observed substrate preferences and subfamily differences. In addition, we provide an overview of all GHRA and GHRB structures complexed with a ligand in the active site.
Collapse
Affiliation(s)
- Jan Kutner
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States,Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 101 Zwirki i Wigury, 02-089 Warsaw, Poland
| | - Ivan G. Shabalin
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Dorota Matelska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States,Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 93 Zwirki i Wigury, 02-089 Warsaw, Poland
| | - Katarzyna B. Handing
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Olga Gasiorowska
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Piotr Sroka
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States
| | - Maria W. Gorna
- Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 101 Zwirki i Wigury, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- Laboratory of Bioinformatics and Systems Biology, Centre of New Technologies, University of Warsaw, 93 Zwirki i Wigury, 02-089 Warsaw, Poland,Corresponding Authors: (K.G.)., (K.W.)., . Phone: (434) 243-6865. Fax: (434) 243-2981 (W.M.)
| | - Krzysztof Wozniak
- Laboratory for Structural and Biochemical Research, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, 101 Zwirki i Wigury, 02-089 Warsaw, Poland,Corresponding Authors: (K.G.)., (K.W.)., . Phone: (434) 243-6865. Fax: (434) 243-2981 (W.M.)
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, Virginia 22908, United States,Department of Chemistry, University of Warsaw, 1 Ludwika Pasteura, 02-093 Warsaw, Poland,Corresponding Authors: (K.G.)., (K.W.)., . Phone: (434) 243-6865. Fax: (434) 243-2981 (W.M.)
| |
Collapse
|
50
|
Xue YP, Cao CH, Zheng YG. Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 2018; 47:1516-1561. [DOI: 10.1039/c7cs00253j] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|