1
|
Diaz-Pizarro M, Pino-Zúñiga J, Gálvez MO, Vesga CR, Tello RL, Seguro JCD, Cancino-Lopez J. Creatine Supplementation Prior to Strength Exercise Training Is Not Superior in Preventing Muscle Mass Loss Compared with Standard Nutritional Recommendations in Females After Bariatric Surgery: A Pilot Study. Obes Surg 2024; 34:3755-3759. [PMID: 39251568 DOI: 10.1007/s11695-024-07451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND This study examines whether creatine supplementation combined with strength training mitigates muscle mass loss in women during early rehabilitation post-bariatric surgery, as its effectiveness remains untested in this context. METHODS Fifteen women (37.8 ± 9.6 years; BMI, 38.8 ± 5.6 kg/m2) completed the intervention (creatine group = 7; placebo group = 8). Both groups followed a strength training program three times a week for 8 weeks. The dosage for both the creatine and placebo was 8 g prior to each exercise session. Body weight, skeletal muscle mass, fat mass, handgrip strength, and physical activity levels were measured before and after the intervention. RESULTS The creatine group showed a reduction of 9.5 ± 1.5 kg in body weight, with a 0.72 ± 0.6 kg decrease in muscle mass and an 8.64 ± 1.2 kg reduction in fat mass. The placebo group had a reduction of 9.6 ± 3.5 kg in body weight, with a 0.6 ± 1.2 kg decrease in muscle mass and an 8.88 ± 3.2 kg reduction in fat mass, without significant differences between groups (p > 0.05). CONCLUSION The pre-session strength exercise training creatine supplementation is not superior to placebo regarding body weight and fat mass losses and the attenuation of muscle mass loss during the first weeks of rehabilitation following bariatric surgery.
Collapse
Affiliation(s)
- Marcelo Diaz-Pizarro
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Universidad Finis Terrae, Santiago, Chile
| | - Johanna Pino-Zúñiga
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Universidad Finis Terrae, Santiago, Chile.
- Centro BIO, Santiago, Chile.
| | | | | | | | | | - Jorge Cancino-Lopez
- Exercise Physiology and Metabolism Laboratory, School of Kinesiology, Universidad Finis Terrae, Santiago, Chile.
| |
Collapse
|
2
|
Goes‐Santos BR, Carson BP, da Fonseca GWP, von Haehling S. Nutritional strategies for improving sarcopenia outcomes in older adults: A narrative review. Pharmacol Res Perspect 2024; 12:e70019. [PMID: 39400516 PMCID: PMC11472304 DOI: 10.1002/prp2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/10/2024] [Accepted: 09/01/2024] [Indexed: 10/15/2024] Open
Abstract
Sarcopenia is characterized by a decline in muscle strength, generalized loss of skeletal muscle mass, and impaired physical performance, which are common outcomes used to screen, diagnose, and determine severity of sarcopenia in older adults. These outcomes are associated with poor quality of life, increased risk of falls, hospitalization, and mortality in this population. The development of sarcopenia is underpinned by aging, but other factors can lead to sarcopenia, such as chronic diseases, physical inactivity, inadequate dietary energy intake, and reduced protein intake (nutrition-related sarcopenia), leading to an imbalance between muscle protein synthesis and muscle protein breakdown. Protein digestion and absorption are also modified with age, as well as the reduced capacity of metabolizing protein, hindering older adults from achieving ideal protein consumption (i.e., 1-1.5 g/kg/day). Nutritional supplement strategies, like animal (i.e., whey protein) and plant-based protein, leucine, and creatine have been shown to play a significant role in improving outcomes related to sarcopenia. However, the impact of other supplements (e.g., branched-chain amino acids, isolated amino acids, and omega-3) on sarcopenia and related outcomes remain unclear. This narrative review will discuss the evidence of the impact of these nutritional strategies on sarcopenia outcomes in older adults.
Collapse
Affiliation(s)
- Beatriz R. Goes‐Santos
- School of Physical EducationState University of Campinas (FEF‐UNICAMP)CampinasSão PauloBrazil
| | - Brian P. Carson
- Department of Physical Education and Sport Sciences, Faculty of Education and Health SciencesUniversity of LimerickLimerickIreland
- Health Research InstituteUniversity of LimerickLimerickIreland
| | | | - Stephan von Haehling
- Department of Cardiology and PneumologyUniversity of Göttingen Medical CenterGöttingenGermany
- German Center for Cardiovascular Research (DZHK), partner site GöttingenGöttingenGermany
| |
Collapse
|
3
|
Yang Y, Meng X, Dai X, Zhang J, Dai J, Wang J, Fei W. Sequencing technology in sarcopenia: current research progress and future trends. Front Mol Biosci 2024; 11:1309006. [PMID: 39290993 PMCID: PMC11405232 DOI: 10.3389/fmolb.2024.1309006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/25/2024] [Indexed: 09/19/2024] Open
Abstract
Background Muscle is an important tissue of the human body. Muscle atrophy is common in people of all ages, which will lead to human weakness and decline of motor function, which is one of the important causes of disability. The common methods of genomics research are transcriptome, proteomics and metabolomics, which are important means to explore the molecular pathology of diseases. In recent years, combinatorial research has been carried out on a large scale in the field of muscle atrophy. However, no author in this field has carried out bibliometrics and visual analysis. Methods In this study, articles related to the histological study of muscular dystrophy since 2000 were searched from the Web of Science core database (WoSCC). We will retrieve the results through CiteSpace, VosViewer and R for data statistics and visual analysis. Results In this study, a total of 141 publications were collected, and the number of publications increased year by year. These 141 articles came from 1031 co-authors from 361 institutions in 31 countries and were published in 92 journals. A total of 6286 articles from 1383 journals were cited. Authors from American institutions have published the most articles and have been cited the most, and authors from other countries have also made considerable contributions. Conclusion This is the first bibliometric and visual analysis of published research in the field of muscular dystrophy through systematic data retrieval and combined with a variety of bibliometric analysis tools. Through these data, we summarize the previous studies of scholars, and provide prospects for future research in the field.
Collapse
Affiliation(s)
- Yuxia Yang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Xiangji Meng
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Dalian Medical University, Dalian, China
| | - Xiaomei Dai
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jian Zhang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jihang Dai
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Jingcheng Wang
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Wenyong Fei
- Department of Orthopedics and Sports Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Xie L, Cheng Y, Hu B, Chen X, An Y, Xia Z, Cai G, Li C, Peng H. PCLAF induces bone marrow adipocyte senescence and contributes to skeletal aging. Bone Res 2024; 12:38. [PMID: 38961077 PMCID: PMC11222446 DOI: 10.1038/s41413-024-00337-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/30/2024] [Accepted: 04/11/2024] [Indexed: 07/05/2024] Open
Abstract
Bone marrow adipocytes (BMAds) affect bone homeostasis, but the mechanism remains unclear. Here, we showed that exercise inhibited PCNA clamp-associated factor (PCLAF) secretion from the bone marrow macrophages to inhibit BMAds senescence and thus alleviated skeletal aging. The genetic deletion of PCLAF in macrophages inhibited BMAds senescence and delayed skeletal aging. In contrast, the transplantation of PCLAF-mediated senescent BMAds into the bone marrow of healthy mice suppressed bone turnover. Mechanistically, PCLAF bound to the ADGRL2 receptor to inhibit AKT/mTOR signaling that triggered BMAds senescence and subsequently spread senescence among osteogenic and osteoclastic cells. Of note, we developed a PCLAF-neutralizing antibody and showed its therapeutic effects on skeletal health in old mice. Together, these findings identify PCLAF as an inducer of BMAds senescence and provide a promising way to treat age-related osteoporosis.
Collapse
Affiliation(s)
- Lingqi Xie
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yalun Cheng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Biao Hu
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Xin Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yuze An
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Zhuying Xia
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Guangping Cai
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, 410008, China
| | - Hui Peng
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
5
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
6
|
Martinez Aguirre-Betolaza A, Cacicedo J, Castañeda-Babarro A. Creatine Supplementation and Resistance Training in Patients With Breast Cancer (CaRTiC Study): Protocol for a Randomized Controlled Trial. Am J Clin Oncol 2024; 47:161-168. [PMID: 38018533 DOI: 10.1097/coc.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Creatine supplementation is an effective ergogenic nutrient for athletes, as well as for people starting a health or fitness program. Resistance training has previously been identified as an important method of increasing muscle mass and strength, especially in people with cancer to avoid sarcopenia. The potential of creatine supplementation for adaptations produced by resistance training in patients with cancer is still unknown. The primary aim of this study is to evaluate the effectiveness of a supervised resistance training program intervention with and without creatine supplementation in patients with breast cancer. METHODS Is a multicentre, randomized, blind, placebo-controlled study. Patients will be randomly assigned to a control group and 2 experimental groups. The first training resistance group (RG) will perform resistance training, while the second experimental resistance-creatine group will perform the same resistance training as the RG and will also receive a 5 g/d creatine supplementation during the intervention. RG participants will follow the same daily dosing protocol, but in their case, with dextrose/maltodextrin. Resistance training will be a 16-week supervised workout that will consist of a series of resistance exercises (leg press, knee extension, knee bends, chest press, sit-ups, back extensions, pull-ups, and shoulder press) that involve the largest muscle groups, performed 3 times a week on nonconsecutive days. Both the RG and the resistance-creatine group will receive a supplement of soluble protein powder (20 to 30 g) daily. CONCLUSION This intervention will help to better understand the potential of nonpharmacological treatment for improving strength and well-being values in patients with breast cancer with and without creatine supplementation.
Collapse
Affiliation(s)
| | - Jon Cacicedo
- Department of Radiation Oncology, Group for Radiology and Physical Medicine in Oncology, Cruces University Hospital/Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Arkaitz Castañeda-Babarro
- Department of Physical Activity and Sport Sciences, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| |
Collapse
|
7
|
Qi H, Tian D, Luan F, Yang R, Zeng N. Pathophysiological changes of muscle after ischemic stroke: a secondary consequence of stroke injury. Neural Regen Res 2024; 19:737-746. [PMID: 37843207 PMCID: PMC10664100 DOI: 10.4103/1673-5374.382221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 10/17/2023] Open
Abstract
Sufficient clinical evidence suggests that the damage caused by ischemic stroke to the body occurs not only in the acute phase but also during the recovery period, and that the latter has a greater impact on the long-term prognosis of the patient. However, current stroke studies have typically focused only on lesions in the central nervous system, ignoring secondary damage caused by this disease. Such a phenomenon arises from the slow progress of pathophysiological studies examining the central nervous system. Further, the appropriate therapeutic time window and benefits of thrombolytic therapy are still controversial, leading scholars to explore more pragmatic intervention strategies. As treatment measures targeting limb symptoms can greatly improve a patient's quality of life, they have become a critical intervention strategy. As the most vital component of the limbs, skeletal muscles have become potential points of concern. Despite this, to the best of our knowledge, there are no comprehensive reviews of pathophysiological changes and potential treatments for post-stroke skeletal muscle. The current review seeks to fill a gap in the current understanding of the pathological processes and mechanisms of muscle wasting atrophy, inflammation, neuroregeneration, mitochondrial changes, and nutritional dysregulation in stroke survivors. In addition, the challenges, as well as the optional solutions for individualized rehabilitation programs for stroke patients based on motor function are discussed.
Collapse
Affiliation(s)
- Hu Qi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Dan Tian
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Fei Luan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Ruocong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, China
| |
Collapse
|
8
|
Marini ACB, Schincaglia RM, Candow DG, Pimentel GD. Effect of Creatine Supplementation on Body Composition and Malnutrition-Inflammation Score in Hemodialysis Patients: An Exploratory 1-Year, Balanced, Double-Blind Design. Nutrients 2024; 16:615. [PMID: 38474743 PMCID: PMC10934827 DOI: 10.3390/nu16050615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Hemodialysis has a detrimental effect on fat-free mass (FFM) and muscle strength over time. Thus, we aimed to evaluate the effect of creatine supplementation on the body composition and Malnutrition-Inflammation Score (MIS) in patients with chronic kidney disease (CKD) undergoing hemodialysis. An exploratory 1-year balanced, placebo-controlled, and double-blind design was conducted with hemodialysis patients (≥18 years). The creatine group (CG) received 5 g of creatine monohydrate and 5 g of maltodextrin per day and the placebo group (PG) received 10 g of maltodextrin per day. MIS and body composition were analyzed at three time points: pre, intermediate (after 6 months), and post (after 12 months). After 6 months, 60% of patients on creatine experienced an increase in FFM compared to a 36.8% increase for those on placebo. Moreover, 65% of patients on creatine increased their skeletal muscle mass index (SMMI) compared to only 15.8% for those on placebo. Creatine increased intracellular water (ICW) in 60% of patients. MIS did not change after the intervention. In the CG, there was an increase in body weight (p = 0.018), FFM (p = 0.010), SMMI (p = 0.022). CG also increased total body water (pre 35.4 L, post 36.1 L; p = 0.008), mainly due to ICW (pre 20.2 L, intermediate 20.7 L, post 21.0 L; p = 0.016). Long-term creatine supplementation in hemodialysis patients did not attenuate the MIS, but enhanced FFM and SMMI, which was likely triggered by an increase in ICW.
Collapse
Affiliation(s)
- Ana Clara B. Marini
- Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiania 74605080, Brazil; (A.C.B.M.); (R.M.S.)
| | - Raquel M. Schincaglia
- Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiania 74605080, Brazil; (A.C.B.M.); (R.M.S.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Gustavo D. Pimentel
- Faculty of Nutrition, Federal University of Goiás, Rua 227, Quadra 68 s/n°, Setor Leste Universitário, Goiania 74605080, Brazil; (A.C.B.M.); (R.M.S.)
| |
Collapse
|
9
|
Voulgaridou G, Tyrovolas S, Detopoulou P, Tsoumana D, Drakaki M, Apostolou T, Chatziprodromidou IP, Papandreou D, Giaginis C, Papadopoulou SK. Diagnostic Criteria and Measurement Techniques of Sarcopenia: A Critical Evaluation of the Up-to-Date Evidence. Nutrients 2024; 16:436. [PMID: 38337720 PMCID: PMC10856900 DOI: 10.3390/nu16030436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Sarcopenia, a geriatric syndrome characterized by progressive skeletal muscle mass and function decline, poses a significant health risk among the elderly, contributing to frailty, falls, hospitalization, loss of independence and mortality. The prevalence of sarcopenia varies significantly based on various factors, such as living status, demographics, measurement techniques and diagnostic criteria. Although the overall prevalence is reported at 10% in individuals aged 60 and above, disparities exist across settings, with higher rates in nursing homes and hospitals. Additionally, the differences in prevalence between Asian and non-Asian countries highlight the impact of cultural and ethnic factors, and variations in diagnostic criteria, cut-off values and assessment methods contribute to the observed heterogeneity in reported rates. This review outlines diverse diagnostic criteria and several measurement techniques supporting decision making in clinical practice. Moreover, it facilitates the selection of appropriate tools to assess sarcopenia, emphasizing its multifactorial nature. Various scientific groups, including the European Working Group of Sarcopenia in Older People (EWGSOP), the International Working Group on Sarcopenia (IWGS), the Asian Working Group on Sarcopenia (AWGS), the American Foundation for the National Institutes of Health (FNIH) and the Sarcopenia Definition and Outcomes Consortium (SDOC), have published consensus papers outlining diverse definitions of sarcopenia. The choice of diagnostic criteria should be aligned with the specific objectives of the study or clinical practice, considering the characteristics of the study population and available resources.
Collapse
Affiliation(s)
- Gavriela Voulgaridou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (D.T.); (M.D.)
| | - Stefanos Tyrovolas
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA;
- WHOCC Centre for Community Health Services, School of Nursing, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research, Innovation and Teaching Unit, Parc Sanitari Sant Joan de Déu, 08830 Sant Boi de Llobregat, Spain
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| | - Paraskevi Detopoulou
- Department of Clinical Nutrition, General Hospital Korgialenio Benakio, Athanassaki 2, 11526 Athens, Greece
| | - Despoina Tsoumana
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (D.T.); (M.D.)
| | - Mariella Drakaki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (D.T.); (M.D.)
| | - Thomas Apostolou
- Department of Physiotherapy, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece;
| | | | - Dimitrios Papandreou
- Department of Clinical Nutrition & Dietetics, College of Health, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Myrina, Greece;
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400 Thessaloniki, Greece; (G.V.); (D.T.); (M.D.)
| |
Collapse
|
10
|
Long J, Zhang X, Mi W, Shi J, Ren H, Wang Q. The predictive value of sarcopenia and myosteatosis in trans-arterial (chemo)-embolization treated HCC patients. Aging (Albany NY) 2024; 16:389-401. [PMID: 38189812 PMCID: PMC10817392 DOI: 10.18632/aging.205375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/15/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND We conducted a meta-analysis to provide evidence-based results for the predictive values of sarcopenia, skeletal muscle index, psoas muscle index and the myosteatosis regarding the impact of survival outcomes and tumor response in patients treated by trans-arterial (chemo)-embolization (TAE/TACE), thereby optimizing therapeutic strategies and maximizing clinical benefits for hepatocellular carcinoma patients. METHODS Qualified studies were retrieved from PubMed, the Cochrane Library, EMBASE, and Google Scholar before June 19, 2023. We investigated the relationships between sarcopenia, SMI, PMI, myosteatosis, and the overall survival of TAE/TACE-treated hepatocellular carcinoma patients with pooling data. RESULTS A total of 167 studies were collected and 12 studies were finally included for analysis. The meta-analysis assisted that the sarcopenia (HR: 1.46, 95% CI: 1.30-1.64, p < 0.001), skeletal muscle index (HR: 1.48, 95% CI: 1.29-1.69, p < 0.001), and psoas muscle index (HR: 1.45, 95% CI: 1.19-1.77, p < 0.001) were significantly related to a shorter OS of hepatocellular carcinoma patients who treated by TAE/TACE. Sarcopenia significantly contributed to a lower objective response rate of TAE/TACE treated hepatocellular carcinoma patients (OR: 0.80, 95% CI: 0.65-0.98, p = 0.032). But there was no significant association between the myosteatosis and the overall survival (HR: 1.29, 95% CI: 0.74-2.25, p = 0.366). Sensitivity analysis supported the stability and dependability of above analyses conclusions. CONCLUSION Sarcopenia, skeletal muscle index and psoas muscle index, are significant prognostic predictors for TAE/TACE treated hepatocellular carcinoma patients. While myosteasis does not demonstrate a prognostic impact on the overall survival of TAE/TACE treated hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Jing Long
- Department of Interventional Radiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Hubei, P.R. China
| | - Xin Zhang
- Department of Interventional Radiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Hubei, P.R. China
| | - Wei Mi
- Department of Interventional Radiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Hubei, P.R. China
| | - Jianjun Shi
- Department of Interventional Radiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Hubei, P.R. China
| | - Hongwei Ren
- Department of Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Hubei, P.R. China
| | - Qiang Wang
- Department of Interventional Radiology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Hubei, P.R. China
| |
Collapse
|
11
|
Smith AN, Morris JK, Carbuhn AF, Herda TJ, Keller JE, Sullivan DK, Taylor MK. Creatine as a Therapeutic Target in Alzheimer's Disease. Curr Dev Nutr 2023; 7:102011. [PMID: 37881206 PMCID: PMC10594571 DOI: 10.1016/j.cdnut.2023.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, affecting approximately 6.5 million older adults in the United States. Development of AD treatment has primarily centered on developing pharmaceuticals that target amyloid-β (Aβ) plaques in the brain, a hallmark pathological biomarker that precedes symptomatic AD. Though recent clinical trials of novel drugs that target Aβ have demonstrated promising preliminary data, these pharmaceuticals have a poor history of developing into AD treatments, leading to hypotheses that other therapeutic targets may be more suitable for AD prevention and treatment. Impaired brain energy metabolism is another pathological hallmark that precedes the onset of AD that may provide a target for intervention. The brain creatine (Cr) system plays a crucial role in maintaining bioenergetic flux and is disrupted in AD. Recent studies using AD mouse models have shown that supplementing with Cr improves brain bioenergetics, as well as AD biomarkers and cognition. Despite these promising findings, no human trials have investigated the potential benefits of Cr supplementation in AD. This narrative review discusses the link between Cr and AD and the potential for Cr supplementation as a treatment for AD.
Collapse
Affiliation(s)
- Aaron N. Smith
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Jill K. Morris
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Aaron F. Carbuhn
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Trent J. Herda
- Department of Health, Sport, and Exercise Sciences, University of Kansas, Lawrence, KS, United States
| | - Jessica E. Keller
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
| | - Debra K. Sullivan
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| | - Matthew K. Taylor
- Department of Dietetics and Nutrition, University of Kansas Medical Center, Kansas City, KS, United States
- Alzheimer’s Disease Research Center, University of Kansas, Fairway, KS, United States
| |
Collapse
|
12
|
Liu S, Zhang L, Li S. Advances in nutritional supplementation for sarcopenia management. Front Nutr 2023; 10:1189522. [PMID: 37492597 PMCID: PMC10365293 DOI: 10.3389/fnut.2023.1189522] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/20/2023] [Indexed: 07/27/2023] Open
Abstract
Sarcopenia is a syndrome characterized by a decline in muscular mass, strength, and function with advancing age. The risk of falls, fragility, hospitalization, and death is considerably increased in the senior population due to sarcopenia. Although there is no conclusive evidence for drug treatment, resistance training has been unanimously recognized as a first-line treatment for managing sarcopenia, and numerous studies have also pointed to the combination of nutritional supplementation and resistance training as a more effective intervention to improve quality of life for people with sarcopenia. People with both malnutrition and sarcopenia have a higher mortality rate, so identifying people at risk of malnutrition and intervening early is extremely important to avoid sarcopenia and its associated problems. This article provides important information for dietary interventions in sarcopenia by summarizing the discoveries and developments of nutritional supplements such as protein, leucine, β-hydroxy-β-methylbutyric acid, vitamin D, vitamin C, vitamin E, omega-3 fatty acids, creatine, inorganic nitrate, probiotics, minerals, collagen peptides, and polyphenols in the management of sarcopenia.
Collapse
Affiliation(s)
- Simin Liu
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuangqing Li
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- National Clinical Research Center for Geriatrics, Multimorbidity Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Mellen RH, Girotto OS, Marques EB, Laurindo LF, Grippa PC, Mendes CG, Garcia LNH, Bechara MD, Barbalho SM, Sinatora RV, Haber JFDS, Flato UAP, Bueno PCDS, Detregiachi CRP, Quesada K. Insights into Pathogenesis, Nutritional and Drug Approach in Sarcopenia: A Systematic Review. Biomedicines 2023; 11:136. [PMID: 36672642 PMCID: PMC9856128 DOI: 10.3390/biomedicines11010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Sarcopenia is a multifactorial condition related to the loss of muscle mass and strength due to aging, eating habits, physical inactivity, or even caused by another disease. Affected individuals have a higher risk of falls and may be associated with heart disease, respiratory diseases, cognitive impairment, and consequently an increased risk of hospitalization, in addition to causing an economic impact due to the high cost of care during the stay in hospitals. The standardization of appropriate treatment for patients with sarcopenia that could help reduce pathology-related morbidity is necessary. For these reasons, this study aimed to perform a systematic review of the role of nutrition and drugs that could ameliorate the health and quality of life of sarcopenic patients and PRISMA guidelines were followed. Lifestyle interventions have shown a profound impact on sarcopenia treatment but using supplements and different drugs can also impact skeletal muscle maintenance. Creatine, leucine, branched-chain amino acids, omega 3, and vitamin D can show benefits. Although with controversial results, medications such as Metformin, GLP-1, losartan, statin, growth hormone, and dipeptidyl peptidase 4 inhibitors have also been considered and can alter the sarcopenic's metabolic parameters, protect against cardiovascular diseases and outcomes, while protecting muscles.
Collapse
Affiliation(s)
- Rodrigo Haber Mellen
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Otávio Simões Girotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Eduarda Boni Marques
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Paulo Cesar Grippa
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudemir Gregório Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Lorena Natalino Haber Garcia
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| | - Renata Vargas Sinatora
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | | | - Uri Adrian P. Flato
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Patricia Cincotto dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- Department of Animal Sciences, School of Veterinary Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Claudia Rucco Penteado Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation—University of Marília (UNIMAR), São Paulo 17525-902, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), São Paulo 17525-902, Brazil
- School of Food and Technology of Marilia (FATEC), São Paulo 17590-000, Brazil
| |
Collapse
|
14
|
Potential Therapeutic Strategies for Skeletal Muscle Atrophy. Antioxidants (Basel) 2022; 12:antiox12010044. [PMID: 36670909 PMCID: PMC9854691 DOI: 10.3390/antiox12010044] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The maintenance of muscle homeostasis is vital for life and health. Skeletal muscle atrophy not only seriously reduces people's quality of life and increases morbidity and mortality, but also causes a huge socioeconomic burden. To date, no effective treatment has been developed for skeletal muscle atrophy owing to an incomplete understanding of its molecular mechanisms. Exercise therapy is the most effective treatment for skeletal muscle atrophy. Unfortunately, it is not suitable for all patients, such as fractured patients and bedridden patients with nerve damage. Therefore, understanding the molecular mechanism of skeletal muscle atrophy is crucial for developing new therapies for skeletal muscle atrophy. In this review, PubMed was systematically screened for articles that appeared in the past 5 years about potential therapeutic strategies for skeletal muscle atrophy. Herein, we summarize the roles of inflammation, oxidative stress, ubiquitin-proteasome system, autophagic-lysosomal pathway, caspases, and calpains in skeletal muscle atrophy and systematically expound the potential drug targets and therapeutic progress against skeletal muscle atrophy. This review focuses on current treatments and strategies for skeletal muscle atrophy, including drug treatment (active substances of traditional Chinese medicine, chemical drugs, antioxidants, enzyme and enzyme inhibitors, hormone drugs, etc.), gene therapy, stem cell and exosome therapy (muscle-derived stem cells, non-myogenic stem cells, and exosomes), cytokine therapy, physical therapy (electroacupuncture, electrical stimulation, optogenetic technology, heat therapy, and low-level laser therapy), nutrition support (protein, essential amino acids, creatine, β-hydroxy-β-methylbutyrate, and vitamin D), and other therapies (biomaterial adjuvant therapy, intestinal microbial regulation, and oxygen supplementation). Considering many treatments have been developed for skeletal muscle atrophy, we propose a combination of proper treatments for individual needs, which may yield better treatment outcomes.
Collapse
|
15
|
Zhu G, Wu X, Jiang S, Wang Y, Kong D, Zhao Y, Wang W. The application of omics techniques to evaluate the effects of Tanshinone IIA on dextran sodium sulfate induced ulcerative colitis. Mol Omics 2022; 18:666-676. [PMID: 35670211 DOI: 10.1039/d2mo00074a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ulcerative colitis (UC) is the most frequent disease classified under the umbrella term inflammatory bowel disease (IBD) with potentially serious symptoms and devastating consequences for the affected patients. In clinical research, Salvia miltiorrhiza Radix et Rhizoma, which includes the active ingredient of Tanshinone IIA, has been proven to have an anti-inflammatory effect. However, Tan IIA anti-inflammatory effect and mechanism are not clear. In this study, the pharmacodynamic index was used to evaluate the effects of Tan IIA on UC mice, such as general conditions, disease activity index (DAI), pathological morphology of the colon and pharmacodynamic indices were taken into account. The UPLC-Q-Exactive Orbitrap/MS technology was further utilized to conduct a metabolomic analysis of mice's colon tissue to explore the intervention approaches. The results demonstrated that Tan IIA could significantly improve the general condition of UC mice, decrease DAI score and histopathological score, reduce the concentrations of TNF-α, IL-1β, IL-6 and increase IL-10 in the serum. Twenty endogenous components, such as taurine, L-glutamine were recognized as underlying biomarkers of the curative effect of Tan IIA. According to the system network analysis of the corresponding ways, the effect of Tan IIA on UC in mice is mainly through the regulation of taurine and hypotaurine metabolism. Tan IIA has been shown to possess definite pharmacological activities on the pharmacodynamic indexes and pathological observations on UC mice by partially regulating the destabilized network. Moreover, the findings acquired from the present study may provide a better understanding of the mechanisms of UC disease and potential therapies.
Collapse
Affiliation(s)
- Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Xiaoqian Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Shujun Jiang
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Yi Wang
- Department of Anorectal Medicine, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Wang Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
16
|
Dhar M, Kapoor N, Suastika K, Khamseh ME, Selim S, Kumar V, Raza SA, Azmat U, Pathania M, Rai Mahadeb YP, Singhal S, Naseri MW, Aryana IGPS, Thapa SD, Jacob J, Somasundaram N, Latheef A, Dhakal GP, Kalra S. South Asian Working Action Group on SARCOpenia (SWAG-SARCO) – A consensus document. Osteoporos Sarcopenia 2022; 8:35-57. [PMID: 35832416 PMCID: PMC9263178 DOI: 10.1016/j.afos.2022.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/20/2021] [Accepted: 04/23/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Minakshi Dhar
- Department of Internal Medicine, AIIMS, Rishikesh, India
| | - Nitin Kapoor
- Department of Endocrinology, Christian Medical College, Vellore, Tamil Nadu, India
- Non Communicable Disease Unit, The Nossal Institute for Global Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Ketut Suastika
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Udayana University Denpasar, Bali, Indonesia
| | - Mohammad E. Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Shahjada Selim
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Vijay Kumar
- Department of Geriatric Medicine AIIMS New Delhi, India
| | - Syed Abbas Raza
- Department of Medicine, Shaukat Khanum Cancer Hospital and Research Center, Lahore, Pakistan
| | - Umal Azmat
- Department of Internal Medicine, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Monika Pathania
- Department of Medicine, All India Institute of Medical Sciences (AIIMS), Rishikesh, Uttarakhand, India
| | | | - Sunny Singhal
- Department of Geriatric Medicine, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan, India
| | - Mohammad Wali Naseri
- Internal Medicine, Division of Endocrinology Metabolism and Diabetes, Kabul University of Medical Sciences (KUMS), Kabul, Afghanistan
| | - IGP Suka Aryana
- Geriatric Division of Internal Medicine Department, Udayana University, Bali, Indonesia
| | - Subarna Dhoj Thapa
- Department of Endocrinology and Metabolism, Grande International Hospital, Kathmandu, Nepal
| | - Jubbin Jacob
- Department of Endocrinology, Christian Medical College and Hospital, Ludhiana, Punjab, India
| | - Noel Somasundaram
- Diabetes and Endocrine Unit, National Hospital of Sri Lanka, Colombo, 10, Sri Lanka
| | - Ali Latheef
- Department of Internal Medicine, Indira Gandhi Memorial Hospital, Maldives
| | - Guru Prasad Dhakal
- Department of Gastroenterology, Jigme Dorji Wangchuk National Referral Hospital, Thimpu, Bhutan
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
- Corresponding author.
| |
Collapse
|
17
|
Anti-Inflammatory and Anti-Catabolic Effects of Creatine Supplementation: A Brief Review. Nutrients 2022; 14:nu14030544. [PMID: 35276903 PMCID: PMC8839648 DOI: 10.3390/nu14030544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/02/2022] Open
Abstract
It is well established that creatine supplementation, primarily when combined with resistance training, significantly increases measures of muscle mass and performance (primarily strength). Emerging research also indicates that creatine supplementation may have favorable effects on measures of bone biology. These anabolic adaptations may be related to creatine influencing cellular hydration status, high-energy phosphate metabolism, growth factors, muscle protein kinetics, and the bone remodeling process. Accumulating research also suggests that creatine supplementation has anti-inflammatory and anti-catabolic properties, which may help create a favorable environment for muscle and bone accretion and recovery from exercise. Creatine supplementation has the ability to decrease markers of inflammation and possibly attenuate cancerous tumor growth progression. From a musculoskeletal perspective, there is some evidence to show that creatine supplementation reduces measures of muscle protein catabolism (primarily in males) and bone resorption when combined with resistance training. The purpose of this brief review is to summarize the current body of literature examining the potential anti-inflammatory and anti-catabolic effects of creatine supplementation across various research populations.
Collapse
|
18
|
Ostojic SM, Korovljev D, Stajer V. Dietary intake of creatine and risk of medical conditions in U.S. older men and women: Data from the 2017-2018 National Health and Nutrition Examination Survey. Food Sci Nutr 2021; 9:5746-5754. [PMID: 34646542 PMCID: PMC8498075 DOI: 10.1002/fsn3.2543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022] Open
Abstract
We examined dietary intake of creatine in U.S. men and women aged 65 years and over, and evaluated the association between creatine intake and risk of self-reported medical conditions, and physical functioning/disability variables using data from the 2017-2018 National Health and Nutrition Examination Survey (NHANES). The NHANES 2017-2018 target population included the noninstitutionalized civilian resident population of the United States aged 65 years and over. Detailed dietary intake data from NHANES elderly were obtained by dietary interview component through a 24-h dietary recall interview, with estimated individual values for total grams of creatine consumed per day for each respondent. A threshold for dietary intake of creatine used to calculate risk between creatine intake and medical conditions was set at 1.00 g/day. The sample population included 1500 participants aged 65 years and older, of which 1221 individuals (627 men and 594 women) provided detailed dietary data via a dietary interview. Creatine intake across all participants was 0.76 ± 0.79 g/day (95% CI from 0.72 to 0.81). As much as 70% of U.S. elderly consume <1.00 g of creatine per day, with about 1 in 5 individuals (19.8%) consume no creatine at all. Elderly with the suboptimal intake of creatine were found to have 2.62 times higher risk of angina pectoris (adjusted OR = 2.62, 95% CI from 1.14 to 6.01, p = .023) and 2.59 times higher risk of liver conditions (adjusted OR = 2.59, 95% CI from 1.23 to 5.48, p = .013), compared with older counterparts who consume ≥1.00 g of creatine per day after controlling for demographic and nutritional variables. The considerable shortage of dietary creatine is associated with an increased risk of heart and liver conditions, which calls for public measures that foster diets rich in creatine-containing foods, and additional research to investigate the role of creatine in age-related diseases.
Collapse
Affiliation(s)
| | | | - Valdemar Stajer
- FSPE Applied Bioenergetics LabUniversity of Novi SadNovi SadSerbia
| |
Collapse
|
19
|
Lee K, Kim J, Park SD, Shim JJ, Lee JL. Lactobacillus plantarum HY7715 Ameliorates Sarcopenia by Improving Skeletal Muscle Mass and Function in Aged Balb/c Mice. Int J Mol Sci 2021; 22:ijms221810023. [PMID: 34576187 PMCID: PMC8466743 DOI: 10.3390/ijms221810023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia is a loss of muscle mass and function in elderly people and can lead to physical frailty and fall-related injuries. Sarcopenia is an inevitable event of the aging process that substantially impacts a person's quality of life. Recent studies to improve muscle function through the intake of various functional food materials are attracting attention. However, it is not yet known whether probiotics can improve muscle mass and muscle strength and affect physical performance. Lactobacillus plantarum HY7715 (HY7715) is a lactic acid bacteria isolated from kimchi. The present research shows that L. plantarum HY7715 increases physical performance and skeletal muscle mass in 80-week-old aged Balb/c male mice. HY7715 not only induces myoblast differentiation and mitochondrial biogenesis but also inhibits the sarcopenic process in skeletal muscle. In addition, HY7715 recovers the microbiome composition and beta-diversity shift. Therefore, HY7715 has promise as a functional probiotic supplement to improve the degeneration of muscle function that is associated with aging.
Collapse
|
20
|
Chronic Dialysis Patients Are Depleted of Creatine: Review and Rationale for Intradialytic Creatine Supplementation. Nutrients 2021; 13:nu13082709. [PMID: 34444869 PMCID: PMC8400647 DOI: 10.3390/nu13082709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/11/2022] Open
Abstract
There is great need for the identification of new, potentially modifiable risk factors for the poor health-related quality of life (HRQoL) and of the excess risk of mortality in dialysis-dependent chronic kidney disease patients. Creatine is an essential contributor to cellular energy homeostasis, yet, on a daily basis, 1.6–1.7% of the total creatine pool is non-enzymatically degraded to creatinine and subsequently lost via urinary excretion, thereby necessitating a continuous supply of new creatine in order to remain in steady-state. Because of an insufficient ability to synthesize creatine, unopposed losses to the dialysis fluid, and insufficient intake due to dietary recommendations that are increasingly steered towards more plant-based diets, hemodialysis patients are prone to creatine deficiency, and may benefit from creatine supplementation. To avoid problems with compliance and fluid balance, and, furthermore, to prevent intradialytic losses of creatine to the dialysate, we aim to investigate the potential of intradialytic creatine supplementation in improving outcomes. Given the known physiological effects of creatine, intradialytic creatine supplementation may help to maintain creatine homeostasis among dialysis-dependent chronic kidney disease patients, and consequently improve muscle status, nutritional status, neurocognitive status, HRQoL. Additionally, we describe the rationale and design for a block-randomized, double-blind, placebo-controlled pilot study. The aim of the pilot study is to explore the creatine uptake in the circulation and tissues following different creatine supplementation dosages.
Collapse
|
21
|
Creatine Supplementation and Brain Health. Nutrients 2021; 13:nu13020586. [PMID: 33578876 PMCID: PMC7916590 DOI: 10.3390/nu13020586] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 01/06/2023] Open
Abstract
There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer’s disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.
Collapse
|
22
|
Antonio J, Candow DG, Forbes SC, Gualano B, Jagim AR, Kreider RB, Rawson ES, Smith-Ryan AE, VanDusseldorp TA, Willoughby DS, Ziegenfuss TN. Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? J Int Soc Sports Nutr 2021; 18:13. [PMID: 33557850 PMCID: PMC7871530 DOI: 10.1186/s12970-021-00412-w] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Supplementing with creatine is very popular amongst athletes and exercising individuals for improving muscle mass, performance and recovery. Accumulating evidence also suggests that creatine supplementation produces a variety of beneficial effects in older and patient populations. Furthermore, evidence-based research shows that creatine supplementation is relatively well tolerated, especially at recommended dosages (i.e. 3-5 g/day or 0.1 g/kg of body mass/day). Although there are over 500 peer-refereed publications involving creatine supplementation, it is somewhat surprising that questions regarding the efficacy and safety of creatine still remain. These include, but are not limited to: 1. Does creatine lead to water retention? 2. Is creatine an anabolic steroid? 3. Does creatine cause kidney damage/renal dysfunction? 4. Does creatine cause hair loss / baldness? 5. Does creatine lead to dehydration and muscle cramping? 6. Is creatine harmful for children and adolescents? 7. Does creatine increase fat mass? 8. Is a creatine 'loading-phase' required? 9. Is creatine beneficial for older adults? 10. Is creatine only useful for resistance / power type activities? 11. Is creatine only effective for males? 12. Are other forms of creatine similar or superior to monohydrate and is creatine stable in solutions/beverages? To answer these questions, an internationally renowned team of research experts was formed to perform an evidence-based scientific evaluation of the literature regarding creatine supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, Florida, USA.
| | - Darren G Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Canada
| | - Scott C Forbes
- Department of Physical Education, Faculty of Education, Brandon University, Brandon, MB, Canada
| | - Bruno Gualano
- Applied Physiology & Nutrition Research Group; School of Medicine, FMUSP, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Andrew R Jagim
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI, USA
| | - Richard B Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, USA
| | - Eric S Rawson
- Department of Health, Nutrition, and Exercise Science, Messiah University, Mechanicsburg, PA, USA
| | - Abbie E Smith-Ryan
- Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC, USA
| | - Trisha A VanDusseldorp
- Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Darryn S Willoughby
- School of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, USA
| | | |
Collapse
|
23
|
Kreider RB, Stout JR. Creatine in Health and Disease. Nutrients 2021; 13:nu13020447. [PMID: 33572884 PMCID: PMC7910963 DOI: 10.3390/nu13020447] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Although creatine has been mostly studied as an ergogenic aid for exercise, training, and sport, several health and potential therapeutic benefits have been reported. This is because creatine plays a critical role in cellular metabolism, particularly during metabolically stressed states, and limitations in the ability to transport and/or store creatine can impair metabolism. Moreover, increasing availability of creatine in tissue may enhance cellular metabolism and thereby lessen the severity of injury and/or disease conditions, particularly when oxygen availability is compromised. This systematic review assesses the peer-reviewed scientific and medical evidence related to creatine's role in promoting general health as we age and how creatine supplementation has been used as a nutritional strategy to help individuals recover from injury and/or manage chronic disease. Additionally, it provides reasonable conclusions about the role of creatine on health and disease based on current scientific evidence. Based on this analysis, it can be concluded that creatine supplementation has several health and therapeutic benefits throughout the lifespan.
Collapse
Affiliation(s)
- Richard B. Kreider
- Human Clinical Research Facility, Exercise & Sport Nutrition Lab, Department of Health & Kinesiology, Texas A&M University, College Station, TX 77843, USA
- Correspondence:
| | - Jeffery R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, School of Kinesiology and Physical Therapy, University of Central Florida, 12494 University Blvd., Orlando, FL 32816, USA;
| |
Collapse
|
24
|
de Oliveira TMD, Felício DC, Filho JE, Durigan JLQ, Fonseca DS, José A, Oliveira CC, Malaguti C. Effects of whole-body electromyostimulation on function, muscle mass, strength, social participation, and falls-efficacy in older people: A randomized trial protocol. PLoS One 2021; 16:e0245809. [PMID: 33493160 PMCID: PMC7833144 DOI: 10.1371/journal.pone.0245809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/06/2021] [Indexed: 11/18/2022] Open
Abstract
Background Resistance training has a positive impact on functional capacity and muscle mass in the elderly. However, due to physical limitations or a simple aversion against regular exercise, a majority of the elderly do not reach the recommended exercise doses. This led us to evaluate the effect of whole-body electromyostimulation (WB-EMS), a novel, time-efficient, and smooth training technology on physical function, fat-free mass, strength, falls-efficacy, and social participation of the elderly. Methods The present study is a randomized, parallel group clinical trial approved by the Ethics Committee of our Institution. Sixty-six volunteers (age ≥ 60 years) will be recruited from the geriatric outpatient department in a tertiary hospital and primary care units and randomized into two groups: WB-EMS group or active control group (aCG). The WB-EMS or aCG protocol will consist of 16 sessions for 8 consecutive weeks, twice per week. The primary outcomes will be maximal isometric knee extension (IKE), functional lower extremity strength, fat-free mass, gait speed, and risk of falls measured before and after intervention. The secondary outcomes will be social participation and falls-efficacy assessed before and after the intervention and at three and six months of follow-up. Participant’s satisfaction with and awareness of electrical stimulation therapy will also be assessed immediately after the 8-week intervention. Discussion Patients receiving WB-EMS exercises are believed to have better outcomes than those receiving conventional, more time-consuming resistance exercises. Hence, innovative, time-efficient, joint-friendly, and highly individualized exercise technologies (such as WB-EMS) may be a good choice for the elderly with time constraints, physical limitations, or little enthusiasm, who are exercising less than the recommended amounts for impact on muscle mass, strength, and function.
Collapse
Affiliation(s)
| | - Diogo Carvalho Felício
- College of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - José Elias Filho
- College of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.,College of Physical Education and Sports, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Diogo Simões Fonseca
- College of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Anderson José
- College of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | - Carla Malaguti
- College of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| |
Collapse
|
25
|
Fernández-Mincone T, Contreras-Briceño F, Espinosa-Ramírez M, García-Valdés P, López-Fuenzalida A, Riquelme A, Arab JP, Cabrera D, Arrese M, Barrera F. Nonalcoholic fatty liver disease and sarcopenia: pathophysiological connections and therapeutic implications. Expert Rev Gastroenterol Hepatol 2020; 14:1141-1157. [PMID: 32811209 DOI: 10.1080/17474124.2020.1810563] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Nonalcoholic fatty liver disease (NAFLD) is currently one of the most common liver diseases worldwide. Recent data suggest that loss of skeletal muscle mass and function (i.e. sarcopenia) is highly prevalent and frequently overlooked in NAFLD patients. Experimental and clinical data suggest that the relationship between NAFLD and sarcopenia is pathophysiologically complex and bi-directional and there is a growing interest in unveiling how sarcopenia could influence NAFLD development and progression. AREAS COVERED PubMed/MEDLINE was searched for articles related to concomitant occurrence of NAFLD and sarcopenia between January 2013 and April 2020. Areas covered in this review include: (1) updated sarcopenia diagnosis strategy, (2) discussion of current data on pathophysiological connections between NAFLD and sarcopenia, and (3) analysis of current and future therapeutic implications of this knowledge. EXPERT OPINION Clinical studies describe a consistent association between NAFLD and sarcopenia, although a cause-effect relation remains to be determined. Active implementation of current diagnosis algorithms and optimized treatment can prevent sarcopenia related complications in subjects with NAFLD. Pathogenic pathways implicated in this relation are multiple and complex, a better understanding of them can provide novel biomarkers and targeted therapies that will hopefully have an important impact in NAFLD management.
Collapse
Affiliation(s)
- Tiziana Fernández-Mincone
- Laboratorio de Fisiología del Ejercicio, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Felipe Contreras-Briceño
- Laboratorio de Fisiología del Ejercicio, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Maximiliano Espinosa-Ramírez
- Laboratorio de Fisiología del Ejercicio, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Patricio García-Valdés
- Laboratorio de Fisiología del Ejercicio, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Antonio López-Fuenzalida
- Laboratorio de Fisiología del Ejercicio, Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Arnoldo Riquelme
- Departamento Ciencias de la Salud, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile.,Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Daniel Cabrera
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile.,Facultad de Ciencias Médicas, Universidad Bernardo O Higgins , Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile , Santiago, Chile
| | - Francisco Barrera
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile , Santiago, Chile
| |
Collapse
|
26
|
Kirwan R, McCullough D, Butler T, Perez de Heredia F, Davies IG, Stewart C. Sarcopenia during COVID-19 lockdown restrictions: long-term health effects of short-term muscle loss. GeroScience 2020; 42:1547-1578. [PMID: 33001410 PMCID: PMC7528158 DOI: 10.1007/s11357-020-00272-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic is an extraordinary global emergency that has led to the implementation of unprecedented measures in order to stem the spread of the infection. Internationally, governments are enforcing measures such as travel bans, quarantine, isolation, and social distancing leading to an extended period of time at home. This has resulted in reductions in physical activity and changes in dietary intakes that have the potential to accelerate sarcopenia, a deterioration of muscle mass and function (more likely in older populations), as well as increases in body fat. These changes in body composition are associated with a number of chronic, lifestyle diseases including cardiovascular disease (CVD), diabetes, osteoporosis, frailty, cognitive decline, and depression. Furthermore, CVD, diabetes, and elevated body fat are associated with greater risk of COVID-19 infection and more severe symptomology, underscoring the importance of avoiding the development of such morbidities. Here we review mechanisms of sarcopenia and their relation to the current data on the effects of COVID-19 confinement on physical activity, dietary habits, sleep, and stress as well as extended bed rest due to COVID-19 hospitalization. The potential of these factors to lead to an increased likelihood of muscle loss and chronic disease will be discussed. By offering a number of home-based strategies including resistance exercise, higher protein intakes and supplementation, we can potentially guide public health authorities to avoid a lifestyle disease and rehabilitation crisis post-COVID-19. Such strategies may also serve as useful preventative measures for reducing the likelihood of sarcopenia in general and in the event of future periods of isolation.
Collapse
Affiliation(s)
- Richard Kirwan
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
| | - Deaglan McCullough
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Tom Butler
- Department of Clinical Sciences and Nutrition, University of Chester, Chester, UK.
| | - Fatima Perez de Heredia
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Ian G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| | - Claire Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
27
|
Whinton AK, Donahoe K, Gao R, Thompson KMA, Aubry R, Saunders TJ, Johnston A, Chilibeck PD, Burr JF. Repeated Application of a Novel Creatine Cream Improves Muscular Peak and Average Power in Male Subjects. J Strength Cond Res 2020; 34:2482-2491. [PMID: 32865944 DOI: 10.1519/jsc.0000000000003730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Whinton, AK, Donahoe, K, Gao, R, Thompson, KMA, Aubry, R, Saunders, TJ, Johnston, A, Chilibeck, PD, and Burr, JF. Repeated application of a novel creatine cream improves muscular peak and average power in male subjects. J Strength Cond Res 34(9): 2482-2491, 2020-Using a multicenter, randomized controlled trial, (N = 123, age 23 ± 4 years) we sought to determine whether administration of a novel, topical creatine supplement could improve muscular performance after acute and repeated (7-day) exposure. To study the acute performance enhancing effects of the supplement, subjects completed 5 sets of 15 maximal concentric single-leg knee extensions with and without the application of a low- (low dose [LD]-3.5 ml) or high-dose (high dose [HD]-7 ml) topical creatine cream. After a wash-out period, subjects had one leg randomized to receive either the creatine or placebo cream, with further randomization into an oral creatine or placebo supplement group. Subjects completed 5 sets of 15 maximal concentric single leg knee extensions before and after the supplementation protocol. After acute application, no significant differences in peak power (LD: 252 ± 93 W, HD: 261 ± 100 W, p = 0.21), average power (LD: 172 ± 65 W, HD: 177 ± 69 W, p = 0.78), or fatigue index (LD: 13.4 ± 10.6%, HD: 14 ± 11.9%, p = 0.79) were observed between experimental and placebo creams (peak power: LD: 244 ± 76 W, HD: 267 ± 109 W; average power: LD: 168 ± 57 W, HD: 177 ± 67 W; fatigue index: LD: 12.4 ± 9.6%, HD: 12.8 ± 10.6%) or when controlling for sex. After the 7-day supplementation protocol, a significant increase in average power (creatine: 203 ± 61-220 ± 65 W, placebo: 224 ± 61-214 ± 61 W) and peak power (creatine: 264 ± 73-281 ± 80 W, placebo: 286 ± 79-271 ± 73 W) in the leg receiving creatine cream was observed in male subjects. No differences were observed in female subjects. The topical creatine cream did not enhance measures of muscle performance after acute application, but was able to improve peak and average power in male subjects after 7 consecutive days of application.
Collapse
Affiliation(s)
- Alanna K Whinton
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Katelynn Donahoe
- Applied Human Sciences, Faculty of Science, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada; and
| | - Ruirui Gao
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kyle M A Thompson
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Rachel Aubry
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Travis J Saunders
- Applied Human Sciences, Faculty of Science, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada; and
| | - Adam Johnston
- Applied Human Sciences, Faculty of Science, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada; and
| | - Philip D Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jamie F Burr
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Lanza E, Masetti C, Messana G, Muglia R, Pugliese N, Ceriani R, Lleo de Nalda A, Rimassa L, Torzilli G, Poretti D, D’Antuono F, Politi LS, Pedicini V, Aghemo A. Sarcopenia as a predictor of survival in patients undergoing bland transarterial embolization for unresectable hepatocellular carcinoma. PLoS One 2020; 15:e0232371. [PMID: 32555707 PMCID: PMC7299358 DOI: 10.1371/journal.pone.0232371] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
Sarcopenia has been associated with lower overall survival in patients with cirrhosis and hepatocellular carcinoma (HCC) undergoing surgical resection, TACE, TARE, or transplantation. This monocentric study evaluated the prognostic significance of sarcopenia in patients affected by HCC who received bland transarterial embolization (TAE) therapy, by analyzing its impact on survival and treatment-related complications. All consecutive patients who underwent the 1st TAE between March 1st 2011 and July 1st 2019 in our Institution were retrospectively studied. To evaluate sarcopenia, the skeletal muscle index (SMI) was calculated by normalizing the cross-sectional muscle area at the level of L3 on an abdominal CT scan prior to embolization (cm2) by patient height (m2). SMI cut-off values for sarcopenia were considered ≤ 39 cm2/m2 for women and ≤55 cm2/m2 for men. Data about age, gender, body mass index (BMI), underlying liver disease, liver function, MELD score, Child-Pugh score, multifocal disease, performance status, previous interventions, length of stay (LOS), complications after the procedure, readmission rate within 30 days, survival time from TAE and total number and type of TAE received following the first procedure were collected. From 2011 to 2019, 142 consecutive patients underwent 305 TAEs. Observation time ranged from 1.4 to 100.5 months (median 20.1 SD = 22). Sarcopenia at baseline was present in 121 (85%) patients. Overall 87 (61.2%) patients died during follow-up with survival rates at 1-, 2-, 3-, 4-, and 5-year of 71%, 41%, 22%, 16% and 11% respectively. After multivariate analysis sarcopenia (HR = 2.22, p = 0.046), previous ablation/resection (HR = 0.51, p = 0.005) and multifocal disease (HR = 1.84, p = 0.02) were associated with reduced survival. Sarcopenia did not influence the safety of TAE in terms of LOS (2 days vs 1.5 days, p = 0.2), early complications rate (8% vs 5%, p = 0.5) and readmission rate within 30 days (7% vs 5%, p = 0.74). Sarcopenia, estimated by the L3SMI method, is an emerging prognostic factor in patients with HCC undergoing bland TAE therapy as it is associated with increased mortality, without impairing the safety of the locoregional treatment. Measures to ameliorate the SMI, such as nutritional support and physical exercise, should be evaluated in clinical trials for HCC patients receiving liver embolization to determine their impact on overall survival.
Collapse
Affiliation(s)
- Ezio Lanza
- Division of Interventional Radiology, Department of Radiology, Humanitas Research Hospital IRCCS, Rozzano, Italy
- * E-mail:
| | - Chiara Masetti
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Gaia Messana
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Riccardo Muglia
- Division of Interventional Radiology, Department of Radiology, Humanitas Research Hospital IRCCS, Rozzano, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, Humanitas Research Hospital IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Nicola Pugliese
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, Humanitas Research Hospital IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Roberto Ceriani
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Ana Lleo de Nalda
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, Humanitas Research Hospital IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Guido Torzilli
- Division of Hepatobiliary & General Surgery, Department of Surgery, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Dario Poretti
- Division of Interventional Radiology, Department of Radiology, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Felice D’Antuono
- Division of Interventional Radiology, Department of Radiology, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Letterio Salvatore Politi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
- Division of Hepatobiliary & General Surgery, Department of Surgery, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
- Department of Radiology, Humanitas Clinical and Research Center IRCCS, Rozzano, Italy
| | - Vittorio Pedicini
- Division of Interventional Radiology, Department of Radiology, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Alessio Aghemo
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, Humanitas Research Hospital IRCCS, Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | |
Collapse
|