1
|
Wu F, Zhang W, Ji W, Zhang Y, Jiang F, Li G, Hu Y, Wei X, Wang H, Wang SYA, Manza P, Tomasi D, Volkow ND, Gao X, Wang GJ, Zhang Y. Stimulant medications in children with ADHD normalize the structure of brain regions associated with attention and reward. Neuropsychopharmacology 2024; 49:1330-1340. [PMID: 38409281 PMCID: PMC11224385 DOI: 10.1038/s41386-024-01831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Children with ADHD show abnormal brain function and structure. Neuroimaging studies found that stimulant medications may improve brain structural abnormalities in children with ADHD. However, prior studies on this topic were conducted with relatively small sample sizes and wide age ranges and showed inconsistent results. In this cross-sectional study, we employed latent class analysis and linear mixed-effects models to estimate the impact of stimulant medications using demographic, clinical measures, and brain structure in a large and diverse sample of children aged 9-11 from the Adolescent Brain and Cognitive Development Study. We studied 273 children with low ADHD symptoms and received stimulant medication (Stim Low-ADHD), 1002 children with high ADHD symptoms and received no medications (No-Med ADHD), and 5378 typically developing controls (TDC). After controlling for the covariates, compared to Stim Low-ADHD and TDC, No-Med ADHD showed lower cortical thickness in the right insula (INS, d = 0.340, PFDR = 0.003) and subcortical volume in the left nucleus accumbens (NAc, d = 0.371, PFDR = 0.003), indicating that high ADHD symptoms were associated with structural abnormalities in these brain regions. In addition, there was no difference in brain structural measures between Stim Low-ADHD and TDC children, suggesting that the stimulant effects improved both ADHD symptoms and ADHD-associated brain structural abnormalities. These findings together suggested that children with ADHD appear to have structural abnormalities in brain regions associated with saliency and reward processing, and treatment with stimulant medications not only improve the ADHD symptoms but also normalized these brain structural abnormalities.
Collapse
Affiliation(s)
- Feifei Wu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Wenchao Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Weibin Ji
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yaqi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Fukun Jiang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Guanya Li
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yang Hu
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Xiaorong Wei
- Kindergarten affiliated to Air Force Medical University, Xi'an, Shaanxi, 710032, China
| | - Haoyi Wang
- College of Westa, Southwest University, Chongqing, 400715, China
| | - Szu-Yung Ariel Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Xinbo Gao
- Chongqing Key Laboratory of Image Cognition, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA.
| | - Yi Zhang
- Center for Brain Imaging, School of Life Science and Technology, Xidian University & Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China.
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment & Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| |
Collapse
|
2
|
Feng Z, Wang J, Xu L, Wu J, Li H, Wang Z, Duan M. Relationship Between Excessive Daytime Sleepiness and Caudate Nucleus Volume in Patients with Subjective Cognitive Decline: A Study from the SILCODE Using the Volbrain. J Alzheimers Dis Rep 2024; 8:935-944. [PMID: 39114552 PMCID: PMC11305844 DOI: 10.3233/adr-230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 04/23/2024] [Indexed: 08/10/2024] Open
Abstract
Background Excessive daytime sleepiness (EDS) and caudate nucleus volume alterations have been linked to Alzheimer's disease (AD), but their relationship remains unclear under the context of subjective cognitive decline (SCD). Objective This study aimed to investigate the relationship between EDS and caudate nucleus volume in patients with SCD. Methods The volume of entire brain was measured in 170 patients with SCD, including 37 patients with EDS and 133 non-EDS, from the Sino Longitudinal Study on Cognitive Decline (SILCODE). Participants underwent a comprehensive assessment battery, including neuropsychological and clinical evaluations, blood tests, genetic analysis for APOE ɛ4, and structural MRI scans analyzed using the fully automated segmentation tool, volBrain. Results Patients with EDS had significantly increased volume in the total and left caudate nucleus compared to non-EDS. The most significant cognitive behavioral factor associated with caudate nucleus volume in the EDS was the Auditory Verbal Learning Test-recognition. Conclusions These findings suggest that EDS may be associated with alterations in caudate nucleus volume, particularly in the left hemisphere, in the context of SCD. Further research is necessary to understand the underlying mechanisms of this relationship and its implications for clinical management.
Collapse
Affiliation(s)
- Ziqian Feng
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Zunyi Medical and Pharmaceutical College, Zunyi, Guizhou, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Jiayu Wang
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, The Fourth People’s Hospital of Chengdu, Chengdu, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Lisi Xu
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Jiajing Wu
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Zunyi Medical University, Zunyi, Guizhou, China
| | - Hongyi Li
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Ziqi Wang
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, The Fourth People’s Hospital of Chengdu, Chengdu, China
| | - Mingjun Duan
- MOE Key Lab for Neuroinformation, School of Life Science and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
- Department of Geriatrics, The Fourth People’s Hospital of Chengdu, Chengdu, China
| |
Collapse
|
3
|
Kohler RJ, Zhornitsky S, Potenza MN, Yip SW, Worhunsky P, Angarita GA. Cocaine self-administration behavior is associated with subcortical and cortical morphometry measures in individuals with cocaine use disorder. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024; 50:345-356. [PMID: 38551365 PMCID: PMC11305926 DOI: 10.1080/00952990.2024.2318585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 05/24/2024]
Abstract
Background: Individual differences in gray-matter morphometry in the limbic system and frontal cortex have been linked to clinical features of cocaine use disorder (CUD). Self-administration paradigms can provide more direct measurements of the relationship between the regulation of cocaine use and gray-matter morphometry when compared to self-report assessments.Objectives: Our goal was to investigate associations with self-administration behavior in subcortical and cortical brain regions. We hypothesized the number of cocaine infusions self-administered would be correlated with gray-matter volumes (GMVs) in the striatum, amygdala, and hippocampus. Due to scarcity in human studies, we did not hypothesize subcortical directionality. In the frontal cortex, we hypothesized thickness would be negatively correlated with self-administered cocaine.Methods: We conducted an analysis of cocaine self-administration and structural MRI data from 33 (nFemales = 10) individuals with moderate-to-severe CUD. Self-administration lasted 60-minutes and cocaine (8, 16, or 32 mg/70 kg) was delivered on an FR1 schedule (5-minute lockout). Subcortical and cortical regression analyses were performed that included combined bilateral regions and age, experimental variables and use history as confounders.Results: Self-administered cocaine infusions were positively associated with caudal GMV (b = 0.18, p = 0.030) and negatively with putamenal GMV (b = -0.10, p = 0.041). In the cortical model, infusions were positively associated with insular thickness (b = 0.39, p = 0.008) and women appeared to self-administer cocaine more frequently (b = 0.23, p = 0.019).Conclusions: Brain morphometry features in the striatum and insula may contribute to cocaine consumption in CUD. These differences in morphometry may reflect consequences of prolonged use, predisposed vulnerability, or other possibilities.Clinical Trial Numbers: NCT01978431; NCT03471182.
Collapse
Affiliation(s)
- Robert J. Kohler
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Marc N. Potenza
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Sarah W. Yip
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT
| | - Patrick Worhunsky
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | |
Collapse
|
4
|
Wang HA, Liang HJ, Ernst TM, Nakama H, Cunningham E, Chang L. Independent and combined effects of methamphetamine use disorders and APOEε4 allele on cognitive performance and brain morphometry. Addiction 2023; 118:2384-2396. [PMID: 37563863 PMCID: PMC10840926 DOI: 10.1111/add.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/19/2023] [Indexed: 08/12/2023]
Abstract
AIMS Prior studies showed that methamphetamine (METH) users had greater than normal age-related brain atrophy; whether having the apolipoprotein E (APOE)-ε4 allele may be a contributory factor has not been evaluated. We aimed to determine the independent and combined effects of chronic heavy METH use and having at least one copy of the APOE-ε4 allele (APOE-ε4+) on brain morphometry and cognition, especially in relation to aging. METHODS We compared brain morphometry and cognitive performance in 77 individuals with chronic heavy METH use (26 APOE-ε4+, 51 APOE-ε4-) and 226 Non-METH users (66 APOE-ε4+, 160 APOE-ε4-), using a 2 × 2 design (two-way analysis of co-variance). Vertex-wise cortical volumes, thickness and seven subcortical volumes, were automatically measured using FreeSurfer. Linear regression between regional brain measures, and cognitive scores that showed group differences were evaluated. Group differences in age-related decline in brain and cognitive measures were also explored. RESULTS Regardless of APOE-ε4 genotype, METH users had lower Motor Z-scores (P = 0.005), thinner right lateral-orbitofrontal cortices (P < 0.001), smaller left pars-triangularis gyrus volumes (P = 0.004), but larger pallida, hippocampi and amygdalae (P = 0.004-0.006) than nonusers. Across groups, APOE-ε4+ METH users had the smallest volumes of superior frontal cortical gyri bilaterally, and of the smallest volume in left rostral-middle frontal gyri (all P-values <0.001). Smaller right superior-frontal gyrus predicted poorer motor function only in APOE-ε4+ participants (interaction-P < 0.001). Cortical volumes and thickness declined with age similarly across all participants; however, APOE-ε4-carriers showed thinner right inferior parietal cortices than noncarriers at younger age (interaction-P < 0.001). CONCLUSIONS Chronic heavy use and having at least one copy of the APOE-ε4 allele may have synergistic effects on brain atrophy, particularly in frontal cortices, which may contribute to their poorer cognitive function. However, the enlarged subcortical volumes in METH users replicated prior studies, and are likely due to METH-mediated neuroinflammation.
Collapse
Affiliation(s)
- Hannah A. Wang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hua-Jun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Thomas M. Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Eric Cunningham
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Stewart JL, Burrows K, Davis CB, Wilhelm RA, McNaughton BA, Kuplicki R, Paulus MP, Khalsa SS, White EJ. Impulsivity in amphetamine use disorder: Examination of sex differences. Addiction 2023; 118:1787-1800. [PMID: 37132044 PMCID: PMC10524483 DOI: 10.1111/add.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 04/05/2023] [Indexed: 05/04/2023]
Abstract
AIMS This study aimed to test whether there are sex differences in the relationship between impulsivity and amphetamine use disorder (AMP). DESIGN A naturalistic cross-sectional design was used. SETTING The Tulsa 1000 study was held in Tulsa, OK, USA. PARTICIPANTS There were two groups in this study: AMP+ (29F, 20M) and AMP- (57F, 33M). MEASUREMENTS This project focuses on data related to impulsivity: UPPS-P impulsive behavior scale and a stop signal task (SST) during functional magnetic resonance imaging (fMRI) recording. Group, sex and their interaction were compared for UPPS-P ratings and SST fMRI and behavioral responses. FINDINGS AMP+ reported higher UPPS-P positive and negative urgency scores (Ps < 0.001; r = 0.56 and 0.51) and displayed greater bilateral insula and amygdala responses across correct SST trials (Ps < 0.001, g range = 0.57-0.81) than AMP-. fMRI results indicated that AMP+ exhibited larger right anterior/middle insula, amygdala and nucleus accumbens signals during successful difficult stop trials than AMP- (Ps < 0.01; g = 0.63, 0.54 and 0.44, respectively). Crucially, two group × sex effects emerged: (a) within females, AMP+ reported larger UPPS-P lack of premeditation scores than AMP- (P < 0.001, r = 0.51), and (b) within males, AMP+ showed greater left middle insula signals than AMP- across correct SST trials (P = 0.01, g = 0.78). CONCLUSIONS Both female and male amphetamine users appear to be characterized by rash action in the presence of positive and negative mood states as well as heightened recruitment of right hemisphere regions during behavioral inhibition. In contrast, planning ahead may be particularly difficult for female amphetamine users, whereas male amphetamine users may need to recruit additional left hemisphere resources during inhibitory processing.
Collapse
Affiliation(s)
- Jennifer L. Stewart
- Laureate Institute for Brain Research, Tulsa OK
- Oxley College of Health Sciences, University of Tulsa, Tulsa OK
| | | | | | | | | | | | - Martin P. Paulus
- Laureate Institute for Brain Research, Tulsa OK
- Oxley College of Health Sciences, University of Tulsa, Tulsa OK
| | - Sahib S. Khalsa
- Laureate Institute for Brain Research, Tulsa OK
- Oxley College of Health Sciences, University of Tulsa, Tulsa OK
| | - Evan J. White
- Laureate Institute for Brain Research, Tulsa OK
- Oxley College of Health Sciences, University of Tulsa, Tulsa OK
| |
Collapse
|
6
|
Joo Y, Lee S, Hwang J, Kim J, Cheon YH, Lee H, Kim S, Yurgelun-Todd DA, Renshaw PF, Yoon S, Lyoo IK. Differential alterations in brain structural network organization during addiction between adolescents and adults. Psychol Med 2023; 53:3805-3816. [PMID: 35440353 PMCID: PMC10317813 DOI: 10.1017/s0033291722000423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/06/2022] [Accepted: 02/04/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The adolescent brain may be susceptible to the influences of illicit drug use. While compensatory network reorganization is a unique developmental characteristic that may restore several brain disorders, its association with methamphetamine (MA) use-induced damage during adolescence is unclear. METHODS Using independent component (IC) analysis on structural magnetic resonance imaging data, spatially ICs described as morphometric networks were extracted to examine the effects of MA use on gray matter (GM) volumes and network module connectivity in adolescents (51 MA users v. 60 controls) and adults (54 MA users v. 60 controls). RESULTS MA use was related to significant GM volume reductions in the default mode, cognitive control, salience, limbic, sensory and visual network modules in adolescents. GM volumes were also reduced in the limbic and visual network modules of the adult MA group as compared to the adult control group. Differential patterns of structural connectivity between the basal ganglia (BG) and network modules were found between the adolescent and adult MA groups. Specifically, adult MA users exhibited significantly reduced connectivity of the BG with the default network modules compared to control adults, while adolescent MA users, despite the greater extent of network GM volume reductions, did not show alterations in network connectivity relative to control adolescents. CONCLUSIONS Our findings suggest the potential of compensatory network reorganization in adolescent brains in response to MA use. The developmental characteristic to compensate for MA-induced brain damage can be considered as an age-specific therapeutic target for adolescent MA users.
Collapse
Affiliation(s)
- Yoonji Joo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
| | - Suji Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
| | - Jaeuk Hwang
- Department of Psychiatry, Soonchunhyang University College of Medicine, Seoul, South Korea
| | - Jungyoon Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Young-Hoon Cheon
- Department of Psychiatry, Incheon Chamsarang Hospital, Incheon, South Korea
| | - Hyangwon Lee
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Shinhye Kim
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Deborah A. Yurgelun-Todd
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA
| | - Perry F. Renshaw
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
- Diagnostic Neuroimaging, University of Utah, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Center, VA VISN 19 Mental Illness Research, Education and Clinical Center (MIRECC), Salt Lake City, UT, USA
| | - Sujung Yoon
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Ewha Womans University, Seoul, South Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, South Korea
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
7
|
Ceceli AO, Huang Y, Kronberg G, Malaker P, Miller P, King SG, Gaudreault PO, McClain N, Gabay L, Vasa D, Newcorn JH, Ekin D, Alia-Klein N, Goldstein RZ. Common and distinct fronto-striatal volumetric changes in heroin and cocaine use disorders. Brain 2023; 146:1662-1671. [PMID: 36200376 PMCID: PMC10319776 DOI: 10.1093/brain/awac366] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022] Open
Abstract
Different drugs of abuse impact the morphology of fronto-striatal dopaminergic targets in both common and unique ways. While dorsal striatal volume tracks with addiction severity across drug classes, opiates impact ventromedial prefrontal cortex (vmPFC) and nucleus accumbens (NAcc) neuroplasticity in preclinical models, and psychostimulants alter inhibitory control, rooted in cortical regions such as the inferior frontal gyrus (IFG). We hypothesized parallel grey matter volume changes associated with human heroin or cocaine use disorder: lower grey matter volume of vmPFC/NAcc in heroin use disorder and IFG in cocaine use disorder, and putamen grey matter volume to be associated with addiction severity measures (including craving) across both. In this cross-sectional study, we quantified grey matter volume (P < 0.05-corrected) in age/sex/IQ-matched individuals with heroin use disorder (n = 32, seven females), cocaine use disorder (n = 32, six females) and healthy controls (n = 32, six females) and compared fronto-striatal volume between groups using voxel-wise general linear models and non-parametric permutation-based tests. Overall, individuals with heroin use disorder had smaller vmPFC and NAcc/putamen volumes than healthy controls. Bilateral lower IFG grey matter volume patterns were specifically evident in cocaine versus heroin use disorders. Correlations between addiction severity measures and putamen grey matter volume did not reach nominal significance level in this sample. These results indicate alterations in dopamine-innervated regions (in the vmPFC and NAcc) in heroin addiction. For the first time we demonstrate lower IFG grey matter volume specifically in cocaine compared with heroin use disorder, suggesting a signature of reduced inhibitory control, which remains to be tested directly using select behavioural measures. Overall, results suggest substance-specific volumetric changes in human psychostimulant or opiate addiction, with implications for fine-tuning biomarker and treatment identification by primary drug of abuse.
Collapse
Affiliation(s)
- Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuefeng Huang
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Greg Kronberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pias Malaker
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pazia Miller
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah G King
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Natalie McClain
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lily Gabay
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Devarshi Vasa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Defne Ekin
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
8
|
Abbas M, Gandy K, Salas R, Devaraj S, Calarge CA. Iron deficiency and internalizing symptom severity in unmedicated adolescents: a pilot study. Psychol Med 2023; 53:2274-2284. [PMID: 34911595 DOI: 10.1017/s0033291721004098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Iron plays a key role in a broad set of metabolic processes. Iron deficiency is the most common nutritional deficiency in the world, but its neuropsychiatric implications in adolescents have not been examined. METHODS Twelve- to 17-year-old unmedicated females with major depressive or anxiety disorders or with no psychopathology underwent a comprehensive psychiatric assessment for this pilot study. A T1-weighted magnetic resonance imaging scan was obtained, segmented using Freesurfer. Serum ferritin concentration (sF) was measured. Correlational analyses examined the association between body iron stores, psychiatric symptom severity, and basal ganglia volumes, accounting for confounding variables. RESULTS Forty females were enrolled, 73% having a major depressive and/or anxiety disorder, 35% with sF < 15 ng/mL, and 50% with sF < 20 ng/mL. Serum ferritin was inversely correlated with both anxiety and depressive symptom severity (r = -0.34, p < 0.04 and r = -0.30, p < 0.06, respectively). Participants with sF < 15 ng/mL exhibited more severe depressive and anxiety symptoms as did those with sF < 20 ng/mL. Moreover, after adjusting for age and total intracranial volume, sF was inversely associated with left caudate (Spearman's r = -0.46, p < 0.04), left putamen (r = -0.58, p < 0.005), and right putamen (r = -0.53, p < 0.01) volume. CONCLUSIONS Brain iron may become depleted at a sF concentration higher than the established threshold to diagnose iron deficiency (i.e. 15 ng/mL), potentially disrupting brain maturation and contributing to the emergence of internalizing disorders in adolescents.
Collapse
Affiliation(s)
- Malak Abbas
- The Rockefeller University, New York, NY 10065, USA
| | - Kellen Gandy
- St. Jude Children's Research Hospital, Houston, Texas 77027, USA
| | - Ramiro Salas
- Baylor College of Medicine - Center for Translational Research on Inflammatory Diseases, Michael E DeBakey VA Medical Center, Houston, Texas 77030, USA
| | | | - Chadi A Calarge
- Baylor College of Medicine - The Menninger Department of Psychiatry and Behavioral Sciences, 1102 Bates Ave, Suite 790, Houston, Texas 77030, USA
| |
Collapse
|
9
|
Dai W, Zhou H, Møller A, Wei P, Hu K, Feng K, Han J, Li Q, Liu X. Patients with Methamphetamine Use Disorder Show Highly Utilized Proactive Inhibitory Control and Intact Reactive Inhibitory Control with Long-Term Abstinence. Brain Sci 2022; 12:brainsci12080974. [PMID: 35892415 PMCID: PMC9394348 DOI: 10.3390/brainsci12080974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
Methamphetamine use disorder (MUD) is a chronic brain disorder that involves frequent failures of inhibitory control and relapses into methamphetamine intake. However, it remains unclear whether the impairment of inhibitory control in MUD is proactive, reactive or both. To address this issue, the current study used the conditional stop-signal task to assess proactive and reactive inhibitory control in 35 MUD patients with long-term abstinence and 35 matched healthy controls. The results showed that MUD patients with long-term abstinence had greater preparation costs than healthy controls, but did not differ in performance, implying a less efficient utilization of proactive inhibitory control. In contrast, MUD patients exhibited intact reactive inhibitory control; reactive but not proactive inhibitory control was associated with high sensation seeking in MUD patients with long-term abstinence. These findings suggest that proactive and reactive inhibitory control may be two different important endophenotypes of addiction in MUD patients with long-term abstinence. The current study provides new insight into the uses of proactive and reactive inhibitory control to effectively evaluate and precisely treat MUD patients with long-term abstinence.
Collapse
Affiliation(s)
- Weine Dai
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; (W.D.); (H.Z.)
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark;
- Sino-Danish Center for Education and Research, Beijing 101408, China
| | - Hui Zhou
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; (W.D.); (H.Z.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Arne Møller
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and University Hospital, 8200 Aarhus N, Denmark;
| | - Ping Wei
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing 100048, China;
| | - Kesong Hu
- Department of Psychology, Lake Superior State University, Sault St. Marie, MI 49783, USA;
| | - Kezhuang Feng
- Hebei Female Drug Rehabilitation Center, Shijiazhuang 050000, China; (K.F.); (J.H.)
| | - Jie Han
- Hebei Female Drug Rehabilitation Center, Shijiazhuang 050000, China; (K.F.); (J.H.)
| | - Qi Li
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing 100048, China;
- Correspondence: (Q.L.); (X.L.)
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; (W.D.); (H.Z.)
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (Q.L.); (X.L.)
| |
Collapse
|
10
|
Bischoff-Grethe A, Ellis RJ, Tapert SF, Paulus MP, Grant I. Prior Methamphetamine Use Disorder History Does Not Impair Interoceptive Processing of Soft Touch in HIV Infection. Viruses 2021; 13:v13122476. [PMID: 34960745 PMCID: PMC8705776 DOI: 10.3390/v13122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction: Interoception, defined as the sense of the internal state of one’s body, helps motivate goal-directed behavior. Prior work has shown that methamphetamine (METH) use disorder is associated with altered interoception, and that this may contribute to risky behavior. As people with HIV (PWH) may also experience disrupted bodily sensations (e.g., neuropathy), an important question is whether PWH with a history of METH use disorder might exhibit greater impairment of interoceptive processing. Methods: Eighty-three participants stratified by HIV infection and a past history of methamphetamine use disorder experienced a soft touch paradigm that included slow brush strokes on the left forearm and palm during blood-oxygen level-dependent functional MRI acquisition. To assess differences in interoception and reward, voxelwise analyses were constrained to the insula, a hub for the evaluation of interoceptive cues, and the striatum, which is engaged in reward processing. Results: Overall, individuals with a history of METH use disorder had an attenuated neural response to pleasant touch in both the insula and striatum. Longer abstinence was associated with greater neural response to touch in the insula, suggesting some improvement in responsivity. However, only PWH with no METH use disorder history had lower brain activation in the insula relative to non-using seronegative controls. Conclusions: Our findings suggest that while METH use disorder history and HIV infection independently disrupt the neural processes associated with interoception, PWH with METH use disorder histories do not show significant differences relative to non-using seronegative controls. These findings suggest that the effects of HIV infection and past methamphetamine use might not be additive with respect to interoceptive processing impairment.
Collapse
Affiliation(s)
- Amanda Bischoff-Grethe
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, MC 0738 La Jolla, San Diego, CA 92093, USA; (S.F.T.); (I.G.)
- Correspondence:
| | - Ronald J. Ellis
- Department of Neurosciences, University of California, La Jolla, San Diego, CA 92093, USA;
| | - Susan F. Tapert
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, MC 0738 La Jolla, San Diego, CA 92093, USA; (S.F.T.); (I.G.)
| | | | - Igor Grant
- Department of Psychiatry, University of California, San Diego 9500 Gilman Drive, MC 0738 La Jolla, San Diego, CA 92093, USA; (S.F.T.); (I.G.)
| | | |
Collapse
|
11
|
Huckans M, Boyd S, Moncrief G, Hantke N, Winters B, Shirley K, Sano E, McCready H, Dennis L, Kohno M, Hoffman W, Loftis JM. Cognition during active methamphetamine use versus remission. J Clin Exp Neuropsychol 2021; 43:599-610. [PMID: 34612792 DOI: 10.1080/13803395.2021.1976734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To evaluate whether cognitive performance in adults with active methamphetamine use (MA-ACT) differs from cognitive performance in adults in remission from MA use disorder (MA-REM) and adults without a history of substance use disorder (CTLs). METHOD MA-ACT (n = 36), MA-REM (n = 48), and CTLs (n = 62) completed the Neuropsychological Assessment Battery (NAB). RESULTS The MA-ACT group did not perform significantly worse than CTLs on any NAB Index. The MA-REM group performed significantly (p < 0.050) worse than CTLs on the NAB Memory Index. The MA-ACT group performed significantly better than CTLs and the MA-REM group on the Executive Functions Index. CONCLUSIONS Some cognitive deficits are apparent during remission from MA use, but not during active use; this may result in clinical challenges for adults attempting to maintain recovery and continue with treatment.
Collapse
Affiliation(s)
- Marilyn Huckans
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, Or, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA
| | - Stephen Boyd
- Department of Anesthesia and Perioperative Medicine, Oregon Health & Science University, Portland, Or, USA
| | - Grant Moncrief
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, Or, USA.,Pacific University, School of Graduate Psychology, Hillsboro, OR, USA.,Department of Psychiatry, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Nathan Hantke
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, Or, USA.,Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Bethany Winters
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA
| | - Kate Shirley
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Emily Sano
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Holly McCready
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Or, USA
| | - Laura Dennis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Or, USA
| | - Milky Kohno
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Or, USA
| | - William Hoffman
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Mental Health and Clinical Neurosciences Division, Veterans Affairs Portland Health Care System, Portland, Or, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA.,Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Or, USA
| | - Jennifer M Loftis
- Research & Development Service, Veterans Affairs Portland Health Care System, Portland, OR, USA.,Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA.,Methamphetamine Research Center, Oregon Health & Science University, Portland, Or, USA
| |
Collapse
|
12
|
Kendrick KM, Daumann J, Wagner D, Koester P, Tittgemeyer M, Luo Q, Gouzoulis-Mayfrank E, Becker B. A prospective longitudinal study shows putamen volume is associated with moderate amphetamine use and resultant cognitive impairments. PSYCHORADIOLOGY 2021; 1:3-12. [PMID: 38665308 PMCID: PMC10917237 DOI: 10.1093/psyrad/kkab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/19/2020] [Accepted: 01/12/2021] [Indexed: 04/28/2024]
Abstract
Background Amphetamine-type stimulants (ATS) have become a critical public health issue. Animal models have indicated a clear neurotoxic potential of ATSs. In humans, chronic use has been associated with cognitive deficits and structural brain abnormalities. However, cross-sectional retrospective designs in chronic users cannot truly determine the causal direction of the effects. Objective To prospectively determine effects of occasional ATS use on cognitive functioning and brain structure. Methods In a prospective longitudinal study design, cognitive functioning and brain structure were assessed at baseline and at 12-month follow-up in occasional ATS users (cumulative lifetime use <10 units at baseline). Results Examination of change scores between the initial examination and follow-up revealed declined verbal memory performance and putamen volume in users with high relative to low interim ATS exposure. In the entire sample, interim ATS use, memory decline, and putamen volume reductions were strongly associated. Conclusions The present findings support the hypothesis that ATS use is associated with deficient dorsal striatal morphology that might reflect alterations in dopaminergic pathways. More importantly, these findings strongly suggest that even occasional, low-dose ATS use disrupts striatal integrity and cognitive functioning.
Collapse
Affiliation(s)
- Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Joerg Daumann
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Daniel Wagner
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Philip Koester
- Department of Psychiatry and Psychotherapy, University of Cologne, Germany
| | - Marc Tittgemeyer
- Max-Planck Institute for Neurological Research, Cologne, Germany
| | - Qiang Luo
- Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, PR China
| | | | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
13
|
Nie L, Ghahremani DG, Mandelkern MA, Dean AC, Luo W, Ren A, Li J, London ED. The relationship between duration of abstinence and gray-matter brain structure in chronic methamphetamine users. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2021; 47:65-73. [PMID: 33426968 DOI: 10.1080/00952990.2020.1778712] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Background: Brain structural findings in chronic methamphetamine users have been inconsistent. Identifying contributing influences (e.g., sex, abstinence duration) can help clarify the clinical course of recovery.Objectives: We studied the effects of long-term methamphetamine abstinence on gray-matter volume. Our hypothesis was that smaller volume early in abstinence would precede long-term recovery.Methods: Individuals who used methamphetamine (≥100 g lifetime use, mandated to residential treatment for methamphetamine-positive urine; 40 men, 21 women), undergoing supervised abstinence (men: 12-400 days; women: 130-594 days), were compared to healthy controls (49 men, 36 women) using T1-weighted MRI. Volumes of orbitofrontal, anterior cingulate and parietal cortex, hippocampus, and striatum were measured using Freesurfer software. Associations of volumes with abstinence duration were tested in males and females separately because their abstinence times differed (121.5 ± 124.5 vs. 348.0 ± 128.6 days, p < 0.001); only males were studied in early abstinence. The General Linear Model was used to test effects of abstinence duration and group (methamphetamine users vs. controls).Results: In males, duration of abstinence was multivariate significant for gray-matter volumes (p = 0.017). Abstinence duration was associated with increases in volumes of the orbitofrontal and parietal cortices (ps = 0.031, 0.016) and hippocampi (ps = 0.044). Irrespective of abstinence, male methamphetamine users had smaller hippocampi than male controls (p = 0.008). Females showed no significant effects of group or abstinence.Conclusions: In males, abstinence from methamphetamine appears to result in volumetric increases in regions important for cognitive function, which may affect recovery during the course of treatment. Data from the period of early abstinence are required to evaluate volumetric changes in females.
Collapse
Affiliation(s)
- Lili Nie
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.,Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Dara G Ghahremani
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience, David Geffen School of Medicine, Los Angeles, CA, USA
| | | | - Andy C Dean
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Wei Luo
- Sichuan Provincial Compulsory Drug Addiction Treatment Agency for Females, Deyang, China
| | - Anlian Ren
- Sichuan Provincial Compulsory Drug Addiction Treatment Agency for Males, Ziyang, China
| | - Jing Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Edythe D London
- Department of Psychiatry and Biobehavioral Sciences, UCLA Semel Institute for Neuroscience, David Geffen School of Medicine, Los Angeles, CA, USA.,Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
14
|
Warton FL, Taylor PA, Warton CMR, Molteno CD, Wintermark P, Zöllei L, van der Kouwe AJ, Jacobson JL, Jacobson SW, Meintjes EM. Reduced fractional anisotropy in projection, association, and commissural fiber networks in neonates with prenatal methamphetamine exposure. Dev Neurobiol 2020; 80:381-398. [PMID: 33010114 PMCID: PMC7855045 DOI: 10.1002/dneu.22784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/31/2020] [Accepted: 09/16/2020] [Indexed: 11/12/2022]
Abstract
Prenatal exposure to methamphetamine is associated with neurostructural changes, including alterations in white matter microstructure. This study investigated the effects of methamphetamine exposure on microstructure of global white matter networks in neonates. Pregnant women were interviewed beginning in mid-pregnancy regarding their methamphetamine use. Diffusion weighted imaging sets were acquired for 23 non-sedated neonates. White matter bundles associated with pairs of target regions within five networks (commissural fibers, left and right projection fibers, and left and right association fibers) were estimated using probabilistic tractography, and fractional anisotropy (FA) and diffusion measures determined within each connection. Multiple regression analyses showed that increasing methamphetamine exposure was significantly associated with reduced FA in all five networks, after control for potential confounders. Increased exposure was associated with lower axial diffusivity in the right association fiber network and with increased radial diffusivity in the right projection and left and right association fiber networks. Within the projection and association networks a subset of individual connections showed a negative correlation between FA and methamphetamine exposure. These findings are consistent with previous reports in older children and demonstrate that microstructural changes associated with methamphetamine exposure are already detectable in neonates.
Collapse
Affiliation(s)
- Fleur L Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paul A Taylor
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- African Institute for Mathematical Sciences, Muizenberg, South Africa
- Scientific and Statistical Computing Core, National Institutes of Health, Bethesda, MA, USA
| | - Christopher M R Warton
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Christopher D Molteno
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pia Wintermark
- Department of Pediatrics, McGill University, Montreal Children's Hospital, Montreal, QC, Canada
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Andre J van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joseph L Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sandra W Jacobson
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ernesta M Meintjes
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- UCT Medical Imaging Research Unit, Division of Biomedical Engineering, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
15
|
Sami M, Cole JH, Kempton MJ, Annibale L, Das D, Kelbrick M, Eranti S, Collier T, Onyejiaka C, O'Neill A, Lythgoe DJ, McGuire P, Williams SCR, Bhattacharyya S. Cannabis use in patients with early psychosis is associated with alterations in putamen and thalamic shape. Hum Brain Mapp 2020; 41:4386-4396. [PMID: 32687254 PMCID: PMC7502838 DOI: 10.1002/hbm.25131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 12/31/2022] Open
Abstract
Around half of patients with early psychosis have a history of cannabis use. We aimed to determine if there are neurobiological differences in these the subgroups of persons with psychosis with and without a history of cannabis use. We expected to see regional deflations in hippocampus as a neurotoxic effect and regional inflations in striatal regions implicated in addictive processes. Volumetric, T1w MRIs were acquired from people with a diagnosis psychosis with (PwP + C = 28) or without (PwP - C = 26) a history of cannabis use; and Controls with (C + C = 16) or without (C - C = 22) cannabis use. We undertook vertex-based shape analysis of the brainstem, amygdala, hippocampus, globus pallidus, nucleus accumbens, caudate, putamen, thalamus using FSL FIRST. Clusters were defined through Threshold Free Cluster Enhancement and Family Wise Error was set at p < .05. We adjusted analyses for age, sex, tobacco and alcohol use. The putamen (bilaterally) and the right thalamus showed regional enlargement in PwP + C versus PwP - C. There were no areas of regional deflation. There were no significant differences between C + C and C - C. Cannabis use in participants with psychosis is associated with morphological alterations in subcortical structures. Putamen and thalamic enlargement may be related to compulsivity in patients with a history of cannabis use.
Collapse
Affiliation(s)
- Musa Sami
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - James H. Cole
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Matthew J. Kempton
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Luciano Annibale
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Debasis Das
- Leicestershire Partnership NHS TrustLondonUK
| | | | | | - Tracy Collier
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | | | - Aisling O'Neill
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - David J. Lythgoe
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Philip McGuire
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Steve C. R. Williams
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| | - Sagnik Bhattacharyya
- Institute of PsychiatryPsychology and Neurosciences King's College LondonLondonUK
| |
Collapse
|
16
|
Liang H, Tang WK, Chu WCW, Ernst T, Chen R, Chang L. Striatal and white matter volumes in chronic ketamine users with or without recent regular stimulant use. Drug Alcohol Depend 2020; 213:108063. [PMID: 32498030 PMCID: PMC7686125 DOI: 10.1016/j.drugalcdep.2020.108063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Previous studies found enlarged striatum and white matter in those with stimulants use disorders. Whether primarily ketamine users (Primarily-K) and ketamine users who co-used stimulants and other substances (K+PolyS) have abnormal brain volumes is unknown. This study aims to evaluate possible brain structural abnormalities, cognitive function and depressive symptoms, between Primarily-K and K+PolyS users. METHODS Striatal and white matter volumes were automatically segmented in 39 Primarily-K users, 41 K+PolyS users and 46 non-drug users (ND). Cognitive performance in 7 neurocognitive domains and depressive symptoms were also evaluated. RESULTS Ketamine users had larger caudates than ND-controls (Right: 1-way-ANCOVA-p=0.035; K+PolyS vs. ND, p=0.030; Linear trend for K+PolyS>Primarily-K>ND, p=0.011; Left: 1-way-ANCOVA-p=0.047, Primarily-K vs. ND p=0.051) and larger total white matter (1-way ANCOVA-p=0.009, Poly+K vs. Primarily-K, p=0.05; Poly+K vs. ND p=0.011; Linear trend for K+PolyS>Primarily-K >ND, p=0.004). Across all ketamine users, they performed poorer on Arithmetic, learning and memory tasks, and were more depressed than Non-users (p<0.001 to p=0.001). Greater lifetime ketamine usage correlated with more depressive symptoms (r=0.27, p=0.008). Larger white matter correlated with better learning across all participants (r=0.21, p=0.019), while larger right caudate correlated with lower depression scores in ketamine users (r=-0.28, p=0.013). CONCLUSION Ketamine users had larger caudates and total white matter than ND-controls. The even larger white matter in K+PolyS users suggests additive effects from co-use of ketamine and stimulants. However, across the ketamine users, since greater volumes were associated with better learning and less depressive symptom, the enlarged caudates and white matter might represent a compensatory response.
Collapse
Affiliation(s)
- Huajun Liang
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Wai Kwong Tang
- Department of Psychiatry, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Winnie CW Chu
- Department of Imaging and Interventional Radiology, Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Thomas Ernst
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201 USA
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201 USA
| | - Linda Chang
- Department of Diagnostic Radiology and Nuclear Medicine,University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21201, USA; Department of Neurology University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
17
|
Weafer J, Van Hedger K, Keedy SK, Nwaokolo N, Wit H. Methamphetamine acutely alters frontostriatal resting state functional connectivity in healthy young adults. Addict Biol 2020; 25:e12775. [PMID: 31099141 DOI: 10.1111/adb.12775] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/28/2019] [Accepted: 04/14/2019] [Indexed: 11/30/2022]
Abstract
Chronic use of methamphetamine impairs frontostriatal structure and function, which may result in increased incentive-motivational responses to drug cues and decreased regulation of drug-seeking behavior. However, less is known regarding how the drug affects these circuits after acute administration. The current study examined the effects of a single dose of methamphetamine on resting state frontostriatal functional connectivity in healthy volunteers. Participants (n = 22, 12 female) completed two sessions in which they received methamphetamine (20 mg) and placebo before a resting state scan during functional magnetic resonance imaging. Participants also provided self-report measures of euphoria and stimulation at regular intervals. We conducted seed-based voxelwise functional connectivity analyses using three bilateral striatal seed regions: nucleus accumbens (NAcc), caudate, and putamen and compared connectivity following methamphetamine versus placebo administration. Additionally, we conducted correlational analyses to assess if drug-induced changes in functional connectivity were related to changes in subjective response. Methamphetamine increased NAcc functional connectivity with medial frontal regions (ie, orbitofrontal cortex, medial frontal gyrus, and superior frontal gyrus) and decreased NAcc functional connectivity with subgenual anterior cingulate cortex (ACC). Methamphetamine also increased functional connectivity between putamen and left inferior frontal gyrus (IFG), and individuals who displayed greater drug-induced increase in connectivity reported less euphoria and stimulation. These findings provide important information regarding the effects of methamphetamine on brain function in nonaddicted individuals. Further studies will reveal whether such effects contribute to the abuse potential of the drug and whether they are related to the frontostriatal impairments observed after chronic methamphetamine use.
Collapse
Affiliation(s)
- Jessica Weafer
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Chicago Chicago Illinois
| | - Kathryne Van Hedger
- Department of Clinical Neurological SciencesUniversity of Western Ontario London Canada
| | - Sarah K. Keedy
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Chicago Chicago Illinois
| | - Nkemdilim Nwaokolo
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Chicago Chicago Illinois
| | - Harriet Wit
- Department of Psychiatry and Behavioral NeuroscienceUniversity of Chicago Chicago Illinois
| |
Collapse
|
18
|
Nie L, Zhao Z, Wen X, Luo W, Ju T, Ren A, Wu B, Li J. Gray-matter structure in long-term abstinent methamphetamine users. BMC Psychiatry 2020; 20:158. [PMID: 32272912 PMCID: PMC7146984 DOI: 10.1186/s12888-020-02567-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Previous studies of brain structure in methamphetamine users have yielded inconsistent findings, possibly reflecting small sample size and inconsistencies in duration of methamphetamine abstinence as well as sampling and analyses methods. Here we report on a relatively large sample of abstinent methamphetamine users at various stages of long-term abstinence. METHODS Chronic methamphetamine users (n = 99), abstinent from the drug ranging from 12 to 621 days, and healthy controls (n = 86) received T1-weighted structural magnetic resonance imaging brain scans. Subcortical and cortical gray-matter volumes and cortical thickness were measured and the effects of group, duration of abstinence, duration of methamphetamine use and onset age of methamphetamine use were investigated using the Freesurfer software package. RESULTS Methamphetamine users did not differ from controls in gray-matter volumes, except for a cluster in the right lateral occipital cortex where gray-matter volume was smaller, and for regions mainly in the bilateral superior frontal gyrui where thickness was greater. Duration of abstinence correlated positively with gray-matter volumes in whole brain, bilateral accumbens nuclei and insulae clusters, and right hippocampus; and with thickness in a right insula cluster. Duration of methamphetamine use correlated negatively with gray-matter volume and cortical thickness of a cluster in the right lingual and pericalcarine cortex. CONCLUSIONS Chronic methamphetamine use induces hard-to-recover cortical thickening in bilateral superior frontal gyri and recoverable volumetric reduction in right hippocampus, bilateral accumbens nuclei and bilateral cortical regions around insulae. These alternations might contribute to methamphetamine-induced neurocognitive disfunctions and reflect a regional specific response of the brain to methamphetamine.
Collapse
Affiliation(s)
- Lili Nie
- grid.412901.f0000 0004 1770 1022Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Zeyong Zhao
- Detoxification and Narcotics Control Department of Sichuan Province, Chengdu, 610041 China
| | - Xiantao Wen
- Sichuan provincial Compulsory Drug Addiction Treatment Agency for Males, Ziyang, 641400 China
| | - Wei Luo
- Sichuan provincial Compulsory Drug Addiction Treatment Agency for Females, Deyang, 618007 China
| | - Tao Ju
- Hospital of Sichuan provincial Compulsory Drug Addiction Treatment Agency for Females, Deyang, 618007 China
| | - Anlian Ren
- Sichuan provincial Compulsory Drug Addiction Treatment Agency for Males, Ziyang, 641400 China
| | - Binbin Wu
- Hospital of Sichuan provincial Compulsory Drug Addiction Treatment Agency for Females, Deyang, 618007 China
| | - Jing Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
19
|
Traumatic brain injury and methamphetamine: A double-hit neurological insult. J Neurol Sci 2020; 411:116711. [DOI: 10.1016/j.jns.2020.116711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 11/27/2019] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
|
20
|
Sabrini S, Russell B, Wang G, Lin J, Kirk I, Curley L. Methamphetamine induces neuronal death: Evidence from rodent studies. Neurotoxicology 2019; 77:20-28. [PMID: 31812708 DOI: 10.1016/j.neuro.2019.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/23/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022]
Abstract
Animal studies have consistently observed neuronal death following methamphetamine (MA) administration, however, these have not been systematically reviewed. This systematic review aims to present the evidence for MA-induced neuronal death in animals (rodents) and identify the regions affected. Locating the brain regions in which neuronal death occurs in animal studies will provide valuable insight into the linkage between MA consumption and the structural alterations observed in the human brain. The data were collected from three databases: Scopus, Ovid, and the Web of Science. Thirty-seven studies met the inclusion criteria and were divided into two sub-groups, i.e. acute and repeated administration. Twenty-six (of 27) acute and ten (of 11) repeated administration studies observed neuronal death. A meta-analysis was not possible due to different variables between studies, i.e. species, treatment regimens, withdrawal periods, methods of quantification, and regions studied. Acute MA treatment induced neuronal death in the frontal cortex, striatum, and substantia nigra, but not in the hippocampus, whereas repeated MA administration led to neuronal loss in the hippocampus, frontal cortex, and striatum. In addition, when animals self-administered the drug, neuronal death was observed at much lower doses than the doses administered by experimenters. There is some overlap in the regions where neuronal death occurred in animals and the identified regions from human studies. For instance, gray matter deficits have been observed in the prefrontal cortex and hippocampus of MA users. The findings presented in this review implicate that not only does MA induce neuronal death in animals, but it also damages the same regions affected in human users. Despite the inter-species differences, animal studies have contributed significantly to addiction research, and are still of great assistance for future research with a more relevant model of compulsive drug use in humans.
Collapse
Affiliation(s)
- Sabrini Sabrini
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| | - Bruce Russell
- School of Pharmacy, University of Otago, New Zealand.
| | - Grace Wang
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, New Zealand.
| | - Joanne Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand.
| | - Ian Kirk
- School of Psychology, Faculty of Science, The University of Auckland, New Zealand.
| | - Louise Curley
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 New Zealand.
| |
Collapse
|
21
|
Sabrini S, Wang GY, Lin JC, Ian JK, Curley LE. Methamphetamine use and cognitive function: A systematic review of neuroimaging research. Drug Alcohol Depend 2019; 194:75-87. [PMID: 30414539 DOI: 10.1016/j.drugalcdep.2018.08.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 07/26/2018] [Accepted: 08/26/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long-term use of MA has been associated with cognitive dysfunction in several domains. Neuroimaging studies have also reported structural, metabolic, and functional changes in MA users. However, no systematic review has been conducted on those studies in MA users that combined neuroimaging and cognitive tasks. METHODS This article systematically reviews correlation between brain imaging measures and cognitive performance in subjects with current and previous history of MA use. Findings are categorized based on cognitive domain. RESULTS MA users performed more poorly than controls in all cognitive domains (psychomotor, working memory, attention, cognitive control, and decision- making) and a positive correlation has been repeatedly observed between performance and brain measures (regional volume/density, blood flow, glucose metabolism, FA value, NAA level, and activation) in MA users. Performance in cognitive control was consistently reported to show relationship with brain measures in the PFC and ACC, while decision- making consistently showed correlation with brain measures in the PFC, ACC, and striatum. CONCLUSIONS There is solid evidence for brain- behavior relationship in cognitive functioning in MA users, particularly in cognitive control and decision-making. More research with correlation analysis between brain-behavior and MA use parameters is strongly encouraged.
Collapse
Affiliation(s)
- Sabrini Sabrini
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Grace Y Wang
- Department of Psychology, Faculty of Health and Environmental Sciences, Auckland University of Technology, North Campus, 90 Akoranga Drive, Northcote, Auckland 0627, New Zealand.
| | - Joanne C Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - J K Ian
- School of Psychology, Faculty of Science, The University of Auckland, Science Centre, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Louise E Curley
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
22
|
Gray matter volume showed dynamic alterations in methamphetamine users at 6 and 12months abstinence: A longitudinal voxel-based morphometry study. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:350-355. [PMID: 28887180 DOI: 10.1016/j.pnpbp.2017.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Previous studies have demonstrated brain gray matter reduction in methamphetamine (MA) users; however, little is known about longitudinal brain structural alternations during abstinence. METHOD Brain volumes were compared among 30 MA-dependent patients (average 6.3years of drug use) at 6months' abstinence and 27 drug-naïve controls by voxel-based morphometry. A longitudinal analysis of MA subjects was performed from 6 to 12months' abstinence, and multiple regression analyses were performed between drug use patterns and gray matter volumes (GMV) at 6months' abstinence. RESULTS Compared with drug-naïve subjects, subjects with 6months' abstinent of MA showed significantly lower GMV in the precentral gyrus, caudate head, fusiform gyrus, and cerebellum. Compared to 6months' abstinence, GMV was greater in the cerebellum and lower in the cingulate gyrus at 12months' abstinence. Accumulated years of MA use negatively correlated with GMV in the right superior frontal gyrus, the right superior temporal cortex, and the right caudate nucleus (significant at the whole brain level, p<0.001; FWE cluster-corrected p<0.05). CONCLUSION The present study suggested that heavy MA users' GMV could show dynamic alterations in different brain regions at different time lengths of abstinence.
Collapse
|
23
|
Zhang Z, He L, Huang S, Fan L, Li Y, Li P, Zhang J, Liu J, Yang R. Alteration of Brain Structure With Long-Term Abstinence of Methamphetamine by Voxel-Based Morphometry. Front Psychiatry 2018; 9:722. [PMID: 30618890 PMCID: PMC6306455 DOI: 10.3389/fpsyt.2018.00722] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022] Open
Abstract
Background: A large portion of previous studies that have demonstrated brain gray matter reduction in individuals who use methamphetamine (MA) have focused on short-term abstinence, but few studies have focused on the effects of long-term abstinence of methamphetamine on brain structures. Materials and Methods: Our study includes 40 healthy controls and 44 abstinent methamphetamine-dependent (AMD) subjects who have abstained for at least 14 months. For every AMD subject, the age when they first used MA, the total time of MA use, the frequency of MA use in the last month before abstinence, the duration of abstinence and the craving score were recorded. Here we used magnetic resonance imaging (MRI) to measure the gray matter volume (GMV) of each subject with voxel-based morphometry method. Two-sample t-test (AlphaSim corrected) was performed to obtain brain regions with different gray matter volume (GMV) between groups. In addition, partial correlation coefficients adjusted for age, years of education, smoking, and drinking were calculated in the AMD group to assess associations between the mean GMV values in significant clusters and variables of MA use and abstinence. Results: Compared with the healthy control group, AMD group showed increased gray matter volumes in the bilateral cerebellum and decreased volumes in the right calcarine and right cuneus. Moreover, GMV of left cerebellum are positively correlated with the duration of abstinence in the AMD group (p = 0.040, r = 0.626). Conclusions: The present study showed that the gray matter volume in some brain regions is abnormal in the AMD subjects with long-term abstinence. Changes in gray matter volume of visual and cognitive function regions suggested that these areas play important roles in the progress of MA addiction and abstinence. In addition, positive correlation between GMV of the left cerebellum crus and duration of abstinence suggested that prolonged abstinence is beneficial to cognitive function recovery.
Collapse
Affiliation(s)
- Zhixue Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Lei He
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shucai Huang
- Department of Psychiatry, The Fourth People's Hospital of Wuhu, Wuhu, China
| | - Lidan Fan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yining Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Li
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ru Yang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
24
|
Li Y, Dong H, Li F, Wang G, Zhou W, Yu R, Zhang L. Microstructures in striato-thalamo-orbitofrontal circuit in methamphetamine users. Acta Radiol 2017; 58:1378-1385. [PMID: 28181466 DOI: 10.1177/0284185117692170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Background Striato-thalamo-orbitofrontal (STO) circuit plays a key role in the development of drug addiction. Few studies have investigated its microstructural abnormalities in methamphetamine (MA) users. Purpose To evaluate the microstructural changes and relevant clinical relevance of the STO circuit in MA users using diffusion tensor imaging (DTI). Material and Methods Twenty-eight MA users and 28 age-matched normal volunteers were enrolled. 3T magnetic resonance imaging (MRI) was employed to obtain structural T1-weighted (T1W) imaging and diffusion-tensor imaging (DTI) data. Freesurfer software was used for automated segmentation of the bilateral nucleus accumbens (NAc), thalami, and orbitofrontal cortex (OFC). Four DTI measures maps, fractional anisotropy (FA), mean diffusivity (MD), axial diffusion (AD), and radial diffusion (RD) were generated and non-linearly co-registered to structural space. Comparisons of DTI measures of the STO circuit were carried out between MA and controls using repeated measures analysis of variance. Correlation analyses were performed between STO circuit DTI measures and clinical characteristics. Results The MA group had significant FA reduction in the bilateral NAc, OFC, and right thalamus ( P < 0.05). Lower left OFC FA and right NAc FA/AD were associated with longer duration of MA use. Lower right OFC FA was associated with younger age at first MA use. Higher FA and lower MD/RD in the thalamus, as well as higher left OFC RD, were associated with increased psychiatric symptoms. Conclusion The STO circuit has reduced microstructural integrity in MA users. Microstructural changes in the thalamus may compensate for dysfunction in functionally connected cortices, which needs further investigation.
Collapse
Affiliation(s)
- Yadi Li
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Haibo Dong
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Feng Li
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Gaoyan Wang
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Wenhua Zhou
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, PR China
| | - Rongbin Yu
- Department of Radiology, Ningbo Medical Treatment Center Lihuili Hospital, Ningbo University, Ningbo, PR China
| | - Lingjun Zhang
- College of Science & Technology, Ningbo University, Ningbo, PR China
| |
Collapse
|
25
|
Wang Z, Suh J, Duan D, Darnley S, Jing Y, Zhang J, O'Brien C, Childress AR. A hypo-status in drug-dependent brain revealed by multi-modal MRI. Addict Biol 2017; 22:1622-1631. [PMID: 27654848 DOI: 10.1111/adb.12459] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 11/30/2022]
Abstract
Drug addiction is a chronic brain disorder with no proven effective cure. Assessing both structural and functional brain alterations by using multi-modal, rather than purely unimodal imaging techniques, may provide a more comprehensive understanding of the brain mechanisms underlying addiction, which in turn may facilitate future treatment strategies. However, this type of research remains scarce in the literature. We acquired multi-modal magnetic resonance imaging from 20 cocaine-addicted individuals and 19 age-matched controls. Compared with controls, cocaine addicts showed a multi-modal hypo-status with (1) decreased brain tissue volume in the medial and lateral orbitofrontal cortex (OFC); (2) hypo-perfusion in the prefrontal cortex, anterior cingulate cortex, insula, right temporal cortex and dorsolateral prefrontal cortex and (3) reduced irregularity of resting state activity in the OFC and limbic areas, as well as the cingulate, visual and parietal cortices. In the cocaine-addicted brain, larger tissue volume in the medial OFC, anterior cingulate cortex and ventral striatum and smaller insular tissue volume were associated with higher cocaine dependence levels. Decreased perfusion in the amygdala and insula was also correlated with higher cocaine dependence levels. Tissue volume, perfusion, and brain entropy in the insula and prefrontal cortex, all showed a trend of negative correlation with drug craving scores. The three modalities showed voxel-wise correlation in various brain regions, and combining them improved patient versus control brain classification accuracy. These results, for the first time, demonstrate a comprehensive cocaine-dependence and craving-related hypo-status regarding the tissue volume, perfusion and resting brain irregularity in the cocaine-addicted brain.
Collapse
Affiliation(s)
- Ze Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science; Hangzhou Normal University; China
- Affiliated Hospital of Hangzhou Normal University; China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments; China
| | - Jesse Suh
- Department of Psychiatry, Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
- VISN-4 Mental Illness Research, Education and Clinical Center; VA Medical Center; Philadelphia PA USA
| | - Dingna Duan
- School of Biomedical Engineering; Zhejiang University; China
| | - Stefanie Darnley
- Department of Psychiatry, Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - Ying Jing
- Center for Cognition and Brain Disorders, Institutes of Psychological Science; Hangzhou Normal University; China
- Affiliated Hospital of Hangzhou Normal University; China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments; China
| | - Jian Zhang
- Center for Cognition and Brain Disorders, Institutes of Psychological Science; Hangzhou Normal University; China
- Affiliated Hospital of Hangzhou Normal University; China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments; China
| | - Charles O'Brien
- Department of Psychiatry, Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
- VISN-4 Mental Illness Research, Education and Clinical Center; VA Medical Center; Philadelphia PA USA
| | - Anna Rose Childress
- Department of Psychiatry, Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
- VISN-4 Mental Illness Research, Education and Clinical Center; VA Medical Center; Philadelphia PA USA
| |
Collapse
|
26
|
Disrupted iron regulation in the brain and periphery in cocaine addiction. Transl Psychiatry 2017; 7:e1040. [PMID: 28221362 PMCID: PMC5438021 DOI: 10.1038/tp.2016.271] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/06/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023] Open
Abstract
Stimulant drugs acutely increase dopamine neurotransmission in the brain, and chronic use leads to neuroadaptive changes in the mesolimbic dopamine system and morphological changes in basal ganglia structures. Little is known about the mechanisms underlying these changes but preclinical evidence suggests that iron, a coenzyme in dopamine synthesis and storage, may be a candidate mediator. Iron is present in high concentrations in the basal ganglia and stimulant drugs may interfere with iron homeostasis. We hypothesised that morphological brain changes in cocaine addiction relate to abnormal iron regulation in the brain and periphery. We determined iron concentration in the brain, using quantitative susceptibility mapping, and in the periphery, using iron markers in circulating blood, in 44 patients with cocaine addiction and 44 healthy controls. Cocaine-addicted individuals showed excess iron accumulation in the globus pallidus, which strongly correlated with duration of cocaine use, and mild iron deficiency in the periphery, which was associated with low iron levels in the red nucleus. Our findings show that iron dysregulation occurs in cocaine addiction and suggest that it arises consequent to chronic cocaine use. Putamen enlargement in these individuals was unrelated to iron concentrations, suggesting that these are co-occurring morphological changes that may respectively reflect predisposition to, and consequences of cocaine addiction. Understanding the mechanisms by which cocaine affects iron metabolism may reveal novel therapeutic targets, and determine the value of iron levels in the brain and periphery as biomarkers of vulnerability to, as well as progression and response to treatment of cocaine addiction.
Collapse
|
27
|
Brooks S, Burch K, Maiorana S, Cocolas E, Schioth H, Nilsson E, Kamaloodien K, Stein D. Psychological intervention with working memory training increases basal ganglia volume: A VBM study of inpatient treatment for methamphetamine use. Neuroimage Clin 2016; 12:478-91. [PMID: 27625988 PMCID: PMC5011179 DOI: 10.1016/j.nicl.2016.08.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 01/05/2023]
Abstract
BACKGROUND Protracted methamphetamine (MA) use is associated with decreased control over drug craving and altered brain volume in the frontostriatal network. However, the nature of volumetric changes following a course of psychological intervention for MA use is not yet known. METHODS 66 males (41 MA patients, 25 healthy controls, HC) between the ages of 18-50 were recruited, the MA patients from new admissions to an in-patient drug rehabilitation centre and the HC via public advertisement, both in Cape Town, South Africa. 17 MA patients received 4 weeks of treatment as usual (TAU), and 24 MA patients completed TAU plus daily 30-minute cognitive training (CT) using an N-back working memory task. Magnetic resonance imaging (MRI) at baseline and 4-week follow-up was acquired and voxel-based morphometry (VBM) was used for analysis. RESULTS TAU was associated with larger bilateral striatum (caudate/putamen) volume, whereas CT was associated with more widespread increases of the bilateral basal ganglia (incorporating the amygdala and hippocampus) and reduced bilateral cerebellum volume coinciding with improvements in impulsivity scores. CONCLUSIONS While psychological intervention is associated with larger volume in mesolimbic reward regions, the utilisation of additional working memory training as an adjunct to treatment may further normalize frontostriatal structure and function.
Collapse
Affiliation(s)
- S.J. Brooks
- Department of Psychiatry and Mental Health, Groote Schuur Hospital and University of Cape Town, MRC Unit on Anxiety and Stress Disorders, South Africa
| | - K.H. Burch
- Department of Psychiatry and Mental Health, Groote Schuur Hospital and University of Cape Town, MRC Unit on Anxiety and Stress Disorders, South Africa
- Department of Neuroscience, University of Nottingham, UK
| | - S.A. Maiorana
- Department of Psychology, University of Cape Town, South Africa
| | - E. Cocolas
- Department of Psychiatry and Mental Health, Groote Schuur Hospital and University of Cape Town, MRC Unit on Anxiety and Stress Disorders, South Africa
| | - H.B. Schioth
- Department of Neuroscience, Uppsala University, Sweden
| | - E.K. Nilsson
- Department of Neuroscience, Uppsala University, Sweden
| | - K. Kamaloodien
- Department of Psychology, University of the Western Cape, Bellville, Cape Town, South Africa
| | - D.J. Stein
- Department of Psychiatry and Mental Health, Groote Schuur Hospital and University of Cape Town, MRC Unit on Anxiety and Stress Disorders, South Africa
| |
Collapse
|
28
|
Chronic Methamphetamine Effects on Brain Structure and Function in Rats. PLoS One 2016; 11:e0155457. [PMID: 27275601 PMCID: PMC4898739 DOI: 10.1371/journal.pone.0155457] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 04/28/2016] [Indexed: 01/02/2023] Open
Abstract
Methamphetamine (MA) addiction is a growing epidemic worldwide. Chronic MA use has been shown to lead to neurotoxicity in rodents and humans. Magnetic resonance imaging (MRI) studies in MA users have shown enlarged striatal volumes and positron emission tomography (PET) studies have shown decreased brain glucose metabolism (BGluM) in the striatum of detoxified MA users. The present study examines structural changes of the brain, observes microglial activation, and assesses changes in brain function, in response to chronic MA treatment. Rats were randomly split into three distinct treatment groups and treated daily for four months, via i.p. injection, with saline (controls), or low dose (LD) MA (4 mg/kg), or high dose (HD) MA (8 mg/kg). Sixteen weeks into the treatment period, rats were injected with a glucose analog, [18F] fluorodeoxyglucose (FDG), and their brains were scanned with micro-PET to assess regional BGluM. At the end of MA treatment, magnetic resonance imaging at 21T was performed on perfused rats to determine regional brain volume and in vitro [3H]PK 11195 autoradiography was performed on fresh-frozen brain tissue to measure microglia activation. When compared with controls, chronic HD MA-treated rats had enlarged striatal volumes and increases in [3H]PK 11195 binding in striatum, the nucleus accumbens, frontal cortical areas, the rhinal cortices, and the cerebellar nuclei. FDG microPET imaging showed that LD MA-treated rats had higher BGluM in insular and somatosensory cortices, face sensory nucleus of the thalamus, and brainstem reticular formation, while HD MA-treated rats had higher BGluM in primary and higher order somatosensory and the retrosplenial cortices, compared with controls. HD and LD MA-treated rats had lower BGluM in the tail of the striatum, rhinal cortex, and subiculum and HD MA also had lower BGluM in hippocampus than controls. These results corroborate clinical findings and help further examine the mechanisms behind MA-induced neurotoxicity.
Collapse
|
29
|
Andres T, Ernst T, Oishi K, Greenstein D, Nakama H, Chang L. Brain Microstructure and Impulsivity Differ between Current and Past Methamphetamine Users. J Neuroimmune Pharmacol 2016; 11:531-41. [PMID: 27137938 DOI: 10.1007/s11481-016-9675-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/19/2016] [Indexed: 12/28/2022]
Abstract
Methamphetamine (Meth) use disorder continues to be highly prevalent worldwide. Meth users have higher impulsivity and brain abnormalities that may be different between current and past Meth users. The current study assessed impulsivity and depressive symptoms in 94 participants (27 current Meth users, 32 past Meth users and 35 non-drug user controls). Additionally, brain microstructure was assessed using diffusion tensor imaging (DTI); fractional anisotropy (FA) and mean diffusivity (MD) were assessed in the striatum, and FA, MD, radial and axial diffusivity were quantified in five white matter structures using DtiStudio.Across the three subject groups, current users had the highest self-reported impulsivity scores, while both Meth user groups had larger striatal structures than the controls. Past Meth users had the highest FA and lowest MD in the striatum, which is likely due to greater magnetic susceptibility from higher iron content and greater dendritic spine density. In white matter tracts, current Meth users had higher AD than past users, indicating greater water diffusion along the axons, and suggesting inflammation with axonal swelling. In contrast, past users had the lowest AD, indicating more restricted diffusion, which might have resulted from reactive gliosis. Although current Meth users had greater impulsivity than past users, the brain microstructural abnormalities showed differences that may reflect different stages of neuroinflammation or iron-induced neurodegeneration. Combining current and past Meth users may lead to greater variability in studies of Meth users. Longitudinal studies are needed to further evaluate the relationship between recency of Meth use and brain microstructure.
Collapse
Affiliation(s)
- Tamara Andres
- Neuroscience and MR Research Program, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Thomas Ernst
- Neuroscience and MR Research Program, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Kenichi Oishi
- Radiology and Radiological Sciences, Johns Hopkins Medicine, Baltimore, MD, USA
| | - David Greenstein
- Neuroscience and MR Research Program, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Helenna Nakama
- VA Pacific Islands Health Care System, Honolulu, HI, USA
| | - Linda Chang
- Neuroscience and MR Research Program, John A. Burn School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
30
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
31
|
Villemonteix T, De Brito SA, Kavec M, Balériaux D, Metens T, Slama H, Baijot S, Mary A, Peigneux P, Massat I. Grey matter volumes in treatment naïve vs. chronically treated children with attention deficit/hyperactivity disorder: a combined approach. Eur Neuropsychopharmacol 2015; 25:1118-27. [PMID: 25934396 DOI: 10.1016/j.euroneuro.2015.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/02/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Psychostimulants are the first-line treatment in attention deficit/hyperactivity disorder (ADHD), but their effects on brain development remain poorly understood. In particular, previous structural magnetic resonance imaging (sMRI) studies only investigated treatment effects on grey matter (GM) volumes in selected regions of interest (ROIs). In this study, voxel-based morphometry (VBM) was used to assess medication-related GM volume differences across the entire brain. Automated tracing measurements of selected ROIs were also obtained. Three groups (77 participants aged 7-to-13 year old) underwent MRI scans and were compared: never-medicated children with ADHD (n=33), medicated (methylphenidate) children with ADHD (n=20) and typically developing children (TD; n=24). Optimised VBM was used to investigate regional GM volumes, controlling for age and gender. Automated tracing procedures were also used to assess the average volume of the caudate nucleus, the amygdala and the nucleus accumbens. When compared to both medicated children with ADHD and TD children, never-medicated children with ADHD exhibited decreased GM volume in the insula and in the middle temporal gyrus. When compared to TD children, medicated children with ADHD had decreased GM volume in the middle frontal gyrus and in the precentral gyrus. Finally, ROI analyses revealed a significant association between duration of treatment and GM volume of the left nucleus accumbens in medicated children with ADHD. In conclusion, this study documents potential methylphenidate-related GM volume normalization and deviation in previously unexplored brain structures, and reports a positive association between treatment history and GM volume in the nucleus accumbens, a key region for reward-processing.
Collapse
Affiliation(s)
| | - Stéphane A De Brito
- School of psychology, University of Birmingham, Edgbaston, Birmingham B15 2TTT
| | - Martin Kavec
- Department of Radiology, Clinics of Magnetic Resonance, Erasme Hospital, Brussels, Belgium, UK
| | - Danielle Balériaux
- Department of Radiology, Clinics of Magnetic Resonance, Erasme Hospital, Brussels, Belgium, UK
| | - Thierry Metens
- Department of Radiology, Clinics of Magnetic Resonance, Erasme Hospital, Brussels, Belgium, UK
| | - Hichem Slama
- UNESCOG - Research Unit in Cognitive Neurosciences, ULB, Belgium; Department of Clinical and Cognitive Neuropsychology, Erasme Hospital, 808 Lennik Street, CP601, 1070 Brussels, Belgium; UR2NF - Université Libre de Bruxelles (ULB), Belgium
| | - Simon Baijot
- UNESCOG - Research Unit in Cognitive Neurosciences, ULB, Belgium; UR2NF - Université Libre de Bruxelles (ULB), Belgium
| | - Alison Mary
- UR2NF - Université Libre de Bruxelles (ULB), Belgium
| | - Philippe Peigneux
- UR2NF - Université Libre de Bruxelles (ULB), Belgium; UNI - ULB Neurosciences Institute, ULB, Belgium
| | - Isabelle Massat
- UNI - ULB Neurosciences Institute, ULB, Belgium; National Fund of Scientific Research (FNRS), Belgium; INSERM, U894, 2 ter rue d'Alésia, 75014 Paris, France; UR2NF - Université Libre de Bruxelles (ULB), Belgium
| |
Collapse
|
32
|
Hall MG, Alhassoon OM, Stern MJ, Wollman SC, Kimmel CL, Perez-Figueroa A, Radua J. Gray matter abnormalities in cocaine versus methamphetamine-dependent patients: a neuroimaging meta-analysis. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2015; 41:290-9. [PMID: 26125488 DOI: 10.3109/00952990.2015.1044607] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Voxel-based morphometry has been used to explore gray matter alterations in cocaine and methamphetamine dependence. However, the results of this research are inconsistent. OBJECTIVES The current study meta-analytically examined neuroimaging findings of all studies published before 2014 using the Anisotropic Effect-Size Signed Differential Mapping (ES-SDM). METHODS Independent investigators searched four major databases for relevant neuroimaging studies involving cocaine and methamphetamine dependence. Nine cocaine and four methamphetamine studies met inclusion criteria. RESULTS Results indicated that cocaine- and methamphetamine-dependent patients share overlapping regional gray matter abnormalities compared to healthy controls. However, subgroup analysis showed some regional differences; with methamphetamine showing more prominent reductions in the left superior temporal gyrus and the right inferior parietal lobe. Reductions in the right insula and the left superior frontal gyrus were more prominent in cocaine dependence. Moderator analyses indicated that with longer use, cocaine is associated with reductions in the right hippocampus, right middle temporal gyrus, and right inferior frontal gyrus, while methamphetamine is associated with reductions in the left precentral gyrus and the right supramarginal gyrus. CONCLUSION These findings indicate that cocaine and methamphetamine dependence are significantly and differentially associated with gray matter abnormalities. Results also point to possible gray matter recovery after abstinence from methamphetamine. Although the sample size was adequate, these findings should be considered preliminary and analyses should be revisited with additional primary research focusing on long or short-term duration of use, as well as the length of abstinence.
Collapse
Affiliation(s)
- Matthew G Hall
- California School of Professional Psychology , San Diego , CA
| | | | | | | | | | | | | |
Collapse
|
33
|
Investigating the microstructural and neurochemical environment within the basal ganglia of current methamphetamine abusers. Drug Alcohol Depend 2015; 149:122-7. [PMID: 25700612 DOI: 10.1016/j.drugalcdep.2015.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/23/2022]
Abstract
BACKGROUND Methamphetamine is a highly addictive psychostimulant and the medical, social, and economic consequences associated with its use have become a major international problem. Current evidence has shown methamphetamine to be particularly neurotoxic to dopamine neurons and striatal structures within the basal ganglia. A previous study from our laboratory demonstrated larger putamen volumes in actively using methamphetamine-dependent participants. The purpose of this current study was to determine whether striatal structures in the same sample of participants also exhibit pathology on the microstructural and molecular level. METHODS Diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) were carried out in current methamphetamine users (n = 18) and healthy controls (n = 22) to investigate diffusion indices and neurometabolite levels in the basal ganglia. RESULTS Contrary to findings from previous DTI and MRS studies, no significant differences in diffusion indices or metabolite levels were observed in the basal ganglia regions of current methamphetamine users. CONCLUSIONS These findings differ from those reported in abstinent users and the absence of diffusion and neurochemical abnormalities may suggest that striatal enlargement in current methamphetamine use may be due to mechanisms other than edema and glial proliferation.
Collapse
|
34
|
London ED, Kohno M, Morales AM, Ballard ME. Chronic methamphetamine abuse and corticostriatal deficits revealed by neuroimaging. Brain Res 2014; 1628:174-85. [PMID: 25451127 DOI: 10.1016/j.brainres.2014.10.044] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 01/05/2023]
Abstract
Despite aggressive efforts to contain it, methamphetamine use disorder continues to be major public health problem; and with generic behavioral therapies still the mainstay of treatment for methamphetamine abuse, rates of attrition and relapse remain high. This review summarizes the findings of structural, molecular, and functional neuroimaging studies of methamphetamine abusers, focusing on cortical and striatal abnormalities and their potential contributions to cognitive and behavioral phenotypes that can serve to promote compulsive drug use. These studies indicate that individuals with a history of chronic methamphetamine abuse often display several signs of corticostriatal dysfunction, including abnormal gray- and white-matter integrity, monoamine neurotransmitter system deficiencies, neuroinflammation, poor neuronal integrity, and aberrant patterns of brain connectivity and function, both when engaged in cognitive tasks and at rest. More importantly, many of these neural abnormalities were found to be linked with certain addiction-related phenotypes that may influence treatment response (e.g., poor self-control, cognitive inflexibility, maladaptive decision-making), raising the possibility that they may represent novel therapeutic targets.
Collapse
Affiliation(s)
- Edythe D London
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024; Departments of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California 90024; Departments of Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90024.
| | - Milky Kohno
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| | - Angelica M Morales
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| | - Michael E Ballard
- Departments of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California 90024
| |
Collapse
|
35
|
Li M, Tian J, Zhang R, Qiu Y, Wen X, Ma X, Wang J, Xu Y, Jiang G, Huang R. Abnormal cortical thickness in heroin-dependent individuals. Neuroimage 2014; 88:295-307. [DOI: 10.1016/j.neuroimage.2013.10.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/27/2013] [Accepted: 10/09/2013] [Indexed: 11/17/2022] Open
|
36
|
Jan RK, Lin JC, McLaren DG, Kirk IJ, Kydd RR, Russell BR. The effects of methylphenidate on cognitive control in active methamphetamine dependence using functional magnetic resonance imaging. Front Psychiatry 2014; 5:20. [PMID: 24639656 PMCID: PMC3944404 DOI: 10.3389/fpsyt.2014.00020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 02/07/2014] [Indexed: 01/28/2023] Open
Abstract
Methamphetamine (MA) dependence is associated with cognitive deficits. Methylphenidate (MPH) has been shown to improve inhibitory control in healthy and cocaine-dependent subjects. This study aimed to understand the neurophysiological effects before and after acute MPH administration in active MA-dependent and control subjects. Fifteen MA-dependent and 18 control subjects aged 18-46 years were scanned using functional magnetic resonance imaging before and after either a single oral dose of MPH (18 mg) or placebo while performing a color-word Stroop task. Baseline accuracy was lower (p = 0.026) and response time (RT) was longer (p < 0.0001) for the incongruent compared to congruent condition, demonstrating the task probed cognitive control. Increased activation of the dorsolateral prefrontal cortex (DLPFC) and parietal cortex during the incongruent and Stroop effect conditions, respectively was observed in MA-dependent compared to control subjects (p < 0.05), suggesting the need to recruit neural resources within these regions for conflict resolution. Post- compared to pre-MPH treatment, increased RT and DLPFC activation for the Stroop effect were observed in MA-dependent subjects (p < 0.05). In comparison to MPH-treated controls and placebo-treated MA-dependent subjects, MPH-treated MA-dependent subjects showed decreased activation of parietal and occipital regions during the incongruent and Stroop effect conditions (p < 0.05). These findings suggest that in MA-dependent subjects, MPH facilitated increased recruitment of the DLPFC for Stroop conflict resolution, and a decreased need for recruitment of neural resources in parietal and occipital regions compared to the other groups, while maintaining a comparable level of task performance to that achieved pre-drug administration. Due to the small sample size, the results from this study are preliminary; however, they inform us about the effects of MPH on the neural correlates of cognitive control in active MA-dependent subjects.
Collapse
Affiliation(s)
- Reem K Jan
- School of Pharmacy, University of Auckland , Auckland , New Zealand ; Centre for Brain Research, University of Auckland , Auckland , New Zealand
| | - Joanne C Lin
- School of Pharmacy, University of Auckland , Auckland , New Zealand ; Centre for Brain Research, University of Auckland , Auckland , New Zealand
| | - Donald G McLaren
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital , Boston, MA , USA ; Department of Neurology, Massachusetts General Hospital , Boston, MA , USA ; Harvard Medical School , Boston, MA , USA
| | - Ian J Kirk
- Centre for Brain Research, University of Auckland , Auckland , New Zealand ; Department of Psychology, University of Auckland , Auckland , New Zealand
| | - Rob R Kydd
- Centre for Brain Research, University of Auckland , Auckland , New Zealand ; Department of Psychological Medicine, University of Auckland , Auckland , New Zealand
| | - Bruce R Russell
- School of Pharmacy, University of Auckland , Auckland , New Zealand ; Centre for Brain Research, University of Auckland , Auckland , New Zealand
| |
Collapse
|
37
|
Groman SM, Morales AM, Lee B, London ED, Jentsch JD. Methamphetamine-induced increases in putamen gray matter associate with inhibitory control. Psychopharmacology (Berl) 2013; 229:527-38. [PMID: 23748383 PMCID: PMC3770792 DOI: 10.1007/s00213-013-3159-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Problematic drug use is associated with difficulty in exerting self-control over behaviors, and this difficulty may be a consequence of atypical morphometric characteristics that are exhibited by drug-experienced individuals. The extent to which these structural abnormalities result from drug use or reflect neurobiological risk factors that predate drug use, however, is unknown. OBJECTIVES The purpose of this study is to determine how methamphetamine affects corticostriatal structure and how drug-induced changes relate to alterations in inhibitory control. METHODS Structural magnetic resonance images and positron emission tomography (PET) scans, assessing dopamine D₂-like receptor and transporter availability, were acquired in monkeys trained to acquire, retain, and reverse three-choice visual discrimination problems before and after exposure to an escalating dose regimen of methamphetamine (or saline, as a control). Voxel-based morphometry was used to compare changes in corticostriatal gray matter between methamphetamine- and saline-exposed monkeys. The change in gray matter before and after the dosing regimen was compared to the change in the behavioral performance and in dopaminergic markers measured with PET. RESULTS Methamphetamine exposure, compared to saline, increased gray matter within the right putamen. These changes were positively correlated with changes in performance of methamphetamine-exposed monkeys in the reversal phase, and were negatively correlated with alterations in D₂-like receptor and DAT availability. CONCLUSIONS The results provide the first evidence that exposure to a methamphetamine dosing regimen that resembles human use alters the structural integrity of the striatum and that gray-matter abnormalities detected in human methamphetamine users are due, at least in part, to the pharmacological effects of drug experience.
Collapse
Affiliation(s)
| | - Angelica M. Morales
- Department of Psychiatry & Bio-behavioral Sciences, University of California, Los Angeles
| | - Buyean Lee
- Department of Psychiatry & Bio-behavioral Sciences, University of California, Los Angeles
| | - Edythe D. London
- Department of Psychiatry & Bio-behavioral Sciences, University of California, Los Angeles,Department of Medical and Molecular Pharmacology, University of California, Los Angeles
| | - James David Jentsch
- Department of Psychology, University of California, Los Angeles,Department of Psychiatry & Bio-behavioral Sciences, University of California, Los Angeles,Correspondence should be sent to: J. David Jentsch () UCLA Department of Psychology PO Box 951563 Los Angeles, CA 90095-1563
| |
Collapse
|
38
|
Ersche KD, Williams GB, Robbins TW, Bullmore ET. Meta-analysis of structural brain abnormalities associated with stimulant drug dependence and neuroimaging of addiction vulnerability and resilience. Curr Opin Neurobiol 2013; 23:615-24. [DOI: 10.1016/j.conb.2013.02.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 01/21/2023]
|
39
|
Ersche KD, Jones PS, Williams GB, Smith DG, Bullmore ET, Robbins TW. Distinctive personality traits and neural correlates associated with stimulant drug use versus familial risk of stimulant dependence. Biol Psychiatry 2013; 74:137-44. [PMID: 23273722 PMCID: PMC3705207 DOI: 10.1016/j.biopsych.2012.11.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/20/2012] [Accepted: 11/20/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Stimulant drugs such as cocaine and amphetamine have a high abuse liability, but not everyone who uses them develops dependence. However, the risk for dependence is increased for individuals with a family history of addiction. We hypothesized that individuals without a family history of dependence who have been using cocaine recreationally for several years but have not made the transition to dependence will differ in terms of personality traits and brain structure from individuals who are either dependent on stimulants or at risk for dependence. METHODS We compared 27 individuals without a familial risk of dependence who had been using cocaine recreationally with 50 adults with stimulant dependence, their nondependent siblings (n = 50), and unrelated healthy volunteers (n = 52) who had neither a personal nor a family history of dependence. All participants underwent a magnetic resonance imaging brain scan and completed a selection of personality measures that have been associated with substance abuse. RESULTS Increased sensation-seeking traits and abnormal orbitofrontal and parahippocampal volume were shared by individuals who were dependent on stimulant drugs or used cocaine recreationally. By contrast, increased levels of impulsive and compulsive personality traits and limbic-striatal enlargement were shared by stimulant-dependent individuals and their unaffected siblings. CONCLUSIONS We provide evidence for distinct neurobiological phenotypes that are either associated with familial vulnerability for dependence or with regular stimulant drug use. Our findings further suggest that some individuals with high sensation-seeking traits but no familial vulnerability for dependence are likely to use cocaine but may have relatively low risk for developing dependence.
Collapse
Affiliation(s)
- Karen D. Ersche
- University of Cambridge, Behavioural and Clinical Neuroscience Institute, Departments of Experimental Psychology and Psychiatry, Cambridge, United Kingdom,Address correspondence to Karen D. Ersche, Ph.D., University of Cambridge, Department of Psychiatry, Behavioural and Clinical Neuroscience Institute, Brain Mapping Unit, Herchel Smith Building, Cambridge, Cambridgeshire CB2 0SZ, United Kingdom
| | - P. Simon Jones
- University of Cambridge, Behavioural and Clinical Neuroscience Institute, Departments of Experimental Psychology and Psychiatry, Cambridge, United Kingdom
| | - Guy B. Williams
- University of Cambridge, Behavioural and Clinical Neuroscience Institute, Departments of Experimental Psychology and Psychiatry, Cambridge, United Kingdom,Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Dana G. Smith
- University of Cambridge, Behavioural and Clinical Neuroscience Institute, Departments of Experimental Psychology and Psychiatry, Cambridge, United Kingdom
| | - Edward T. Bullmore
- University of Cambridge, Behavioural and Clinical Neuroscience Institute, Departments of Experimental Psychology and Psychiatry, Cambridge, United Kingdom,GlaxoSmithKline, Clinical Unit Cambridge, United Kingdom,Cambridgeshire & Peterborough National Health Service Foundation Trust, Cambridge, United Kingdom
| | - Trevor W. Robbins
- University of Cambridge, Behavioural and Clinical Neuroscience Institute, Departments of Experimental Psychology and Psychiatry, Cambridge, United Kingdom
| |
Collapse
|