1
|
Khan AN, Jawarkar RD, Zaki MEA, Al Mutairi AA. Natural compounds for oxidative stress and neuroprotection in schizophrenia: composition, mechanisms, and therapeutic potential. Nutr Neurosci 2024; 27:1306-1320. [PMID: 38462971 DOI: 10.1080/1028415x.2024.2325233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
OBJECTIVE An imbalance between the generation of reactive oxygen species (ROS) and the body's antioxidant defense mechanisms is believed to be a critical factor in the development of schizophrenia (SCZ) like neurological illnesses. Understanding the roles of ROS in the development of SCZ and the potential activity of natural antioxidants against SCZ could lead to more effective therapeutic options for the prevention and treatment of the illness. METHODS SCZ is a mental disorder characterised by progressive impairments in working memory, attention, and executive functioning. In present investigation, we summarized the experimental findings for understanding the role of oxidative stress (OS) in the development of SCZ and the potential neuroprotective effects of natural antioxidants in the treatment of SCZ. RESULTS Current study supports the use of the mentioned antioxidant natural compounds as a potential therapeutic candidates for the treatment of OS mediated neurodegeneration in SCZ. DISCUSSION Elevated levels of harmful ROS and reduced antioxidant defense mechanisms are indicative of increased oxidative stress (OS), which is associated with SCZ. Previous research has shown that individuals with SCZ, including non-medicated, medicated, first-episode, and chronic patients, exhibit decreased levels of total antioxidants and GSH. Additionally, they have reduced antioxidant enzyme levels such as catalase (CAT), glutathione (GPx), and, superoxide dismutase (SOD) and lower serum levels of brain-derived neurotrophic factor (BDNF) in their brain tissue. The mentioned natural antioxidants may assist in reducing oxidative damage in individuals with SCZ and increasing BDNF expression in the brain, potentially improving cognitive function and learning ability.
Collapse
Affiliation(s)
- Anam N Khan
- Department of Pharamacognosy, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry, Dr. Rajendra Gode Institute of Pharmacy, Amravati, India
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Aamal A Al Mutairi
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Brooks AW, Sandri BJ, Nixon JP, Nurkiewicz TR, Barach P, Trembley JH, Butterick TA. Neuroinflammation and Brain Health Risks in Veterans Exposed to Burn Pit Toxins. Int J Mol Sci 2024; 25:9759. [PMID: 39337247 PMCID: PMC11432193 DOI: 10.3390/ijms25189759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Military burn pits, used for waste disposal in combat zones, involve the open-air burning of waste materials, including plastics, metals, chemicals, and medical waste. The pits release a complex mixture of occupational toxic substances, including particulate matter (PM), volatile organic compounds (VOCs), heavy metals, dioxins, and polycyclic aromatic hydrocarbons (PAHs). Air pollution significantly impacts brain health through mechanisms involving neuroinflammation. Pollutants penetrate the respiratory system, enter the bloodstream, and cross the blood-brain barrier (BBB), triggering inflammatory responses in the central nervous system (CNS). Chronic environmental exposures result in sustained inflammation, oxidative stress, and neuronal damage, contributing to neurodegenerative diseases and cognitive impairment. Veterans exposed to burn pit toxins are particularly at risk, reporting higher rates of respiratory issues, neurological conditions, cognitive impairments, and mental health disorders. Studies demonstrate that Veterans exposed to these toxins have higher rates of neuroinflammatory markers, accelerated cognitive decline, and increased risks of neurodegenerative diseases. This narrative review synthesizes the research linking airborne pollutants such as PM, VOCs, and heavy metals to neuroinflammatory processes and cognitive effects. There is a need for targeted interventions to mitigate the harmful and escalating effects of environmental air pollution exposures on the CNS, improving public health outcomes for vulnerable populations, especially for Veterans exposed to military burn pit toxins.
Collapse
Affiliation(s)
- Athena W Brooks
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | - Brian J Sandri
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
| | - Joshua P Nixon
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Timothy R Nurkiewicz
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University, Morgantown, WV 26506, USA
- Center for Inhalation Toxicology, West Virginia University, Morgantown, WV 26506, USA
| | - Paul Barach
- The Department of Safety and Quality Science in the College of Population Health, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Janeen H Trembley
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tammy A Butterick
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN 55417, USA
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Fujikawa R, Yamada J, Maeda S, Iinuma KM, Moriyama G, Jinno S. Inhibition of reactive oxygen species production accompanying alternatively activated microglia by risperidone in a mouse ketamine model of schizophrenia. J Neurochem 2024; 168:2690-2709. [PMID: 38770640 DOI: 10.1111/jnc.16133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/17/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Recent studies have highlighted the potential involvement of reactive oxygen species (ROS) and microglia, a major source of ROS, in the pathophysiology of schizophrenia. In our study, we explored how the second-generation antipsychotic risperidone (RIS) affects ROS regulation and microglial activation in the hippocampus using a mouse ketamine (KET) model of schizophrenia. KET administration resulted in schizophrenia-like behaviors in male C57BL/6J mice, such as impaired prepulse inhibition (PPI) of the acoustic startle response and hyper-locomotion. These behaviors were mitigated by RIS. We found that the gene expression level of an enzyme responsible for ROS production (Nox2), which is primarily associated with activated microglia, was lower in KET/RIS-treated mice than in KET-treated mice. Conversely, the levels of antioxidant enzymes (Ho-1 and Gclc) were higher in KET/RIS-treated mice. The microglial density in the hippocampus was increased in KET-treated mice, which was counteracted by RIS. Hierarchical cluster analysis revealed three morphological subtypes of microglia. In control mice, most microglia were resting-ramified (type I, 89.7%). KET administration shifted the microglial composition to moderately ramified (type II, 44.4%) and hyper-ramified (type III, 25.0%). In KET/RIS-treated mice, type II decreased to 32.0%, while type III increased to 34.0%. An in vitro ROS assay showed that KET increased ROS production in dissociated hippocampal microglia, and this effect was mitigated by RIS. Furthermore, we discovered that a NOX2 inhibitor could counteract KET-induced behavioral deficits. These findings suggest that pharmacological inhibition of ROS production by RIS may play a crucial role in ameliorating schizophrenia-related symptoms. Moreover, modulating microglial activation to regulate ROS production has emerged as a novel avenue for developing innovative treatments for schizophrenia.
Collapse
Affiliation(s)
- Risako Fujikawa
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Yamada
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shoichiro Maeda
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kyoko M Iinuma
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
4
|
Samardžija B, Petrović M, Zaharija B, Medija M, Meštrović A, Bradshaw NJ, Filošević Vujnović A, Andretić Waldowski R. Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS- hflDISC1) Showing Effects on Social Interaction Networks. Curr Issues Mol Biol 2024; 46:8526-8549. [PMID: 39194719 DOI: 10.3390/cimb46080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a scaffold protein implicated in major mental illnesses including schizophrenia, with a significant negative impact on social life. To investigate if DISC1 affects social interactions in Drosophila melanogaster, we created transgenic flies with second or third chromosome insertions of the human full-length DISC1 (hflDISC1) gene fused to a UAS promotor (UAS-hflDISC1). Initial characterization of the insertion lines showed unexpected endogenous expression of the DISC1 protein that led to various behavioral and neurochemical phenotypes. Social interaction network (SIN) analysis showed altered social dynamics and organizational structures. This was in agreement with the altered levels of the locomotor activity of individual flies monitored for 24 h. Together with a decreased ability to climb vertical surfaces, the observed phenotypes indicate altered motor functions that could be due to a change in the function of the motor neurons and/or central brain. The changes in social behavior and motor function suggest that the inserted hflDISC1 gene influences nervous system functioning that parallels symptoms of DISC1-related mental diseases in humans. Furthermore, neurochemical analyses of transgenic lines revealed increased levels of hydrogen peroxide and decreased levels of glutathione, indicating an impact of DISC1 on the dynamics of redox regulation, similar to that reported in transgenic mammals. Future studies are needed to address the localization of DISC1 expression and to address how the redox parameter changes correlate with the observed behavioral changes.
Collapse
Affiliation(s)
- Bobana Samardžija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Milan Petrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Beti Zaharija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Marta Medija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Meštrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Filošević Vujnović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Rozi Andretić Waldowski
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| |
Collapse
|
5
|
Hoisington AJ, Stearns-Yoder KA, Kovacs EJ, Postolache TT, Brenner LA. Airborne Exposure to Pollutants and Mental Health: A Review with Implications for United States Veterans. Curr Environ Health Rep 2024; 11:168-183. [PMID: 38457036 DOI: 10.1007/s40572-024-00437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Inhalation of airborne pollutants in the natural and built environment is ubiquitous; yet, exposures are different across a lifespan and unique to individuals. Here, we reviewed the connections between mental health outcomes from airborne pollutant exposures, the biological inflammatory mechanisms, and provide future directions for researchers and policy makers. The current state of knowledge is discussed on associations between mental health outcomes and Clean Air Act criteria pollutants, traffic-related air pollutants, pesticides, heavy metals, jet fuel, and burn pits. RECENT FINDINGS Although associations between airborne pollutants and negative physical health outcomes have been a topic of previous investigations, work highlighting associations between exposures and psychological health is only starting to emerge. Research on criteria pollutants and mental health outcomes has the most robust results to date, followed by traffic-related air pollutants, and then pesticides. In contrast, scarce mental health research has been conducted on exposure to heavy metals, jet fuel, and burn pits. Specific cohorts of individuals, such as United States military members and in-turn, Veterans, often have unique histories of exposures, including service-related exposures to aircraft (e.g. jet fuels) and burn pits. Research focused on Veterans and other individuals with an increased likelihood of exposure and higher vulnerability to negative mental health outcomes is needed. Future research will facilitate knowledge aimed at both prevention and intervention to improve physical and mental health among military personnel, Veterans, and other at-risk individuals.
Collapse
Affiliation(s)
- Andrew J Hoisington
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA.
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA.
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH, 45333, USA.
| | - Kelly A Stearns-Yoder
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Elizabeth J Kovacs
- Department of Surgery, Division of GI, Trauma and Endocrine Surgery, and Burn Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Veterans Affairs Research Service, RMR VAMC, Aurora, CO, 80045, USA
| | - Teodor T Postolache
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Department of Veterans Affairs, VISN 5 MIRECC, Baltimore, MD, 21201, USA
| | - Lisa A Brenner
- Veterans Affairs Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMR VAMC), Aurora, CO, 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, 80045, USA
- Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
- Departments of Psychiatry & Neurology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
6
|
Alharthy KM, Rashid S, Yusufoglu HS, Alqasoumi SI, Ganaie MA, Alam A. Neuroprotective potential of Afzelin: A novel approach for alleviating catalepsy and modulating Bcl-2 expression in Parkinson's disease therapy. Saudi Pharm J 2024; 32:101928. [PMID: 38261905 PMCID: PMC10797200 DOI: 10.1016/j.jsps.2023.101928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/17/2023] [Indexed: 01/25/2024] Open
Abstract
The lost dopaminergic neurons in the brain prevent mobility in Parkinson's disease (PD). It is impossible to stop the disease's progress by means of symptoms management. Research focuses on oxidative stress, mitochondrial dysfunction, and neuronal degeneration. Exploration of potential neuroprotective drugs against prosurvival B-cell lymphoma 2 (Bcl-2) protein is ongoing. An investigable cause behind PD, as well as preventive measures, could be discovered considering the association between such behavioural manifestations (cataleptic behaviours) and PD. The compound Afzelin, known to guard the nervous system, was chosen for this study. The study was done on rats divided into six different groups. First, there was a control group. The other group was treated with Reserpine (RES) (1 mg/kg). The third group received RES (1 mg/kg) and levodopa (30 mg/kg). The remaining three groups were given RES (1 mg/kg) in conjunction with Afzelin at the following doses: 5 mg/kg, 10 mg/kg, and 20 mg/kg. Cataleptic behavior and mobility in rats was assessed using the rotarod, open field, and modified forced-swim tests. thiobarbituric acid reactive substances (TBARS), nitric oxide (NO), biogenic amines, and Bcl-2 level in rat tissue homogenates were considered. According to the study's findings, the rats treated through co-administration of RES and Afzelin improved significantly in their cataleptic behaviours and locomotor activity. In addition, administering Afzelin itself caused Bcl-2 expression, which could have some neuroprotection properties. This study provides meaningful information on the effectiveness of Afzelin in handling catalepsy and other degenerative neurologic disorders. As a result, other studies need to be conducted to establish the reasons behind the reactions and determine the long-term effects of Afzelin on these conditions.
Collapse
Affiliation(s)
- Khalid M. Alharthy
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Hasan S. Yusufoglu
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah, Al-Qassim 51418, Saudi Arabia
| | - Saleh I. Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, 51418 Buraydah, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| |
Collapse
|
7
|
Matalon N, Vergaelen E, Shani S, Dar S, Mekori-Domachevsky E, Segal-Gavish H, Hochberg Y, Gothelf D, Swillen A, Taler M. The relationship between oxidative stress and psychotic disorders in 22q11.2 deletion syndrome. Brain Behav Immun 2023; 114:16-21. [PMID: 37541396 DOI: 10.1016/j.bbi.2023.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND 22q11.2 Deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans. This condition is associated with a wide range of symptoms including immune and neuropsychiatric disorders. Notably, psychotic disorders including schizophrenia have a prevalence of ∼ 30%. A growing body of evidence indicates that neuroinflammation and oxidative stress (OS) play a role in the pathophysiology of schizophrenia. In this study, we aim to assess the interaction between 22q11.2DS, OS and schizophrenia. METHODS Blood samples were collected from 125 participants (including individuals with 22q11.2DS [n = 73] and healthy controls [n = 52]) from two sites: Sheba Medical Center in Israel, and University Hospital Gasthuisberg in Belgium. Baseline OS levels were evaluated by measuring Myeloperoxidase (MPO) activity. A sub-sample of the Israeli sample (n = 50) was further analyzed to examine survival of Peripheral Blood Mononuclear Cells (PBMCs) following induction of OS using vitamin K3. RESULTS The levels of MPO were significantly higher in all individuals with 22q11.2DS, compared to healthy controls (0.346 ± 0.256 vs. 0.252 ± 0.238, p =.004). In addition, when comparing to healthy controls, the PBMCs of individuals with 22q11.2DS were less resilient to induced OS, specifically the group diagnosed with psychotic disorder (0.233 ± 0.206 for the 22q11.2DS individuals with psychotic disorders, 0.678 ± 1.162 for the 22q11.2DS individuals without psychotic disorders, and 1.428 ± 1.359 for the healthy controls, p =.003, η2 = 0.207). CONCLUSIONS Our results suggest that dysregulation of OS mechanisms may play a role in the pathophysiology of the 22q11.2DS phenotype. The 22q11.2DS individuals with psychotic disorders were more sensitive to induction of OS, but did not present significantly different levels of OS at baseline. These results may be due to the effect of antipsychotic treatment administered to this sup-group. By elucidating novel molecular pathways, early identification of biochemical risk markers for 22q11.2DS and psychotic disorders can be detected. This can ultimately pave the way to the design of early and more precise interventions of individuals with 22q11.2DS.
Collapse
Affiliation(s)
- Noam Matalon
- Behavioral Neurogenetics Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Pediatric Molecular Psychiatry Laboratory, Sheba Medical Center, Tel-Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elfi Vergaelen
- Center for Human Genetics, University Hospital Gasthuisberg, Leuven, Belgium
| | - Shachar Shani
- Behavioral Neurogenetics Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Pediatric Molecular Psychiatry Laboratory, Sheba Medical Center, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shira Dar
- Pediatric Molecular Psychiatry Laboratory, Sheba Medical Center, Tel-Aviv, Israel
| | - Ehud Mekori-Domachevsky
- Behavioral Neurogenetics Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Pediatric Molecular Psychiatry Laboratory, Sheba Medical Center, Tel-Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Segal-Gavish
- Behavioral Neurogenetics Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Pediatric Molecular Psychiatry Laboratory, Sheba Medical Center, Tel-Aviv, Israel
| | | | - Doron Gothelf
- Behavioral Neurogenetics Center, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel; Pediatric Molecular Psychiatry Laboratory, Sheba Medical Center, Tel-Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ann Swillen
- Center for Human Genetics, University Hospital Gasthuisberg, Leuven, Belgium; Department of Human Genetics, KU Leuven, Belgium
| | - Michal Taler
- Pediatric Molecular Psychiatry Laboratory, Sheba Medical Center, Tel-Aviv, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
8
|
Madireddy S, Madireddy S. Therapeutic Strategies to Ameliorate Neuronal Damage in Epilepsy by Regulating Oxidative Stress, Mitochondrial Dysfunction, and Neuroinflammation. Brain Sci 2023; 13:brainsci13050784. [PMID: 37239256 DOI: 10.3390/brainsci13050784] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Epilepsy is a central nervous system disorder involving spontaneous and recurring seizures that affects 50 million individuals globally. Because approximately one-third of patients with epilepsy do not respond to drug therapy, the development of new therapeutic strategies against epilepsy could be beneficial. Oxidative stress and mitochondrial dysfunction are frequently observed in epilepsy. Additionally, neuroinflammation is increasingly understood to contribute to the pathogenesis of epilepsy. Mitochondrial dysfunction is also recognized for its contributions to neuronal excitability and apoptosis, which can lead to neuronal loss in epilepsy. This review focuses on the roles of oxidative damage, mitochondrial dysfunction, NAPDH oxidase, the blood-brain barrier, excitotoxicity, and neuroinflammation in the development of epilepsy. We also review the therapies used to treat epilepsy and prevent seizures, including anti-seizure medications, anti-epileptic drugs, anti-inflammatory therapies, and antioxidant therapies. In addition, we review the use of neuromodulation and surgery in the treatment of epilepsy. Finally, we present the role of dietary and nutritional strategies in the management of epilepsy, including the ketogenic diet and the intake of vitamins, polyphenols, and flavonoids. By reviewing available interventions and research on the pathophysiology of epilepsy, this review points to areas of further development for therapies that can manage epilepsy.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
9
|
Nano-hesperetin attenuates ketamine-induced schizophrenia-like symptoms in mice: participation of antioxidant parameters. Psychopharmacology (Berl) 2023; 240:1063-1074. [PMID: 36879073 DOI: 10.1007/s00213-023-06344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
RATIONALE Antioxidant natural herb hesperetin (Hst) offers powerful medicinal properties. Despite having noticeable antioxidant properties, it has limited absorption, which is a major pharmacological obstacle. OBJECTIVES The goal of the current investigation was to determine if Hst and nano-Hst might protect mice against oxidative stress and schizophrenia (SCZ)-like behaviors brought on by ketamine (KET). METHODS Seven treatment groups (n=7) were created for the animals. For 10 days, they received distilled water or KET (10 mg/kg) intraperitoneally (i.p). From the 11th to the 40th day, they received daily oral administration of Hst and nano-Hst (10, 20 mg/kg) or vehicle. With the use of the forced swimming test (FST), open field test (OFT), and novel object recognition test (NORT), SCZ-like behaviors were evaluated. Malondialdehyde (MDA) and glutathione levels and antioxidant enzyme activities were assessed in the cerebral cortex. RESULTS Our findings displayed that behavioral disorders induced by KET would be improved by nano-Hst treated. MDA levels were much lower after treatment with nano-Hst, and brain antioxidant levels and activities were noticeably higher. The mice treated with nano-Hst had improved outcomes in the behavioral and biochemical tests when compared to the Hst group. CONCLUSIONS Our study's findings showed that nano-Hst had a stronger neuroprotective impact than Hst. In cerebral cortex tissues, nano-Hst treatment dramatically reduced KET-induced (SCZ)-like behavior and oxidative stress indicators. As a result, nano-Hst may have more therapeutic potential and may be effective in treating behavioral impairments and oxidative damage brought on by KET.
Collapse
|
10
|
Zuccarini M, Pruccoli L, Balducci M, Giuliani P, Caciagli F, Ciccarelli R, Di Iorio P. Influence of Guanine-Based Purines on the Oxidoreductive Reactions Involved in Normal or Altered Brain Functions. J Clin Med 2023; 12:jcm12031172. [PMID: 36769818 PMCID: PMC9917437 DOI: 10.3390/jcm12031172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.
Collapse
Affiliation(s)
- Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Letizia Pruccoli
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Martina Balducci
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, 47921 Rimini, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Renata Ciccarelli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100 Chieti, Italy
- Correspondence:
| |
Collapse
|
11
|
α-Lipoic Acid as Adjunctive Treatment for Schizophrenia: A Randomized Double-Blind Study. J Clin Psychopharmacol 2023; 43:39-45. [PMID: 36584248 DOI: 10.1097/jcp.0000000000001639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND/PURPOSE There is evidence for low endogenous antioxidant levels and oxidative imbalance in patients with schizophrenia. A previous open-label study with α-lipoic acid (ALA), a potent antioxidant, improved patients' negative and cognitive symptoms and markers of lipid peroxidation. Here we report the results of a randomized double-blind, placebo-controlled study to verify the response of patients with schizophrenia to adjunctive treatment with ALA (100 mg/d) in a 4-month follow-up. METHODS We conducted a 16-week, double-blind, placebo-controlled study of ALA at 100 mg/d dosages. We compared negative and positive symptoms, cognitive function, extrapyramidal symptoms, body mass index, and oxidative/inflammatory parameters between placebo and control groups. RESULTS We found no significant improvement in body mass index, cognition, psychopathology, antipsychotic adverse effects, or oxidative stress and inflammation in the experimental group compared with placebo. The whole group of patients improved in several measures, indicating a strong placebo effect in this population. A surprising finding was a significant decrease in red blood cells, white blood cells, and platelets in the group treated with ALA. CONCLUSIONS The decrease in red blood cells, white blood cells, and platelet counts requires further investigation and attention when prescribing ALA for patients with schizophrenia.
Collapse
|
12
|
Hurşitoğlu O, Kurutas EB, Strawbridge R, Uygur OF, Yildiz E, Reilly TJ. Serum NOX1 and Raftlin as New Potential Biomarkers of Interest in Schizophrenia: A Preliminary Study. Neuropsychiatr Dis Treat 2022; 18:2519-2527. [PMID: 36349345 PMCID: PMC9637347 DOI: 10.2147/ndt.s385631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/26/2022] [Indexed: 01/24/2023] Open
Abstract
Introduction There is increasing evidence that oxidative stress (OS) and neuroinflammation play a role in the neuroprogression of schizophrenia (SCZ). Promising novel candidates which have been proposed in the search for biomarkers of psychotic illness include NADPH oxidase 1,2 (NOX1,2) and raftlin. NOX1 from the NOX family is the main source of physiological reactive oxygen species (ROS) and raftlin, the main lipid raft protein, is associated with inflammatory processes. The aim of the present study was to evaluate serum NOX1 and raftlin levels in chronic stable patients with SCZ. Methods We measured serum NOX1 and raftlin levels from 45 clinically stable patients with SCZ and 45 healthy controls (HCs) matched for age, sex, and body-mass index. The Positive and Negative Syndrome Scale was applied to the patient group to evaluate the severity of psychotic symptoms. Results NOX1 and raftlin levels in the patients were statistically significantly higher than the HCs (NOX1 p<0.001, raftlin p<0.001). Both parameters showed very good diagnostic performance (NOX1 AUC = 0.931, raftlin AUC = 0.915). We obtained positive and significant correlations between serum levels of both biomarkers and symptom severity. Discussion This preliminary study indicating elevations in serum NOX1 and raftlin levels in patients with SCZ supports the importance of OS and inflammatory processes in the etiopathogenesis of the illness.
Collapse
Affiliation(s)
- Onur Hurşitoğlu
- Department of Psychiatry, Sular Academy Hospital, Kahramanmaras, Turkey
| | - Ergul Belge Kurutas
- Department of Biochemistry, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Rebecca Strawbridge
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Omer Faruk Uygur
- Department of Psychiatry, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Emrah Yildiz
- Private Clinic, Department of Psychiatry, Gaziantep, Turkey
| | - Thomas J Reilly
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
13
|
Liu H, Liu H, Jiang S, Su L, Lu Y, Chen Z, Li X, Li X, Wang X, Xiu M, Zhang X. Sex-Specific Association between Antioxidant Defense System and Therapeutic Response to Risperidone in Schizophrenia: A Prospective Longitudinal Study. Curr Neuropharmacol 2022; 20:1793-1803. [PMID: 34766896 PMCID: PMC9881066 DOI: 10.2174/1570159x19666211111123918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND There are various differences in response to different antipsychotics and antioxidant defense systems (ADS) by sex. Previous studies have shown that several ADS enzymes are closely related to the treatment response of patients with antipsychotics-naïve first-episode (ANFE) schizophrenia. OBJECTIVE Therefore, the main goal of this study was to assess the sex difference in the relationship between changes in ADS enzyme activities and risperidone response. METHODS The plasma activities of glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and total antioxidant status (TAS) were measured in 218 patients and 125 healthy controls. Patients were treated with risperidone for 3 months, and we measured PANSS for psychopathological symptoms and ADS biomarkers at baseline and at the end of 3 months of treatment. We compared sex-specific group differences between 50 non-responders and 168 responders at baseline and at the end of the three months of treatment. RESULTS We found that female patients responded better to risperidone treatment than male patients. At baseline and 3-month follow-up, there were no significant sex differences in TAS levels and three ADS enzyme activities. Interestingly, only in female patients, after 12 weeks of risperidone treatment, the GPx activity of responders was higher than that of non-responders. CONCLUSION These results indicate that after treatment with risperidone, changes in GPx activity were associated with treatment response, suggesting that changes in GPx may be a predictor of response to risperidone treatment in female patients with ANFE schizophrenia.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Hua Liu
- Qingdao Mental Health Center, Qingdao University, Qingdao, China;
| | - Shuling Jiang
- Department of Neurology, Linyi Central Hospital, Shandong, China;
| | - Lei Su
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Yi Lu
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Zhenli Chen
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Xiaojing Li
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Xirong Li
- Department of Psychiatry, Shandong Mental Health Center, Jinan, China;
| | - Xuemei Wang
- Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; ,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; E-mail: ; Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; E-mail: ; Linyin Road, Qixing District, Suzhou, Jiangsu, 215006, China; E-mail:
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China; ,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; E-mail: ; Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; E-mail: ; Linyin Road, Qixing District, Suzhou, Jiangsu, 215006, China; E-mail:
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China,Address correspondence to these authors at the CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; E-mail: ; Department of Psychiatry, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; E-mail: ; Linyin Road, Qixing District, Suzhou, Jiangsu, 215006, China; E-mail:
| |
Collapse
|
14
|
Kramar B, Pirc Marolt T, Monsalve M, Šuput D, Milisav I. Antipsychotic Drug Aripiprazole Protects Liver Cells from Oxidative Stress. Int J Mol Sci 2022; 23:ijms23158292. [PMID: 35955425 PMCID: PMC9368927 DOI: 10.3390/ijms23158292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Antipsychotics used to treat schizophrenia can cause drug-induced liver injury (DILI), according to the Roussel Uclaf Causality Assessment Method. The role of oxidative stress in triggering injury in these DILI cases is unknown. We repeatedly administrated two second-generation antipsychotics, aripiprazole and olanzapine, at laboratory alert levels to study underlying mechanisms in stress prevention upon acute oxidative stress. The drugs were administered continuously for up to 8 weeks. For this, hepatoma Fao cells, which are suitable for metabolic studies, were used, as the primary hepatocytes survive in the culture only for about 1 week. Four stress responses—the oxidative stress response, the DNA damage response and the unfolded protein responses in the endoplasmic reticulum and mitochondria—were examined in H2O2-treated cells by antioxidant enzyme activity measurements, gene expression and protein quantification. Oxidant conditions increased the activity of antioxidant enzymes and upregulated genes and proteins associated with oxidative stress response in aripiprazole-treated cells. While the genes associated with DNA damage response, Gadd45 and p21, were upregulated in both aripiprazole- and olanzapine-treated cells, only aripiprazole treatment was associated with upregulation in response to even more H2O2, which also coincided with better survival. Endoplasmic reticulum stress-induced Chop was also upregulated; however, neither endoplasmic reticulum nor mitochondrial unfolded protein response was activated. We conclude that only aripiprazole, but not olanzapine, protects liver cells against oxidative stress. This finding could be relevant for schizophrenia patients with high-oxidative-stress-risk lifestyles and needs to be validated in vivo.
Collapse
Affiliation(s)
- Barbara Kramar
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
| | - Tinkara Pirc Marolt
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier, 4, 28029 Madrid, Spain;
| | - Dušan Šuput
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
| | - Irina Milisav
- University of Ljubljana, Faculty of Medicine, Institute of Pathophysiology, Zaloska 4, SI-1000 Ljubljana, Slovenia; (B.K.); (T.P.M.); (D.Š.)
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
15
|
He Y, Guo Z, Wang X, Sun K, Lin X, Wang X, Li F, Guo Y, Feng T, Zhang J, Li C, Tian W, Liu X, Wu S. Effects of Audiovisual Interactions on Working Memory Task Performance—Interference or Facilitation. Brain Sci 2022; 12:brainsci12070886. [PMID: 35884692 PMCID: PMC9313432 DOI: 10.3390/brainsci12070886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/26/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The combined n-back + Go/NoGo paradigm was used to investigate whether audiovisual interactions interfere with or facilitate WM. (2) Methods: College students were randomly assigned to perform the working memory task based on either a single (visual or auditory) or dual (audiovisual) stimulus. Reaction times, accuracy, and WM performance were compared across the two groups to investigate effects of audiovisual interactions. (3) Results: With low cognitive load (2-back), auditory stimuli had no effect on visual working memory, whereas visual stimuli had a small effect on auditory working memory. With high cognitive load (3-back), auditory stimuli interfered (large effect size) with visual WM, and visual stimuli interfered (medium effect size) with auditory WM. (4) Conclusions: Audiovisual effects on WM follow the resource competition theory, and the cognitive load of a visual stimulus is dominated by competition; vision always interferes with audition, and audition conditionally interferes with vision. With increased visual cognitive load, competitive effects of audiovisual interactions were more obvious than those with auditory stimuli. Compared with visual stimuli, audiovisual stimuli showed significant interference only when visual cognitive load was high. With low visual cognitive load, the two stimulus components neither facilitated nor interfered with the other in accordance with a speed–accuracy trade-off.
Collapse
Affiliation(s)
- Yang He
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Zhihua Guo
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Xinlu Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Kewei Sun
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Xinxin Lin
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Xiuchao Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Fengzhan Li
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yaning Guo
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Tingwei Feng
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Junpeng Zhang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Congchong Li
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Wenqing Tian
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang 712046, China
| | - Xufeng Liu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Shengjun Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
16
|
Liang JQ, Chen X, Cheng Y. Paeoniflorin Rescued MK-801-Induced Schizophrenia-Like Behaviors in Mice via Oxidative Stress Pathway. Front Nutr 2022; 9:870032. [PMID: 35571896 PMCID: PMC9094402 DOI: 10.3389/fnut.2022.870032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SCZ) affects approximately 1% population worldwide, and the first-line antipsychotics have partial reactivity or non-reactivity with side effects. Therefore, there is an urgent need to find more effective drugs. Paeoniflorin (PF) is the main effective component of traditional Chinese medicine from white peony, red peony and peony bark, which acts as a neuroprotective agent. The purpose of this study was to investigate whether PF can rescue MK-801 induced schizophrenia-like behavior in mice. Our results demonstrated that intragastric administration of PF ameliorated MK-801 induced schizophrenia–like behaviors in mice as demonstrated by prepulse inhibition of acoustic startle response, fear conditioning test for memory and open field test for activity. In contrast, the first-line antipsychotics-olanzapine reversed the prepulse inhibition deficits and hyperactivities, but not memory deficits, in the model mice. Further analysis showed that PF reduced oxidative stress in the MK-801-treated mice, as evidenced by the increased superoxide dismutase levels and decreased malondialdehyde levels in the blood of the model mice. In addition, PF treatment inhibited the expression of the apoptotic protein Bax and restored the expression of tyrosine hydroxylase in the brains of the model mice. in vitro data indicated that PF protected against oxidative stress induced neurotoxicity in the primary cultured hippocampal neurons. In conclusion, our results were the first to provide evidence that PF rescued schizophrenia-like behaviors (both positive symptoms and cognitive impairments) in rodents through oxidative stress pathway, and therefore provide a novel strategy for treatment of SCZ. However, more pre-clinical and clinical research are needed to translate the present findings into clinics for a treatment of schizophrenia.
Collapse
Affiliation(s)
- Jia-Quan Liang
- The Third People's Hospital of Foshan, Foshan, China.,Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Xi Chen
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, School of Pharmacy, Minzu University of China, Beijing, China
| |
Collapse
|
17
|
Madireddy S, Madireddy S. Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress–Induced Damage in Patients with Bipolar Disorder. Int J Mol Sci 2022; 23:ijms23031844. [PMID: 35163764 PMCID: PMC8836876 DOI: 10.3390/ijms23031844] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/26/2021] [Accepted: 12/30/2021] [Indexed: 01/10/2023] Open
Abstract
Bipolar disorder (BD) is characterized by mood changes, including recurrent manic, hypomanic, and depressive episodes, which may involve mixed symptoms. Despite the progress in neurobiological research, the pathophysiology of BD has not been extensively described to date. Progress in the understanding of the neurobiology driving BD could help facilitate the discovery of therapeutic targets and biomarkers for its early detection. Oxidative stress (OS), which damages biomolecules and causes mitochondrial and dopamine system dysfunctions, is a persistent finding in patients with BD. Inflammation and immune dysfunction might also play a role in BD pathophysiology. Specific nutrient supplements (nutraceuticals) may target neurobiological pathways suggested to be perturbed in BD, such as inflammation, mitochondrial dysfunction, and OS. Consequently, nutraceuticals may be used in the adjunctive treatment of BD. This paper summarizes the possible roles of OS, mitochondrial dysfunction, and immune system dysregulation in the onset of BD. It then discusses OS-mitigating strategies that may serve as therapeutic interventions for BD. It also analyzes the relationship between diet and BD as well as the use of nutritional interventions in the treatment of BD. In addition, it addresses the use of lithium therapy; novel antipsychotic agents, including clozapine, olanzapine, risperidone, cariprazine, and quetiapine; and anti-inflammatory agents to treat BD. Furthermore, it reviews the efficacy of the most used therapies for BD, such as cognitive–behavioral therapy, bright light therapy, imagery-focused cognitive therapy, and electroconvulsive therapy. A better understanding of the roles of OS, mitochondrial dysfunction, and inflammation in the pathogenesis of bipolar disorder, along with a stronger elucidation of the therapeutic functions of antioxidants, antipsychotics, anti-inflammatory agents, lithium therapy, and light therapies, may lead to improved strategies for the treatment and prevention of bipolar disorder.
Collapse
Affiliation(s)
- Sahithi Madireddy
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence:
| | | |
Collapse
|
18
|
Abstract
OBJECTIVE Acetylcholinesterase inhibitors are the focus of interest in the management of schizophrenia. We aimed to investigate the effects of acute galangin administration, a flavonoid compound with acetylcholinesterase inhibiting activity, on schizophrenia-associated cognitive deficits in rats and schizophrenia models in mice. METHODS Apomorphine-induced prepulse inhibition (PPI) disruption for cognitive functions, nicotinic, muscarinic, and serotonergic mechanism involvement, and brain acetylcholine levels were investigated in Wistar rats. Apomorphine-induced climbing, MK-801-induced hyperlocomotion, and catalepsy tests were used as schizophrenia models in Swiss albino mice. The effects of galangin were compared with acetylcholinesterase inhibitor donepezil, and typical and atypical antipsychotics haloperidol and olanzapine, respectively. RESULTS Galangin (50,100 mg/kg) enhanced apomorphine-induced PPI disruption similar to donepezil, haloperidol, and olanzapine (p < 0.05). This effect was not altered in the combination of galangin with the nicotinic receptor antagonist mecamylamine (1 mg/kg), the muscarinic receptor antagonist scopolamine (0.05 mg/kg), or the serotonin-1A receptor antagonist WAY-100635 (1 mg/kg) (p > 0.05). Galangin (50,100 mg/kg) alone increased brain acetylcholine concentrations (p < 0.05), but not in apomorphine-injected rats (p > 0.05). Galangin (50 mg/kg) decreased apomorphine-induced climbing and MK-801-induced hyperlocomotion similar to haloperidol and olanzapine (p < 0.05), but did not induce catalepsy, unlike them. CONCLUSION We suggest that galangin may help enhance schizophrenia-associated cognitive deficits, and nicotinic, muscarinic cholinergic, and serotonin-1A receptors are not involved in this effect. Galangin also exerted an antipsychotic-like effect without inducing catalepsy and may be considered as an advantageous antipsychotic agent.
Collapse
|
19
|
Yang M, Li J, Yang H, Yan L, Liu D, Zhu L, Zhang X. Cognitive Impairment and Psychopathology Are Related to Plasma Oxidative Stress in Long Term Hospitalized Patients With Chronic Schizophrenia. Front Psychiatry 2022; 13:896694. [PMID: 35757215 PMCID: PMC9226302 DOI: 10.3389/fpsyt.2022.896694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The present study aimed to examine whether plasma oxidative stress is associated with cognitive impairment in long term hospitalized patients with chronic schizophrenia. METHOD Ninety-six chronic schizophrenia patients and 94 healthy unaffected subjects were enrolled. Plasma markers of oxidative stress, including malondialdehyde (MDA), manganese superoxide dismutase (MnSOD), catalase (CAT), and glutathione peroxidase (GSH-Px), were measured. Psychiatric symptoms and cognitive function were assessed with the Positive and Negative Syndrome Scale (PANSS) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), respectively. RESULTS Plasma MDA levels and MnSOD and GSH-Px activities were significantly lower in schizophrenia patients than in healthy controls (P < 0.001), while plasma CAT activity was higher than in healthy controls (P < 0.005). Cognitive scores on the RBANS and all of its five subscales (all P < 0.001) were significantly lower in schizophrenia patients than in healthy unaffected subjects. CAT and GSH-Px activities were positively correlated with the cognitive function scores corresponding to Visuospatial/Constructional abilities in the patient group (r = 0.298, 0.213, respectively, P < 0.05). Also, the multiple regression analysis revealed that CAT and GSH-Px activities were independent and separate contributors to the Visuospatial/Constructional index of the RBANS. Meanwhile, CAT activity was negatively correlated with general pathological symptoms (r = -0.307, Bonferroni corrected P = 0.008) and the total score of the PANSS domains (r = -0.299, Bonferroni corrected P = 0.012). CONCLUSION Our results that the reduced of MDA level and the increased CAT activity in plasma in male patients with chronic schizophrenia suggest that redox imbalance may be associated with the pathophysiology of schizophrenia, and it can induce impaired cognition and psychiatric symptoms.
Collapse
Affiliation(s)
- Man Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Jin Li
- Department of Psychiatry, Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Haidong Yang
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Linya Yan
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Dongliang Liu
- Department of Psychiatry, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Lin Zhu
- Department of Clinical Laboratory, The Fourth People's Hospital of Lianyungang, The Affiliated KangDa College of Nanjing Medical University, Lianyungang, China
| | - Xiaobin Zhang
- Department of Psychiatry, Institute of Mental Health, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| |
Collapse
|
20
|
Susai SR, Mongan D, Healy C, Cannon M, Nelson B, Markulev C, Schäfer MR, Berger M, Mossaheb N, Schlögelhofer M, Smesny S, Hickie IB, Berger GE, Chen EYH, de Haan L, Nieman DH, Nordentoft M, Riecher-Rössler A, Verma S, Thompson A, Yung AR, McGorry PD, Föcking M, Cotter D, Amminger GP. The association of plasma inflammatory markers with omega-3 fatty acids and their mediating role in psychotic symptoms and functioning: An analysis of the NEURAPRO clinical trial. Brain Behav Immun 2022; 99:147-156. [PMID: 34624483 DOI: 10.1016/j.bbi.2021.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/17/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
There is increasing evidence that dysregulation of polyunsaturated fatty acids (FAs) mediated membrane function plays a role in the pathophysiology of schizophrenia. Even though preclinical findings have supported the anti-inflammatory properties of omega-3 FAs on brain health, their biological roles as anti-inflammatory agents and their therapeutic role on clinical symptoms of psychosis risk are not well understood. In the current study, we investigated the relationship of erythrocyte omega-3 FAs with plasma immune markers in a clinical high risk for psychosis (CHR) sample. In addition, a mediation analysis was performed to examine whether previously reported associations between omega-3 FAs and clinical outcomes were mediated via plasma immune markers. Clinical outcomes for CHR participants in the NEURAPRO clinical trial were measured using the Brief Psychiatric Rating Scale (BPRS), Schedule for the Scale of Assessment of Negative Symptoms (SANS) and Social and Occupational Functioning Assessment Scale (SOFAS) scales. The erythrocyte omega-3 index [eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA)] and plasma concentrations of inflammatory markers were quantified at baseline (n = 268) and 6 month follow-up (n = 146) by gas chromatography and multiplex immunoassay, respectively. In linear regression models, the baseline plasma concentrations of Interleukin (IL)-15, Intercellular adhesion molecule (ICAM)-1 and Vascular cell adhesion molecule (VCAM)-1 were negatively associated with baseline omega-3 index. In addition, 6-month change in IL-12p40 and TNF-α showed a negative association with change in omega-3 index. In longitudinal analyses, the baseline and 6 month change in omega-3 index was negatively associated with VCAM-1 and TNF-α respectively at follow-up. Mediation analyses provided little evidence for mediating effects of plasma immune markers on the relationship between omega-3 FAs and clinical outcomes (psychotic symptoms and functioning) in CHR participants. Our results indicate a predominantly anti-inflammatory relationship of omega-3 FAs on plasma inflammatory status in CHR individuals, but this did not appear to convey clinical benefits at 6 month and 12 month follow-up. Both immune and non-immune biological effects of omega-3 FAs would be resourceful in understanding the clinical benefits of omega-3 FAs in CHR papulation.
Collapse
Affiliation(s)
- Subash Raj Susai
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - David Mongan
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Colm Healy
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Mary Cannon
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Barnaby Nelson
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Connie Markulev
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Miriam R Schäfer
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Maximus Berger
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Nilufar Mossaheb
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Monika Schlögelhofer
- BioPsyC-Biopsychosocial Corporation - Non-Profit Association for Research Funding, Austria; Department of Child and Adolescent Psychiatry, Medical University Vienna, Austria
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Gregor E Berger
- Child and Adolescent Psychiatric Service of the Canton of Zurich, Zürich, Switzerland
| | - Eric Y H Chen
- Department of Psychiatry, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lieuwe de Haan
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | - Dorien H Nieman
- Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | - Merete Nordentoft
- Mental Health Center Copenhagen, Department of Clinical Medicine, Copenhagen University Hospital, Denmark
| | | | - Swapna Verma
- Institute of Mental Health, Singapore, Singapore
| | - Andrew Thompson
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Alison Ruth Yung
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia; Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia; School of Health Sciences, University of Manchester, UK
| | - Patrick D McGorry
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia
| | - Melanie Föcking
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - David Cotter
- Department of Psychiatry, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
| | - G Paul Amminger
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Orygen, 35 Poplar Rd, Parkville 3052, Australia; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Cecerska-Heryć E, Polikowska A, Serwin N, Roszak M, Grygorcewicz B, Heryć R, Michalczyk A, Dołęgowska B. Importance of oxidative stress in the pathogenesis, diagnosis, and monitoring of patients with neuropsychiatric disorders, a review. Neurochem Int 2021; 153:105269. [PMID: 34971747 DOI: 10.1016/j.neuint.2021.105269] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 12/31/2022]
Abstract
Oxidative stress is defined as the persistent imbalance between the activity of toxic reactive forms of both oxygen and nitrogen and the antioxidant defense. In low concentrations, they are essential for the proper functioning of the body. Still, their excessive amount contributes to the damage of the biomolecules, consequently leading to various pathologies of the organism. Due to the lipid-rich brain structure, enormous oxygen consumption, and the lack of a sufficient antioxidant barrier make it highly susceptible to oxidative imbalance. Hence, oxidative stress has been linked to various psychiatric disorders. These diseases include all behavioral, emotional, and cognitive abnormalities associated with a significant impediment to social life. Each of the diseases in question: Alzheimer's disease, schizophrenia, depression, and bipolar disorder, is characterized by excessive oxidative stress. Considerable damages to DNA, RNA, proteins, lipids, and mitochondrial dysfunction, are observed. All conditions show increased lipid peroxidation, which appears to be typical of psychiatric disorders because the brain contains large amounts of these types of molecules. In addition, numerous abnormalities in the antioxidant defense are noted, but the results of studies on the activity of antioxidant enzymes differ significantly. The most promising biomarkers seem to be GSH in Alzheimer's disease as an early-stage marker of the disease and thioredoxin in schizophrenia as a marker for therapy monitoring. Data from the literature are consistent with the decrease in antioxidants such as vitamin C, E, uric acid, albumin, etc. Despite these numerous inconsistencies, it seems that oxidative stress is present in the course of psychiatric diseases. Still, it cannot be conclusively determined whether it is the direct cause of development, a consequence of other abnormalities at the biochemical or molecular level, or the result of the disease itself.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland.
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Marta Roszak
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Rafał Heryć
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460, Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111, Szczecin, Poland
| |
Collapse
|
22
|
Bernstein HG, Keilhoff G, Laube G, Dobrowolny H, Steiner J. Polyamines and polyamine-metabolizing enzymes in schizophrenia: Current knowledge and concepts of therapy. World J Psychiatry 2021; 11:1177-1190. [PMID: 35070769 PMCID: PMC8717027 DOI: 10.5498/wjp.v11.i12.1177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/30/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
Polyamines play preeminent roles in a variety of cellular functions in the central nervous system and other organs. A large body of evidence suggests that the polyamine pathway is prominently involved in the etiology and pathology of schizophrenia. Alterations in the expression and activity of polyamine metabolizing enzymes, as well as changes in the levels of the individual polyamines, their precursors and derivatives, have been measured in schizophrenia and animal models of the disease. Additionally, neuroleptic treatment has been shown to influence polyamine concentrations in brain and blood of individuals with schizophrenia. Thus, the polyamine system may appear to be a promising target for neuropharmacological treatment of schizophrenia. However, for a number of practical reasons there is currently only limited hope for a polyamine-based schizophrenia therapy.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gerburg Keilhoff
- Institute of Biochemistry and Cell Biology, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Gregor Laube
- Department of Anatomy, Charite, Berlin D-10117, Germany
| | - Henrik Dobrowolny
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| | - Johann Steiner
- Department of Psychiatry, University of Magdeburg, Magdeburg D-39116, Saxony-Anhalt, Germany
| |
Collapse
|
23
|
Akosman MS, Türkmen R, Demirel HH. Investigation of the protective effect of resveratrol in an MK-801-induced mouse model of schizophrenia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65872-65884. [PMID: 34322799 DOI: 10.1007/s11356-021-15664-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/22/2021] [Indexed: 05/20/2023]
Abstract
Increasing evidence supports the view that oxidative stress and brain demyelination play an important role in the pathogenesis of schizophrenia. Resveratrol is a powerful antioxidant with neuroprotective effects. This study aimed to assess the effect of resveratrol on schizophrenia-like behaviors and possible brain demyelination induced by MK-801, an N-methyl-D-aspartate glutamate receptor antagonist, and the underlying neuroprotective mechanism. Resveratrol (40 mg/kg/day/, intraperitoneal) was administered to mice for 14 days. MK-801 (1 mg/kg/day, intraperitoneal) was injected into the mice 4 h after the resveratrol administration for 14 days. The open-field and elevated-plus maze tests were performed to detect behavior changes on the 15th day. Following the behavioral tests, the expression of the myelin basic protein (MBP) was measured with the real-time PCR (RT-PCR) method, while total oxidant capacity (TOS) and total antioxidant capacity (TAS), which are the biomarkers of oxidative damage, were measured with the ELISA method. Hematoxylin-eosin staining was also used to identify stereological and pathological changes in the brain. According to the results obtained, this study showed for the first time that resveratrol prevented glial cell infiltration induced in the brain by MK-801 and shrinkage of nerve cell nuclei in the hippocampus and corpus callosum. However, the resveratrol administrations did not correct behavioral disorders and demyelination of schizophrenia. Although resveratrol partially prevented oxidative damage in the brain in the mice that were injected with MK-801, it was determined that this effect was not statistically significant. These results showed that resveratrol administration partially protects tissues against MK-801-induced neurodegeneration, and resveratrol may be used in combination with different antioxidants or at different doses in future studies.
Collapse
Affiliation(s)
- Murat Sırrı Akosman
- Department of Anatomy, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey
| | - Ruhi Türkmen
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyon, Turkey.
| | | |
Collapse
|
24
|
Moghaddam AH, Maboudi K, Bavaghar B, Sangdehi SRM, Zare M. Neuroprotective effects of curcumin-loaded nanophytosome on ketamine-induced schizophrenia-like behaviors and oxidative damage in male mice. Neurosci Lett 2021; 765:136249. [PMID: 34536510 DOI: 10.1016/j.neulet.2021.136249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/19/2021] [Accepted: 09/13/2021] [Indexed: 01/01/2023]
Abstract
Curcumin as an antioxidant natural herb has shown numerous pharmacological effects. However, the poor bioavailability of curcumin is a significant pharmacological barrier for its antioxidant activities. The present study was conducted to develop curcumin-loaded nanophytosome (CNP) and explore their therapeutic potential in a ketamine (KET)-induced schizophrenia (SCZ) model. The mice in our experiment were treated orally with curcumin and CNP (20 mg/kg) for 30 consecutive days. In addition, the animals received intraperitoneal injection of KET (30 mg/kg/day) from the 16th to the 30th day. SCZ-like behaviors were evaluated employing forced swimming test (FST), open field test (OFT), and novel object recognition test (NORT), and oxidative stress markers in the brain were estimated. Our results revealed that CNP has a greater neuroprotective effect compared to free curcumin. CNP pretreatment significantly ameliorated KET-induced brain injury evidenced by a marked reduction in the depressive and anxiety-like behaviors, memory deficits, and oxidative stress markers in cortical and subcortical tissues. Therefore, CNP, as a suitable drug delivery system, may improve curcumin bioavailability and confer stronger neuroprotective effects against KET-induced behavioral deficits and oxidative damages.
Collapse
Affiliation(s)
| | - Khadijeh Maboudi
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Bita Bavaghar
- Department of Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | | | - Mahboobeh Zare
- Faculty of Herbs, Amol University of Special Modern Technologies, Amol, Iran
| |
Collapse
|
25
|
Onaolapo OJ, Onaolapo AY. Nutrition, nutritional deficiencies, and schizophrenia: An association worthy of constant reassessment. World J Clin Cases 2021; 9:8295-8311. [PMID: 34754840 PMCID: PMC8554424 DOI: 10.12998/wjcc.v9.i28.8295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a mental health disorder that occurs worldwide, cutting across cultures, socioeconomic groups, and geographical barriers. Understanding the details of the neurochemical basis of schizophrenia, factors that contribute to it and possible measures for intervention are areas of ongoing research. However, what has become more evident is the fact that in targeting the neurochemical imbalances that may underlie schizophrenia, the type of response seen with currently available phamacotherapeutic agents does not provide all the answers that are needed. Therefore, the possible contribution of non-pharmacological approaches to schizophrenia management is worthy of consideration. In recent times, research is beginning to show nutrition may play a possibly significant role in schizophrenia, affecting its development, progression and management; however, while attempts had been made to examine this possible relationship from different angles, articles addressing it from a holistic point of view are not common. In this review, we examine existing scientific literature dealing with the possible relationship between nutrition and schizophrenia, with a view to elucidating the impact of diet, nutritional deficiencies and excesses on the aetiology, progression, management and outcome of schizophrenia. Secondly, the effect of nutritional supplements in prevention, as sole therapy, or adjuncts in schizophrenia management are examined.
Collapse
Affiliation(s)
- Olakunle James Onaolapo
- Behavioural Neuroscience/Neuropharmacology Unit, Department of Pharmacology, Ladoke Akintola University of Technology, Osun State 234, Nigeria
| | | |
Collapse
|
26
|
Ľupták M, Michaličková D, Fišar Z, Kitzlerová E, Hroudová J. Novel approaches in schizophrenia-from risk factors and hypotheses to novel drug targets. World J Psychiatry 2021; 11:277-296. [PMID: 34327122 PMCID: PMC8311514 DOI: 10.5498/wjp.v11.i7.277] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder characterized by emotional, behavioral and cognitive disturbances, and the treatment of schizophrenia is often complicated by noncompliance and pharmacoresistance. The search for the pathophysiological mechanisms underlying schizophrenia has resulted in the proposal of several hypotheses to explain the impacts of environmental, genetic, neurodevelopmental, immune and inflammatory factors on disease onset and progression. This review discusses the newest insights into the pathophysiology of and risk factors for schizophrenia and notes novel approaches in antipsychotic treatment and potential diagnostic and theranostic biomarkers. The current hypotheses focusing on neuromediators (dopamine, glutamate, and serotonin), neuroinflammation, the cannabinoid hypothesis, the gut-brain axis model, and oxidative stress are summarized. Key genetic features, including small nucleotide polymorphisms, copy number variations, microdeletions, mutations and epigenetic changes, are highlighted. Current pharmacotherapy of schizophrenia relies mostly on dopaminergic and serotonergic antagonists/partial agonists, but new findings in the pathophysiology of schizophrenia have allowed the expansion of novel approaches in pharmacotherapy and the establishment of more reliable biomarkers. Substances with promising results in preclinical and clinical studies include lumateperone, pimavanserin, xanomeline, roluperidone, agonists of trace amine-associated receptor 1, inhibitors of glycine transporters, AMPA allosteric modulators, mGLUR2-3 agonists, D-amino acid oxidase inhibitors and cannabidiol. The use of anti-inflammatory agents as an add-on therapy is mentioned.
Collapse
Affiliation(s)
- Matej Ľupták
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12800, Czech Republic
| | - Danica Michaličková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12800, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12000, Czech Republic
| | - Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12000, Czech Republic
| | - Jana Hroudová
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12800, Czech Republic
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague 12000, Czech Republic
| |
Collapse
|
27
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
28
|
Madireddy S, Madireddy S. Most Effective Combination of Nutraceuticals for Improved Memory and Cognitive Performance in the House Cricket, Acheta domesticus. Nutrients 2021; 13:nu13020362. [PMID: 33504066 PMCID: PMC7911739 DOI: 10.3390/nu13020362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/22/2022] Open
Abstract
Background: Dietary intake of multivitamins, zinc, polyphenols, omega fatty acids, and probiotics have all shown benefits in learning, spatial memory, and cognitive function. It is important to determine the most effective combination of antioxidants and/or probiotics because regular ingestion of all nutraceuticals may not be practical. This study examined various combinations of nutrients to determine which may best enhance spatial memory and cognitive performance in the house cricket (Acheta domesticus (L.)). Methods: Based on the 31 possible combinations of multivitamins, zinc, polyphenols, omega-3 polyunsaturated fatty acids (PUFAs), and probiotics, 128 house crickets were divided into one control group and 31 experimental groups with four house crickets in each group. Over eight weeks, crickets were fed their respective nutrients, and an Alternation Test and Recognition Memory Test were conducted every week using a Y-maze to test spatial working memory. Results: The highest-scoring diets shared by both tests were the combination of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf; Alternation: slope = 0.07226, Recognition Memory: slope = 0.07001), the combination of probiotics, polyphenols, multivitamins, zinc, and omega-3 PUFAs (ProPolVitZncPuf; Alternation: slope = 0.07182, Recognition Memory: slope = 0.07001), the combination of probiotics, multivitamins, zinc, and omega-3 PUFAs (ProVitZncPuf; Alternation: slope = 0.06999, Recognition Memory: slope = 0.07001), and the combination of polyphenols, multivitamins, zinc, and omega-3 PUFAs (PolVitZncPuf; Alternation: slope = 0.06873, Recognition Memory: slope = 0.06956). Conclusion: All of the nutrient combinations demonstrated a benefit over the control diet, but the most significant improvement compared to the control was found in the VitZncPuf, ProVitZncPuf, PolVitZncPuf, and ProPolVitZncPuf. Since this study found no significant difference between the performance and improvement of subjects within these four groups, the combination of multivitamins, zinc, and omega-3 fatty acids (VitZncPuf) was concluded to be the most effective option for improving memory and cognitive performance.
Collapse
Affiliation(s)
- Samskruthi Madireddy
- Independent Researcher, 1353 Tanaka Drive, San Jose, CA 95131, USA
- Correspondence:
| | | |
Collapse
|
29
|
Roberts RC. Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion 2021; 56:91-101. [PMID: 33221354 PMCID: PMC7810242 DOI: 10.1016/j.mito.2020.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022]
Abstract
Among the many brain abnormalities in schizophrenia are those related to mitochondrial functions such as oxidative stress, energy metabolism and synaptic efficacy. The aim of this paper is to provide a brief review of mitochondrial structure and function and then to present abnormalities in mitochondria in postmortem brain in schizophrenia with a focus on anatomy. Deficits in expression of various mitochondrial genes have been found in multiple schizophrenia cohorts. Decreased activity of complexes I and IV are prominent as well as abnormal levels of individual subunits that comprise the complexes of the electron transport chain. Ultrastructural studies have shown layer, input and cell specific decreases in mitochondria. In cortex, there are fewer mitochondria in axon terminals, neuronal somata of pyramidal neurons and oligodendrocytes in both grey and white matter. In the caudate and putamen mitochondrial number is linked with symptoms and symptom severity. While there is a decrease in the number of mitochondria in astrocytes, mitochondria are smaller in oligodendrocytes. In the nucleus accumbens and substantia nigra, mitochondria are similar in density, size and structural integrity in schizophrenia compared to controls. Mitochondrial production of ATP and calcium buffering are essential in maintaining synaptic strength and abnormalities in these processes could lead to decreased metabolism and defective synaptic activity. Abnormalities in mitochondria in oligodendrocytes might contribute to myelin pathology and underlie dysconnectivity in the brain. In schizophrenia, mitochondria are affected differentially depending on the brain region, cell type in which they reside, subcellular location, treatment status, treatment response and predominant symptoms.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States.
| |
Collapse
|