1
|
Gakh O, Wilkins JM, Guo Y, Popescu BF, Weigand SD, Kalinowska-Lyszczarz A, Lucchinetti CF. Infrared spectral profiling of demyelinating activity in multiple sclerosis brain tissue. Acta Neuropathol Commun 2024; 12:146. [PMID: 39256864 PMCID: PMC11385516 DOI: 10.1186/s40478-024-01854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/25/2024] [Indexed: 09/12/2024] Open
Abstract
Multiple sclerosis (MS) is a leading cause of non-traumatic disability in young adults. The highly dynamic nature of MS lesions has made them difficult to study using traditional histopathology due to the specificity of current stains. This requires numerous stains to track and study demyelinating activity in MS. Thus, we utilized Fourier transform infrared (FTIR) spectroscopy to generate holistic biomolecular profiles of demyelinating activities in MS brain tissue. Multivariate analysis can differentiate MS tissue from controls. Analysis of the absorbance spectra shows profound reductions of lipids, proteins, and phosphate in white matter lesions. Changes in unsaturated lipids and lipid chain length indicate oxidative damage in MS brain tissue. Altered lipid and protein structures suggest changes in MS membrane structure and organization. Unique carbohydrate signatures are seen in MS tissue compared to controls, indicating altered metabolic activities. Cortical lesions had increased olefinic lipid content and abnormal membrane structure in normal appearing MS cortex compared to controls. Our results suggest that FTIR spectroscopy can further our understanding of lesion evolution and disease mechanisms in MS paving the way towards improved diagnosis, prognosis, and development of novel therapeutics.
Collapse
Affiliation(s)
- Oleksandr Gakh
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Yong Guo
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Bogdan F Popescu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
- Cameco MS Neuroscience Research Center, University of Saskatchewan, Saskatoon, SK, S7K 0M7, Canada
| | - Stephen D Weigand
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alicja Kalinowska-Lyszczarz
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 49 Przybyszewskiego Street, 60-355, Poznan, Poland
| | - Claudia F Lucchinetti
- Department of Neurology, Frank and Charmaine Denius Dean's Chair in Medical Leadership, Dean of Dell Medical School, Senior Vice President Medical Affairs, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
2
|
Saldivia N, Heller G, Zelada D, Whitehair J, Venkat N, Konjeti A, Savitzky R, Samano S, Simchuk D, van Breemen R, Givogri MI, Bongarzone ER. Deficiency of galactosyl-ceramidase in adult oligodendrocytes worsens disease severity during chronic experimental allergic encephalomyelitis. Mol Ther 2024; 32:3163-3176. [PMID: 38937968 PMCID: PMC11403238 DOI: 10.1016/j.ymthe.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024] Open
Abstract
Galactosyl-ceramidase (GALC) is a ubiquitous lysosomal enzyme crucial for the correct myelination of the mammalian nervous system during early postnatal development. However, the physiological consequence of GALC deficiency in the adult brain remains unknown. In this study, we found that mice with conditional ablation of GALC activity in post-myelinating oligodendrocytes were lethally sensitized when challenged with chronic experimental allergic encephalomyelitis (EAE), in contrast with the non-lethal dysmyelination observed in Galc-ablated mice without the EAE challenge. Mechanistically, we found strong inflammatory demyelination without remyelination and an impaired fusion of lysosomes and autophagosomes with accumulation of myelin debris after a transcription factor EB-dependent increase in the lysosomal autophagosome flux. These results indicate that the physiological impact of GALC deficiency is highly influenced by the cell context (oligodendroglial vs. global expression), the presence of inflammation, and the developmental time when it happens (pre-myelination vs. post-myelination). We conclude that Galc expression in adult oligodendrocytes is crucial for the maintenance of adult central myelin and to decrease vulnerability to additional demyelinating insults.
Collapse
Affiliation(s)
- Natalia Saldivia
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| | - Gregory Heller
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Diego Zelada
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jason Whitehair
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Nikhil Venkat
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ashna Konjeti
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Reina Savitzky
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shayla Samano
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Daniel Simchuk
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | | | - Maria I Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ernesto R Bongarzone
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Rahmati S, Galavi Z, Kavyani B, Arshadi H, Geerts J, Sharifi H. Maternal and neonatal outcomes in pregnant women with multiple sclerosis disease: A systematic review and meta-analysis. Midwifery 2024; 134:104004. [PMID: 38703425 DOI: 10.1016/j.midw.2024.104004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/22/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVES Little is known regarding the impact of multiple sclerosis (MS) on maternal and neonatal outcomes. Consequently, this systematic review and meta-analysis aimed to study the impacts of MS on maternal and neonatal outcomes in pregnant women with a history of MS. METHODS This review was designed in line with the PRISMA guidelines. Two researchers conducted independent reviews of the literature without time restrictions until January 2023 using international databases, including PubMed, Web of Science, CINAHL Plus, Embase, Scopus, Science Direct, and Google Scholar. A random-effect meta-analysis, using the db metan command in Stata 17.2, was used to calculate the pooled measure of association. RESULTS The meta-analysis identified 15 studies involving 33,174,541 pregnant women (32,191 with MS and 33,142,350 as controls). The findings indicate that women with a history of MS are at an increased risk of cesarean delivery (OR=1.28, 95% Confidence Intervals [CI]: 1.14-1.45, p-value: 0.042). Also, these women are at higher risk of neonatal outcomes, such as preterm birth (OR= 1.39, 95% CI: 1.08-1.78, p-value: 0.02), congenital malformations (OR=1.32, 95%CI: 1.16-1.50, p-value: 0.031), Apgar score <7 (OR=2.13, 95% CI: 1.19-3.79, p-value: 0.03), and small for gestational age (OR=1.27, 95% CI: 1.08-1.51, p-value: 0.040). CONCLUSION Pregnant women with MS have a greater chance of adverse pregnancy results than pregnant women without MS. Consequently, pregnant women with MS should create detailed before and after pregnancy plans, in consultation with their doctors, spouses, families, and friends, regarding the necessary care and supplements. Future studies applying a prospective cohort design that control for potential confounders are needed to further validate the findings.
Collapse
Affiliation(s)
- Shoboo Rahmati
- Phd of Epidemiology, Department of Biostatistics and Epidemiology, Faculty of Public Health, Kerman University Of Medical Sciences, Kerman, Iran
| | - Zahra Galavi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Batoul Kavyani
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Homa Arshadi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Jaason Geerts
- Centre for International Human Resource Management (CIHRM), University of Cambridge Judge Business School, Cambridge, UK; Telfer School of Management, University of Ottawa, Ottawa, Canada; Department of Research and Leadership Development, The Canadian College of Health Leaders, Ottawa, Canada
| | - Hamid Sharifi
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran; Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Slavov GS, Manova MG, Kostadinova II. 25 Hydroxyvitamin D and Cytokine Profile in Patients With Relapsing-Remitting Multiple Sclerosis. Cureus 2024; 16:e61534. [PMID: 38957253 PMCID: PMC11218926 DOI: 10.7759/cureus.61534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2024] [Indexed: 07/04/2024] Open
Abstract
In experimental allergic encephalomyelitis, the severity of the deficiency is associated with the loss of axons, and it is likely that cytotoxic T-cells 8 (CD8 T) play an important role. In relapsing-remitting multiple sclerosis, there is a correlation between the inflammatory activity in the lesion and the transection of axons. To understand the pathological mechanisms, it is important to evaluate the changes in serum concentrations of pro- and anti-inflammatory cytokines during the disease course. A total of 46 patients and 40 healthy individuals participated in an open-label, prospective, case-control study from 2012 to 2014. The serum concentrations of cytokines were measured using enzyme-linked immunosorbent assay (ELISA). An immune imbalance was observed during relapse and remission phases compared to the control group. During relapse, the levels of interferon-gamma (IFN-γ) were significantly higher compared to those in remission (p=0.017). During remission, there was an improvement in the deficiency (p<0.001), and the anti-inflammatory cytokines transforming growth factor-beta (TGF-β) and interleukin 4 (IL4) increased compared to those in relapse (p=0.006; p=0.009). A correlation was found between the serum concentrations of tumor necrosis factor-alpha (TNF-α) and Expanded Disability Status Scale (EDSS) during relapse (correlation coefficient: 0.301; significance (Sig.) (2-tailed 0.042). During the exacerbation, there was a moderate relationship between interleukin 17 (IL17) and 25-hydroxyvitamin D (25(OH)D) (P (p-value (probability value) = 0.02)). TNF-α, IFN-γ, IL17, and TGF-β serum levels are criteria for evaluating immune inflammatory activity during relapse and remission periods.
Collapse
Affiliation(s)
- Georgi S Slavov
- Department of Neurology, Medical University of Plovdiv, Plovdiv, BGR
| | - Mariya G Manova
- Department of Neurology, Medical University of Plovdiv, Plovdiv, BGR
| | | |
Collapse
|
5
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
6
|
Khan Z, Mehan S, Gupta GD, Narula AS. Immune System Dysregulation in the Progression of Multiple Sclerosis: Molecular Insights and Therapeutic Implications. Neuroscience 2024; 548:9-26. [PMID: 38692349 DOI: 10.1016/j.neuroscience.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 05/03/2024]
Abstract
Multiple sclerosis (MS), a prevalent neurological disorder, predominantly affects young adults and is characterized by chronic autoimmune activity. The study explores the immune system dysregulation in MS, highlighting the crucial roles of immune and non-neuronal cells in the disease's progression. This review examines the dual role of cytokines, with some like IL-6, TNF-α, and interferon-gamma (IFN-γ) promoting inflammation and CNS tissue injury, and others such as IL-4, IL-10, IL-37, and TGF-β fostering remyelination and protecting against MS. Elevated chemokine levels in the cerebrospinal fluid (CSF), including CCL2, CCL5, CXCL10, CXCL13, and fractalkine, are analyzed for their role in facilitating immune cell migration across the blood-brain barrier (BBB), worsening inflammation and neurodegeneration. The study also delves into the impact of auto-antibodies targeting myelin components like MOG and AQP4, which activate complement cascades leading to further myelin destruction. The article discusses how compromised BBB integrity allows immune cells and inflammatory mediators to infiltrate the CNS, intensifying MS symptoms. It also examines the involvement of astrocytes, microglia, and oligodendrocytes in the disease's progression. Additionally, the effectiveness of immunomodulatory drugs such as IFN-β and CD20-targeting monoclonal antibodies (e.g., rituximab) in modulating immune responses is reviewed, highlighting their potential to reduce relapse rates and delaying MS progression. These insights emphasize the importance of immune system dysfunction in MS development and progression, guiding the development of new therapeutic strategies. The study underscores recent advancements in understanding MS's molecular pathways, opening avenues for more targeted and effective treatments.
Collapse
Affiliation(s)
- Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga 142001, Punjab, India.
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy (Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India), Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
7
|
Schachenhofer J, Gruber VE, Fehrer SV, Haider C, Glatter S, Liszewska E, Höftberger R, Aronica E, Rössler K, Jaworski J, Scholl T, Feucht M. Targeting the EGFR pathway: An alternative strategy for the treatment of tuberous sclerosis complex? Neuropathol Appl Neurobiol 2024; 50:e12974. [PMID: 38562027 DOI: 10.1111/nan.12974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Tuberous sclerosis complex (TSC) is caused by variants in TSC1/TSC2, leading to constitutive activation of the mammalian target of rapamycin (mTOR) complex 1. Therapy with everolimus has been approved for TSC, but variations in success are frequent. Recently, caudal late interneuron progenitor (CLIP) cells were identified as a common origin of the TSC brain pathologies such as subependymal giant cell astrocytomas (SEGA) and cortical tubers (CT). Further, targeting the epidermal growth factor receptor (EGFR) with afatinib, which is expressed in CLIP cells, reduces cell growth in cerebral TSC organoids. However, investigation of clinical patient-derived data is lacking. AIMS Observation of EGFR expression in SEGA, CT and focal cortical dysplasia (FCD) 2B human brain specimen and investigation of whether its inhibition could be a potential therapeutic intervention for these patients. METHODS Brain specimens of 23 SEGAs, 6 CTs, 20 FCD2Bs and 17 controls were analysed via immunohistochemistry to characterise EGFR expression, cell proliferation (via Mib1) and mTOR signalling. In a cell-based assay using primary patient-derived cells (CT n = 1, FCD2B n = 1 and SEGA n = 4), the effects of afatinib and everolimus on cell proliferation and cell viability were observed. RESULTS EGFR overexpression was observed in histological sections of SEGA, CT and FCD2B patients. Both everolimus and afatinib decreased the proliferation and viability in primary SEGA, tuber and FCD2B cells. CONCLUSION Our study demonstrates that EGFR suppression might be an effective alternative treatment option for SEGAs and tubers, as well as other mTOR-associated malformations of cortical development, including FCD2B.
Collapse
Affiliation(s)
- Julia Schachenhofer
- Department Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - Carmen Haider
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Sarah Glatter
- Department Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Ewa Liszewska
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Romana Höftberger
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Eleonora Aronica
- Department of (Neuro)Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Karl Rössler
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Theresa Scholl
- Department Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Martha Feucht
- Department Pediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Li W, Tiedt S, Lawrence JH, Harrington ME, Musiek ES, Lo EH. Circadian Biology and the Neurovascular Unit. Circ Res 2024; 134:748-769. [PMID: 38484026 DOI: 10.1161/circresaha.124.323514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| | - Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany (S.T.)
| | - Jennifer H Lawrence
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Mary E Harrington
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Neuroscience Program, Smith College, Northampton, MA (M.E.H.)
| | - Erik S Musiek
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| |
Collapse
|
9
|
Hu J, Melchor GS, Ladakis D, Reger J, Kim HW, Chamberlain KA, Shults NV, Oft HC, Smith VN, Rosko LM, Li E, Baydyuk M, Fu MM, Bhargava P, Huang JK. Myeloid cell-associated aromatic amino acid metabolism facilitates CNS myelin regeneration. NPJ Regen Med 2024; 9:1. [PMID: 38167866 PMCID: PMC10762216 DOI: 10.1038/s41536-023-00345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Regulation of myeloid cell activity is critical for successful myelin regeneration (remyelination) in demyelinating diseases, such as multiple sclerosis (MS). Here, we show aromatic alpha-keto acids (AKAs) generated from the amino acid oxidase, interleukin-4 induced 1 (IL4I1), promote efficient remyelination in mouse models of MS. During remyelination, myeloid cells upregulated the expression of IL4I1. Conditionally knocking out IL4I1 in myeloid cells impaired remyelination efficiency. Mice lacking IL4I1 expression exhibited a reduction in the AKAs, phenylpyruvate, indole-3-pyruvate, and 4-hydroxyphenylpyruvate, in remyelinating lesions. Decreased AKA levels were also observed in people with MS, particularly in the progressive phase when remyelination is impaired. Oral administration of AKAs modulated myeloid cell-associated inflammation, promoted oligodendrocyte maturation, and enhanced remyelination in mice with focal demyelinated lesions. Transcriptomic analysis revealed AKA treatment induced a shift in metabolic pathways in myeloid cells and upregulated aryl hydrocarbon receptor activity in lesions. Our results suggest myeloid cell-associated aromatic amino acid metabolism via IL4I1 produces AKAs in demyelinated lesions to enable efficient remyelination. Increasing AKA levels or targeting related pathways may serve as a strategy to facilitate the regeneration of myelin in inflammatory demyelinating conditions.
Collapse
Affiliation(s)
- Jingwen Hu
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - George S Melchor
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Dimitrios Ladakis
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Joan Reger
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Hee Won Kim
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Kelly A Chamberlain
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Nataliia V Shults
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Helena C Oft
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Victoria N Smith
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Lauren M Rosko
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA
| | - Erqiu Li
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Maryna Baydyuk
- Department of Biology, Georgetown University, Washington, DC, 20007, USA
| | - Meng-Meng Fu
- National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Pavan Bhargava
- Division of Neuroimmunology and Neurological Infections, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, 20007, USA.
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, 20007, USA.
| |
Collapse
|
10
|
Behara M, Goudy S. FTY720 in immuno-regenerative and wound healing technologies for muscle, epithelial and bone regeneration. Front Physiol 2023; 14:1148932. [PMID: 37250137 PMCID: PMC10213316 DOI: 10.3389/fphys.2023.1148932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
In 2010, the FDA approved the administration of FTY720, S1P lipid mediator, as a therapy to treat relapsing forms of multiple sclerosis. FTY720 was found to sequester pro-inflammatory lymphocytes within the lymph node, preventing them from causing injury to the central nervous system due to inflammation. Studies harnessing the anti-inflammatory properties of FTY720 as a pro-regenerative strategy in wound healing of muscle, bone and mucosal injuries are currently being performed. This in-depth review discusses the current regenerative impact of FTY720 due to its anti-inflammatory effect stratified into an assessment of wound regeneration in the muscular, skeletal, and epithelial systems. The regenerative effect of FTY720 in vivo was characterized in three animal models, with differing delivery mechanisms emerging in the last 20 years. In these studies, local delivery of FTY720 was found to increase pro-regenerative immune cell phenotypes (neutrophils, macrophages, monocytes), vascularization, cell proliferation and collagen deposition. Delivery of FTY720 to a localized wound environment demonstrated increased bone, muscle, and mucosal regeneration through changes in gene and cytokine production primarily by controlling the local immune cell phenotypes. These changes in gene and cytokine production reduced the inflammatory component of wound healing and increased the migration of pro-regenerative cells (neutrophils and macrophages) to the wound site. The application of FTY720 delivery using a biomaterial has demonstrated the ability of local delivery of FTY720 to promote local wound healing leveraging an immunomodulatory mechanism.
Collapse
Affiliation(s)
- Monica Behara
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Steven Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Otolaryngology, Emory University, Atlanta, GA, United States
| |
Collapse
|
11
|
Devanand M, V N S, Madhu K. Signaling mechanisms involved in the regulation of remyelination in multiple sclerosis: a mini review. J Mol Med (Berl) 2023:10.1007/s00109-023-02312-9. [PMID: 37084092 DOI: 10.1007/s00109-023-02312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 02/22/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023]
Abstract
Multiple sclerosis is an autoimmune neurodegenerative disease of the CNS that causes progressive disabilities, owing to CNS axon degeneration as a late result of demyelination. In the search for the prevention of axonal loss, mitigating inflammatory attacks in the CNS and myelin restoration are two possible approaches. As a result, therapies that target diverse signaling pathways involved in neuroprotection and remyelination have the potential to overcome the challenges in the development of multiple sclerosis treatments. LINGO1 (Leucine rich repeat and Immunoglobulin domain containing, Nogo receptor- interaction protein), AKT/PIP3/mTOR, Notch, Wnt, RXR (Retinoid X receptor gamma), and Nrf2 (nuclear factor erythroid 2-related factor 2) signaling pathways are highlighted in this section. This article reviews the present knowledge regarding numerous signaling pathways and their functions in regulating remyelination in multiple sclerosis pathogenesis. These pathways are potential biomarkers and therapeutic targets in MS.
Collapse
Affiliation(s)
- Midhuna Devanand
- Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Saiprabha V N
- Department of Pharmaceutical Chemistry and Analysis, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| | - Krishnadas Madhu
- Department of Pharmacology, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India.
| |
Collapse
|
12
|
Novakova L, Henricsson M, Björnson E, Axelsson M, Borén J, Rosenstein I, Lycke J, Cardell SL, Blomqvist M. Cerebrospinal fluid sulfatide isoforms lack diagnostic utility in separating progressive from relapsing-remitting multiple sclerosis. Mult Scler Relat Disord 2023; 74:104705. [PMID: 37060853 DOI: 10.1016/j.msard.2023.104705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 04/17/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated demyelinating disorder of the central nervous system. The glycosphingolipid sulfatide, a lipid particularly enriched in the myelin sheath, has been shown to be involved the maintenance of this specific membrane structure. Sulfatide in cerebrospinal fluid (CSF) may reflect demyelination, a dominating feature of MS. We investigated the diagnostic utility of CSF sulfatide isoform levels to separate different courses or phenotypes of MS disease. MATERIAL AND METHODS This was a mono-center, cross-sectional study of relapsing-remitting MS (RRMS) (n = 45) and progressive MS (PMS) (n = 42) patients (consisting of primary PMS (n = 17) and secondary PMS (n = 25)) and healthy controls (n = 19). In total, 20 sulfatide isoforms were measured in CSF by liquid chromatography-mass spectrometry. RESULTS CSF total sulfatide concentrations, as well as CSF sulfatide isoform distribution, did not differ across the study groups, and their levels were independent of disease course/phenotype, disease duration, time to conversion to secondary PMS, age, and disability in MS patients. CONCLUSION CSF sulfatide isoforms lack diagnostic and prognostic utility as a biomarker for progressive MS.
Collapse
Affiliation(s)
- Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine/Wallenberg Lab, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elias Björnson
- Department of Molecular and Clinical Medicine/Wallenberg Lab, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine/Wallenberg Lab, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanna L Cardell
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Blomqvist
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg 413 85, Sweden.
| |
Collapse
|
13
|
Dave BP, Shah KC, Shah MB, Chorawala MR, Patel VN, Shah PA, Shah GB, Dhameliya TM. Unveiling the modulation of Nogo receptor in neuroregeneration and plasticity: Novel aspects and future horizon in a new frontier. Biochem Pharmacol 2023; 210:115461. [PMID: 36828272 DOI: 10.1016/j.bcp.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Maitri B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Vishvas N Patel
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Palak A Shah
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar 380023, Gujarat, India
| | - Gaurang B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
14
|
Impact of the Voltage-Gated Calcium Channel Antagonist Nimodipine on the Development of Oligodendrocyte Precursor Cells. Int J Mol Sci 2023; 24:ijms24043716. [PMID: 36835129 PMCID: PMC9960570 DOI: 10.3390/ijms24043716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). While most of the current treatment strategies focus on immune cell regulation, except for the drug siponimod, there is no therapeutic intervention that primarily aims at neuroprotection and remyelination. Recently, nimodipine showed a beneficial and remyelinating effect in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. Nimodipine also positively affected astrocytes, neurons, and mature oligodendrocytes. Here we investigated the effects of nimodipine, an L-type voltage-gated calcium channel antagonist, on the expression profile of myelin genes and proteins in the oligodendrocyte precursor cell (OPC) line Oli-Neu and in primary OPCs. Our data indicate that nimodipine does not have any effect on myelin-related gene and protein expression. Furthermore, nimodipine treatment did not result in any morphological changes in these cells. However, RNA sequencing and bioinformatic analyses identified potential micro (mi)RNA that could support myelination after nimodipine treatment compared to a dimethyl sulfoxide (DMSO) control. Additionally, we treated zebrafish with nimodipine and observed a significant increase in the number of mature oligodendrocytes (* p≤ 0.05). Taken together, nimodipine seems to have different positive effects on OPCs and mature oligodendrocytes.
Collapse
|
15
|
Dericioğlu V, Akkaya Turhan S, Erdem HE, Sevik MO, Erdil E, Sünter G, Ağan K, Toker E. In Vivo Corneal Confocal Microscopy in Multiple Sclerosis: Can it Differentiate Disease Relapse in Multiple Sclerosis? Am J Ophthalmol 2023; 250:138-148. [PMID: 36669610 DOI: 10.1016/j.ajo.2023.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE This study aims to investigate the role of in vivo corneal confocal microscopy (IVCCM) in the detection of corneal inflammatory activity and subbasal nerve alterations in patients with multiple sclerosis (MS) and to further determine whether IVCCM can be used to detect (acute) disease relapse. DESIGN Prospective cross-sectional study, with a subgroup follow-up. METHODS This single-center study included 58 patients with MS (MS-Relapse group [n = 27] and MS-Remission group [n = 31]), and 30 age- and sex-matched healthy control subjects. Patients with a history of optic neuritis or trigeminal symptoms were excluded. Corneal nerve fiber density (CNFD), corneal nerve branch density (CNBD), corneal nerve fiber length (CNFL), and dendritic cell (DC) density were evaluated in all patients with MS and control subjects by IVCCM. Patients in the MS-Relapse group who were in remission for ≥6 months after the MS incident underwent a repeat IVCCM. RESULTS No statistical difference was observed between the MS-Relapse and MS-Remission groups regarding age, sex, MS duration, and the number of relapses (P > .05). Compared with healthy control subjects, all subbasal nerve parameters were significantly lower (CNFD: P < .001, CNFL: P < .001, CNBD: P < .001), and the DC density was significantly higher (P = .023) in patients with MS. However, no significant difference was observed between MS-Relapse and MS-Remission groups in terms of CNFD (mean [SE] difference -2.05 [1.69] fibers/mm2 [95% confidence interval {CI} -1.32 to 5.43]; P < .227), CNFL (mean [SE] difference -1.10 [0.83] mm/mm2 [95% CI -0.56 to 2.75]; P < .190), CNBD (mean [SE] difference -3.91 [2.48] branches/mm2 [95% CI -1.05 to 8.87]; P < .120), and DC density (median [IQR], 59.38 [43.75-85.0] vs 75.0 [31.25-128.75]; P = .596). The repeat IVCCM in relapse patients (n = 16 [59.3%]) showed a significant increase in CNFD (P = .036) and CNBD (P = .018), but no change was observed in CNFL (P = .075) and DC density (P = .469). CONCLUSION Although increased inflammation and neurodegeneration can be demonstrated in patients with MS compared with healthy control subjects, a single time point evaluation of IVCCM does not seem to be sufficient to confirm the occurrence of relapse in patients with MS. However, IVCCM holds promise for demonstrating early neuroregeneration in patients with MS.
Collapse
Affiliation(s)
- Volkan Dericioğlu
- From the Department of Ophthalmology (V.D., S.A.T., H.E.E., M.O.S.), Marmara University School of Medicine, Istanbul, Turkey.
| | - Semra Akkaya Turhan
- From the Department of Ophthalmology (V.D., S.A.T., H.E.E., M.O.S.), Marmara University School of Medicine, Istanbul, Turkey
| | - Halit Eren Erdem
- From the Department of Ophthalmology (V.D., S.A.T., H.E.E., M.O.S.), Marmara University School of Medicine, Istanbul, Turkey
| | - Mehmet Orkun Sevik
- From the Department of Ophthalmology (V.D., S.A.T., H.E.E., M.O.S.), Marmara University School of Medicine, Istanbul, Turkey
| | - Esra Erdil
- and the Department of Neurology (E.E., G.S., K.A.), Marmara University School of Medicine, Istanbul, Turkey
| | - Gülin Sünter
- and the Department of Neurology (E.E., G.S., K.A.), Marmara University School of Medicine, Istanbul, Turkey
| | - Kadriye Ağan
- and the Department of Neurology (E.E., G.S., K.A.), Marmara University School of Medicine, Istanbul, Turkey
| | - Ebru Toker
- and the Department of Ophthalmology and Visual Sciences (E.T.), West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
16
|
Two phases of macrophages: Inducing maturation and death of oligodendrocytes in vitro co-culture. J Neurosci Methods 2022; 382:109723. [PMID: 36207003 DOI: 10.1016/j.jneumeth.2022.109723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND The plasticity of macrophages in the immune response is a dynamic situation dependent on external stimuli. The activation of macrophages both has beneficial and detrimental effects on mature oligodendrocytes (OLs) and myelin. The activation towards inflammatory macrophages has a critical role in the immune-mediated oligodendrocytes death in multiple sclerosis (MS) lesions. NEW METHOD We established an in vitro co-culture method to study the function of macrophages in the survival and maturation of OLs. RESULTS We revealed that M1 macrophages decreased the number of mature OLs and phagocytosed the myelin. Interestingly, non-activated as well as M2 macrophages contributed to an increase in the number of mature OLs in our in vitro co-culture platform. COMPARISON WITH EXISTING METHODS We added an antibody against an OL surface antigen in our in vitro co-cultures. The antibody presents the OLs to the macrophages enabling the investigation of direct interactions between macrophages and OLs. CONCLUSION Our co-culture system is a feasible method for the investigation of the direct cell-to-cell interactions between OLs and macrophages. We utilized it to show that M2 and non-activated macrophages may be employed to enhance remyelination.
Collapse
|
17
|
Marín-Prida J, Pavón-Fuentes N, Lagumersindez-Denis N, Camacho-Rodríguez H, García-Soca AM, Sarduy-Chávez RDLC, Vieira ÉLM, Carvalho-Tavares J, Falcón-Cama V, Fernández-Massó JR, Hernández-González I, Martínez-Donato G, Guillén-Nieto G, Pentón-Arias E, Teixeira MM, Pentón-Rol G. Anti-inflammatory mechanisms and pharmacological actions of phycocyanobilin in a mouse model of experimental autoimmune encephalomyelitis: A therapeutic promise for multiple sclerosis. Front Immunol 2022; 13:1036200. [PMID: 36405721 PMCID: PMC9669316 DOI: 10.3389/fimmu.2022.1036200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Cytokines, demyelination and neuroaxonal degeneration in the central nervous system are pivotal elements implicated in the pathogenesis of multiple sclerosis (MS) and its nonclinical model of experimental autoimmune encephalomyelitis (EAE). Phycocyanobilin (PCB), a chromophore of the biliprotein C-Phycocyanin (C-PC) from Spirulina platensis, has antioxidant, immunoregulatory and anti-inflammatory effects in this disease, and it could complement the effect of other Disease Modifying Treatments (DMT), such as Interferon-β (IFN-β). Here, our main goal was to evaluate the potential PCB benefits and its mechanisms of action to counteract the chronic EAE in mice. MOG35-55-induced EAE was implemented in C57BL/6 female mice. Clinical signs, pro-inflammatory cytokines levels by ELISA, qPCR in the brain and immunohistochemistry using precursor/mature oligodendrocytes cells antibodies in the spinal cord, were assessed. PCB enhanced the neurological condition, and waned the brain concentrations of IL-17A and IL-6, pro-inflammatory cytokines, in a dose-dependent manner. A down- or up-regulating activity of PCB at 1 mg/kg was identified in the brain on three (LINGO1, NOTCH1, and TNF-α), and five genes (MAL, CXCL12, MOG, OLIG1, and NKX2-2), respectively. Interestingly, a reduction of demyelination, active microglia/macrophages density, and axonal damage was detected along with an increase in oligodendrocyte precursor cells and mature oligodendrocytes, when assessed the spinal cords of EAE mice that took up PCB. The studies in vitro in rodent encephalitogenic T cells and in vivo in the EAE mouse model with the PCB/IFN-β combination, showed an enhanced positive effect of this combined therapy. Overall, these results demonstrate the anti-inflammatory activity and the protective properties of PCB on the myelin and support its use with IFN-β as an improved DMT combination for MS.
Collapse
Affiliation(s)
- Javier Marín-Prida
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Nancy Pavón-Fuentes
- Immunochemical Department, International Center for Neurological Restoration (CIREN), Havana, Cuba
| | | | | | - Ana Margarita García-Soca
- Center for Research and Biological Evaluations, Institute of Pharmacy and Food, University of Havana, Havana, Cuba
| | | | - Érica Leandro Marciano Vieira
- Translational Psychoneuroimmunology Group, School of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Juliana Carvalho-Tavares
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Viviana Falcón-Cama
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Latin American School of Medicine (ELAM), Havana, Cuba
| | | | | | - Gillian Martínez-Donato
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Gerardo Guillén-Nieto
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Latin American School of Medicine (ELAM), Havana, Cuba
| | - Eduardo Pentón-Arias
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Latin American School of Medicine (ELAM), Havana, Cuba
| | - Mauro Martins Teixeira
- Laboratory of Immunopharmacology, Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Giselle Pentón-Rol
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- Latin American School of Medicine (ELAM), Havana, Cuba
- *Correspondence: Giselle Pentón-Rol,
| |
Collapse
|
18
|
Immunopathogenesis, Diagnosis, and Treatment of Multiple Sclerosis. Neurol Clin 2022; 41:87-106. [DOI: 10.1016/j.ncl.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Borziak K, Finkelstein J. X-linked genetic risk factors that promote autoimmunity and dampen remyelination are associated with multiple sclerosis susceptibility. Mult Scler Relat Disord 2022; 66:104065. [PMID: 35905688 DOI: 10.1016/j.msard.2022.104065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/14/2022] [Accepted: 07/17/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic neurodegenerative disease, which has a strong genetic component and is more prevalent in women. MS is caused by an autoimmunity initiated inflammatory response which leads to axon demyelination, followed by axon loss, plaque formation and neurodegeneration. The goal of this article was to explore X-linked genetic factors that are associated with MS susceptibility. METHODS Using UK Biobank microarray, we analyzed the prevalence of alleles on the X chromosome to identify variants potentially involved in MS. Overall, 488,225 patients across 18,857 markers were analyzed using PLINK. RESULTS Our results identify 20 SNPs that are significantly more abundant in persons with MS. The genes associated with these SNPs belong to immunity (LAMP2, AVPR2, MTMR8, F8, BCOR, PORCN, and ELF4) and remyelination (NSDHL, HS6ST2, RBM10, TAZ, and AR) pathways that are potentially of great significance for understanding the onset and progression of multiple sclerosis. We further identified a significant 20-fold increase in incidence of MS cases in women with co-occurrences of SNPs associated with myelination and immunity functions. CONCLUSIONS Our analysis provides novel insights into the roles of X-linked genes in the onset and presentation of multiple sclerosis, identifying 20 SNPs in 14 genes involved primarily in immunity and myelination functions that are significantly more abundant in persons with MS. Our co-occurrence analysis suggests that concurrent disruption of both myelination and immune systems significantly increases the risk of MS onset in women.
Collapse
Affiliation(s)
- Kirill Borziak
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 United States.
| | - Joseph Finkelstein
- Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 United States
| |
Collapse
|
20
|
Marangon D, Audano M, Pedretti S, Fumagalli M, Mitro N, Lecca D, Caruso D, Abbracchio MP. Rewiring of Glucose and Lipid Metabolism Induced by G Protein-Coupled Receptor 17 Silencing Enables the Transition of Oligodendrocyte Progenitors to Myelinating Cells. Cells 2022; 11:cells11152369. [PMID: 35954217 PMCID: PMC9368002 DOI: 10.3390/cells11152369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
In the mature central nervous system (CNS), oligodendrocytes (OLs) provide support and insulation to axons thanks to the production of a myelin sheath. During their maturation to myelinating cells, OLs require energy and building blocks for lipids, which implies a great investment of energy fuels and molecular sources of carbon. The oligodendroglial G protein-coupled receptor 17 (GPR17) has emerged as a key player in OL maturation; it reaches maximal expression in pre-OLs, but then it has to be internalized to allow terminal maturation. In this study, we aim at elucidating the role of physiological GPR17 downregulation in OL metabolism by applying transcriptomics, metabolomics and lipidomics on differentiating OLs. After GPR17 silencing, we found a significant increase in mature OL markers and alteration of several genes involved in glucose metabolism and lipid biosynthesis. We also observed an increased release of lactate, which is partially responsible for the maturation boost induced by GPR17 downregulation. Concomitantly, GPR17 depletion also changed the kinetics of specific myelin lipid classes. Globally, this study unveils a functional link between GPR17 expression, lactate release and myelin composition, and suggests that innovative interventions targeting GPR17 may help to foster endogenous myelination in demyelinating diseases.
Collapse
Affiliation(s)
- Davide Marangon
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (D.L.)
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Silvia Pedretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Davide Lecca
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (D.L.)
| | - Donatella Caruso
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (M.A.); (S.P.); (M.F.); (N.M.); (D.C.)
| | - Maria P. Abbracchio
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (D.L.)
- Correspondence: ; Tel.: +39-02-5031-8304
| |
Collapse
|
21
|
Mohammadi MJ, Zarea K, Hatamzadeh N, Salahshouri A, Sharhani A. Toxic Air Pollutants and Their Effect on Multiple Sclerosis: A Review Study. Front Public Health 2022; 10:898043. [PMID: 35875044 PMCID: PMC9299435 DOI: 10.3389/fpubh.2022.898043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Toxic air pollutants are one of the main factors that have the effect of synergism to increase the incidence of multiple sclerosis (MS). This review aims to investigate the effects of toxic air pollutants on the occurrence of multiple sclerosis (MS). A narrative review of the literature was done from 2000 to 2022 based on various databases such as Google Scholar, Web of Science, Springer, PubMed, and Science Direct. In this study, according to the databases, three hundred and sixty articles were retrieved. Of these, 28 studies were screened after review and 14 full-text articles entered into the analysis process. Finally, 9 articles were selected in this study. According to the finding of this study, toxic air pollutants including polycyclic aromatic hydrocarbons (PAHs), heavy metals (HM), volatile organic compounds (VOCs), particulate matter (PM), and gases are the main agents that cause the development and spread of chronic diseases such as respiratory and cardiovascular diseases, chronic obstructive pulmonary disease (COPD), and multiple sclerosis. The result of this study showed that the main sources of emission of toxic air pollutants include industries, cars, power plants, and the excessive consumption of fossil fuels. In general, the inhalation of high concentration of toxic air pollutants can increase the risk of chronic diseases and multiple sclerosis.
Collapse
Affiliation(s)
- Mohammad Javad Mohammadi
- Department of Environmental Health Engineering, School of Public Health and Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kourosh Zarea
- Department of Nursing, Nursing Care Research Center in Chronic Diseases, School of Nursing and Midwifery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasser Hatamzadeh
- Department of Health Promotion and Education, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arash Salahshouri
- Department of Health Promotion and Education, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asaad Sharhani
- Department of Biostatistics and Epidemiology, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
22
|
Hosseinpour Z, Jonkman L, Oladosu O, Pridham G, Pike GB, Inglese M, Geurts JJ, Zhang Y. Texture analysis in brain T2 and diffusion MRI differentiates histology-verified grey and white matter pathology types in multiple sclerosis. J Neurosci Methods 2022; 379:109671. [PMID: 35820450 DOI: 10.1016/j.jneumeth.2022.109671] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/19/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is a co mplex disease of the central nervous system involving several types of brain pathology that are difficult to characterize using conventional imaging methods. NEW METHOD We originated novel texture analysis and machine learning approaches for classifying MS pathology subtypes as compared with 2 common advanced MRI measures: magnetization transfer ratio (MTR) and fractional anisotropy (FA). Texture analysis used an optimized grey level co-occurrence matrix method with histology-informed 7T T2-weighted magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) from 15 MS and 12 control brain specimens. DTI analysis took an innovative approach that assessed the texture across diffusion directions upsampled from 30 to 90. Tissue types included de- and re-myelinated lesions and normal-appearing areas in both grey and white matter, and diffusely abnormal white matter. Data analyses were stepwise, including: (1) group-wise classification using random forest algorithms based on all or individual imaging parameters; (2) parameter importance ranking; and (3) pairwise analysis using top-ranked features. RESULTS Texture analysis performed better than MTR and FA, with T2 texture performed the best. T2 texture measures ranked the highest in classifying most grey and white matter tissue types, including de- versus re-myelinated lesions and among grey matter lesion subtypes (accuracy=0.86-0.59; kappa=0.60-0.41). Diffusion texture best differentiated normal appearing and control white matter. COMPARISON WITH EXISTING METHODS There is no established method in imaging for differentiating MS pathology subtypes. In combined texture analysis and machine learning studies, there is also no direct evidence comparing conventional with advanced MRI measures for assessing MS pathology. Further, this study is unique in conducting innovative texture analysis with DTI following data-augmentation using robust methods. CONCLUSIONS T2 and diffusion MRI texture analysis integrated with machine learning may be valuable approaches for characterizing MS pathology.
Collapse
Affiliation(s)
- Zahra Hosseinpour
- Biomedical Engineering Graduate Program, University of Calgary, Alberta T2N 4N, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - Laura Jonkman
- Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Olayinka Oladosu
- Department of Neuroscience, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - Glen Pridham
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - G Bruce Pike
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 4N1, Canada; Department of Radiology, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada
| | - Matilde Inglese
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA 10029; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI) and Center of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Jeroen J Geurts
- Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| | - Yunyan Zhang
- Department of Clinical Neurosciences, University of Calgary, Alberta T2N 4N1, Canada; Department of Radiology, University of Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
23
|
Mohammadi P, Hesari M, Chalabi M, Salari F, Khademi F. An overview of immune checkpoint therapy in autoimmune diseases. Int Immunopharmacol 2022; 107:108647. [DOI: 10.1016/j.intimp.2022.108647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 02/06/2023]
|
24
|
Podbielska M, Ariga T, Pokryszko-Dragan A. Sphingolipid Players in Multiple Sclerosis: Their Influence on the Initiation and Course of the Disease. Int J Mol Sci 2022; 23:ijms23105330. [PMID: 35628142 PMCID: PMC9140914 DOI: 10.3390/ijms23105330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
Sphingolipids (SLs) play a significant role in the nervous system, as major components of the myelin sheath, contributors to lipid raft formation that organize intracellular processes, as well as active mediators of transport, signaling and the survival of neurons and glial cells. Alterations in SL metabolism and content are observed in the course of central nervous system diseases, including multiple sclerosis (MS). In this review, we summarize the current evidence from studies on SLs (particularly gangliosides), which may shed new light upon processes underlying the MS background. The relevant aspects of these studies include alterations of the SL profile in MS, the role of antibodies against SLs and complexes of SL-ligand-invariant NKT cells in the autoimmune response as the core pathomechanism in MS. The contribution of lipid-raft-associated SLs and SL-laden extracellular vesicles to the disease etiology is also discussed. These findings may have diagnostic implications, with SLs and anti-SL antibodies as potential markers of MS activity and progression. Intriguing prospects of novel therapeutic options in MS are associated with SL potential for myelin repair and neuroprotective effects, which have not been yet addressed by the available treatment strategies. Overall, all these concepts are promising and encourage the further development of SL-based studies in the field of MS.
Collapse
Affiliation(s)
- Maria Podbielska
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Laboratory of Microbiome Immunobiology, Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-370-99-12
| | - Toshio Ariga
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
| | | |
Collapse
|
25
|
Xiao Y, Zhang Y, Gao YH, Zhao ZH, He J, Gao R, Guo YX, Wang LB, Li X. A targeted extracellular vesicles loaded with montelukast in the treatment of demyelinating diseases. Biochem Biophys Res Commun 2022; 594:31-37. [DOI: 10.1016/j.bbrc.2022.01.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
|
26
|
OCT4-induced oligodendrocyte progenitor cells promote remyelination and ameliorate disease. NPJ Regen Med 2022; 7:4. [PMID: 35027563 PMCID: PMC8758684 DOI: 10.1038/s41536-021-00199-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The generation of human oligodendrocyte progenitor cells (OPCs) may be therapeutically valuable for human demyelinating diseases such as multiple sclerosis. Here, we report the direct reprogramming of human somatic cells into expandable induced OPCs (iOPCs) using a combination of OCT4 and a small molecule cocktail. This method enables generation of A2B5+ (an early marker for OPCs) iOPCs within 2 weeks retaining the ability to differentiate into MBP-positive mature oligodendrocytes. RNA-seq analysis revealed that the transcriptome of O4+ iOPCs was similar to that of O4+ OPCs and ChIP-seq analysis revealed that putative OCT4-binding regions were detected in the regulatory elements of CNS development-related genes. Notably, engrafted iOPCs remyelinated the brains of adult shiverer mice and experimental autoimmune encephalomyelitis mice with MOG-induced 14 weeks after transplantation. In conclusion, our study may contribute to the development of therapeutic approaches for neurological disorders, as well as facilitate the understanding of the molecular mechanisms underlying glial development.
Collapse
|
27
|
Enhanced re-myelination in transthyretin null mice following cuprizone mediated demyelination. Neurosci Lett 2022; 766:136287. [PMID: 34634393 DOI: 10.1016/j.neulet.2021.136287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/16/2022]
Abstract
Thyroid hormones (THs) impact nearly every tissue in the body, including the adult and developing central nervous system. The distribution of THs around the body is facilitated by specific TH distributor proteins including transthyretin (TTR). In addition to being produced in the liver, TTR is synthesized in the choroid plexus of the brain. The synthesis of TTR by choroid plexus epithelial cells allows transport of THs from the blood into the brain. Adequate supply of THs to the brain is required for developmental myelination of axons and the maintenance of mature myelin throughout adult life, essential for the proper conduction of nerve impulses. Insufficient THs in developing mice results in hypo-myelination (thinner myelin around axons). However, confounding evidence demonstrated that in developing brain of TTR null mice, hyper-myelination of axons was observed in the corpus callosum. This raised the question whether increased myelination occurs during re-myelination in the adult brain following targeted demyelination. To investigate the effect of TTR during re-myelination, cuprizone induced depletion of myelin in the corpus callosum of adult mice was initiated, followed by a period of myelin repair. Myelin thickness was measured to assess re-myelination rates for 6 weeks. TTR null mice displayed expedited rates of early re-myelination, preferentially re-myelinating smaller axons compared to those of wild type mice. Furthermore, TTR null mice produced thicker myelin than wild type mice during re-myelination. These results may have broader implications in understanding mechanisms governing re-myelination, particularly in potential therapeutic contexts for acquired demyelinating diseases such as multiple sclerosis.
Collapse
|
28
|
Review and update of the importance of micronutrients in pediatric age: a holistic view. NUTR HOSP 2022; 39:21-25. [DOI: 10.20960/nh.04305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
29
|
Marangon D, Caporale N, Boccazzi M, Abbracchio MP, Testa G, Lecca D. Novel in vitro Experimental Approaches to Study Myelination and Remyelination in the Central Nervous System. Front Cell Neurosci 2021; 15:748849. [PMID: 34720882 PMCID: PMC8551863 DOI: 10.3389/fncel.2021.748849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Myelin is the lipidic insulating structure enwrapping axons and allowing fast saltatory nerve conduction. In the central nervous system, myelin sheath is the result of the complex packaging of multilamellar extensions of oligodendrocyte (OL) membranes. Before reaching myelinating capabilities, OLs undergo a very precise program of differentiation and maturation that starts from OL precursor cells (OPCs). In the last 20 years, the biology of OPCs and their behavior under pathological conditions have been studied through several experimental models. When co-cultured with neurons, OPCs undergo terminal maturation and produce myelin tracts around axons, allowing to investigate myelination in response to exogenous stimuli in a very simple in vitro system. On the other hand, in vivo models more closely reproducing some of the features of human pathophysiology enabled to assess the consequences of demyelination and the molecular mechanisms of remyelination, and they are often used to validate the effect of pharmacological agents. However, they are very complex, and not suitable for large scale drug discovery screening. Recent advances in cell reprogramming, biophysics and bioengineering have allowed impressive improvements in the methodological approaches to study brain physiology and myelination. Rat and mouse OPCs can be replaced by human OPCs obtained by induced pluripotent stem cells (iPSCs) derived from healthy or diseased individuals, thus offering unprecedented possibilities for personalized disease modeling and treatment. OPCs and neural cells can be also artificially assembled, using 3D-printed culture chambers and biomaterial scaffolds, which allow modeling cell-to-cell interactions in a highly controlled manner. Interestingly, scaffold stiffness can be adopted to reproduce the mechanosensory properties assumed by tissues in physiological or pathological conditions. Moreover, the recent development of iPSC-derived 3D brain cultures, called organoids, has made it possible to study key aspects of embryonic brain development, such as neuronal differentiation, maturation and network formation in temporal dynamics that are inaccessible to traditional in vitro cultures. Despite the huge potential of organoids, their application to myelination studies is still in its infancy. In this review, we shall summarize the novel most relevant experimental approaches and their implications for the identification of remyelinating agents for human diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Davide Marangon
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Marta Boccazzi
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria P. Abbracchio
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Davide Lecca
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
30
|
Blomqvist M, Zetterberg H, Blennow K, Månsson JE. Sulfatide in health and disease. The evaluation of sulfatide in cerebrospinal fluid as a possible biomarker for neurodegeneration. Mol Cell Neurosci 2021; 116:103670. [PMID: 34562592 DOI: 10.1016/j.mcn.2021.103670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022] Open
Abstract
Sulfatide (3-O-sulfogalactosylceramide, SM4) is a glycosphingolipid, highly multifunctional and particularly enriched in the myelin sheath of neurons. The role of sulfatide has been implicated in various biological fields such as the nervous system, immune system, host-pathogen recognition and infection, beta cell function and haemostasis/thrombosis. Thus, alterations in sulfatide metabolism and production are associated with several human diseases such as neurological and immunological disorders and cancers. The unique lipid-rich composition of myelin reflects the importance of lipids in this specific membrane structure. Sulfatide has been shown to be involved in the regulation of oligodendrocyte differentiation and in the maintenance of the myelin sheath by influencing membrane dynamics involving sorting and lateral assembly of myelin proteins as well as ion channels. Sulfatide is furthermore essential for proper formation of the axo-glial junctions at the paranode together with axonal glycosphingolipids. Alterations in sulfatide metabolism are suggested to contribute to myelin deterioration as well as synaptic dysfunction, neurological decline and inflammation observed in different conditions associated with myelin pathology (mouse models and human disorders). Body fluid biomarkers are of importance for clinical diagnostics as well as for patient stratification in clinical trials and treatment monitoring. Cerebrospinal fluid (CSF) is commonly used as an indirect measure of brain metabolism and analysis of CSF sulfatide might provide information regarding whether the lipid disruption observed in neurodegenerative disorders is reflected in this body fluid. In this review, we evaluate the diagnostic utility of CSF sulfatide as a biomarker for neurodegenerative disorders associated with dysmyelination/demyelination by summarising the current literature on this topic. We can conclude that neither CSF sulfatide levels nor individual sulfatide species consistently reflect the lipid disruption observed in many of the demyelinating disorders. One exception is the lysosomal storage disorder metachromatic leukodystrophy, possibly due to the genetically determined accumulation of non-metabolised sulfatide. We also discuss possible explanations as to why myelin pathology in brain tissue is poorly reflected by the CSF sulfatide concentration. The previous suggestion that CSF sulfatide is a marker of myelin damage has thereby been challenged by more recent studies using more sophisticated laboratory techniques for sulfatide analysis as well as improved sample selection criteria due to increased knowledge on disease pathology.
Collapse
Affiliation(s)
- Maria Blomqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Jan-Eric Månsson
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
31
|
Shin H, Kawai HD. Sensitive timing of undifferentiation in oligodendrocyte progenitor cells and their enhanced maturation in primary visual cortex of binocularly enucleated mice. PLoS One 2021; 16:e0257395. [PMID: 34534256 PMCID: PMC8448312 DOI: 10.1371/journal.pone.0257395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
Sensory experience modulates proliferation, differentiation, and migration of oligodendrocyte progenitor cells (OPCs). In the mouse primary visual cortex (V1), visual deprivation-dependent modulation of OPCs has not been demonstrated. Here, we demonstrate that undifferentiated OPCs developmentally peaked around postnatal day (P) 25, and binocular enucleation (BE) from the time of eye opening (P14-15) elevated symmetrically-divided undifferentiated OPCs in a reversible G0/G1 state even more at the bottom lamina of the cortex by reducing maturing oligodendrocyte (OL) lineage cells. Experiments using the sonic hedgehog (Shh) signaling inhibitor cyclopamine in vivo suggested that Shh signaling pathway was involved in the BE-induced undifferentiation process. The undifferentiated OPCs then differentiated within 5 days, independent of the experience, becoming mostly quiescent cells in control mice, while altering the mode of sister cell symmetry and forming quiescent as well as maturing cells in the enucleated mice. At P50, BE increased mature OLs via symmetric and asymmetric modes of cell segregation, resulting in more populated mature OLs at the bottom layer of the cortex. These data suggest that fourth postnatal week, corresponding to the early critical period of ocular dominance plasticity, is a developmentally sensitive period for OPC state changes. Overall, the visual loss promoted undifferentiation at the early period, but later increased the formation of mature OLs via a change in the mode of cell type symmetry at the bottom layer of mouse V1.
Collapse
Affiliation(s)
- Hyeryun Shin
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
| | - Hideki Derek Kawai
- Department of Bioinformatics, Graduate School of Engineering, Soka University, Hachioji, Tokyo, Japan
- Department of Biosciences, Graduate School of Science and Engineering, Soka University, Hachioji, Tokyo, Japan
| |
Collapse
|
32
|
van Rensburg SJ, van Toorn R, Erasmus RT, Hattingh C, Johannes C, Moremi KE, Kemp MC, Engel-Hills P, Kotze MJ. Pathology-supported genetic testing as a method for disability prevention in multiple sclerosis (MS). Part I. Targeting a metabolic model rather than autoimmunity. Metab Brain Dis 2021; 36:1151-1167. [PMID: 33909200 DOI: 10.1007/s11011-021-00711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
In this Review (Part I), we investigate the scientific evidence that multiple sclerosis (MS) is caused by the death of oligodendrocytes, the cells that synthesize myelin, due to a lack of biochemical and nutritional factors involved in mitochondrial energy production in these cells. In MS, damage to the myelin sheaths surrounding nerve axons causes disruption of signal transmission from the brain to peripheral organs, which may lead to disability. However, the extent of disability is not deterred by the use of MS medication, which is based on the autoimmune hypothesis of MS. Rather, disability is associated with the loss of brain volume, which is related to the loss of grey and white matter. A pathology-supported genetic testing (PSGT) method, developed for personalized assessment and treatment to prevent brain volume loss and disability progression in MS is discussed. This involves identification of MS-related pathogenic pathways underpinned by genetic variation and lifestyle risk factors that may converge into biochemical abnormalities associated with adverse expanded disability status scale (EDSS) outcomes and magnetic resonance imaging (MRI) findings during patient follow-up. A Metabolic Model is presented which hypothesizes that disability may be prevented or reversed when oligodendrocytes are protected by nutritional reserve. Evidence for the validity of the Metabolic Model may be evaluated in consecutive test cases following the PSGT method. In Part II of this Review, two cases are presented that describe the PSGT procedures and the clinical outcomes of these individuals diagnosed with MS.
Collapse
Affiliation(s)
- Susan J van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Ronald van Toorn
- Department of Pediatric Medicine and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rajiv T Erasmus
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Coenraad Hattingh
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Clint Johannes
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kelebogile E Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Merlisa C Kemp
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| |
Collapse
|
33
|
Safaeinejad F, Asadi S, Ghafghazi S, Niknejad H. The Synergistic Anti-Apoptosis Effects of Amniotic Epithelial Stem Cell Conditioned Medium and Ponesimod on the Oligodendrocyte Cells. Front Pharmacol 2021; 12:691099. [PMID: 34234678 PMCID: PMC8255610 DOI: 10.3389/fphar.2021.691099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/09/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis is a chronic inflammatory and neurodegenerative disease of the central nervous system. The current treatment of Multiple sclerosis is based on anti-inflammatory disease-modifying treatments, which can not regenerate myelin and eventually neurons. So, we need new approaches for axonal protection and remyelination. Amniotic epithelial stem cells amniotic epithelial cells, as a neuroprotective and neurogenic agent, are a proper source in tissue engineering and regenerative medicine. Due to differentiation capability and secretion of growth factors, AECs can be a candidate for the treatment of MS. Moreover, sphingosine-1-phosphate (S1P) receptor modulators were recently approved by FDA for MS. Ponesimod is an S1P receptor-1 modulator that acts selectively as an anti-inflammatory agent and provides a suitable microenvironment for the function of the other neuroprotective agents. In this study, due to the characteristics of AECs, they are considered a treatment option in MS. The conditioned medium of AECs concurrently with ponesimod was used to evaluate the viability of the oligodendrocyte cell line after induction of cell death by cuprizone. Cell viability after treatment by conditioned medium and ponesimod was increased compared to untreated groups. Also, the results showed that combination therapy with CM and ponesimod had a synergistic anti-apoptotic effect on oligodendrocyte cells. The combination treatment with CM and ponesimod reduced the expression of caspase-3, caspase-8, Bax, and Annexin V proteins and increased the relative BCL-2/Bax ratio, indicating inhibition of apoptosis as a possible mechanism of action. Based on these promising results, combination therapy with amniotic stem cells and ponesimode could be a proper alternative for multiple sclerosis treatment.
Collapse
Affiliation(s)
- Fahimeh Safaeinejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sareh Asadi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Ghafghazi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
The Distribution of GPR17-Expressing Cells Correlates with White Matter Inflammation Status in Brain Tissues of Multiple Sclerosis Patients. Int J Mol Sci 2021; 22:ijms22094574. [PMID: 33925469 PMCID: PMC8123849 DOI: 10.3390/ijms22094574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/23/2021] [Accepted: 04/24/2021] [Indexed: 01/26/2023] Open
Abstract
In multiple sclerosis (MS), oligodendrocyte precursor cells (OPCs) are recruited to the site of injury to remyelinate damaged axons; however, in patients this process is often ineffective due to defects in OPC maturation. The membrane receptor GPR17 timely regulates the early stages of OPC differentiation; however, after reaching its highest levels in immature oligodendrocytes, it has to be downregulated to allow terminal maturation. Since, in several animal models of disease GPR17 is upregulated, the aim of this work was to characterize GPR17 alterations in MS patients. We developed immunohistochemistry and immunofluorescence procedures for the detection of GPR17 in human tissues and stained post-mortem MS brain lesions from patients with secondary progressive MS and control subjects. The inflammatory activity in each lesion was evaluated by immunohistochemistry for the myelin protein MOG and the HLA antigen to classify them as active, chronic inactive or chronic active. Hence, we assessed the distribution of GPR17-positive cells in these lesions compared to normal appearing white matter (NAWM) and white matter (WM) of control subjects. Our data have shown a marked increase of GPR17-expressing oligodendroglial cells accumulating at NAWM, in which moderate inflammation was also found. Furthermore, we identified two distinct subpopulations of GPR17-expressing oligodendroglial cells, characterized by either ramified or rounded morphology, that differently populate the WM of healthy controls and MS patients. We concluded that the coordinated presence of GPR17 in OPCs at the lesion sites and inflamed NAWM areas suggests that GPR17 could be exploited to support endogenous remyelination through advanced pharmacological approaches.
Collapse
|
35
|
Banne E, Abudiab B, Abu-Swai S, Repudi SR, Steinberg DJ, Shatleh D, Alshammery S, Lisowski L, Gold W, Carlen PL, Aqeilan RI. Neurological Disorders Associated with WWOX Germline Mutations-A Comprehensive Overview. Cells 2021; 10:824. [PMID: 33916893 PMCID: PMC8067556 DOI: 10.3390/cells10040824] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
The transcriptional regulator WW domain-containing oxidoreductase (WWOX) is a key player in a number of cellular and biological processes including tumor suppression. Recent evidence has emerged associating WWOX with non-cancer disorders. Patients harboring pathogenic germline bi-allelic WWOX variants have been described with the rare devastating neurological syndromes autosomal recessive spinocerebellar ataxia 12 (SCAR12) (6 patients) and WWOX-related epileptic encephalopathy (DEE28 or WOREE syndrome) (56 patients). Individuals with these syndromes present with a highly heterogenous clinical spectrum, the most common clinical symptoms being severe epileptic encephalopathy and profound global developmental delay. Knowledge of the underlying pathophysiology of these syndromes, the range of variants of the WWOX gene and its genotype-phenotype correlations is limited, hampering therapeutic efforts. Therefore, there is a critical need to identify and consolidate all the reported variants in WWOX to distinguish between disease-causing alleles and their associated severity, and benign variants, with the aim of improving diagnosis and increasing therapeutic efforts. Here, we provide a comprehensive review of the literature on WWOX, and analyze the pathogenic variants from published and unpublished reports by collecting entries from the ClinVar, DECIPHER, VarSome, and PubMed databases to generate the largest dataset of WWOX pathogenic variants. We estimate the correlation between variant type and patient phenotype, and delineate the impact of each variant, and used GnomAD to cross reference these variants found in the general population. From these searches, we generated the largest published cohort of WWOX individuals. We conclude with a discussion on potential personalized medicine approaches to tackle the devastating disorders associated with WWOX mutations.
Collapse
Affiliation(s)
- Ehud Banne
- The Genetic Institute, Kaplan Medical Center, Hebrew University-Hadassah Medical School, Rehovot 76100, Israel;
- The Rina Mor Genetic Institute, Wolfson Medical Center, Holon 58100, Israel
| | - Baraa Abudiab
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Srinivasa Rao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Daniel J. Steinberg
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Diala Shatleh
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| | - Sarah Alshammery
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead 2145, NSW, Australia;
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Wendy Gold
- Faculty of Medicine and Health, School of Medical Sciences and Discipline of Child and Adolescent Health, The University of Sydney, Westmead 2145, NSW, Australia; (S.A.); (W.G.)
- Molecular Neurobiology Research Laboratory, Kids Research, Children’s Hospital at Westmead and The Children’s Medical Research Institute, Westmead 2145, NSW, Australia
- Kids Neuroscience Centre, Kids Research, Children’s Hospital at Westmead, Westmead 2145, NSW, Australia
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network and Department of Medicine, Physiology and BME, University of Toronto, Toronto, ON M5T 1M8, Canada;
| | - Rami I. Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Department of Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; (B.A.); (S.A.-S.); (D.J.S.); (S.R.R.); (D.S.)
| |
Collapse
|
36
|
Holikova K, Laakso H, Salo R, Shatillo A, Nurmi A, Bares M, Vanicek J, Michaeli S, Mangia S, Sierra A, Gröhn O. RAFF-4, Magnetization Transfer and Diffusion Tensor MRI of Lysophosphatidylcholine Induced Demyelination and Remyelination in Rats. Front Neurosci 2021; 15:625167. [PMID: 33746698 PMCID: PMC7969884 DOI: 10.3389/fnins.2021.625167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/01/2021] [Indexed: 12/20/2022] Open
Abstract
Remyelination is a naturally occurring response to demyelination and has a central role in the pathophysiology of multiple sclerosis and traumatic brain injury. Recently we demonstrated that a novel MRI technique entitled Relaxation Along a Fictitious Field (RAFF) in the rotating frame of rank n (RAFFn) achieved exceptional sensitivity in detecting the demyelination processes induced by lysophosphatidylcholine (LPC) in rat brain. In the present work, our aim was to test whether RAFF4, along with magnetization transfer (MT) and diffusion tensor imaging (DTI), would be capable of detecting the changes in the myelin content and microstructure caused by modifications of myelin sheets around axons or by gliosis during the remyelination phase after LPC-induced demyelination in the corpus callosum of rats. We collected MRI data with RAFF4, MT and DTI at 3 days after injection (demyelination stage) and at 38 days after injection (remyelination stage) of LPC (n = 12) or vehicle (n = 9). Cell density and myelin content were assessed by histology. All MRI metrics detected differences between LPC-injected and control groups of animals in the demyelination stage, on day 3. In the remyelination phase (day 38), RAFF4, MT parameters, fractional anisotropy, and axial diffusivity detected signs of a partial recovery consistent with the remyelination evident in histology. Radial diffusivity had undergone a further increase from day 3 to 38 and mean diffusivity revealed a complete recovery correlating with the histological assessment of cell density attributed to gliosis. The combination of RAFF4, MT and DTI has the potential to differentiate between normal, demyelinated and remyelinated axons and gliosis and thus it may be able to provide a more detailed assessment of white matter pathologies in several neurological diseases.
Collapse
Affiliation(s)
- Klara Holikova
- Department of Medical Imaging, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Hanne Laakso
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Raimo Salo
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | | | - Martin Bares
- First Department of Neurology, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia.,Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, Untied States
| | - Jiri Vanicek
- Department of Medical Imaging, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Shalom Michaeli
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, Untied States
| | - Silvia Mangia
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, Untied States
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli Gröhn
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
37
|
Denny L, Al Abadey A, Robichon K, Templeton N, Prisinzano TE, Kivell BM, La Flamme AC. Nalfurafine reduces neuroinflammation and drives remyelination in models of CNS demyelinating disease. Clin Transl Immunology 2021; 10:e1234. [PMID: 33489124 PMCID: PMC7811802 DOI: 10.1002/cti2.1234] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/22/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Objectives Multiple sclerosis (MS) is a neurodegenerative disease characterised by inflammation and damage to the myelin sheath, resulting in physical and cognitive disability. There is currently no cure for MS, and finding effective treatments to prevent disease progression has been challenging. Recent evidence suggests that activating kappa opioid receptors (KOR) has a beneficial effect on the progression of MS. Although many KOR agonists like U50,488 are not suitable for clinical use because of a poor side‐effect profile, nalfurafine is a potent, clinically used KOR agonist with a favorable side‐effect profile. Methods Using the experimental autoimmune encephalomyelitis (EAE) model, the effect of therapeutically administered nalfurafine or U50,488 on remyelination, CNS infiltration and peripheral immune responses were compared. Additionally, the cuprizone model was used to compare the effects on non‐immune demyelination. Results Nalfurafine enabled recovery and remyelination during EAE. Additionally, it was more effective than U50,488 and promoted disease reduction when administered after chronic demyelination. Blocking KOR with the antagonist, nor‐BNI, impaired full recovery by nalfurafine, indicating that nalfurafine mediates recovery from EAE in a KOR‐dependent fashion. Furthermore, nalfurafine treatment reduced CNS infiltration (especially CD4+ and CD8+ T cells) and promoted a more immunoregulatory environment by decreasing Th17 responses. Finally, nalfurafine was able to promote remyelination in the cuprizone demyelination model, supporting the direct effect on remyelination in the absence of peripheral immune cell invasion. Conclusions Overall, our findings support the potential of nalfurafine to promote recovery and remyelination and highlight its promise for clinical use in MS.
Collapse
Affiliation(s)
- Lisa Denny
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Afnan Al Abadey
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Katharina Robichon
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Nikki Templeton
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Thomas E Prisinzano
- Department of Pharmaceutical Sciences University of Kentucky Lexington KY 40536 USA
| | - Bronwyn M Kivell
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand
| | - Anne C La Flamme
- School of Biological Sciences Victoria University of Wellington Wellington New Zealand.,Centre for Biodiscovery Victoria University of Wellington Wellington New Zealand.,Malaghan Institute of Medical Research Wellington New Zealand
| |
Collapse
|
38
|
Benkowska-Biernacka D, Smalyukh II, Matczyszyn K. Morphology of Lyotropic Myelin Figures Stained with a Fluorescent Dye. J Phys Chem B 2020; 124:11974-11979. [PMID: 33347307 PMCID: PMC7872420 DOI: 10.1021/acs.jpcb.0c08907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Indexed: 11/29/2022]
Abstract
Lyotropic myelin figures (MFs), i.e., long cylindrical structures formed by certain surfactants, owe their name to their resemblance to the biological membrane that covers nerve fibers. Herein, we used a strong bilayer-forming zwitterionic phospholipid stained by the Nile Red dye to study lamellar mesophases. Polarized optical microscopy and fluorescence confocal microscopy allowed us to investigate the morphology of myelin structures and determine the orientational order of amphiphilic molecules. The cross-sectional views reveal significant differences in the configurations of MFs within the liquid crystalline cell, as well as the details of a spontaneous and stimulated formation of branched lipid tubes. Our results provide insights into small-scale morphology and out-of-equilibrium structural changes in the multilamellar structures.
Collapse
Affiliation(s)
- Dominika Benkowska-Biernacka
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Ivan I. Smalyukh
- Department
of Physics and Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Katarzyna Matczyszyn
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
39
|
Sekera ER, Saraswat D, Zemaitis KJ, Sim FJ, Wood TD. MALDI Mass Spectrometry Imaging in a Primary Demyelination Model of Murine Spinal Cord. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2462-2468. [PMID: 32926612 PMCID: PMC8628303 DOI: 10.1021/jasms.0c00187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Destruction of myelin, or demyelination, is a characteristic of traumatic spinal cord injury and pathognomonic for primary demyelinating pathologies such as multiple sclerosis (MS). The regenerative process known as remyelination, which can occur following demyelination, fails as MS progresses. Models of focal demyelination by local injection of gliotoxins have provided important biological insights into the demyelination/remyelination process. Here, injection of lysolecithin to induce spinal cord demyelination is investigated using matrix-assisted laser desorption/ionization mass spectrometry imaging. A segmentation analysis revealed changes to the lipid composition during lysolecithin-induced demyelination at the lesion site and subsequent remyelination over time. The results of this study can be utilized to identify potential myelin-repair mechanisms and in the design of therapeutic strategies to enhance myelin repair.
Collapse
Affiliation(s)
- Emily R Sekera
- Department of Chemistry, Natural Sciences Complex, University at Buffalo State University of New York, Buffalo, New York 14260-3000, United States
| | - Darpan Saraswat
- Department of Pharmacology & Toxicology, Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, University at Buffalo State University of New York, Buffalo, New York 14203, United States
| | - Kevin J Zemaitis
- Department of Chemistry, Natural Sciences Complex, University at Buffalo State University of New York, Buffalo, New York 14260-3000, United States
| | - Fraser J Sim
- Department of Pharmacology & Toxicology, Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, University at Buffalo State University of New York, Buffalo, New York 14203, United States
| | - Troy D Wood
- Department of Chemistry, Natural Sciences Complex, University at Buffalo State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
40
|
Pezzotti G, Adachi T, Miyamoto N, Yamamoto T, Boschetto F, Marin E, Zhu W, Kanamura N, Ohgitani E, Pizzi M, Sowa Y, Mazda O. Raman Probes for In Situ Molecular Analyses of Peripheral Nerve Myelination. ACS Chem Neurosci 2020; 11:2327-2339. [PMID: 32603086 DOI: 10.1021/acschemneuro.0c00284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The myelinating activity of living Schwann cells in coculture with neuronal cells was examined in situ in a Raman microprobe spectroscope. The Raman label-free approach revealed vibrational fingerprints directly related to the activity of Schwann cells' metabolites and identified molecular species peculiar to myelinating cells. The identified chemical species included antioxidants, such as hypotaurine and glutathione, and compartmentalized water, in addition to sphingolipids, phospholipids, and nucleoside triphosphates also present in neuronal and nonmyelinating Schwann cells. Raman maps at specific frequencies could be collected, which clearly visualized the myelinating action of Schwann cells and located the demyelinated ones. An important finding was the spectroscopic visualization of confined water in the myelin structure, which exhibited a quite pronounced Raman signal at ∼3470 cm-1. This peculiar signal, whose spatial location precisely corresponded to a low-frequency fingerprint of hypotaurine, was absent in unmyelinating cells and in bulk water. Raman enhancement was attributed to frustration in the hydrogen-bond network as induced by interactions with lipids in the myelin sheaths. According to a generally accepted morphological model of myelin, an explanation was offered of the peculiar Raman scattering of water confined in intraperiod lines, according to an ordered hydrogen bonding structure. The possibility of concurrently mapping antioxidant molecules and compartmentalized water structure with high spectral accuracy and microscopic spatial resolution enables probing myelinating activity and might play a key-role in future studies of neuronal pathologies. Compatible with life, Raman microprobe spectroscopy with the newly discovered probes could be suitable for developing advanced strategies in the reconstruction of injured nerves and nerve terminals at neuromuscular junctions.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0854, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Francesco Boschetto
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Marina Pizzi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Yoshihiro Sowa
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
41
|
Abdel-Maged AES, Gad AM, Rashed LA, Azab SS, Mohamed EA, Awad AS. Repurposing of Secukinumab as Neuroprotective in Cuprizone-Induced Multiple Sclerosis Experimental Model via Inhibition of Oxidative, Inflammatory, and Neurodegenerative Signaling. Mol Neurobiol 2020; 57:3291-3306. [PMID: 32514862 DOI: 10.1007/s12035-020-01972-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, and neurodegenerative autoimmune disease. MS is a devastating disorder that is characterized by cognitive and motor deficits. Cuprizone-induced demyelination is the most widely experimental model used for MS. Cuprizone is a copper chelator that is well characterized by microgliosis and astrogliosis and is reproducible for demyelination and remyelination. Secukinumab (SEC) is a fully human monoclonal anti-human antibody of the IgG1/kappa isotype that selectively targets IL-17A. Expression of IL-17 is associated with MS. Also, IL-17 stimulates microglia and astrocytes resulting in progression of MS through chemokine production and neutrophil recruitment. This study aimed to investigate the neuroprotective effects of SEC on cuprizone-induced demyelination with examining the underlying mechanisms. Locomotor activity, short-term spatial memory function, staining by Luxol Fast Blue, myelin basic protein, gliasosis, inflammatory, and oxidative-stress markers were assessed to evaluate neuroprotective, anti-inflammatory and antioxidant effects. Moreover, the safety profile of SEC was evaluated. The present study concludes the efficacy of SEC in Cup-induced demyelination experimental model. Interestingly, SEC had neuroprotective and antioxidant effects besides its anti-inflammatory effect in the studied experimental model of MS. Graphical abstract.
Collapse
Affiliation(s)
| | - Amany M Gad
- Department of Pharmacology, National Organization for Drug Control and Research (NODCAR), Cairo, Egypt
| | - Laila Ahmed Rashed
- Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Eman A Mohamed
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Azza S Awad
- Departmentof Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
42
|
Rickman OJ, Baple EL, Crosby AH. Lipid metabolic pathways converge in motor neuron degenerative diseases. Brain 2020; 143:1073-1087. [PMID: 31848577 PMCID: PMC7174042 DOI: 10.1093/brain/awz382] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/11/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron diseases (MNDs) encompass an extensive and heterogeneous group of upper and/or lower motor neuron degenerative disorders, in which the particular clinical outcomes stem from the specific neuronal component involved in each condition. While mutations in a large number of molecules associated with lipid metabolism are known to be implicated in MNDs, there remains a lack of clarity regarding the key functional pathways involved, and their inter-relationships. This review highlights evidence that defines defects within two specific lipid (cholesterol/oxysterol and phosphatidylethanolamine) biosynthetic cascades as being centrally involved in MND, particularly hereditary spastic paraplegia. We also identify how other MND-associated molecules may impact these cascades, in particular through impaired organellar interfacing, to propose ‘subcellular lipidome imbalance’ as a likely common pathomolecular theme in MND. Further exploration of this mechanism has the potential to identify new therapeutic targets and management strategies for modulation of disease progression in hereditary spastic paraplegias and other MNDs.
Collapse
Affiliation(s)
- Olivia J Rickman
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Emma L Baple
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew H Crosby
- Medical Research (Level 4), RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Barrack Road, Exeter, EX2 5DW, UK
| |
Collapse
|
43
|
Chakravarty D, Saadi F, Kundu S, Bose A, Khan R, Dine K, Kenyon LC, Shindler KS, Das Sarma J. CD4 Deficiency Causes Poliomyelitis and Axonal Blebbing in Murine Coronavirus-Induced Neuroinflammation. J Virol 2020; 94:e00548-20. [PMID: 32404525 PMCID: PMC7343199 DOI: 10.1128/jvi.00548-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/07/2020] [Indexed: 12/20/2022] Open
Abstract
Mouse hepatitis virus (MHV) is a murine betacoronavirus (m-CoV) that causes a wide range of diseases in mice and rats, including hepatitis, enteritis, respiratory diseases, and encephalomyelitis in the central nervous system (CNS). MHV infection in mice provides an efficient cause-effect experimental model to understand the mechanisms of direct virus-induced neural-cell damage leading to demyelination and axonal loss, which are pathological features of multiple sclerosis (MS), the most common disabling neurological disease in young adults. Infiltration of T lymphocytes, activation of microglia, and their interplay are the primary pathophysiological events leading to disruption of the myelin sheath in MS. However, there is emerging evidence supporting gray matter involvement and degeneration in MS. The investigation of T cell function in the pathogenesis of deep gray matter damage is necessary. Here, we employed RSA59 (an isogenic recombinant strain of MHV-A59)-induced experimental neuroinflammation model to compare the disease in CD4-/- mice with that in CD4+/+ mice at days 5, 10, 15, and 30 postinfection (p.i.). Viral titer estimation, nucleocapsid gene amplification, and viral antinucleocapsid staining confirmed enhanced replication of the virions in the absence of functional CD4+ T cells in the brain. Histopathological analyses showed elevated susceptibility of CD4-/- mice to axonal degeneration in the CNS, with augmented progression of acute poliomyelitis and dorsal root ganglionic inflammation rarely observed in CD4+/+ mice. Depletion of CD4+ T cells showed unique pathological bulbar vacuolation in the brain parenchyma of infected mice with persistent CD11b+ microglia/macrophages in the inflamed regions on day 30 p.i. In summary, the current study suggests that CD4+ T cells are critical for controlling acute-stage poliomyelitis (gray matter inflammation), chronic axonal degeneration, and inflammatory demyelination due to loss of protective antiviral host immunity.IMPORTANCE The current trend in CNS disease biology is to attempt to understand the neural-cell-immune interaction to investigate the underlying mechanism of neuroinflammation, rather than focusing on peripheral immune activation. Most studies in MS are targeted toward understanding the involvement of CNS white matter. However, the importance of gray matter damage has become critical in understanding the long-term progressive neurological disorder. Our study highlights the importance of CD4+ T cells in safeguarding neurons against axonal blebbing and poliomyelitis from murine betacoronavirus-induced neuroinflammation. Current knowledge of the mechanisms that lead to gray matter damage in MS is limited, because the most widely used animal model, experimental autoimmune encephalomyelitis (EAE), does not present this aspect of the disease. Our results, therefore, add to the existing limited knowledge in the field. We also show that the microglia, though important for the initiation of neuroinflammation, cannot establish a protective host immune response without the help of CD4+ T cells.
Collapse
Affiliation(s)
- Debanjana Chakravarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Fareeha Saadi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Soumya Kundu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Abhishek Bose
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Reas Khan
- Department of Ophthalmology, University of Pennsylvania Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Kimberly Dine
- Department of Ophthalmology, University of Pennsylvania Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Lawrence C Kenyon
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Kenneth S Shindler
- Department of Ophthalmology, University of Pennsylvania Scheie Eye Institute, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Jayasri Das Sarma
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
44
|
Collins L, Brunjes P. Experimental Demyelination of the Lateral Olfactory Tract and Anterior Commissure. Neuroscience 2020; 434:93-101. [PMID: 32224229 DOI: 10.1016/j.neuroscience.2020.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 11/27/2022]
Abstract
Demyelination significantly affects brain function. Several experimental methods, each inducing varying levels of myelin and neuronal damage, have been developed to understand the process of myelin loss and to find new therapies to promote remyelination. The present work investigates the effect of one such method, lysolecithin administration, on the white matter tracts in the olfactory system. The olfactory forebrain contains two distinct tracts with differing developmental histories, axonal composition, and function: the lateral olfactory tract (LOT), which carries ipsilateral olfactory information from the olfactory bulb to olfactory cortex, and the anterior commissure (AC), which interconnects olfactory regions across hemispheres. The effects of lysolecithin injections were assessed in two ways: (1) the expression of myelin basic protein, a component of compacted myelin sheaths, was quantified using immunohistochemistry and (2) electron microscopy was used to obtain measurements of myelin thickness of individual axons as well as qualitative descriptions of the extent of damage to myelin and surrounding tissue. Data were collected at 7, 14, 21, and 30 days post-injection (dpi). While both the LOT and AC exhibited significant demyelination at 7 dpi and had returned to control levels by 30 dpi, the process differed between the two tracts. Remyelination occurred more rapidly in the LOT: substantial recovery was observed in the LOT by 14 dpi, but not in the AC until 21 dpi. The findings indicate that (a) the LOT and AC are indeed suitable tracts for studying lysolecithin-induced de- and remyelination and (b) experimental demyelination proceeds differently between the two tracts.
Collapse
Affiliation(s)
- Lindsay Collins
- University of Virginia, Department of Psychology, United States; University of Oregon, Institute of Neuroscience, United States.
| | - Peter Brunjes
- University of Virginia, Department of Psychology, United States
| |
Collapse
|
45
|
Dziedzic A, Miller E, Saluk-Bijak J, Bijak M. The GPR17 Receptor-A Promising Goal for Therapy and a Potential Marker of the Neurodegenerative Process in Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21051852. [PMID: 32182666 PMCID: PMC7084627 DOI: 10.3390/ijms21051852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
One of the most important goals in the treatment of demyelinating diseases such as multiple sclerosis (MS) is, in addition to immunomodulation, reconstruction of the lost myelin sheath. The modulator of the central nervous system myelination is the metabotropic receptor coupled to the G-protein: GPR17. GPR17 receptors are considered to be sensors of local damage to the myelin sheath, and play a role in the reconstruction and repair of demyelinating plaques caused by ongoing inflammatory processes. GPR17 receptors are present on nerve cells and precursor oligodendrocyte cells. Under physiological conditions, they are responsible for the differentiation and subsequent maturation of oligodendrocytes, while under pathological conditions (during damage to nerve cells), their expression increases to become mediators in the demyelinating processes. Moreover, they are essential not only in both the processes of inducing damage and the death of neurons, but also in the local repair of the damaged myelin sheath. Therefore, GPR17 receptors may be recognized as the potential goal in creating innovative therapies for the treatment of the neurodegenerative process in MS, based on the acceleration of the remyelination processes. This review examines the role of GRP17 in pathomechanisms of MS development.
Collapse
Affiliation(s)
- Angela Dziedzic
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Elzbieta Miller
- Department of Neurological Rehabilitation, Medical University of Lodz, Milionowa 14, 93-113 Lodz, Poland;
| | - Joanna Saluk-Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (A.D.); (J.S.-B.)
| | - Michal Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence: ; Tel.: +48-42-635-4336
| |
Collapse
|
46
|
Up-regulation of MicroRNAs-21 and -223 in a Sprague-Dawley Rat Model of Traumatic Spinal Cord Injury. Brain Sci 2020; 10:brainsci10030141. [PMID: 32121653 PMCID: PMC7139624 DOI: 10.3390/brainsci10030141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/29/2020] [Accepted: 03/01/2020] [Indexed: 12/18/2022] Open
Abstract
In this experimental animal study, we examined alterations in the degree of transcription of two microRNAs (miRs)—miR-21 and -223—in a Sprague-Dawley (SD) rat model of traumatic spinal cord injury (TSCI). Depending on the volume of the balloon catheter (V), a total of 75 male SD rats were divided into the three experimental groups: the sham group (n = 25; V = 0 μL), the mild group (n = 25; V = 20 μL), and the severe group (n = 25; V = 50 μL). Successful induction of TSCI was confirmed on both locomotor rating scale at 4 h and 1, 3 and 7 days post-lesion and histopathologic examinations. Then, RNA isolation and quantitative polymerase chain reaction (PCR) were performed. No differences in the level of miR-21 expression were found at the first time point studied (4 h post-lesion) between the three experimental groups, whereas such differences were significant at all the other time points (p < 0.05). Moreover, there were significant alterations in the level of miR-223 expression at all time points studied through all the experimental groups (p < 0.05). Furthermore, locomotor rating scale scores had a linear relationship with the level of miR-21 expression (R2 = 0.4363, Y = 1.661X + 3.096) and that of miR-223 one (R2 = 0.9104, Y = 0.8385X + 2.328). Taken together, we conclude that up-regulation of miR-21 and -223 might be closely associated with progression and the early course of TSCI, respectively.
Collapse
|
47
|
Warnock A, Toomey LM, Wright AJ, Fisher K, Won Y, Anyaegbu C, Fitzgerald M. Damage Mechanisms to Oligodendrocytes and White Matter in Central Nervous System Injury: The Australian Context. J Neurotrauma 2020; 37:739-769. [DOI: 10.1089/neu.2019.6890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Andrew Warnock
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Lillian M. Toomey
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Alexander J. Wright
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Katherine Fisher
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Yerim Won
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Chidozie Anyaegbu
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
48
|
Oncostatin M-induced astrocytic tissue inhibitor of metalloproteinases-1 drives remyelination. Proc Natl Acad Sci U S A 2020; 117:5028-5038. [PMID: 32071226 DOI: 10.1073/pnas.1912910117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The brain's endogenous capacity to restore damaged myelin deteriorates during the course of demyelinating disorders. Currently, no treatment options are available to establish remyelination. Chronic demyelination leads to damaged axons and irreversible destruction of the central nervous system (CNS). We identified two promising therapeutic candidates which enhance remyelination: oncostatin M (OSM), a member of the interleukin-6 family, and downstream mediator tissue inhibitor of metalloproteinases-1 (TIMP-1). While remyelination was completely abrogated in OSMRβ knockout (KO) mice, OSM overexpression in the chronically demyelinated CNS established remyelination. Astrocytic TIMP-1 was demonstrated to play a pivotal role in OSM-mediated remyelination. Astrocyte-derived TIMP-1 drove differentiation of oligodendrocyte precursor cells into mature oligodendrocytes in vitro. In vivo, TIMP-1 deficiency completely abolished spontaneous remyelination, phenocopying OSMRβ KO mice. Finally, TIMP-1 was expressed by human astrocytes in demyelinated multiple sclerosis lesions, confirming the human value of our findings. Taken together, OSM and its downstream mediator TIMP-1 have the therapeutic potential to boost remyelination in demyelinating disorders.
Collapse
|
49
|
Delivanoglou N, Boziki M, Theotokis P, Kesidou E, Touloumi O, Dafi N, Nousiopoulou E, Lagoudaki R, Grigoriadis N, Charalampopoulos I, Simeonidou C. Spatio-temporal expression profile of NGF and the two-receptor system, TrkA and p75NTR, in experimental autoimmune encephalomyelitis. J Neuroinflammation 2020; 17:41. [PMID: 31996225 PMCID: PMC6990493 DOI: 10.1186/s12974-020-1708-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nerve growth factor (NGF) and its receptors, tropomyosin receptor kinase A (TrkA) and pan-neurotrophin receptor p75 (p75NTR), are known to play bidirectional roles between the immune and nervous system. There are only few studies with inconclusive results concerning the expression pattern and role of NGF, TrkA, and p75NTR (NGF system) under the neuroinflammatory conditions in multiple sclerosis (MS) and its mouse model, the experimental autoimmune encephalomyelitis (EAE). The aim of this study is to investigate the temporal expression in different cell types of NGF system in the central nervous system (CNS) during the EAE course. METHODS EAE was induced in C57BL/6 mice 6-8 weeks old. CNS tissue samples were collected on specific time points: day 10 (D10), days 20-22 (acute phase), and day 50 (chronic phase), compared to controls. Real-time PCR, Western Blot, histochemistry, and immunofluorescence were performed throughout the disease course for the detection of the spatio-temporal expression of the NGF system. RESULTS Our findings suggest that both NGF and its receptors, TrkA and p75NTR, are upregulated during acute and chronic phase of the EAE model in the inflammatory lesions in the spinal cord. NGF and its receptors were co-localized with NeuN+ cells, GAP-43+ axons, GFAP+ cells, Arginase1+ cells, and Mac3+ cells. Furthermore, TrkA and p75NTR were sparsely detected on CNPase+ cells within the inflammatory lesion. Of high importance is our observation that despite EAE being a T-mediated disease, only NGF and p75NTR were shown to be expressed by B lymphocytes (B220+ cells) and no expression on T lymphocytes was noticed. CONCLUSION Our results indicate that the components of the NGF system are subjected to differential regulation during the EAE disease course. The expression pattern of NGF, TrkA, and p75NTR is described in detail, suggesting possible functional roles in neuroprotection, neuroregeneration, and remyelination by direct and indirect effects on the components of the immune system.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/metabolism
- Brain/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Expression Regulation/genetics
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Nerve Growth Factor/biosynthesis
- Nerve Growth Factor/genetics
- Receptor, trkA/biosynthesis
- Receptor, trkA/genetics
- Receptors, Nerve Growth Factor/biosynthesis
- Receptors, Nerve Growth Factor/genetics
- Spinal Cord/metabolism
- Spinal Cord/pathology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Nickoleta Delivanoglou
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Touloumi
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolina Dafi
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Nousiopoulou
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Roza Lagoudaki
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, B' Department of Neurology, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Charalampopoulos
- Laboratory of Pharmacology, Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas, Heraklion, Greece
| | - Constantina Simeonidou
- Laboratory of Experimental Physiology, Department of Physiology and Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| |
Collapse
|
50
|
Ebrahimi-Barough S, Ai J, Payab M, Alavi-Moghadam S, Shokati A, Aghayan HR, Larijani B, Arjmand B. Standard Operating Procedure for the Good Manufacturing Practice-Compliant Production of Human Endometrial Stem Cells for Multiple Sclerosis. Methods Mol Biol 2020; 2286:199-212. [PMID: 32504294 DOI: 10.1007/7651_2020_281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiple sclerosis (MS) is the most common cause of neurological diseases. Although, there are some effective medications with regulatory approval for treating MS, they are only partially effective and cannot promote repairing of tissue damage directly which occurs in the central nervous system. Therefore, there is an essential need to develop novel therapeutic approaches for neuroprotection or repairing damaged tissue in MS. Accordingly, cell-based therapies as a novel therapeutic strategy have opened a new horizon in treatment of MS. Each setting in cell therapy has potential benefits. Human endometrial stem cells as an invaluable source for cell therapy have introduced treatment for MS. In this respect, good manufacturing practice (GMP) has a pivotal role in clinical production of stem cells. This chapter tries to describe the protocol of GMP-grade endometrial stem cells for treatment of MS.
Collapse
Affiliation(s)
- Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Moloud Payab
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Shokati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran. .,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|