1
|
Herzog MKM, Peters A, Shayya N, Cazzaniga M, Kaka Bra K, Arora T, Barthel M, Gül E, Maurer L, Kiefer P, Christen P, Endhardt K, Vorholt JA, Frankel G, Heimesaat MM, Bereswill S, Gahan CGM, Claesson MJ, Domingo-Almenara X, Hardt WD. Comparing Campylobacter jejuni to three other enteric pathogens in OligoMM 12 mice reveals pathogen-specific host and microbiota responses. Gut Microbes 2025; 17:2447832. [PMID: 39835346 DOI: 10.1080/19490976.2024.2447832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
Campylobacter jejuni, non-typhoidal Salmonella spp., Listeria monocytogenes and enteropathogenic/enterohemorrhagic Escherichia coli (EPEC/EHEC) are leading causes of food-borne illness worldwide. Citrobacter rodentium has been used to model EPEC and EHEC infection in mice. The gut microbiome is well-known to affect gut colonization and host responses to many food-borne pathogens. Recent progress has established gnotobiotic mice as valuable models to study how microbiota affect the enteric infections by S. Typhimurium, C. rodentium and L. monocytogenes. However, for C. jejuni, we are still lacking a suitable gnotobiotic mouse model. Moreover, the limited comparability of data across laboratories is often negatively affected by variations between different research facilities or murine microbiotas. In this study, we applied the standardized gnotobiotic OligoMM12 microbiota mouse model and compared the infections in the same facility. We provide evidence of robust colonization and significant pathological changes in OligoMM12 mice following infection with these pathogens. Moreover, we offer insights into pathogen-specific host responses and metabolite signatures, highlighting the advantages of a standardized mouse model for direct comparisons of factors influencing the pathogenesis of major food-borne pathogens. Notably, we reveal for the first time that C. jejuni stably colonizes OligoMM12 mice, triggering inflammation. Additionally, our comparative approach successfully identifies pathogen-specific responses, including the detection of genes uniquely associated with C. jejuni infection in humans. These findings underscore the potential of the OligoMM12 model as a versatile tool for advancing our understanding of food-borne pathogen interactions.
Collapse
Affiliation(s)
- Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Audrey Peters
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Nizar Shayya
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Monica Cazzaniga
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Kardokh Kaka Bra
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Trisha Arora
- Omic Sciences Unit, EURECAT - Technology Centre of Catalonia, Reus, Spain
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luca Maurer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Katharina Endhardt
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gad Frankel
- Department of Life Sciences, MRC Centre for Bacterial Resistance Biology, Imperial College London, London, UK
| | - Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Cormac G M Gahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Marcus J Claesson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Zhang Y, Wang A, Zhao W, Qin J, Zhang Y, Liu B, Yao C, Long J, Yuan M, Yan D. Microbial succinate promotes the response to metformin by upregulating secretory immunoglobulin a in intestinal immunity. Gut Microbes 2025; 17:2450871. [PMID: 39812329 PMCID: PMC11740685 DOI: 10.1080/19490976.2025.2450871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Metformin is the first-line pharmacotherapy for type 2 diabetes mellitus; however, many patients respond poorly to this drug in clinical practice. The potential involvement of microbiota-mediated intestinal immunity and related signals in metformin responsiveness has not been previously investigated. In this study, we successfully constructed a humanized mouse model by fecal transplantation of the gut microbiota from clinical metformin-treated - responders and non-responders, and reproduced the difference in clinical phenotypes of responsiveness to metformin. The abundance of Bacteroides thetaiotaomicron, considered a representative differential bacterium of metformin responsiveness, and the level of secretory immunoglobulin A (SIgA) in intestinal immunity increased significantly in responder recipient mice following metformin treatment. In contrast, no significant alterations in B. thetaiotaomicron and SIgA were observed in non-responder recipient mice. The study of IgA-/- mice confirmed that downregulated expression or deficiency of SIgA resulted in non-response to metformin, meaning that metformin was unable to improve dysfunctional glucose metabolism and reduce intestinal and adipose tissue inflammation, ultimately leading to systemic insulin resistance. Furthermore, supplementation with succinate, a microbial product of B. thetaiotaomicron, potentially reversed the non-response to metformin by inducing the production of SIgA. In conclusion, we demonstrated that upregulated SIgA, which could be regulated by succinate, was functionally involved in metformin response through its influence on immune cell-mediated inflammation and insulin resistance. Conversely, an inability to regulate SIgA may result in a lack of response to metformin.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Aiting Wang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jia’an Qin
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yu Zhang
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bing Liu
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Chengcheng Yao
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianglan Long
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingxia Yuan
- Department of Endocrinology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Dan Yan
- Beijing Institute of Clinical Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Ichikawa A, Takayama T, Kojima C, Fujie S, Iemitsu M, Inoue K. Conversion Reaction of Stable-Isotope Oxygen Labeling of Carboxylic Acids for Accurate Screening LC-MS/MS Assay: Application of Behavioral Changes of Short-Chain Fatty Acids in Sports Athletes under Exercise Loading. Anal Chem 2025; 97:7765-7771. [PMID: 40183608 DOI: 10.1021/acs.analchem.4c05872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Short-chain fatty acids (SCFAs) have attracted considerable interest as potential biomarkers, therapeutic targets, and nutritional factors in athletic training. SCFAs are typically produced by the intestinal microbiome and exhibit various structural forms, including linear- and branched-chain types. In particular, branched-chain SCFAs have been associated with muscle metabolism during exercise loading. Consequently, accurate and efficient analytical methods are essential for identifying these biomarkers. Liquid chromatography-tandem mass spectrometry is a suitable and accurate technique for SCFA analysis; however, stable isotope calibrations are required for all analytes. Because of technological limitations, the available species are restricted to certain types of SCFAs. To address this issue, this study performed a simple conversion reaction involving the incorporation of 18O into the carboxyl group. Specifically, oxygen atoms in the carboxyl groups were substituted with 18O sourced from commercially available H218O. An SCFA mixture standard solution was successfully labeled under optimized conditions, and the SIL purity and amount were sufficient for isotope dilution (95.2-96.9%, 250 assays using 10 μL of H218O). Moreover, no reversion to 16O was observed during storage or analysis. Analytical validation was performed in human serum using the substituted isotopic standard mixture, achieving good accuracy (90-110%) and precision (<10% relative standard deviation) across three concentration levels. Finally, changes in SCFA patterns were examined in athletes during exercise loading.
Collapse
Affiliation(s)
- Aoi Ichikawa
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Takahiro Takayama
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Chihiro Kojima
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - Koichi Inoue
- Laboratory of Clinical and Analytical Chemistry, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
4
|
Tillett BJ, Dwiyanto J, Secombe KR, George T, Zhang V, Anderson D, Duggan E, Giri R, Loo D, Stoll T, Morrison M, Begun J, Hill MM, Gurzov EN, Bell KJ, Saad S, Barlow CK, Creek DJ, Chong CW, Mariño E, Hamilton-Williams EE. SCFA biotherapy delays diabetes in humanized gnotobiotic mice by remodeling mucosal homeostasis and metabolome. Nat Commun 2025; 16:2893. [PMID: 40133336 PMCID: PMC11937418 DOI: 10.1038/s41467-025-58319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Type 1 diabetes (T1D) is linked to an altered gut microbiota characterized by reduced short-chain fatty acid (SCFA) production. Oral delivery of a SCFA-yielding biotherapy in adults with T1D was followed by increased SCFAs, altered gut microbiota and immunoregulation, as well as delaying diabetes in preclinical models. Here, we show that SCFA-biotherapy in humans is accompanied by remodeling of the gut proteome and mucosal immune homeostasis. Metabolomics showed arginine, glutamate, nucleotide and tryptophan metabolism were enriched following the SCFA-biotherapy, and found metabolites that correlated with glycemic control. Fecal microbiota transfer demonstrated that the microbiota of SCFA-responders delayed diabetes progression in humanized gnotobiotic mice. The protected mice increased similar metabolite pathways to the humans including producing aryl-hydrocarbon receptor ligands and reducing inflammatory mucosal immunity and increasing IgA production in the gut. These data demonstrate that a potent SCFA immunomodulator promotes multiple beneficial pathways and supports targeting the microbiota as an approach against T1D. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12618001391268.
Collapse
Affiliation(s)
- Bree J Tillett
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jacky Dwiyanto
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kate R Secombe
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas George
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vivian Zhang
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Emily Duggan
- Translational Research Institute, Brisbane, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Dorothy Loo
- Translational Research Institute, Brisbane, QLD, Australia
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mark Morrison
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jakob Begun
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Kirstine J Bell
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Chun Wie Chong
- Monash University Microbiome Research Centre, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Eliana Mariño
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
- ImmunoBiota Therapeutics Pty Ltd, Melbourne, VIC, Australia.
| | | |
Collapse
|
5
|
Santamaria de Souza N, Cherrak Y, Andersen TB, Vetsch M, Barthel M, Kroon S, Bakkeren E, Schubert C, Christen P, Kiefer P, Vorholt JA, Nguyen BD, Hardt WD. Context-dependent change in the fitness effect of (in)organic phosphate antiporter glpT during Salmonella Typhimurium infection. Nat Commun 2025; 16:1912. [PMID: 39994176 PMCID: PMC11850910 DOI: 10.1038/s41467-025-56851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 02/04/2025] [Indexed: 02/26/2025] Open
Abstract
Salmonella enterica is a frequent cause of foodborne diseases, which is attributed to its adaptability. Even within a single host, expressing a gene can be beneficial in certain infection stages but neutral or even detrimental in others as previously shown for flagellins. Mutants deficient for the conserved glycerol-3-phosphate and phosphate antiporter glpT have been shown to be positively selected in nature, clinical, and laboratory settings. This suggests that different selective pressures select for the presence or absence of GlpT in a context dependent fashion, a phenomenon known as antagonistic pleiotropy. Using mutant libraries and reporters, we investigated the fitness of glpT-deficient mutants during murine orogastric infection. While glpT-deficient mutants thrive during initial growth in the gut lumen, where GlpT's capacity to import phosphate is disadvantageous, they are counter-selected by macrophages. The dichotomy showcases the need to study the spatial and temporal heterogeneity of enteric pathogens' fitness across distinct lifestyles and niches. Insights into the differential adaptation during infection may reveal opportunities for therapeutic interventions.
Collapse
Affiliation(s)
| | - Yassine Cherrak
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Thea Bill Andersen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Michel Vetsch
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Sanne Kroon
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Erik Bakkeren
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Christopher Schubert
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Philipp Christen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Bidong D Nguyen
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland
| | - Wolf-Dietrich Hardt
- Department of Biology, Institute of Microbiology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
6
|
Xie C, Liang Q, Cheng J, Yuan Y, Xie L, Ji J. Transplantation of fecal microbiota from low to high residual feed intake chickens: Impacts on RFI, microbial community and metabolites profiles. Poult Sci 2025; 104:104567. [PMID: 39603188 PMCID: PMC11635772 DOI: 10.1016/j.psj.2024.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/09/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
Improving feed efficiency is vital to bolster profitability and sustainability in poultry production. Although several studies have established links between gut microbiota and feed efficiency, the direct effects remain unclear. In this study, two distinct lines of Huiyang bearded chickens, exhibiting significant differences in residual feed intake (RFI), were developed after 15 generations of selective breeding. Fecal microbiota transplantation (FMT) from low RFI (LRFI) chickens to high RFI (HRFI) chickens resulted in a reduction trend in RFI, decreasing from 5.65 to 4.49 in the HRFI recipient chickens (HFMT). Microbiota composition and functional profiles in LRFI and HFMT chickens formed a distinct cluster compared to HRFI chickens. Using 16S rDNA sequencing and RandomForest analysis, Slackia, Peptococcus, Blautia, and Dorea were identified as key microbial markers associated with feed efficiency. Additionally, untargeted metabolomics identified common differential metabolites between HFMT and LRFI vs. HRFI groups. Correlation analysis showed significant correlations between these microbial markers and differential metabolites. These findings provide a foundation for microbiome-based strategies to improve feed efficiency in poultry.
Collapse
Affiliation(s)
- Chunlin Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiying Liang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiaheng Cheng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yushan Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lu Xie
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian Ji
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China..
| |
Collapse
|
7
|
Park J, Mok B, Chung HJ, Park HY, Kim HS. Heat-treated brown rice starch structure and effect on short-chain fatty acids and mouse intestinal microbiota. Int J Biol Macromol 2024; 283:137597. [PMID: 39577522 DOI: 10.1016/j.ijbiomac.2024.137597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Rice with high resistant starch (RS) exhibits the potential to improve glucose metabolism, insulin sensitivity. In this study, using two rice varieties-Samgwang, a medium-amylose rice, and Dodamssal, a high-amylose rice containing RS-we analyzed the composition and molecular structural characteristics of brown rice and its starch and the effects on fasting blood glucose levels, fecal short-chain fatty acid (SCFA), and gut microbiota after 8 weeks of consumption in mice. The amylose content of heat-treated Samgwang (HS) and -Dodamssal (HD) was 21.0 ± 0.2 and 47.5 ± 0.3 %, respectively, while RS contents were 0.8 ± 0.0 and 14.7 ± 1.0 %. HD exhibited a C-type starch crystallinity with a lower proportion of short chains and a higher proportion of long chains compared to HS. HD-fed mice exhibited lower fasting blood glucose levels and the highest SCFA levels in their feces. They also had the highest abundance of Ruminococcus bromii, an RS-degrading bacterium, the highest positive correlation with Faecalicatena fissicatena (r = 0.9), and the highest negative correlation with Lachnoclostridium scindens and Lawsonibacter asaccharolyticus (r = -0.8). Overall, HD consumption can improve glucose metabolism by increasing intestinal SCFA production and can serve as a prebiotic dietary ingredient to improve obesity and diabetes.
Collapse
Affiliation(s)
- Jiyoung Park
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429, Republic of Korea.
| | - Boram Mok
- Department of Oncology, Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, USA
| | - Hyun-Jung Chung
- Division of Food and Nutrition, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hye Young Park
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429, Republic of Korea
| | - Hong-Sik Kim
- Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, 126 Suin-ro, Kwonseon-gu, Suwon, Gyeonggi 16429, Republic of Korea
| |
Collapse
|
8
|
Kaundal S, Patil AN, Ks L, Sharma V, Arora A, Singh C, Jandial A, Jain A, Prakash G, Khadwal A, Malhotra P, Lad DP. A role for diet and gut microbiota metabolites in autologous hematopoietic cell transplant recipients. BLOOD CELL THERAPY 2024; 7:101-105. [PMID: 39651062 PMCID: PMC11620986 DOI: 10.31547/bct-2024-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/10/2024] [Indexed: 12/11/2024]
Abstract
Introduction The gut microbiome has an established role in allogeneic hematopoietic cell transplantation (allo-HCT), but not in an auto-HCT setting. We have hypothesized that fecal short-chain fatty acids (SCFA) and urinary 3-indoxyl sulfate (3-IS), which are metabolites derived from the action of the gut microbiome on dietary fiber, play a role in auto-HCT outcomes. Methods This was a single-center prospective study involving auto-HCT recipients. Baseline patient and disease details, diet diaries, and antibiotic exposure were recorded in consenting patients. Serial (pre-HCT, week two, and week four post-HCT) SCFA and urine 3-IS levels were measured using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). HCT outcomes were correlated with these metabolites. Results Thirty patients (myeloma, n=13; lymphoma, n=17) were analyzed. The levels of urinary 3-IS, fecal acetate, propionate, and butyrate were found to be decreased at week two and were recovered by week four post-HCT. Those with low median nadir fecal butyrate levels at week two also had significantly lower pre-HCT and week four butyrate levels. Recipients with low butyrate levels had more grade ≥2 mucositis (80% vs. 33%, p=0.01) and low fiber intake (10.4 g vs. 13.6 g, p=0.04). They also had more carbapenem exposure (93% vs. 47%, p=0.005) and prolonged antibiotics (11 days vs. 8 days, p=0.008). There were no differences in the time to neutrophil or platelet engraftment, mortality, or disease response. Conclusion Low pre-HCT fecal butyrate levels tend to persist post-HCT and they are associated with mucositis, dietary fiber intake, and antibiotic exposure. The gut microbiome and its modulation may play a role in auto-HCT settings.
Collapse
Affiliation(s)
| | | | | | | | - Amit Arora
- Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | | - Deepesh P Lad
- Clinical Hematology & Medical Oncology
- Leukemia/BMT Program of BC, Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
9
|
Jose J, Fonteh AN. A charge reversal approach for the sensitive quantification of dicarboxylic acids using Liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1737:465426. [PMID: 39423602 DOI: 10.1016/j.chroma.2024.465426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Dicarboxylic acids (DCAs) are essential for intermediate metabolism and are implicated in multiple processes associated with various diseases. Several DCAs contribute to energy metabolism, impact mitochondrial function, and play a crucial role in body function. However, the low abundance of some DCAs in various body fluids makes their quantification particularly challenging. Therefore, an extremely sensitive method is required to determine DCA level fluctuations in biological samples in different diseases. We developed and optimized an LC-MS/MS method to quantify DCAs. We achieved charge reversal of the compounds from negative to positive ionization through chemical derivatization with dimethylaminophenacyl bromide (DmPABr) targeting the carboxyl group (R-COOH) under mild basic conditions. Derivatization enhanced sensitivity, mass fragmentation, and chromatographic separation for LC-tandem mass spectrometric quantification. The method was analytically optimized and demonstrated excellent linearity for individual DCAs (R2>0.99), as well as an exceptionally lower limit of detection (LLOD<266 fg) and lower limit of quantification (LLOQ<805 fg) for all DCAs. Furthermore, most derivatized DCAs were stable at room temperature and after ten repeated freeze-thaw cycles. After DCA extraction and quantification detection, we found differences in their distribution in plasma and urine. The rank order for DCAs in plasma is C4>C6>C7>C9>C5>C8>C22, whereas in the urine sample, the order is C4>C7>C6>C9>C5>C8>C10. For longer chains (C > 16), their proportions were >10x higher in plasma than in urine. Our optimized method using LC-MS/MS enables the quantification of DCAs with excellent sensitivity. The method will help in future studies investigating dicarboxylic acids' crucial role in health and biomarker discovery studies using targeted metabolomics.
Collapse
Affiliation(s)
- Joby Jose
- Biomarker and Neuro-disease Mechanism Lab, Neuroscience Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Alfred N Fonteh
- Biomarker and Neuro-disease Mechanism Lab, Neuroscience Department, Huntington Medical Research Institutes, Pasadena, CA, USA.
| |
Collapse
|
10
|
Lin J, Li E, Li C. Increasing degree of substitution inhibits acetate while promotes butyrate production during in vitro fermentation of citric acid-modified rice starch. Int J Biol Macromol 2024; 281:136385. [PMID: 39383914 DOI: 10.1016/j.ijbiomac.2024.136385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
Citric acid-modified starch functions as a resistant starch, while the combined effects of its fine molecular structure and degree of substitution on gut microbiota are not well understood. To this end, citric acid-modified starches with varying degrees of substitution were synthesized from rice starches with distinct molecular structures and their impact on gut microbiota composition and short-chain fatty acid (SCFA) production was analyzed. Notably, rice starch with a higher degree of substitution significantly reduced acetate production, while promoted butyrate production. Correlation analysis further suggested that amylopectin chains with 12 < DP ≤ 36 and amylose chains with 100 < DP ≤ 500 alter the growth of Faecalibacterium_prausnitzii and Bacteroides_vulgatus, consequentially determining the production of SCFAs. Collectively, these findings indicate that citric acid-modified rice starch with different degrees of substitution can target specific gut bacteria and SCFA production, thus conferring beneficial impact on human health.
Collapse
Affiliation(s)
- Jiakang Lin
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Enpeng Li
- Joint International Research Laboratory of Agriculture Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cheng Li
- Food & Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China.
| |
Collapse
|
11
|
Wang L, Liang A, Huang J. Exendin-4-enriched exosomes from hUCMSCs alleviate diabetic nephropathy via gut microbiota and immune modulation. Front Microbiol 2024; 15:1399632. [PMID: 39282564 PMCID: PMC11392743 DOI: 10.3389/fmicb.2024.1399632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Diabetic nephropathy (DN) presents a significant therapeutic challenge, compounded by complex pathophysiological mechanisms. Recent studies suggest Exendin-4 (Ex-4) as a potential ameliorative agent for DN, albeit with unclear mechanisms. This research investigates the effects and underlying mechanisms of Ex-4-enriched exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs) on DN, focusing on their renoprotective properties and interactions with gut microbiota. Method Exosomes from hUCMSCs (hUCMSCs-Exo) were loaded with Ex-4 via electroporation. A streptozotocin (STZ) -induced DN mouse model was employed to assess the therapeutic impact of these engineered exosomes. The study further explored immune cell dynamics, mainly CD4+ regulatory T (Treg) cells, using bioinformatics, flow cytometry, and the influence of gut microbiota through antibiotic treatment and specific bacterial reintroduction. Results Treatment with hUCMSCs-Exo@Ex-4 significantly improved key DN markers, including blood glucose and proteinuria, alleviating kidney damage. A notable decrease in natural Treg cell infiltration in DN was observed, while Ex-4-loaded exosomes promoted CD4+ Treg cell induction. The therapeutic benefits of hUCMSCs-Exo@Ex-4 were diminished upon CD4+ Treg cell depletion, underscoring their role in this context. Notably, CD4+ Treg cell induction correlated with the presence of Prevotella species, and disruption of gut microbiota adversely affected these cells and the therapeutic efficacy of the treatment. However, the reintroduction of Prevotella strains counteracted these adverse effects. Discussion This study elucidates a novel therapeutic mechanism of Ex-4-loaded hUCMSCs exosomes in DN, highlighting the induction of CD4+ Treg cells mediated by specific gut microbiota components. These findings underscore the potential of leveraging gut microbiota and immune cell interplay in developing effective DN treatments.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical, Beijing, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical, Beijing, China
| | - Jukai Huang
- Department of Endocrinology, Beijing University of Chinese Medicine, Dongzhimen Hospital, Beijing, China
| |
Collapse
|
12
|
Han S, Guiberson ER, Li Y, Sonnenburg JL. High-throughput identification of gut microbiome-dependent metabolites. Nat Protoc 2024; 19:2180-2205. [PMID: 38740909 DOI: 10.1038/s41596-024-00980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2024] [Indexed: 05/16/2024]
Abstract
A significant hurdle that has limited progress in microbiome science has been identifying and studying the diverse set of metabolites produced by gut microbes. Gut microbial metabolism produces thousands of difficult-to-identify metabolites, which present a challenge to study their roles in host biology. In recent years, mass spectrometry-based metabolomics has become one of the core technologies for identifying small metabolites. However, metabolomics expertise, ranging from sample preparation to instrument use and data analysis, is often lacking in academic labs. Most targeted metabolomics methods provide high levels of sensitivity and quantification, while they are limited to a panel of predefined molecules that may not be informative to microbiome-focused studies. Here we have developed a gut microbe-focused and wide-spectrum metabolomic protocol using liquid chromatography-mass spectrometry and bioinformatic analysis. This protocol enables users to carry out experiments from sample collection to data analysis, only requiring access to a liquid chromatography-mass spectrometry instrument, which is often available at local core facilities. By applying this protocol to samples containing human gut microbial metabolites, spanning from culture supernatant to human biospecimens, our approach enables high-confidence identification of >800 metabolites that can serve as candidate mediators of microbe-host interactions. We expect this protocol will lower the barrier to tracking gut bacterial metabolism in vitro and in mammalian hosts, propelling hypothesis-driven mechanistic studies and accelerating our understanding of the gut microbiome at the chemical level.
Collapse
Affiliation(s)
- Shuo Han
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA.
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| | - Emma R Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yuxin Li
- Biochemistry Graduate Program, Duke University School of Medicine, Durham, NC, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
- Center for Human Microbiome Studies, Stanford, CA, USA.
| |
Collapse
|
13
|
Zidarič T, Gradišnik L, Frangež T, Šoštarič M, Korunič E, Maver T, Maver U. Novel 3D printed polysaccharide-based materials with prebiotic activity for potential treatment of diaper rash. Int J Biol Macromol 2024; 269:131958. [PMID: 38697421 DOI: 10.1016/j.ijbiomac.2024.131958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Diaper rash, mainly occurring as erythema and itching in the diaper area, causes considerable distress to infants and toddlers. Increasing evidence suggests that an unequal distribution of microorganisms on the skin contributes to the development of diaper dermatitis. Probiotic bacteria, like Staphylococcus epidermidis, are crucial for maintaining a healthy balance in the skin's microbiome, among others, through their fermentative metabolites, such as short-chain fatty acids. Using a defined prebiotic as a carbon source (e.g., as part of the diaper formulation) can selectively trigger the fermentation of probiotic bacteria. A proper material choice can reduce diaper rash incidence by diminishing the skin exposure to wetness and faeces. Using 3D printing, we fabricated carbon-rich materials for the top sheet layer of baby diapers that enhance the probiotic activity of S. epidermidis. The developed materials' printability, chemical composition, swelling ability, and degradation rate were analysed. In addition, microbiological tests evaluated their potential as a source of in situ short-chain fatty acid production. Finally, biocompatibility testing with skin cells evaluated their safety for potential use as part of diapers. The results demonstrate a cost-effective approach for producing novel materials that can tailor the ecological balance of the skin microflora and help treat diaper rash.
Collapse
Affiliation(s)
- Tanja Zidarič
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia.
| | - Lidija Gradišnik
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tjaša Frangež
- National Laboratory for Health, Environment and Food, Centre for Microbiological Analysis of Food, Water and Other Environmental Samples, Maribor, Slovenia, Prvomajska ulica 1, 2000, Maribor, Slovenia
| | - Mojca Šoštarič
- National Laboratory for Health, Environment and Food, Centre for Microbiological Analysis of Food, Water and Other Environmental Samples, Maribor, Slovenia, Prvomajska ulica 1, 2000, Maribor, Slovenia
| | - Eva Korunič
- National Laboratory for Health, Environment and Food, Centre for Chemical Analysis of Food, Water and Other Environmental Samples, Maribor, Slovenia, Prvomajska ulica 1, 2000, Maribor, Slovenia
| | - Tina Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia; University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Maver
- University of Maribor, Faculty of Medicine, Institute of Biomedical Sciences, Taborska ulica 8, 2000 Maribor, Slovenia; University of Maribor, Faculty of Medicine, Department of Pharmacology, Taborska ulica 8, 2000 Maribor, Slovenia.
| |
Collapse
|
14
|
Fristedt R, Ruppert V, Trower T, Cooney J, Landberg R. Quantitation of circulating short-chain fatty acids in small volume blood samples from animals and humans. Talanta 2024; 272:125743. [PMID: 38382298 DOI: 10.1016/j.talanta.2024.125743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The role of gut microbiota in human health has been intensively studied and more recently shifted from emphasis on composition towards function. Function is partly mediated through formed metabolites. Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate as well as their branched analogues represent major products from gut fermentation of dietary fibre and proteins, respectively. Robust and high-throughput analysis of SCFAs in small volume blood samples have proven difficult. Major obstacles come from the ubiquitous presence of SCFAs that leads to contaminations and unstable analytical results because of the high volatility of these small molecules. Comprehensive and comparable data on the variation of SCFAs in blood samples from different blood matrices and mammal species including humans is lacking. Therefore, our aim was to develop and evaluate a stable and robust method for quantitation of 8 SCFAs and related fermentation products in small volume blood plasma samples and to investigate their variation in humans and different animal species. RESULTS Derivatization was a successful approach for measurement of SCFAs in biological samples but quenching of the derivatization reaction was crucial to obtain long-term stability of the derivatized analytes. In total 9 compounds (including succinic acid) were separated in 5 min. The method was linear over the range 0.6-3200 nM formic (FA), acetic (AA), 0.3-1600 nM propionic (PA), and 0.16-800 nM for butyric (BA)-, isobutyric (IBA)-, valeric (VA)-, isovaleric (IVA)-, succinic (SA) and caproic acid (CA). The precision ranged ≤12 % within days and ≤28 % between days (except for CA and VA) in three different plasma quality control (QC) samples (29 batches analyzed over 3 months). The extraction recovery was on average 94 % for the different SCFAs. Typical interquartile range (IQR) concentrations (μM) of SCFAs in human plasma samples were 168 μM (FA), 64 μM (AA), 2.2 μM (PA), 0.54 μM (BA), 0.66 μM (IBA), 0.18 μM (VA), 0.40 μM (IVA), and 0.34 μM (CA). In total, 55 samples per batch/day were successfully analyzed and in total 5380 human plasma samples measured over a 3-year timespan. SIGNIFICANCE The developed UHPLC-MS based method was suitable for measuring SCFAs in small blood volume samples and enabled robust quantitative data.
Collapse
Affiliation(s)
- Rikard Fristedt
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden.
| | - Vanessa Ruppert
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden
| | - Tania Trower
- The New Zealand Institute for Plant and Food Research Limited, Biological Chemistry and Bioactives Group, Food Innovation Portfolio, Hamilton, New Zealand
| | - Janine Cooney
- The New Zealand Institute for Plant and Food Research Limited, Biological Chemistry and Bioactives Group, Food Innovation Portfolio, Hamilton, New Zealand
| | - Rikard Landberg
- Chalmers University of Technology, Department of Life Sciences, Division of Food and Nutrition Science, Gothenburg, Sweden
| |
Collapse
|
15
|
Nagatomo R, Ichikawa A, Kaneko H, Inoue K. Comparison of 3-nitrophenylhydrazine, O-benzyl hydroxylamine, and 2-picolylamine derivatizations for analysis of short-chain fatty acids through liquid chromatography coupled with tandem mass spectrometry. ANAL SCI 2024; 40:843-851. [PMID: 38112959 DOI: 10.1007/s44211-023-00474-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Short-chain fatty acids (SCFAs) are metabolites derived from gut microbiota and implicated in host homeostasis. Hence, the profiling SCFAs from biological samples plays an important role in revealing the interaction between gut microbiota and pathogens. Previous studies, liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with various derivatization strategies have been performed to obtain the SCFA profiles from biological samples. However, it is poor evidence to compare these derivatization regents and conditions. Thus, we present the evaluation of three major derivatization reagents, namely 3-nitrophenylhydrazine (3-NPH), O-benzylhydroxylamine (O-BHA), and 2-picolylamine (2-PA), for the analysis of eight SCFAs classified as C2-C5 isomers using LC-MS/MS. First, in a reversed-phase LC separation, 3-NPH showed good retention capacity. Although O-BHA derivatization showed higher sensitivity and good retention capacity than 2-PA, only 2-PA derivatization could successfully separate eight SCFAs. The matrix effects in human serum ranged 77.1-99.0% (RSD ≤ 3.4%, n = 6) for 3-NPH derivatives, 91.0-94.6% (RSD ≤ 5.4%, n = 6) for O-BHA derivatives, 81.6-99.5% (RSD ≤ 8.0%, n = 6) for 2-PA derivatives. These compared results showed each characteristic of 3-NPH, O-BHA, and 2-PA for SCFA derivatization based on LC-MS/MS approaches.
Collapse
Affiliation(s)
- Ryosuke Nagatomo
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Aoi Ichikawa
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Haruki Kaneko
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan
| | - Koichi Inoue
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
16
|
Jankech T, Gerhardtova I, Majerova P, Piestansky J, Jampilek J, Kovac A. Derivatization of carboxylic groups prior to their LC analysis - A review. Anal Chim Acta 2024; 1300:342435. [PMID: 38521569 DOI: 10.1016/j.aca.2024.342435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Carboxylic acids (CAs) represent a large group of important molecules participating in various biologically significant processes. Analytical study of these compounds is typically performed by liquid chromatography (LC) combined with various types of detection. However, their analysis is often accompanied by a wide variety of problems depending on used separation system or detection method. The dominant ones are: i) poor chromatographic behavior of the CAs in reversed-phase LC; ii) absence of a chromophore (or fluorophore); iii) weak ionization in mass spectrometry (MS). To overcome these problems, targeted chemical modification, and derivatization, come into play. Therefore, derivatization still plays an important and, in many cases, irreplaceable role in sample preparation, and new derivatization methods of CAs are constantly being developed. The most commonly used type of reaction for CAs derivatization is amidation. In recent years, an increased interest in the isotopic labeling derivatization method has been observed. In this review, we comprehensively summarize the possibilities and actual trends in the derivatization of CAs that have been published over the past decade.
Collapse
Affiliation(s)
- Timotej Jankech
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Ivana Gerhardtova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic
| | - Juraj Piestansky
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojarov 10, 832 32 Bratislava, Slovak Republic
| | - Josef Jampilek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska cesta 9, 845 10 Bratislava, Slovak Republic.
| |
Collapse
|
17
|
Mahdi T, Desmons A, Krasniqi P, Lacorte JM, Kapel N, Lamazière A, Fourati S, Eguether T. Effect of Stool Sampling on a Routine Clinical Method for the Quantification of Six Short Chain Fatty Acids in Stool Using Gas Chromatography-Mass Spectrometry. Microorganisms 2024; 12:828. [PMID: 38674773 PMCID: PMC11052040 DOI: 10.3390/microorganisms12040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Short chain fatty acids (SCFAs) are primarily produced in the caecum and proximal colon via the bacterial fermentation of undigested carbohydrates that have avoided digestion in the small intestine. Increasing evidence supports the critical role that SCFAs play in health and homeostasis. Microbial SCFAs, namely butyric acid, serve as a principal energy source for colonocytes, and their production is essential for gut integrity. A direct link between SCFAs and some human pathological conditions, such as inflammatory bowel disease, irritable bowel syndrome, diarrhea, and cancer, has been proposed. The direct measurement of SCFAs in feces provides a non-invasive approach to demonstrating connections between SCFAs, microbiota, and metabolic diseases to estimate their potential applicability as meaningful biomarkers of intestinal health. This study aimed to adapt a robust analytical method (liquid-liquid extraction, followed by isobutyl chloroformate derivatization and GC-MS analysis), with comparable performances to methods from the literature, and to use this tool to tackle the question of pre-analytical conditions, namely stool processing. We focused on the methodology of managing stool samples before the analysis (fresh stool or dilution in either ethanol/methanol, lyophilized stool, or RNAlater®), as this is a significant issue to consider for standardizing results between clinical laboratories. The objective was to standardize methods for future applications as diagnostic tools. In this paper, we propose a validated GC-MS method for SCFA quantification in stool samples, including pre- and post-analytical comparison studies that could be easily used for clinical laboratory purposes. Our results show that using lyophilization as a stool-processing method would be the best method to achieve this goal.
Collapse
Affiliation(s)
- Tarek Mahdi
- Hôpital Pitié Salpêtrière-Charles Foix, AP-HP, Service de Biochimie Endocrinienne et Oncologique, 75000 Paris, France
- Sorbonne Université, Inserm, UMR_S 1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, 75000 Paris, France
| | - Aurore Desmons
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, AP-HP, Département Metomics, Hôpital Saint Antoine, 75000 Paris, France
| | - Pranvera Krasniqi
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, AP-HP, Département Metomics, Hôpital Saint Antoine, 75000 Paris, France
| | - Jean-Marc Lacorte
- Hôpital Pitié Salpêtrière-Charles Foix, AP-HP, Service de Biochimie Endocrinienne et Oncologique, 75000 Paris, France
- Sorbonne Université, Inserm, UMR_S 1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, 75000 Paris, France
| | - Nathalie Kapel
- Hôpital Pitié Salpêtrière-Charles Foix, AP-HP, Service de Coprologie Fonctionnelle, 75000 Paris, France
- Université Paris Cité, Inserm, UMR_S 1139, 75000 Paris, France
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, 75000 Paris, France
| | - Antonin Lamazière
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, AP-HP, Département Metomics, Hôpital Saint Antoine, 75000 Paris, France
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, 75000 Paris, France
| | - Salma Fourati
- Hôpital Pitié Salpêtrière-Charles Foix, AP-HP, Service de Biochimie Endocrinienne et Oncologique, 75000 Paris, France
- Sorbonne Université, Inserm, UMR_S 1166, Research Institute of Cardiovascular Disease, Metabolism and Nutrition, 75000 Paris, France
| | - Thibaut Eguether
- Centre de Recherche Saint-Antoine, Sorbonne Université, INSERM, AP-HP, Département Metomics, Hôpital Saint Antoine, 75000 Paris, France
- Paris Center for Microbiome Medicine, Federation Hospitalo-Universitaire, 75000 Paris, France
| |
Collapse
|
18
|
Weng CY, Suarez C, Cheang SE, Couture G, Goodson ML, Barboza M, Kalanetra KM, Masarweh CF, Mills DA, Raybould HE, Lebrilla CB. Quantifying Gut Microbial Short-Chain Fatty Acids and Their Isotopomers in Mechanistic Studies Using a Rapid, Readily Expandable LC-MS Platform. Anal Chem 2024; 96:2415-2424. [PMID: 38288711 PMCID: PMC10867797 DOI: 10.1021/acs.analchem.3c04352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Short-chain fatty acids (SCFAs) comprise the largest group of gut microbial fermentation products. While absorption of most nutrients occurs in the small intestine, indigestible dietary components, such as fiber, reach the colon and are processed by the gut microbiome to produce a wide array of metabolites that influence host physiology. Numerous studies have implicated SCFAs as key modulators of host health, such as in regulating irritable bowel syndrome (IBS). However, robust methods are still required for their detection and quantitation to meet the demands of biological studies probing the complex interplay of the gut-host-health paradigm. In this study, a sensitive, rapid-throughput, and readily expandible UHPLC-QqQ-MS platform using 2-PA derivatization was developed for the quantitation of gut-microbially derived SCFAs, related metabolites, and isotopically labeled homologues. The utility of this platform was then demonstrated by investigating the production of SCFAs in cecal contents from mice feeding studies, human fecal bioreactors, and fecal/bacterial fermentations of isotopically labeled dietary carbohydrates. Overall, the workflow proposed in this study serves as an invaluable tool for the rapidly expanding gut-microbiome and precision nutrition research field.
Collapse
Affiliation(s)
- Cheng-Yu
Charlie Weng
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Christopher Suarez
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Shawn Ehlers Cheang
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Garret Couture
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Michael L. Goodson
- School
of Veterinary Medicine, University of California
Davis, Davis, California 95616, United States
| | - Mariana Barboza
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
- School
of Veterinary Medicine, University of California
Davis, Davis, California 95616, United States
| | - Karen M. Kalanetra
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - Chad F. Masarweh
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - David A. Mills
- Department
of Food Science and Technology, University
of California Davis, Davis, California 95616, United States
| | - Helen E. Raybould
- School
of Veterinary Medicine, University of California
Davis, Davis, California 95616, United States
| | - Carlito B. Lebrilla
- Department
of Chemistry, University of California Davis, Davis, California 95616, United States
| |
Collapse
|
19
|
Filipp L, Bausch F, Neuhaus LS, Flade J, Henle T. Metabolization of the Amadori Product N-ε-Fructosyllysine by Probiotic Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2718-2726. [PMID: 38275205 DOI: 10.1021/acs.jafc.3c07927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Glycation reactions in food lead to the formation of the Amadori rearrangement product (ARP) N-ε-fructosyllysine (fructoselysine, FL), which is taken up with the daily diet and comes into contact with the gut microbiota during digestion. In the present study, nine commercially available probiotic preparations as well as single pure strains thereof were investigated for their FL-degrading capability under anaerobic conditions. One of the commercial preparations as well as three single pure strains thereof was able to completely degrade 0.25 mM FL within 72 h. Three new deglycating lactic acid bacteria species, namely, Lactobacillus buchneri DSM 20057, Lactobacillus jensenii DSM 20557, and Pediococcus acidilactici DSM 25404, could be identified. Quantitative experiments showed that FL was completely deglycated to lysine. Using 13C6-labeled FL as the substrate, it could be proven that the sugar moiety of the Amadori product is degraded to lactic acid, showing for the first time that certain lactic acid bacteria can utilize the sugar moiety as a substrate for lactic acid fermentation.
Collapse
Affiliation(s)
- Lisa Filipp
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Florian Bausch
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Lisa Sophie Neuhaus
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Jessica Flade
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Thomas Henle
- Chair of Food Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
20
|
Roach J, Mital R, Haffner JJ, Colwell N, Coats R, Palacios HM, Liu Z, Godinho JLP, Ness M, Peramuna T, McCall LI. Microbiome metabolite quantification methods enabling insights into human health and disease. Methods 2024; 222:81-99. [PMID: 38185226 PMCID: PMC11932151 DOI: 10.1016/j.ymeth.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Many of the health-associated impacts of the microbiome are mediated by its chemical activity, producing and modifying small molecules (metabolites). Thus, microbiome metabolite quantification has a central role in efforts to elucidate and measure microbiome function. In this review, we cover general considerations when designing experiments to quantify microbiome metabolites, including sample preparation, data acquisition and data processing, since these are critical to downstream data quality. We then discuss data analysis and experimental steps to demonstrate that a given metabolite feature is of microbial origin. We further discuss techniques used to quantify common microbial metabolites, including short-chain fatty acids (SCFA), secondary bile acids (BAs), tryptophan derivatives, N-acyl amides and trimethylamine N-oxide (TMAO). Lastly, we conclude with challenges and future directions for the field.
Collapse
Affiliation(s)
- Jarrod Roach
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Rohit Mital
- Department of Biology, University of Oklahoma
| | - Jacob J Haffner
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Nathan Colwell
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Randy Coats
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Horvey M Palacios
- Department of Anthropology, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma
| | - Zongyuan Liu
- Department of Chemistry and Biochemistry, University of Oklahoma
| | | | - Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma; Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma; Department of Chemistry and Biochemistry, San Diego State University.
| |
Collapse
|
21
|
Smith M, Polite L, Christy A, Edirisinghe I, Burton-Freeman B, Sandhu A. An Improved Validated Method for the Determination of Short-Chain Fatty Acids in Human Fecal Samples by Gas Chromatography with Flame Ionization Detection (GC-FID). Metabolites 2023; 13:1106. [PMID: 37999203 PMCID: PMC10673161 DOI: 10.3390/metabo13111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/04/2023] [Accepted: 10/20/2023] [Indexed: 11/25/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced by the gut microbiota through the fermentation of non-digestible carbohydrates. Recent studies suggest that the gut microbiota composition, diet and metabolic status play an important role in the production of SCFAs. The primary objective of this study was to develop a simplified method for SCFA analysis in human fecal samples by gas chromatography with flame ionization detection (GC-FID). The secondary objective was to apply the method to fecal samples collected from a clinical trial. The developed GC-FID method showed excellent linearity (R2 > 0.99994), with a limit of detection (LOD) ranging from 0.02 to 0.23 µg/mL and a limit of quantification (LOQ) ranging from 0.08 to 0.78 µg/mL. Recovery for the method ranged between 54.24 ± 1.17% and 140.94 ± 2.10%. Intra- and inter-day repeatability ranged from 0.56 to 1.03 and from 0.10 to 4.76% RSD, respectively. Nine SCFAs were identified and quantified (acetic, propionic, iso-butyric, butyric, iso-valeric, valeric, 4-methyl valeric, hexanoic and heptanoic acids) in freeze-dried fecal samples. The clinical trial compared participants with prediabetes mellitus and insulin resistance (IR-group, n = 20) to metabolically healthy participants (reference group, R-group, n = 9) following a 4-week intervention of a daily red raspberry smoothie (RRB, 1 cup fresh-weight equivalent) with or without fructo-oligosaccharide (RRB + FOS, 1 cup RRB + 8 g FOS). The statistical analysis (Student's t-test, ANCOVA) was performed on PC-SAS 9.4 (SAS Institute). Acetic acid was higher in the R-group compared to the IR-group at baseline/week 0 (p = 0.14). No significant changes in fecal SCFA content were observed after 4 weeks of either RRB or RRB + FOS.
Collapse
Affiliation(s)
- Morganne Smith
- Department of Food Science and Nutrition and Center for Nutrition Research, Illinois Institute of Technology, Chicago, IL 60616, USA; (M.S.); (I.E.); (B.B.-F.)
| | - Lee Polite
- Axion Analytical Labs Inc., Chicago, IL 60607, USA; (L.P.); (A.C.)
| | - Andreas Christy
- Axion Analytical Labs Inc., Chicago, IL 60607, USA; (L.P.); (A.C.)
| | - Indika Edirisinghe
- Department of Food Science and Nutrition and Center for Nutrition Research, Illinois Institute of Technology, Chicago, IL 60616, USA; (M.S.); (I.E.); (B.B.-F.)
| | - Britt Burton-Freeman
- Department of Food Science and Nutrition and Center for Nutrition Research, Illinois Institute of Technology, Chicago, IL 60616, USA; (M.S.); (I.E.); (B.B.-F.)
| | - Amandeep Sandhu
- Department of Food Science and Nutrition and Center for Nutrition Research, Illinois Institute of Technology, Chicago, IL 60616, USA; (M.S.); (I.E.); (B.B.-F.)
| |
Collapse
|
22
|
Tews HC, Elger T, Gunawan S, Fererberger T, Sommersberger S, Loibl J, Huss M, Liebisch G, Müller M, Kandulski A, Buechler C. Fecal short chain fatty acids and urinary 3-indoxyl sulfate do not discriminate between patients with Crohn´s disease and ulcerative colitis and are not of diagnostic utility for predicting disease severity. Lipids Health Dis 2023; 22:164. [PMID: 37789460 PMCID: PMC10546683 DOI: 10.1186/s12944-023-01929-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023] Open
Abstract
BACKGROUND Urinary 3-indoxyl sulfate levels as well as fecal short chain fatty acid (SCFA) concentrations are surrogate markers for gut microbiota diversity. Patients with inflammatory bowel diseases (IBDs) and patients with primary sclerosing cholangitis (PSC), a disease closely associated with IBD, have decreased microbiome diversity. In this paper, the fecal SCFAs propionate, acetate, butyrate and isobutyrate of patients with IBD and patients with PSC-IBD and urinary 3-indoxyl sulfate of IBD patients were determined to study associations with disease etiology and severity. METHODS SCFA levels in feces of 64 IBD patients and 20 PSC-IBD patients were quantified by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Urinary 3-indoxyl sulfate levels of 45 of these IBD patients were analysed by means of reversed-phase liquid chromatography-electrospray ionization-tandem mass spectrometry. Feces of 17 healthy controls and urine of 13 of these controls were analyzed in parallel. These cohorts had comparable sex distribution and age. RESULTS Urinary 3-indoxyl sulfate concentrations (normalized to urinary creatinine levels) was increased (P = 0.030) and fecal isobutyrate levels (normalized to dry weight of the stool sample) of IBD patients were decreased (P = 0.035) in comparison to healthy controls. None of the analyzed metabolites differed between patients with Crohn´s disease (CD) and patients with ulcerative colitis (UC). Fecal acetate and butyrate positively correlated with fecal calprotectin (P = 0.040 and P = 0.005, respectively) and serum C-reactive protein (P = 0.024 and P = 0.025, respectively) in UC but not CD patients. UC patients with fecal calprotectin levels above 150 µg/g, indicating intestinal inflammatory activity, had higher fecal acetate (P = 0.016), butyrate (P = 0.007) and propionate (P = 0.046) in comparison to patients with fecal calprotectin levels < 50 µg/g. Fecal SCFA levels of PSC-IBD and IBD patients were comparable. CONCLUSIONS Current findings suggest that analysis of urinary 3-indoxyl-sulfate as well as fecal SCFAs has no diagnostic value for IBD and PSC-IBD diagnosis or monitoring of disease severity.
Collapse
Affiliation(s)
- Hauke Christian Tews
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tanja Elger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Stefan Gunawan
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Tanja Fererberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Stefanie Sommersberger
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Johanna Loibl
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Muriel Huss
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Arne Kandulski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, and Infectious Diseases, University Hospital Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
23
|
Bubeck AM, Urbain P, Horn C, Jung AS, Ferrari L, Ruple HK, Podlesny D, Zorn S, Laupsa-Borge J, Jensen C, Lindseth I, Lied GA, Dierkes J, Mellgren G, Bertz H, Matysik S, Krautbauer S, Liebisch G, Schoett HF, Dankel SN, Fricke WF. High-fat diet impact on intestinal cholesterol conversion by the microbiota and serum cholesterol levels. iScience 2023; 26:107697. [PMID: 37694136 PMCID: PMC10485154 DOI: 10.1016/j.isci.2023.107697] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/02/2023] [Accepted: 08/18/2023] [Indexed: 09/12/2023] Open
Abstract
Cholesterol-to-coprostanol conversion by the intestinal microbiota has been suggested to reduce intestinal and serum cholesterol availability, but the relationship between intestinal cholesterol conversion and the gut microbiota, dietary habits, and serum lipids has not been characterized in detail. We measured conserved proportions of cholesterol high and low-converter types in individuals with and without obesity from two distinct, independent low-carbohydrate high-fat (LCHF) dietary intervention studies. Across both cohorts, cholesterol conversion increased in previous low-converters after LCHF diet and was positively correlated with the fecal relative abundance of Eubacterium coprostanoligenes. Lean cholesterol high-converters had increased serum triacylglycerides and decreased HDL-C levels before LCHF diet and responded to the intervention with increased LDL-C, independently of fat, cholesterol, and saturated fatty acid intake. Our findings identify the cholesterol high-converter type as a microbiome marker, which in metabolically healthy lean individuals is associated with increased LDL-C in response to LCHF.
Collapse
Affiliation(s)
- Alena M. Bubeck
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Paul Urbain
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cathrine Horn
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Anna S. Jung
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Lisa Ferrari
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Hannah K. Ruple
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Daniel Podlesny
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Stefanie Zorn
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Johnny Laupsa-Borge
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Caroline Jensen
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Gülen Arslan Lied
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hartmut Bertz
- Department of Medicine I, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Hans-Frieder Schoett
- Singapore Lipidomics Incubator (SLING), Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Simon N. Dankel
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - W. Florian Fricke
- Department of Microbiome Research and Applied Bioinformatics, Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Lan J, Greter G, Streckenbach B, Wanner B, Arnoldini M, Zenobi R, Slack E. Non-invasive monitoring of microbiota and host metabolism using secondary electrospray ionization-mass spectrometry. CELL REPORTS METHODS 2023; 3:100539. [PMID: 37671025 PMCID: PMC10475793 DOI: 10.1016/j.crmeth.2023.100539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 05/08/2023] [Accepted: 06/28/2023] [Indexed: 09/07/2023]
Abstract
The metabolic "handshake" between the microbiota and its mammalian host is a complex, dynamic process with major influences on health. Dissecting the interaction between microbial species and metabolites found in host tissues has been a challenge due to the requirement for invasive sampling. Here, we demonstrate that secondary electrospray ionization-mass spectrometry (SESI-MS) can be used to non-invasively monitor metabolic activity of the intestinal microbiome of a live, awake mouse. By comparing the headspace metabolome of individual gut bacterial culture with the "volatilome" (metabolites released to the atmosphere) of gnotobiotic mice, we demonstrate that the volatilome is characteristic of the dominant colonizing bacteria. Combining SESI-MS with feeding heavy-isotope-labeled microbiota-accessible sugars reveals the presence of microbial cross-feeding within the animal intestine. The microbiota is, therefore, a major contributor to the volatilome of a living animal, and it is possible to capture inter-species interaction within the gut microbiota using volatilome monitoring.
Collapse
Affiliation(s)
- Jiayi Lan
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Giorgia Greter
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Bettina Streckenbach
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Markus Arnoldini
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Emma Slack
- Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Mendoza-León MJ, Mangalam AK, Regaldiz A, González-Madrid E, Rangel-Ramírez MA, Álvarez-Mardonez O, Vallejos OP, Méndez C, Bueno SM, Melo-González F, Duarte Y, Opazo MC, Kalergis AM, Riedel CA. Gut microbiota short-chain fatty acids and their impact on the host thyroid function and diseases. Front Endocrinol (Lausanne) 2023; 14:1192216. [PMID: 37455925 PMCID: PMC10349397 DOI: 10.3389/fendo.2023.1192216] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 07/18/2023] Open
Abstract
Thyroid disorders are clinically characterized by alterations of L-3,5,3',5'-tetraiodothyronine (T4), L-3,5,3'-triiodothyronine (T3), and/or thyroid-stimulating hormone (TSH) levels in the blood. The most frequent thyroid disorders are hypothyroidism, hyperthyroidism, and hypothyroxinemia. These conditions affect cell differentiation, function, and metabolism. It has been reported that 40% of the world's population suffers from some type of thyroid disorder and that several factors increase susceptibility to these diseases. Among them are iodine intake, environmental contamination, smoking, certain drugs, and genetic factors. Recently, the intestinal microbiota, composed of more than trillions of microbes, has emerged as a critical player in human health, and dysbiosis has been linked to thyroid diseases. The intestinal microbiota can affect host physiology by producing metabolites derived from dietary fiber, such as short-chain fatty acids (SCFAs). SCFAs have local actions in the intestine and can affect the central nervous system and immune system. Modulation of SCFAs-producing bacteria has also been connected to metabolic diseases, such as obesity and diabetes. In this review, we discuss how alterations in the production of SCFAs due to dysbiosis in patients could be related to thyroid disorders. The studies reviewed here may be of significant interest to endocrinology researchers and medical practitioners.
Collapse
Affiliation(s)
- María José Mendoza-León
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | | | - Alejandro Regaldiz
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Enrique González-Madrid
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Ma. Andreina Rangel-Ramírez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Oscar Álvarez-Mardonez
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Omar P. Vallejos
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Constanza Méndez
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Felipe Melo-González
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yorley Duarte
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Ma. Cecilia Opazo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Medicina Veterinaria y Agronomía, Instituto de Ciencias Naturales, Universidad de las Américas, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| |
Collapse
|
26
|
Chalova P, Tazky A, Skultety L, Minichova L, Chovanec M, Ciernikova S, Mikus P, Piestansky J. Determination of short-chain fatty acids as putative biomarkers of cancer diseases by modern analytical strategies and tools: a review. Front Oncol 2023; 13:1110235. [PMID: 37441422 PMCID: PMC10334191 DOI: 10.3389/fonc.2023.1110235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are the main metabolites produced by bacterial fermentation of non-digestible carbohydrates in the gastrointestinal tract. They can be seen as the major flow of carbon from the diet, through the microbiome to the host. SCFAs have been reported as important molecules responsible for the regulation of intestinal homeostasis. Moreover, these molecules have a significant impact on the immune system and are able to affect inflammation, cardiovascular diseases, diabetes type II, or oncological diseases. For this purpose, SCFAs could be used as putative biomarkers of various diseases, including cancer. A potential diagnostic value may be offered by analyzing SCFAs with the use of advanced analytical approaches such as gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) coupled with mass spectrometry (MS). The presented review summarizes the importance of analyzing SCFAs from clinical and analytical perspective. Current advances in the analysis of SCFAs focused on sample pretreatment, separation strategy, and detection methods are highlighted. Additionally, it also shows potential areas for the development of future diagnostic tools in oncology and other varieties of diseases based on targeted metabolite profiling.
Collapse
Affiliation(s)
- Petra Chalova
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
| | - Anton Tazky
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Ludovit Skultety
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Lenka Minichova
- Biomedical Research Center of the Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovakia
| | - Michal Chovanec
- 2nd Department of Oncology, Faculty of Medicine, Comenius University and National Cancer Institute, Bratislava, Slovakia
| | - Sona Ciernikova
- Biomedical Research Center of the Slovak Academy of Sciences, Cancer Research Institute, Bratislava, Slovakia
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| |
Collapse
|
27
|
Dalziel JE, Zobel G, Dewhurst H, Hurst C, Olson T, Rodriguez-Sanchez R, Mace L, Parkar N, Thum C, Hannaford R, Fraser K, MacGibbon A, Bassett SA, Dekker J, Anderson RC, Young W. A Diet Enriched with Lacticaseibacillus rhamnosus HN001 and Milk Fat Globule Membrane Alters the Gut Microbiota and Decreases Amygdala GABA a Receptor Expression in Stress-Sensitive Rats. Int J Mol Sci 2023; 24:10433. [PMID: 37445611 DOI: 10.3390/ijms241310433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Brain signalling pathways involved in subclinical anxiety and depressed mood can be modulated via the gut brain axis (GBA), providing the potential for diet and dietary components to affect mood. We investigated behavioural, physiological and gut microbiome responses to the Lacticaseibacillus rhamnosus strain HN001 (LactoB HN001™), which has been shown to reduce postpartum anxiety and depression, and a milk fat globule membrane-enriched product, Lipid 70 (SurestartTM MFGM Lipid 70), which has been implicated in memory in stress-susceptible Wistar Kyoto rats. We examined behaviour in the open field, elevated plus maze and novel object recognition tests in conjunction with the expression of host genes in neuro-signalling pathways, and we also assessed brain lipidomics. Treatment-induced alterations in the caecal microbiome and short-chain fatty acid (SCFA) profiles were also assessed. Neither ingredient induced behavioural changes or altered the brain lipidome (separately or when combined). However, with regard to brain gene expression, the L. rhamnosus HN001 + Lipid 70 combination produced a synergistic effect, reducing GABAA subunit expression in the amygdala (Gabre, Gat3, Gabrg1) and hippocampus (Gabrd). Treatment with L. rhamnosus HN001 alone altered expression of the metabotropic glutamate receptor (Grm4) in the amygdala but produced only minor changes in gut microbiota composition. In contrast, Lipid 70 alone did not alter brain gene expression but produced a significant shift in the gut microbiota profile. Under the conditions used, there was no observed effect on rat behaviour for the ingredient combination. However, the enhancement of brain gene expression by L. rhamnosus HN001 + Lipid 70 implicates synergistic actions on region-specific neural pathways associated with fear, anxiety, depression and memory. A significant shift in the gut microbiota profile also occurred that was mainly attributable to Lipid 70.
Collapse
Affiliation(s)
- Julie E Dalziel
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Gosia Zobel
- Ethical Agriculture, AgResearch, Hamilton 3240, New Zealand
| | - Hilary Dewhurst
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Charlotte Hurst
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Trent Olson
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | | | - Louise Mace
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Nabil Parkar
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Caroline Thum
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Rina Hannaford
- Digital Agriculture, AgResearch, Palmerston North 4442, New Zealand
| | - Karl Fraser
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Alastair MacGibbon
- Fonterra Research and Development Centre Co., Ltd., Palmerston North 4442, New Zealand
| | - Shalome A Bassett
- Fonterra Research and Development Centre Co., Ltd., Palmerston North 4442, New Zealand
| | - James Dekker
- Fonterra Research and Development Centre Co., Ltd., Palmerston North 4442, New Zealand
| | - Rachel C Anderson
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Wayne Young
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| |
Collapse
|
28
|
Zhu X, Guo R, Su X, Shang K, Tan C, Ma J, Zhang Y, Lin D, Ma Y, Zhou M, Yang J, Wu Q, Sun J, Wang Z, Guo Y, Su R, Cui X, Han J, Lü Y, Yue C. Immune-enhancing activity of polysaccharides and flavonoids derived from Phellinus igniarius YASH1. Front Pharmacol 2023; 14:1124607. [PMID: 37180713 PMCID: PMC10166811 DOI: 10.3389/fphar.2023.1124607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction: Phellinus igniarius (P. igniarius) (Sanghuang) is a widely used traditional Chinese medicine fungus, and its natural products have great potential for clinical application in immune enhancement. This study aimed to explore the immune-enhancing activity and underlying mechanisms of the polysaccharides and flavonoids derived from Phellinus igniarius (P. igniarius) and to provide a theoretical and experimental basis for the development of novel drugs. Methods: Wild P. igniarius YASH1 from the Loess Plateau in Yan'an region was collected, and polysaccharides and total flavonoids were extracted, isolated and identified from mycelium and sporophore. In vitro antioxidant activity was detected through the scavenging activity of hydroxyl radicals and total antioxidant capacity. Cell Counting Kit-8 and trypan blue detection kit were used to detect the effect of extract polysaccharides and flavonoids on the proliferation and phagocytosis ability of immune cells. To assess the effect of the drugs on cytokine secretion by immune cells and immune recovery in immunocompromised mice, the expression of interleukin (IL)-2, IL-6, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were examined at the cellular and animal levels. The species composition, abundance of gut microbiota and the altered content of short-chain fatty acids in the feces were analyzed to elucidate the possible mechanisms of drugs by 16S ribosomal RNA (rRNA) amplifiers sequencing and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results: Both polysaccharides and flavonoids derived from mycelium or sporophore had antioxidant activity and may stimulate the expression and secretion of IL-2, IL-6, and IFN-γ in immune cells while inhibiting TNF-α expression and secretion and increasing IL-2, IL-6, and IFN- γ expression levels in mice. Furthermore, polysaccharides and flavonoids from mycelium and sporophore showed different effects on the metabolic response of intestinal short-chain fatty acids (SCFAs) in mice, and the use of these drugs remarkably changed the species composition and abundance of intestinal flora in mice. Discussion: Polysaccharides and flavonoids from P. igniarius YASH1 mycelium and sporophore have in vitro antioxidant activity, and they affect the promotion of cell proliferation, stimulation of IL-2, IL-6, and IFN-γ secretion, and inhibition of TNF-α expression in immune cells. Polysaccharides and flavonoids from P. igniarius YASH1 may enhance immunity in immunocompromised mice and remarkably affect the intestinal flora and content of SCFAs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Jiming Han
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lü
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
29
|
Hodek O, Henderson J, Argemi-Muntadas L, Khan A, Moritz T. Structural elucidation of 3-nitrophenylhydrazine derivatives of tricarboxylic acid cycle acids and optimization of their fragmentation to boost sensitivity in liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1222:123719. [PMID: 37060816 DOI: 10.1016/j.jchromb.2023.123719] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Carboxylic acids participate in many metabolic pathways including tricarboxylic acid (TCA) cycle. Therefore, there have been ongoing attempts to develop sensitive liquid chromatography-mass spectrometry methods over the last decades. Derivatization of the carboxylic acids with 3-nitrophenylhydrazine presents a well-established methodology, and yet the derivatized species of polycarboxylic acids and their fragmentation in collision-induced dissociation have not been fully studied before. In our study, we elucidated how annotation of most abundant 3-nitrophenylhydrazine derivatives and optimization of their fragmentation in multiple reaction monitoring can boost the sensitivity, especially for polycarboxylic acids. Finally, the optimized liquid chromatography-tandem mass spectrometry method allowed for low detection limits ranging from 10 pM for 2-oxoglutaric acid to 800 pM for pyruvic acid. All TCA carboxylates were quantified in 20 µL of human plasma and the targeted method was validated in the same matrix. The same methodology with a modified gradient elution was also applied to untargeted screening of fatty acids by using high-resolution mass spectrometry enabling identification of 29 medium- to long-chain fatty acids in human plasma. The TCA carboxylates were also quantified in 105 of C2C12 mouse myuotube cells grown under different treatments to proof applicability of the methodology to biological studies in a wider sense. However, unfortunately all the TCA carboxylates were also found in the derivatized blanks in substantial amounts, which prevents from using the methodology for quantification of the carboxylates in less than 105 cells.
Collapse
Affiliation(s)
- Ondřej Hodek
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 907 36 Umeå, Sweden; Swedish Metabolomics Centre (SMC), Umeå, Sweden.
| | - John Henderson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Lidia Argemi-Muntadas
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Adnan Khan
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Thomas Moritz
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Linnaeus väg 6, 907 36 Umeå, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
30
|
Yin Y, Sichler A, Ecker J, Laschinger M, Liebisch G, Höring M, Basic M, Bleich A, Zhang XJ, Kübelsbeck L, Plagge J, Scherer E, Wohlleber D, Wang J, Wang Y, Steffani M, Stupakov P, Gärtner Y, Lohöfer F, Mogler C, Friess H, Hartmann D, Holzmann B, Hüser N, Janssen KP. Gut microbiota promote liver regeneration through hepatic membrane phospholipid biosynthesis. J Hepatol 2023; 78:820-835. [PMID: 36681162 DOI: 10.1016/j.jhep.2022.12.028] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND & AIMS Hepatocyte growth and proliferation depends on membrane phospholipid biosynthesis. Short-chain fatty acids (SCFAs) generated by bacterial fermentation, delivered through the gut-liver axis, significantly contribute to lipid biosynthesis. We therefore hypothesized that dysbiotic insults like antibiotic treatment not only affect gut microbiota, but also impair hepatic lipid synthesis and liver regeneration. METHODS Stable isotope labeling and 70% partial hepatectomy (PHx) was carried out in C57Bl/6J wild-type mice, in mice treated with broad-spectrum antibiotics, in germ-free mice and mice colonized with minimal microbiota. The microbiome was analyzed by 16S rRNA gene sequencing and microbial culture. Gut content, liver, blood and primary hepatocyte organoids were tested by mass spectrometry-based lipidomics, quantitative reverse-transcription PCR (qRT-PCR), immunoblot and immunohistochemistry for expression of proliferative and lipogenic markers. Matched biopsies from hyperplastic and hypoplastic liver tissue of patients subjected to surgical intervention to induce hyperplasia were analyzed by qRT-PCR for lipogenic enzymes. RESULTS Three days of antibiotic treatment induced persistent dysbiosis with significantly decreased beta-diversity and richness, but a massive increase of Proteobacteria, accompanied by decreased colonic SCFAs. After PHx, antibiotic-treated mice showed delayed liver regeneration, increased mortality, impaired hepatocyte proliferation and decreased hepatic phospholipid synthesis. Expression of the lipogenic enzyme SCD1 was upregulated after PHx but delayed by antibiotic treatment. Germ-free mice essentially recapitulated the phenotype of antibiotic treatment. Phospholipid biosynthesis, hepatocyte proliferation, liver regeneration and survival were rescued in gnotobiotic mice colonized with a minimal SCFA-producing microbial community. SCFAs induced the growth of murine hepatocyte organoids and hepatic SCD1 expression in mice. Further, SCD1 was required for proliferation of human hepatoma cells and was associated with liver regeneration in human patients. CONCLUSION Gut microbiota are pivotal for hepatic membrane phospholipid biosynthesis and liver regeneration. IMPACT AND IMPLICATIONS Gut microbiota affect hepatic lipid metabolism through the gut-liver axis, but the underlying mechanisms are poorly understood. Perturbations of the gut microbiome, e.g. by antibiotics, impair the production of bacterial metabolites, which normally serve as building blocks for membrane lipids in liver cells. As a consequence, liver regeneration and survival after liver surgery is severely impaired. Even though this study is preclinical, its results might allow physicians in the future to improve patient outcomes after liver surgery, by modulation of gut microbiota or their metabolites.
Collapse
Affiliation(s)
- Yuhan Yin
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Anna Sichler
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Josef Ecker
- ZIEL - Inst. for Food & Health, TUM, Freising, Germany
| | - Melanie Laschinger
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Gerhard Liebisch
- Inst. of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marcus Höring
- Inst. of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Xue-Jun Zhang
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Ludwig Kübelsbeck
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | | | - Emely Scherer
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Dirk Wohlleber
- Institute of Molecular Immunology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jianye Wang
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Yang Wang
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Marcella Steffani
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Pavel Stupakov
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Yasmin Gärtner
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Fabian Lohöfer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, TUM, Munich, Germany
| | - Carolin Mogler
- Institute of Pathology, School of Medicine, TUM, Munich, Germany
| | - Helmut Friess
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Daniel Hartmann
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Bernhard Holzmann
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
| | - Norbert Hüser
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
| | - Klaus-Peter Janssen
- Dept. of Surgery, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
31
|
McKay MJ, Castaneda M, Catania S, Charles KA, Shanahan E, Clarke SJ, Engel A, Varelis P, Molloy MP. Quantification of short-chain fatty acids in human stool samples by LC-MS/MS following derivatization with aniline analogues. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123618. [PMID: 36731355 DOI: 10.1016/j.jchromb.2023.123618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/28/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
The gut microbiome produces a range of short chain fatty acids (SCFA) crucially linked with diet and nutrition, metabolism, gastrointestinal health and homeostasis. SCFA are primarily measured using gas or liquid chromatography-mass spectrometry (LC/MS) after undergoing chemical derivatization. Here we assess the merits of a derivatization protocol using aniline and two aniline analogues (3-phenoxyaniline and 4-(benzyloxy)aniline) for the targeted LC-MS/MS quantification of nine SCFA (acetic, propionic, butyric, valeric, caproic acid, isobutyric, isovaleric, 2-methylbutyric, and 2-ethylbutyric acid). Evaluation of product ion spectra and optimization of MS detection conditions, provided superior detection sensitivity for 3-phenoxyaniline and 4-(benzyloxy)aniline compared to aniline. We developed a facile SCFA derivatization method using 3-phenoxyaniline under mild reaction conditions which allows for the simultaneous quantification of these SCFA in human stool samples in under eleven minutes using multiple reaction monitoring LC-MS/MS. The method was successfully validated and demonstrates intra- and inter-day accuracy (88.5-103% and 86.0-109%) and precision (CV of 0.55-7.00% and 0.33-9.55%) with recoveries (80.1-87.2% for LLOQ, 88.5-93.0% for ULOQ) and carry-over of (2.68-17.9%). Selectivity, stability and matrix effects were also assessed and satisfied validation criteria. Method applicability was demonstrated by analysing SCFA profiles in DNA-stabilized human stool samples from newly diagnosed colorectal cancer patients prior to surgery. The development of this improved method and its compatibility to measure SCFAs from DNA-stabilized stool will facilitate studies investigating the gut microbiome in health and disease.
Collapse
Affiliation(s)
- Matthew J McKay
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Miguel Castaneda
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sarah Catania
- Shimadzu Scientific Instruments Australia, Unit F, 10-16 South Street, Rydalmere 2116, New South Wales, Australia
| | - Kellie A Charles
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Erin Shanahan
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney 2006, Australia
| | - Stephen J Clarke
- Department of Medical Oncology, Royal North Shore Hospital, St. Leonards, 2065 Australia; Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Alexander Engel
- Colorectal Surgical Unit, Royal North Shore Hospital, St. Leonards, 2065 Australia; Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Peter Varelis
- Shimadzu Scientific Instruments Australia, Unit F, 10-16 South Street, Rydalmere 2116, New South Wales, Australia
| | - Mark P Molloy
- Bowel Cancer and Biomarker Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
32
|
Pagonas N, Seibert FS, Liebisch G, Seidel M, Giannakopoulos T, Sasko B, Ritter O, Babel N, Westhoff TH. Association of plasma propionate concentration with coronary artery disease in a large cross-sectional study. Front Cardiovasc Med 2023; 10:1063296. [PMID: 36818348 PMCID: PMC9928685 DOI: 10.3389/fcvm.2023.1063296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Background Microbiome has been linked to the pathogenesis of coronary artery disease (CAD) but data providing direct evidence for an association of short-chain fatty acids (SCFA) with CAD are lacking. This study aimed to evaluate the role of propionate, the most important SCFA in patients with CAD. Methods We performed a cross-sectional study enrolling patients admitted for invasive coronary angiography in two university hospitals in Germany. Patients with known or suspected CAD and risk factors for cardiovascular disease were prospectively recruited. Blood sampling was performed after overnight fasting and before invasive procedures. Measurement of propionate was performed by liquid chromatography. Results The study included 1,253 patients (median [IQR], 67 [58-76] years; 799 men [64%]). A total of 739 had invasively confirmed CAD with at least one coronary artery stenosis ≥50% and 514 had exclusion of CAD. CAD patients had significant lower levels of propionate (median 5.75 μM, IQR, 4.1-7.6) compared to the non-CAD groups 6.53 μM (4.6-8.6, p < 0.001). Multivariate linear regression analysis revealed an odds ratio of 0.94 (CI 0.90-0.98, p = 0.002) for propionate as predictor of CAD. The odds ratio was further decreased to 0.45 (CI 0.31-0.65, p < 0.001) when comparing patients in the lowest quartile of propionate with those with higher levels of propionate. Conclusion The study provides large-scale in vivo data for the association of propionate to manifest coronary artery disease, independent of other traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Nikolaos Pagonas
- Department of Cardiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany,Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany,*Correspondence: Nikolaos Pagonas, ;
| | - Felix S. Seibert
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Maximillian Seidel
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Theodoros Giannakopoulos
- Department of Cardiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Benjamin Sasko
- Department of Cardiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany,Department of Cardiology, Knappschaftskrankenhaus Bottrop, Academic Teaching Hospital, University of Duisburg-Essen, Duisburg, Germany
| | - Oliver Ritter
- Department of Cardiology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg, The (MHB) Theodor Fontane and the University of Potsdam, Potsdam, Germany
| | - Nina Babel
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| | - Timm H. Westhoff
- Medical Department I, Marien Hospital Herne, Ruhr-University of Bochum, Bochum, Germany
| |
Collapse
|
33
|
Involvement of Microbiome Gut–Brain Axis in Neuroprotective Effect of Quercetin in Mouse Model of Repeated Mild Traumatic Brain Injury. Neuromolecular Med 2022:10.1007/s12017-022-08732-z. [DOI: 10.1007/s12017-022-08732-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
|
34
|
Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle. PLoS Biol 2022; 20:e3001743. [PMID: 36126044 PMCID: PMC9488797 DOI: 10.1371/journal.pbio.3001743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.
Collapse
|
35
|
Holmes ZC, Villa MM, Durand HK, Jiang S, Dallow EP, Petrone BL, Silverman JD, Lin PH, David LA. Microbiota responses to different prebiotics are conserved within individuals and associated with habitual fiber intake. MICROBIOME 2022; 10:114. [PMID: 35902900 PMCID: PMC9336045 DOI: 10.1186/s40168-022-01307-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) derived from gut bacteria are associated with protective roles in diseases ranging from obesity to colorectal cancers. Intake of microbially accessible dietary fibers (prebiotics) lead to varying effects on SCFA production in human studies, and gut microbial responses to nutritional interventions vary by individual. It is therefore possible that prebiotic therapies will require customizing to individuals. RESULTS Here, we explored prebiotic personalization by conducting a three-way crossover study of three prebiotic treatments in healthy adults. We found that within individuals, metabolic responses were correlated across the three prebiotics. Individual identity, rather than prebiotic choice, was also the major determinant of SCFA response. Across individuals, prebiotic response was inversely related to basal fecal SCFA concentration, which, in turn, was associated with habitual fiber intake. Experimental measures of gut microbial SCFA production for each participant also negatively correlated with fiber consumption, supporting a model in which individuals' gut microbiota are limited in their overall capacity to produce fecal SCFAs from fiber. CONCLUSIONS Our findings support developing personalized prebiotic regimens that focus on selecting individuals who stand to benefit, and that such individuals are likely to be deficient in fiber intake. Video Abstract.
Collapse
Affiliation(s)
- Zachary C. Holmes
- Department of Molecular Genetics and Microbiology, Duke University, 3 Genome Court, Durham, NC 27705 USA
| | - Max M. Villa
- Department of Molecular Genetics and Microbiology, Duke University, 3 Genome Court, Durham, NC 27705 USA
- Center for Genomic and Computational Biology, Duke University, 3 Genome Court, Durham, NC 27705 USA
| | - Heather K. Durand
- Department of Molecular Genetics and Microbiology, Duke University, 3 Genome Court, Durham, NC 27705 USA
- Center for Genomic and Computational Biology, Duke University, 3 Genome Court, Durham, NC 27705 USA
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University, 3 Genome Court, Durham, NC 27705 USA
- Center for Genomic and Computational Biology, Duke University, 3 Genome Court, Durham, NC 27705 USA
| | - Eric P. Dallow
- Department of Molecular Genetics and Microbiology, Duke University, 3 Genome Court, Durham, NC 27705 USA
- Center for Genomic and Computational Biology, Duke University, 3 Genome Court, Durham, NC 27705 USA
| | - Brianna L. Petrone
- Department of Molecular Genetics and Microbiology, Duke University, 3 Genome Court, Durham, NC 27705 USA
- Medical Scientist Training Program, Duke University, 3 Genome Court, Durham, NC 27705 USA
| | - Justin D. Silverman
- College of Information Science and Technology, Penn State University, Westgate Bldg, University Park, PA 16802 USA
- Department of Medicine, Penn State University, Hershey, Westgate Bldg, University Park, PA 16802 USA
- Institute for Computational and Data Science, Penn State University, Westgate Bldg, University Park, PA 16802 USA
| | - Pao-Hwa Lin
- Duke Molecular Physiology Institute, Duke University, Stedman Nutrition Ctr, 3475 Erwin Rd, Durham, NC 27705 USA
- Department of Medicine, Duke University Medical Center, Stedman Nutrition Ctr, 3475 Erwin Rd, Durham, NC 27705 USA
| | - Lawrence A. David
- Department of Molecular Genetics and Microbiology, Duke University, 3 Genome Court, Durham, NC 27705 USA
- Center for Genomic and Computational Biology, Duke University, 3 Genome Court, Durham, NC 27705 USA
- Program in Computational Biology and Bioinformatics, Duke University, 3 Genome Court, Durham, NC 27705 USA
| |
Collapse
|
36
|
Determination of short-chain fatty acids by N,N-dimethylethylenediamine derivatization combined with liquid chromatography/mass spectrometry and their implication in influenza virus infection. Anal Bioanal Chem 2022; 414:6419-6430. [PMID: 35841415 DOI: 10.1007/s00216-022-04217-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/21/2022] [Accepted: 06/29/2022] [Indexed: 11/01/2022]
Abstract
Short-chain fatty acids (SCFAs) are the end products of the fermentation of complex carbohydrates by the gut microbiota. Although SCFAs are recognized as important markers to elucidate the link between gut health and disease, it has been difficult to analyze SCFAs with mass spectrometry technologies due to their poor ionization efficiency and high volatility. Here, we present a novel and sensitive method for the quantification of SCFAs, including C2-C6 SCFAs and their hydroxy derivatives, by liquid chromatography/tandem mass spectrometry (LC-MS/MS) upon N,N-dimethylethylenediamine (DMED) derivatization with a run time of 10 min. Moreover, the quantification method of DMED-derivatized SCFAs in intestinal contents using isotope-labeled internal standards was also established. The method validation was performed by analyzing spiked intestinal samples; the limits of detection and quantification of SCFAs with this method were found to be 0.5 and 5 fmol, respectively; the recovery was greater than 80% and good linearity (0.9932 to 0.9979) of calibration curves was obtained over the range from 0.005 to 5000 pmol/μL; the intraday and interday precisions were achieved in the range of 1-5%. Furthermore, the validated method was applied to analyze SCFAs in the cecum and colon contents of mice infected with the influenza virus. The results showed that the concentration of most of the SCFAs tested here decreased significantly in a time-dependent manner after the infection, suggesting a possibility that SCFAs in intestinal samples could be used as severe disease markers. Overall, we here successfully developed a simple, fast, and sensitive method for SCFA analysis by LC-MS/MS combined with DMED derivatization. The method for the quantification of SCFAs will be a useful tool for both basic research and clinical studies.
Collapse
|
37
|
Microbial-derived metabolites as a risk factor of age-related cognitive decline and dementia. Mol Neurodegener 2022; 17:43. [PMID: 35715821 PMCID: PMC9204954 DOI: 10.1186/s13024-022-00548-6] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
A consequence of our progressively ageing global population is the increasing prevalence of worldwide age-related cognitive decline and dementia. In the absence of effective therapeutic interventions, identifying risk factors associated with cognitive decline becomes increasingly vital. Novel perspectives suggest that a dynamic bidirectional communication system between the gut, its microbiome, and the central nervous system, commonly referred to as the microbiota-gut-brain axis, may be a contributing factor for cognitive health and disease. However, the exact mechanisms remain undefined. Microbial-derived metabolites produced in the gut can cross the intestinal epithelial barrier, enter systemic circulation and trigger physiological responses both directly and indirectly affecting the central nervous system and its functions. Dysregulation of this system (i.e., dysbiosis) can modulate cytotoxic metabolite production, promote neuroinflammation and negatively impact cognition. In this review, we explore critical connections between microbial-derived metabolites (secondary bile acids, trimethylamine-N-oxide (TMAO), tryptophan derivatives and others) and their influence upon cognitive function and neurodegenerative disorders, with a particular interest in their less-explored role as risk factors of cognitive decline.
Collapse
|
38
|
Influence and Mechanism of Polar Solvents on the Retention Time of Short-Chain Fatty Acids in Gas Chromatography. SEPARATIONS 2022. [DOI: 10.3390/separations9050124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Short-chain fatty acids (SCFAs), produced by microbes when dietary fiber ferments in the colon, are one of the most studied microbial products despite their volatility and complex matrices, which make analysis challenging. In the current study, we sought to address research gaps by exploring the commonalities and differences between the retention time changes for SCFAs in polar solvents. In one such solvent, dimethyl sulfoxide (DMSO), the retention time of the SCFA acetic acid shows a linear positive correlation with the equal volume increase in the DMSO solvent. We used gas chromatography–mass spectrometry to analyze the retention times of mixed solutions of formic acid, acetic acid, butyric acid, valeric acid, and toluene in the solvents DMSO and water and found that only the retention times of formic acid and acetic acid changed. We further compared the effect of three solvents with similar polarities, DMSO, N-methylpyrrolidone (NMP), and dimethylformamide (DMF), on the retention time of acetic acid and found that it increased in the DMSO–water solution more than in the NMP–water solution and remained unchanged in the DMF–water solution. This finding is consistent with quantum chemical calculations showing that the strength of the hydrogen bond between DMSO and acetic acid is greater than between NMP and acetic acid. Taken together, the chromatographic results and quantum chemical calculations indicate that, in all three solvents, the portion of the molecule with the smallest negative electrostatic potential (red) has high electron density and can easily donate electrons, forming a hydrogen bond with acetic acid. However, the portion with the largest positive electrostatic potential (blue) forms a bond with polyethylene glycol, a column stationary solution with a strong dipole moment, and is adsorbed on the stationary solution in the direction of the dipole moment. Therefore, the retention times of formic acid and acetic acid change under the combined influence of a series of complex intermolecular forces. In the chromatographic column, the outflow rate of DMF is higher than that of acetic acid, and the force of the hydrogen bond between DMF and acetic acid cannot overcome the outflow resistance of acetic acid, so the retention time of the acetic acid in the DMF–water solution does not change. The retention times of butyric acid and valeric acid are unchanged in aprotic polar solvents for the same reason.
Collapse
|
39
|
D'Addario C, Pucci M, Bellia F, Girella A, Sabatucci A, Fanti F, Vismara M, Benatti B, Ferrara L, Fasciana F, Celebre L, Viganò C, Elli L, Sergi M, Maccarrone M, Buzzelli V, Trezza V, Dell'Osso B. Regulation of oxytocin receptor gene expression in obsessive-compulsive disorder: a possible role for the microbiota-host epigenetic axis. Clin Epigenetics 2022; 14:47. [PMID: 35361281 PMCID: PMC8973787 DOI: 10.1186/s13148-022-01264-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a prevalent and severe clinical condition. Robust evidence suggests a gene-environment interplay in its etiopathogenesis, yet the underlying molecular clues remain only partially understood. In order to further deepen our understanding of OCD, it is essential to ascertain how genes interact with environmental risk factors, a cross-talk that is thought to be mediated by epigenetic mechanisms. The human microbiota may be a key player, because bacterial metabolites can act as epigenetic modulators. We analyzed, in the blood and saliva of OCD subjects and healthy controls, the transcriptional regulation of the oxytocin receptor gene and, in saliva, also the different levels of major phyla. We also investigated the same molecular mechanisms in specific brain regions of socially isolated rats showing stereotyped behaviors reminiscent of OCD as well as short chain fatty acid levels in the feces of rats. RESULTS Higher levels of oxytocin receptor gene DNA methylation, inversely correlated with gene expression, were observed in the blood as well as saliva of OCD subjects when compared to controls. Moreover, Actinobacteria also resulted higher in OCD and directly correlated with oxytocin receptor gene epigenetic alterations. The same pattern of changes was present in the prefrontal cortex of socially-isolated rats, where also altered levels of fecal butyrate were observed at the beginning of the isolation procedure. CONCLUSIONS This is the first demonstration of an interplay between microbiota modulation and epigenetic regulation of gene expression in OCD, opening new avenues for the understanding of disease trajectories and for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Claudio D'Addario
- Faculty of Bioscience, University of Teramo, Teramo, Italy. .,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden. .,Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Via Renato Balzarini, 1, 64100, Teramo, Italy.
| | | | - Fabio Bellia
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | | | | | - Federico Fanti
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Matteo Vismara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Beatrice Benatti
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Ferrara
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Federica Fasciana
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Laura Celebre
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Caterina Viganò
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Luca Elli
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy
| | - Manuel Sergi
- Faculty of Bioscience, University of Teramo, Teramo, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.,European Center for Brain Research/Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Bernardo Dell'Osso
- Department of Mental Health, Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milano, Milano, Italy. .,Department of Psychiatry, Department of Biomedical and Clinical Sciences "Luigi Sacco", Psychiatry Unit 2, ASST Sacco-Fatebenefratelli, Via G.B. Grassi, 74, 20157, Milan, Italy.
| |
Collapse
|
40
|
Zhang L, Ben Said L, Hervé N, Zirah S, Diarra MS, Fliss I. Effects of drinking water supplementation with Lactobacillus reuteri, and a mixture of reuterin and microcin J25 on the growth performance, caecal microbiota and selected metabolites of broiler chickens. J Anim Sci Biotechnol 2022; 13:34. [PMID: 35246239 PMCID: PMC8897850 DOI: 10.1186/s40104-022-00683-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Since the overuse of antibiotics in animal production has led to a selection of antibiotic-resistant pathogens that affect humans and animals as well. Scientists are therefore searching for novel natural alternatives to antibiotics. In this study Lactobacillus reuteri and a combination of reuterin and microcin J25 (RJ) were evaluated as promoters of growth and modulators of the cecal microbiota and metabolite profiles in broiler chickens. One-day-old Cobb 500 male broilers were distributed to 8 treatments: negative control (without antibiotic), positive control (bacitracin), three concentrations of RJ and three doses of L. reuteri plus glycerol. The birds (2176, 34 per pen, 8 pens per treatment) were reared for 35 d. Results The body weight of the bacitracin and 5 mmol/L reuterin combined with 0.08 μmol/L microcin J25 (10RJ) treatment group was significantly higher than that of the negative control group (P < 0.05). L. reuteri had no significant effect on broiler growth. MiSeq high-throughput sequencing of 16S rRNA showed clustering of cecal microbial operational taxonomic unit diversity according to treatment. The influence of bacitracin and 10RJ on bacterial community overall structure was similar. They promoted Ruminococcaceae, Lachnospiraceae and Lactobacillaceae, increased the relative abundance of Faecalibacterium and decreased the abundance of Bacteroides and Alistipes, while the negative control condition favored Bacteroidaceae and Rikenellaceae. Furthermore, 10RJ increased the concentration of short-chain fatty acid in the cecum and changed the metabolome overall. Conclusions These overall suggest that 10RJ can promote a host-friendly gut environment by changing the cecal microbiome and metabolome. This combination of natural antimicrobial agents in the drinking water had a positive effect on broiler growth and may be suitable as an alternative to antibiotic growth promoters. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00683-6.
Collapse
Affiliation(s)
- Liya Zhang
- Institute of Nutrition and Functional Foods, Université Laval, QC, Québec, Canada
| | - Laila Ben Said
- Institute of Nutrition and Functional Foods, Université Laval, QC, Québec, Canada
| | | | - Séverine Zirah
- Molécules de Communication et Adaptation des Microorganismes, Muséum National d'Histoire Naturelle, Paris, France
| | - Moussa Sory Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ismail Fliss
- Institute of Nutrition and Functional Foods, Université Laval, QC, Québec, Canada.
| |
Collapse
|
41
|
Souders CL, Zubcevic J, Martyniuk CJ. Tumor Necrosis Factor Alpha and the Gastrointestinal Epithelium: Implications for the Gut-Brain Axis and Hypertension. Cell Mol Neurobiol 2022; 42:419-437. [PMID: 33594519 PMCID: PMC8364923 DOI: 10.1007/s10571-021-01044-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022]
Abstract
The colonic epithelium is the site of production and transport of many vasoactive metabolites and neurotransmitters that can modulate the immune system, affect cellular metabolism, and subsequently regulate blood pressure. As an important interface between the microbiome and its host, the colon can contribute to the development of hypertension. In this critical review, we highlight the role of colonic inflammation and microbial metabolites on the gut brain axis in the pathology of hypertension, with special emphasis on the interaction between tumor necrosis factor α (TNFα) and short chain fatty acid (SCFA) metabolites. Here, we review the current literature and identify novel pathways in the colonic epithelium related to hypertension. A network analysis on transcriptome data previously generated in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats reveals differences in several pathways associated with inflammation involving TNFα (NF-κB and STAT Expression Targets) as well as oxidative stress. We also identify down-regulation of networks associated with gastrointestinal function, cardiovascular function, enteric nervous system function, and cholinergic and adrenergic transmission. The analysis also uncovered transcriptome responses related to glycolysis, butyrate oxidation, and mitochondrial function, in addition to gut neuropeptides that serve as modulators of blood pressure and metabolic function. We present a model for the role of TNFα in regulating bacterial metabolite transport and neuropeptide signaling in the gastrointestinal system, highlighting the complexity of host-microbiota interactions in hypertension.
Collapse
Affiliation(s)
- Christopher L Souders
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jasenka Zubcevic
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO BOX 100274, Gainesville, FL, 32611, USA.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA.
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, PO BOX 100274, Gainesville, FL, 32611, USA.
| |
Collapse
|
42
|
Optimised Method for Short-Chain Fatty Acid Profiling of Bovine Milk and Serum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020436. [PMID: 35056750 PMCID: PMC8778335 DOI: 10.3390/molecules27020436] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
Short-chain fatty acids (SCFA, C2-C5) in milk and serum are derived from rumen bacterial fermentation and, thus, have the potential to be used as biomarkers for the health status of dairy cows. Currently, there is no comprehensive and validated method that can be used to analyse all SCFAs in both bovine serum and milk. This paper reports an optimised protocol, combining 3-nitrophenylhydrazine (3-NPH) derivatisation and liquid chromatography-mass spectrometry (LC-MS) analysis for quantification of SCFA and β-hydroxybutyric acid (BHBA) in both bovine milk and bovine serum. This method is sensitive (limit of detection (LOD) ≤ 0.1 µmol/L of bovine milk and serum), accurate (recovery 84–115% for most analytes) and reproducible (relative standard deviation (RSD) for repeated analyses below 7% for most measurements) with a short sample preparation step. The application of this method to samples collected from a small cohort of animals allowed us to reveal a large variation in SCFA concentration between serum and milk and across different animals as well as the strong correlation of some SCFAs between milk and serum samples.
Collapse
|
43
|
Hinrichsen F, Hamm J, Westermann M, Schröder L, Shima K, Mishra N, Walker A, Sommer N, Klischies K, Prasse D, Zimmermann J, Kaiser S, Bordoni D, Fazio A, Marinos G, Laue G, Imm S, Tremaroli V, Basic M, Häsler R, Schmitz RA, Krautwald S, Wolf A, Stecher B, Schmitt-Kopplin P, Kaleta C, Rupp J, Bäckhed F, Rosenstiel P, Sommer F. Microbial regulation of hexokinase 2 links mitochondrial metabolism and cell death in colitis. Cell Metab 2021; 33:2355-2366.e8. [PMID: 34847376 DOI: 10.1016/j.cmet.2021.11.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/07/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022]
Abstract
Hexokinases (HK) catalyze the first step of glycolysis limiting its pace. HK2 is highly expressed in gut epithelium, contributes to immune responses, and is upregulated during inflammation. We examined the microbial regulation of HK2 and its impact on inflammation using mice lacking HK2 in intestinal epithelial cells (Hk2ΔIEC). Hk2ΔIEC mice were less susceptible to acute colitis. Analyzing the epithelial transcriptome from Hk2ΔIEC mice during colitis and using HK2-deficient intestinal organoids and Caco-2 cells revealed reduced mitochondrial respiration and epithelial cell death in the absence of HK2. The microbiota strongly regulated HK2 expression and activity. The microbially derived short-chain fatty acid (SCFA) butyrate repressed HK2 expression via histone deacetylase 8 (HDAC8) and reduced mitochondrial respiration in wild-type but not in HK2-deficient Caco-2 cells. Butyrate supplementation protected wild-type but not Hk2ΔIEC mice from colitis. Our findings define a mechanism how butyrate promotes intestinal homeostasis and suggest targeted HK2-inhibition as therapeutic avenue for inflammation.
Collapse
Affiliation(s)
- Finn Hinrichsen
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Jacob Hamm
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Magdalena Westermann
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Lena Schröder
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
| | - Neha Mishra
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Nina Sommer
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Kenneth Klischies
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Daniela Prasse
- Institute of General Microbiology, University of Kiel, 24118 Kiel, Germany
| | | | - Sina Kaiser
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Dora Bordoni
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Antonella Fazio
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Georgios Marinos
- Institute of Experimental Medicine, University of Kiel, 24105 Kiel, Germany
| | - Georg Laue
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Simon Imm
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Valentina Tremaroli
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, 30625 Hannover, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany; Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Ruth A Schmitz
- Institute of General Microbiology, University of Kiel, 24118 Kiel, Germany
| | - Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105 Kiel, Germany
| | - Andrea Wolf
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Ludwig-Maximilians-University of Munich, 80336 Munich, Germany; German Center for Infection Research (DZIF), partner site LMU Munich, Munich Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Centre for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Christoph Kaleta
- Institute of Experimental Medicine, University of Kiel, 24105 Kiel, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, 23538 Lübeck, Germany
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden; Department of Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany.
| |
Collapse
|
44
|
Development and Validation of a LC-MS/MS Technique for the Analysis of Short Chain Fatty Acids in Tissues and Biological Fluids without Derivatisation Using Isotope Labelled Internal Standards. Molecules 2021; 26:molecules26216444. [PMID: 34770853 PMCID: PMC8587764 DOI: 10.3390/molecules26216444] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/13/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is critical to the maintenance of physiological homeostasis and as such is implicated in a range of diseases such as colon cancer, ulcerative colitis, diabetes, cardiovascular diseases, and neurodegenerative diseases. Short chain fatty acids (SCFAs) are key metabolites produced by the gut microbiota from the fermentation of dietary fibre. Here we present a novel, sensitive, and direct LC-MS/MS technique using isotopically labelled internal standards without derivatisation for the analysis of SCFAs in different biological matrices. The technique has significant advantages over the current widely used techniques based on sample derivatization and GC-MS analysis, including fast and simple sample preparation and short LC runtime (10 min). The technique is specific and sensitive for the quantification of acetate, butyrate, isobutyrate, isovalerate, lactate, propionate and valerate. The limits of detection were all 0.001 mM except for acetate which was 0.003 mM. The calibration curves for all the analytes were linear with correlation coefficients r2 > 0.998. The intra- and inter-day precisions in three levels of known concentrations were <12% and <20%, respectively. The quantification accuracy ranged from 92% to 120%. The technique reported here offers a valuable analytical tool for use in studies of SCFA production in the gut and their distribution to host tissues.
Collapse
|
45
|
Zhang J, Yang S, Wang J, Xu Y, Zhao H, Lei J, Zhou Y, Chen Y, Wu L, Zhou M, Li Y, Li Y. Integrated LC-MS metabolomics with dual derivatization for quantification of free fatty acids in fecal samples of hepatocellular carcinoma patients. J Lipid Res 2021; 62:100143. [PMID: 34710433 PMCID: PMC8599149 DOI: 10.1016/j.jlr.2021.100143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 11/12/2022] Open
Abstract
FFAs display pleiotropic functions in human diseases. Short-chain FAs (SCFAs), medium-chain FAs, and long-chain FAs are derived from different origins, and precise quantification of these FFAs is critical for revealing their roles in biological processes. However, accessing stable isotope-labeled internal standards is difficult, and different chain lengths of FFAs challenge the chromatographic coverage. Here, we developed a metabolomics strategy to analyze FFAs based on isotope-free LC-MS-multiple reaction monitoring integrated with dual derivatization. Samples and dual derivatization internal standards were synthesized using 2-dimethylaminoethylamine or dansyl hydrazine as a “light” label and N,N-diethyl ethylene diamine or N,N-diethyldansulfonyl hydrazide as a “heavy” label under mild and efficient reaction conditions. General multiple reaction monitoring parameters were designed to analyze these FFAs. The limit of detection of SCFAs varied from 0.5 to 3 nM. Furthermore, we show that this approach exhibits good linearity (R2 = 0.99374–0.99929), there is no serious substrate interference, and no quench steps are required, confirming the feasibility and reliability of the method. Using this method, we successfully quantified 15 types of SCFAs in fecal samples from hepatocellular carcinoma patients and healthy individuals; among these, propionate, butyrate, isobutyrate, and 2-methylbutyrate were significantly decreased in the hepatocellular carcinoma group compared with the healthy control group. These results indicate that the integrated LC-MS metabolomics with isotope-free and dual derivatization is an efficient approach for quantifying FFAs, which may be useful for identifying lipid biomarkers of cancer.
Collapse
Affiliation(s)
- Jiangang Zhang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Shuai Yang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Pathology, the 958th Hospital, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Jingchun Wang
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Mingyue Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yan Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Yongsheng Li
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China; Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China; Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer, Chongqing University Cancer Hospital, Chongqing 400030, China.
| |
Collapse
|
46
|
Al-Awadi A, Grove J, Taylor M, Valdes A, Vijay A, Bawden S, Gowland P, Aithal G. Effects of an isoenergetic low Glycaemic Index (GI) diet on liver fat accumulation and gut microbiota composition in patients with non-alcoholic fatty liver disease (NAFLD): a study protocol of an efficacy mechanism evaluation. BMJ Open 2021; 11:e045802. [PMID: 34620653 PMCID: PMC8499287 DOI: 10.1136/bmjopen-2020-045802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION A Low Glycaemic Index (LGI) diet is a proposed lifestyle intervention in non-alcoholic fatty liver diseases (NAFLD) which is designed to reduce circulating blood glucose levels, hepatic glucose influx, insulin resistance and de novo lipogenesis. A significant reduction in liver fat content through following a 1-week LGI diet has been reported in healthy volunteers. Changes in dietary fat and carbohydrates have also been shown to alter gut microbiota composition and lead to hepatic steatosis through the gut-liver axis. There are no available trials examining the effects of an LGI diet on liver fat accumulation in patients with NAFLD; nor has the impact of consuming an LGI diet on gut microbiota composition been studied in this population. The aim of this trial is to investigate the effects of LGI diet consumption on liver fat content and its effects on gut microbiota composition in participants with NAFLD compared with a High Glycaemic Index (HGI) control diet. METHODS AND ANALYSIS A 2×2 cross-over randomised mechanistic dietary trial will allocate 16 participants with NAFLD to a 2-week either HGI or LGI diet followed by a 4-week wash-out period and then the LGI or HGI diet, alternative to that followed in the first 2 weeks. Baseline and postintervention (four visits) outcome measures will be collected to assess liver fat content (using MRI/S and controlled attenuation parameter-FibroScan), gut microbiota composition (using 16S RNA analysis) and blood biomarkers including glycaemic, insulinaemic, liver, lipid and haematological profiles, gut hormones levels and short-chain fatty acids. ETHICS AND DISSEMINATION Study protocol has been approved by the ethics committees of The University of Nottingham and East Midlands Nottingham-2 Research Ethics Committee (REC reference 19/EM/0291). Data from this trial will be used as part of a Philosophy Doctorate thesis. Publications will be in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT04415632.
Collapse
Affiliation(s)
- Amina Al-Awadi
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Al-Sabah Hospital, Ministry of Health, Civil Service Commission, Kuwait City, Kuwait
| | - Jane Grove
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| | - Moira Taylor
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ana Valdes
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Amrita Vijay
- School of Medicine, University of Nottingham, Nottingham, UK
| | - Stephen Bawden
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Penny Gowland
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Guruprasad Aithal
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute of Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
| |
Collapse
|
47
|
Akkermansia muciniphila fermentation culture based on a novel bionic large intestine dynamic digestion model. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Chadchan SB, Popli P, Ambati CR, Tycksen E, Han SJ, Bulun SE, Putluri N, Biest SW, Kommagani R. Gut microbiota-derived short-chain fatty acids protect against the progression of endometriosis. Life Sci Alliance 2021; 4:4/12/e202101224. [PMID: 34593556 PMCID: PMC8500332 DOI: 10.26508/lsa.202101224] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/11/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, ∼196 million are afflicted with endometriosis, a painful disease in which endometrial tissue implants and proliferates on abdominal peritoneal surfaces. Theories on the origin of endometriosis remained inconclusive. Whereas up to 90% of women experience retrograde menstruation, only 10% develop endometriosis, suggesting that factors that alter peritoneal environment might contribute to endometriosis. Herein, we report that whereas some gut bacteria promote endometriosis, others protect against endometriosis by fermenting fiber to produce short-chain fatty acids. Specifically, we found that altered gut microbiota drives endometriotic lesion growth and feces from mice with endometriosis contained less of short-chain fatty acid and n-butyrate than feces from mice without endometriosis. Treatment with n-butyrate reduced growth of both mouse endometriotic lesions and human endometriotic lesions in a pre-clinical mouse model. Mechanistic studies revealed that n-butyrate inhibited human endometriotic cell survival and lesion growth through G-protein-coupled receptors, histone deacetylases, and a GTPase activating protein, RAP1GAP. Our findings will enable future studies aimed at developing diagnostic tests, gut bacteria metabolites and treatment strategies, dietary supplements, n-butyrate analogs, or probiotics for endometriosis.
Collapse
Affiliation(s)
- Sangappa B Chadchan
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Pooja Popli
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| | - Chandrasekhar R Ambati
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Eric Tycksen
- Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, USA
| | - Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Fienberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Scott W Biest
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA,Division of Minimally Invasive Gynecologic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St Louis, MO, USA .,Center for Reproductive Health Sciences, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
49
|
Barberis E, Joseph S, Amede E, Clavenna MG, La Vecchia M, Sculco M, Aspesi A, Occhipinti P, Robotti E, Boldorini R, Marengo E, Dianzani I, Manfredi M. A new method for investigating microbiota-produced small molecules in adenomatous polyps. Anal Chim Acta 2021; 1179:338841. [PMID: 34535255 DOI: 10.1016/j.aca.2021.338841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022]
Abstract
The intestinal microbiota is composed of a large number of different bacteria that produce a variety of metabolites. Colorectal cancer, which typically develops from adenomatous polyps, is highly influenced by microbiota. Since a variety of molecular changes may occur as these polyps transform from benign tumor to malignant carcinoma, the ability to study the microbiota-produced metabolites can lead to new discoveries about the development and progression of this cancer. However, to address the complexity of the microbiota-produced molecules, novel methods are needed. To this aim, in the present work, we developed a high-throughput metabolomics method to capture the metabolic complexity of the microbiota metabolome adherent to adenomatous polyps and adenocarcinoma. For the first time, the method enables the simultaneous quantification of almost 300 metabolites, while preserving the integrity of the original sample. The metabolomics approach was analytically validated and had excellent performances in terms of recovery, linearity, specificity, intra- and inter-day precision, limits of detection, and quantification. Furthermore, the clinical potential of the method was demonstrated in adenoma collected for a colorectal adenoma study.
Collapse
Affiliation(s)
- Elettra Barberis
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | - Soni Joseph
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Elia Amede
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy
| | | | - Marta La Vecchia
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Marika Sculco
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Anna Aspesi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pietro Occhipinti
- Department of Gastroenterology, 'Maggiore Della Carità' Hospital, Novara, Italy
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Novara, Italy
| | - Renzo Boldorini
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Novara, Italy
| | - Irma Dianzani
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy; Center for Translational Research on Autoimmune and Allergic Diseases, University of Piemonte Orientale, Novara, Italy.
| |
Collapse
|
50
|
A highly sensitive, simple, and fast gas chromatography-mass spectrometry method for the quantification of serum short-chain fatty acids and their potential features in central obesity. Anal Bioanal Chem 2021; 413:6837-6844. [PMID: 34533599 DOI: 10.1007/s00216-021-03639-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Short-chain fatty acids (SCFAs) are the main gut microbe metabolites, which have no more than six carbons. SCFAs are an emerging biomarker in metabolic diseases, including central obesity. Commonly, SCFAs are measured in fecal samples, where they are highly abundant, but here they do not reflect direct interactions with related organs. Serum SCFAs are assumed to be more associated with metabolic disease than fecal SCFAs, albeit at very low concentrations. The aim of the present study is to develop a highly sensitive, simple, and fast method for measuring six SCFAs in the serum by gas chromatography-mass spectrometry (GCMS). The serum is mixed with meta-phosphoric acid and 2,2-dimethylbutyric acid, followed by homogenization and centrifugation. Supernatant is then injected into the fused silica capillary column. The method is linear from 0.12-500 μmol/L for all SCFAs with an accuracy of 90-117%. The total coefficient of variation for precision ranges from 3.8 to 14.1%. A preliminary study is performed with 32 centrally obese subjects and 17 lean subjects. The mean values of all SCFAs, including acetic, propionic, isobutyric, butyric, isovaleric, and valeric acid, in the centrally obese subjects are significantly higher compared with lean subjects. A significant correlation also exists between all SCFAs, with the waist circumference indicating that serum SCFAs have potential features with respect to metabolic diseases, especially central obesity. The validated GCMS method provides highly sensitive, fast, simple, and reliable SCFA quantitation in the serum and demonstrates the potential features of circulating SCFAs in central obesity.
Collapse
|