1
|
Kayal E, Lavrov DV. One Ring does not rule them all: Linear mtDNA in Metazoa. Gene 2025; 933:148999. [PMID: 39396556 DOI: 10.1016/j.gene.2024.148999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in genome sequencing technologies have facilitated the exploration of the architecture of genomes, including mitochondrial genomes (mtDNA). In particular, whole genome sequencing has provided easier access to mitochondrial genomes with unusual organizations, which were difficult to obtain using traditional PCR-based approaches. As a consequence, there has been a steep increase in complete mtDNA sequences, particularly for Metazoa. The popular view of metazoan mtDNA is that of a small gene-dense circular chromosome. This view clashes with discoveries of a number of linear mtDNAs, particularly in non-bilaterian animals. Here, we review the distribution of linear mtDNA in Metazoa, namely in isopods, cnidarians, and sponges. We discuss the multiple origins of linear mitogenomes in these clades, where linearity has been linked to the likely insertion of a linear plasmid in cnidarians and the demosponge Acanthella acuta, while fixation of a heteroplasmy in the anticodon site of a tRNA might be responsible for the monolinear form of the mtDNA in some isopods. We also summarize our current knowledge of mechanisms that maintain the integrity of linear mitochromosomes, where a recurrent theme is the presence of terminal repeats that likely play the role of telomeres. We caution in defining a linear chromosome as complete, particularly when coding sequences and key features of linear DNA are missing. Finally, we encourage authors interested in mitogenome science to utilize all available data for linear mtDNA, including those tagged as "incomplete" or "unverified" in public databases, as they can still provide useful information such as phylogenetic characters and gene order.
Collapse
Affiliation(s)
- Ehsan Kayal
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| | - Dennis V Lavrov
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
2
|
Romero‐Haro AA, Cantarero A, Alonso‐Alvarez C. Early Oxidative Stress May Prevent a Red Ornament From Signaling Longevity. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:70-80. [PMID: 39318264 PMCID: PMC11617810 DOI: 10.1002/jez.2868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Harsh early environmental conditions can exert delayed, long-lasting effects on phenotypes, including reproductive traits such as sexual signals. Indeed, adverse early conditions can accelerate development, increasing oxidative stress that may, in turn, impact adult sexual signals. Among signals, colorations produced by red ketocarotenoids seem to depend on mitochondrial functioning. Hence, they could reveal individual cell respiration efficiency. It has been hypothesized that these traits are unfalsifiable "index" signals of condition due to their deep connection to individual metabolism. Since mitochondrial dysfunction is frequently linked to aging, red ketocarotenoid-based ornaments could also be good signals of a critical fitness component: longevity. We tested this red color per longevity correlation in captive zebra finches. In addition, we experimentally decreased the synthesis of glutathione (a critical intracellular antioxidant) during the first days of the birds' life to resemble harsh early environmental conditions (e.g., undernutrition). Longevity was recorded until the death of the last bird (almost 9 years). Males, but not females, exhibiting a redder bill in early adulthood lived longer than males with paler bills, which agrees with some precedent studies. However, such bill redness-longevity connection was absent among males with inhibited glutathione synthesis. These findings may suggest that environmental factors can alter the reliability of red ketocarotenoid-based sexual signals, making them less unfalsifiable than believed.
Collapse
Affiliation(s)
- A. A. Romero‐Haro
- Instituto de Investigación en Recursos Cinegéticos (IREC‐CSIC‐UCLM‐JCCM)Ciudad RealSpain
| | - A. Cantarero
- Department of Physiology, Veterinary SchoolComplutense University of MadridMadridSpain
| | - C. Alonso‐Alvarez
- Evolutionary Ecology DepartmentNational Museum of Natural Sciences‐The Spanish National Research Council (MNCN‐CSIC)MadridSpain
- Instituto Pirenaico de Ecología (IPE‐CSIC)Jaca, HuescaSpain
| |
Collapse
|
3
|
Vaz D, Vasconcelos S, Caniçais C, Costa B, Ramalho C, Marques J, Dória S. X-chromosome inactivation pattern and telomere length in recurrent pregnancy loss. Reprod Biol 2024; 24:100933. [PMID: 39173315 DOI: 10.1016/j.repbio.2024.100933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Recurrent pregnancy loss is a reproductive disorder affecting about 1 to 5 % of pregnant women worldwide that requires our attention, especially considering that about 50 % of cases are idiopathic. The present study is focused on testing a possible association between extreme skewed X-chromosome inactivation patterns and/or shortened telomeres with idiopathic cases since both are considered non-consensual potential causes underlying recurrent pregnancy loss in the scientific community. For this purpose, two groups of women were analyzed and compared: a group of women with idiopathic recurrent pregnancy loss and a second group of age-matched women with proven fertility, and both X-chromosome inactivation patterns and telomere length were measured and compared from maternal DNA extracted from peripheral blood. Our data showed no statistically significant differences between groups, suggesting no association between extreme skewed X-chromosome inactivation or shortened telomeres with recurrent pregnancy losses. Additionally, the effect of maternal age on both X-chromosome inactivation pattern and telomere length was tested, but no significant correlation was observed between advanced maternal age and extreme skewed X-chromosome inactivation or telomere shortening. This study represents one more valid contribution to the investigation of causes underlying recurrent pregnancy loss suggesting that, new variables may be considered since the pattern of X-chromosome inactivation and telomere length do not seem to be related to this reproductive disorder. Briefly, considering its clinical relevance, it is mandatory a continuous effort in the scientific community to cover new potential recurrent pregnancy loss-related causes.
Collapse
Affiliation(s)
- Diane Vaz
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal.
| | - Sara Vasconcelos
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal.
| | - Carla Caniçais
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal.
| | - Beatriz Costa
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal.
| | - Carla Ramalho
- I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal; Department of Obstetrics and Gynecology, Centro Hospitalar São João and Faculty of Medicine, Porto, Portugal; Department of Gynecology-Obstetrics and Pediatrics, Faculty of Medicine, University of Porto, Portugal.
| | - Joana Marques
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal.
| | - Sofia Dória
- Genetics Unit, Department of Pathology, Faculty of Medicine, University of Porto, Portugal; I3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Portugal.
| |
Collapse
|
4
|
Yu HJ, Byun YH, Park CK. Techniques for assessing telomere length: A methodological review. Comput Struct Biotechnol J 2024; 23:1489-1498. [PMID: 38633384 PMCID: PMC11021795 DOI: 10.1016/j.csbj.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Telomeres are located at the ends of chromosomes and have specific sequences with a distinctive structure that safeguards genes. They possess capping structures that protect chromosome ends from fusion events and ensure chromosome stability. Telomeres shorten in length during each cycle of cell division. When this length reaches a certain threshold, it can lead to genomic instability, thus being implicated in various diseases, including cancer and neurodegenerative disorders. The possibility of telomeres serving as a biomarker for aging and age-related disease is being explored, and their significance is still under study. This is because post-mitotic cells, which are mature cells that do not undergo mitosis, do not experience telomere shortening due to age. Instead, other causes, for example, exposure to oxidative stress, can directly damage the telomeres, causing genomic instability. Nonetheless, a general agreement has been established that measuring telomere length offers valuable insights and forms a crucial foundation for analyzing gene expression and epigenetic data. Numerous approaches have been developed to accurately measure telomere lengths. In this review, we summarize various methods and their advantages and limitations for assessing telomere length.
Collapse
Affiliation(s)
- Hyeon Jong Yu
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoon Hwan Byun
- Department of Neurosurgery, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
5
|
Košuthová H, Fecskeová LK, Matejová J, Slovinská L, Morávek M, Bártová Z, Harvanová D. Effects of Replicative Senescence of Human Chorionic MSCs on their EV-miRNA Profile. Stem Cell Rev Rep 2024; 20:2318-2335. [PMID: 39305404 PMCID: PMC11554840 DOI: 10.1007/s12015-024-10790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2024] [Indexed: 11/12/2024]
Abstract
Chorionic mesenchymal stromal cells (CHO-MSCs) and their extracellular vesicles (EVs) are becoming increasingly popular, since chorion is ethically harmless and an easily accessible source of MSCs. However, until now there is only a limited number of studies with a thorough characterization of CHO-MSCs derived EVs and their miRNA profile. In this study, we monitored changes in the EV-miRNA profile between early and late passage of human CHO-MSCs. First, senescence of CHO-MSCs was induced by serial passaging and confirmed by morphological changes, shortened telomeres and changes in the expression of selected genes. The expression of MSCs-specific surface markers CD73, CD90, CD105 did not change with increasing passages. Next, EVs and their miRNA profiles were compared between early vs late passage cells. Number of EVs and their size were not significantly changed. Seven of the top 10 most expressed EV-miRNAs were common to both early and late passages. A differential expression study between early and late passages identified 37 significantly differentially expressed EV-miRNAs, out of which 23 were found to be associated with pathways of cellular senescence based on KEGG pathway analysis. A set of 9 miRNAs were identified as the most frequently associated with senescence and/or with the most altered expression between early and late passages, out of which miR-145-5p, miR-335-5p and miR-199b-3p were the most significant downregulated miRNAs in late passages. The most upregulated EV-miRNAs were miR-1307-3p, miR-3615 and miR320b. Targeting these miRNAs in future experiments may prolong the therapeutic potential of CHO-MSCs and their EVs.
Collapse
Affiliation(s)
- Hedviga Košuthová
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital, Trieda SNP 1, 04011, Kosice, Slovakia
| | - Lívia K Fecskeová
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital, Trieda SNP 1, 04011, Kosice, Slovakia.
| | - Jana Matejová
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital, Trieda SNP 1, 04011, Kosice, Slovakia
| | - Lucia Slovinská
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital, Trieda SNP 1, 04011, Kosice, Slovakia
| | - Marko Morávek
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital, Trieda SNP 1, 04011, Kosice, Slovakia
| | - Zuzana Bártová
- Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, 040 01, Kosice, Slovakia
| | - Denisa Harvanová
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital, Trieda SNP 1, 04011, Kosice, Slovakia
| |
Collapse
|
6
|
Lacen A, Lee HT. Tracing the Chromatin: From 3C to Live-Cell Imaging. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:659-682. [PMID: 39483638 PMCID: PMC11523001 DOI: 10.1021/cbmi.4c00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 11/03/2024]
Abstract
Chromatin organization plays a key role in gene regulation throughout the cell cycle. Understanding the dynamics governing the accessibility of chromatin is crucial for insight into mechanisms of gene regulation, DNA replication, and cell division. Extensive research has been done to track chromatin dynamics to explain how cells function and how diseases develop, in the hope of this knowledge leading to future therapeutics utilizing proteins or drugs that modify the accessibility or expression of disease-related genes. Traditional methods for studying the movement of chromatin throughout the cell relied on cross-linking spatially adjacent sections or hybridizing fluorescent probes to chromosomal loci and then constructing dynamic models from the static data collected at different time points. While these traditional methods are fruitful in understanding fundamental aspects of chromatin organization, they are limited by their invasive sample preparation protocols and diffraction-limited microscope resolution. These limitations have been challenged by modern methods based on high- or super-resolution microscopy and specific labeling techniques derived from gene targeting tools. These modern methods are more sensitive and less invasive than traditional methods, therefore allowing researchers to track chromosomal organization, compactness, and even the distance or rate of chromatin domain movement in detail and real time. This review highlights a selection of recently developed methods of chromatin tracking and their applications in fixed and live cells.
Collapse
Affiliation(s)
- Arianna
N. Lacen
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| | - Hui-Ting Lee
- Department of Chemistry, The
University of Alabama at Birmingham, 901 14th Street South, CHEM 274, Birmingham, Alabama 35294-1240, United States
| |
Collapse
|
7
|
Han F, Riaz F, Pu J, Gao R, Yang L, Wang Y, Song J, Liang Y, Wu Z, Li C, Tang J, Xu X, Wang X. Connecting the Dots: Telomere Shortening and Rheumatic Diseases. Biomolecules 2024; 14:1261. [PMID: 39456194 PMCID: PMC11506250 DOI: 10.3390/biom14101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Telomeres, repetitive sequences located at the extremities of chromosomes, play a pivotal role in sustaining chromosomal stability. Telomerase is a complex enzyme that can elongate telomeres by appending telomeric repeats to chromosome ends and acts as a critical factor in telomere dynamics. The gradual shortening of telomeres over time is a hallmark of cellular senescence and cellular death. Notably, telomere shortening appears to result from the complex interplay of two primary mechanisms: telomere shelterin complexes and telomerase activity. The intricate interplay of genetic, environmental, and lifestyle influences can perturb telomere replication, incite oxidative stress damage, and modulate telomerase activity, collectively resulting in shifts in telomere length. This age-related process of telomere shortening plays a considerable role in various chronic inflammatory and oxidative stress conditions, including cancer, cardiovascular disease, and rheumatic disease. Existing evidence has shown that abnormal telomere shortening or telomerase activity abnormalities are present in the pathophysiological processes of most rheumatic diseases, including different disease stages and cell types. The impact of telomere shortening on rheumatic diseases is multifaceted. This review summarizes the current understanding of the link between telomere length and rheumatic diseases in clinical patients and examines probable telomere shortening in peripheral blood mononuclear cells and histiocytes. Therefore, understanding the intricate interaction between telomere shortening and various rheumatic diseases will help in designing personalized treatment and control measures for rheumatic disease.
Collapse
Affiliation(s)
- Fang Han
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Farooq Riaz
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518000, China;
- Center for Cancer Immunology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Jincheng Pu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Ronglin Gao
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Lufei Yang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yanqing Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jiamin Song
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Yuanyuan Liang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Chunrui Li
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Jianping Tang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| | - Xianghuai Xu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China;
| | - Xuan Wang
- Department of Rheumatology and Immunology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai 200065, China; (F.H.); (J.P.); (R.G.); (L.Y.); (Y.W.); (J.S.); (Y.L.); (Z.W.); (C.L.); (J.T.)
| |
Collapse
|
8
|
Vieira RA, Nunes DP, Lima DB, Rocha GDS, Corona LP, Santos-Orlandi AAD, Sampaio EDS, Rodrigues PCDOG, de Brito TRP. Association between telomere length and anorexia of ageing: a cross-sectional study conducted with community-dwelling older people. J Hum Nutr Diet 2024; 37:1209-1218. [PMID: 38856709 DOI: 10.1111/jhn.13338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND To verify whether shorter telomere length is associated with anorexia of ageing in community-dwelling older people. METHODS Conducted as a cross-sectional investigation, the study enrolled 448 participants residing in an urban area of a municipality in Brazil. Relative telomere length in blood samples was measured using quantitative polymerase chain reaction (qPCR), whereas the presence of anorexia of ageing was determined using the Simplified Appetite Nutritional Questionnaire. Data analysis employed multiple logistic regression. RESULTS Among the 448 older individuals surveyed, 70.69% were female, and the predominant age bracket ranged from 60 to 69 years (45.08%). Approximately 25% exhibited the shortest telomeric length, with a corresponding anorexia of ageing prevalence of 41.16%. Older individuals with diminished telomere lengths displayed an increased likelihood of experiencing anorexia of ageing (odds ratio [OR] = 1.92; 95% confidence interval [CI] = 1.12-3.29), independent of factors such as gender, age group, depressive symptoms, pain and performance in basic daily life activities. CONCLUSIONS The observed association between anorexia of ageing and a telomeric biomarker underscores the imperative to meticulously evaluate the nutritional dimensions of older people, with a view to implementing interventions that may enhance their overall health status.
Collapse
|
9
|
Henriques ART, Silva JP, Carvalho F. The impact of opioids on the hallmarks of ageing. Mech Ageing Dev 2024; 222:111994. [PMID: 39326463 DOI: 10.1016/j.mad.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Opioids rank among the most hazardous substances of abuse, leading to opioid use disorders (which greatly diminish life quality) and contributing to the highest drug-related mortality rates. Nonetheless, both the therapeutic and recreational use of opioids is escalating globally. Interestingly, chronic opioid users often exhibit signs consistent with accelerated ageing, suggesting that they likely interfere with well-characterized ageing mechanisms (e.g., telomere shortening, epigenetic changes, mitochondrial dysfunction, cellular senescence). Here, we review the most recent advances regarding the impact of opioids on well-characterized hallmarks of ageing, to ascertain a potential association between opioid use and accelerated ageing. Our findings indicate that there is accumulating evidence supporting a close association between the use of opioids and the early onset of some ageing hallmarks, namely mitochondrial dysfunction, genomic instability, or telomere shortening. However, there is still limited data available regarding how opioids specifically impact other ageing hallmarks, like nutrient sensing, cellular senescence, or loss of proteostasis. Taking into consideration the high prevalence of opioid use, strengthening the understanding of the mechanisms underlying opioids' impact on ageing assumes utmost relevance, both in terms of improving risk assessment, as well as to help researchers and clinicians prevent or mitigate these effects in clinical settings.
Collapse
Affiliation(s)
- Ana Rita Tavares Henriques
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - João Pedro Silva
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Félix Carvalho
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
10
|
Boccardi V, Polom J. Searching for Beauty and Health: Aging in Women, Nutrition, and the Secret in Telomeres. Nutrients 2024; 16:3111. [PMID: 39339711 PMCID: PMC11434636 DOI: 10.3390/nu16183111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Women typically outlive men, yet they often experience greater frailty and a higher incidence of chronic diseases as they age. By exploring the biological foundations of aging, with a particular focus on telomere dynamics, this manuscript aims to describe how dietary and lifestyle choices can significantly influence the aging process. The review comprehensively examines current research, underscoring the power of nutrition to counteract age-related changes, support healthy aging, and maintain vitality and beauty in women. The exploration of telomeres-the protective caps at the ends of chromosomes-reveals how they serve as markers of cellular aging and are potential targets for interventions aimed at enhancing women's longevity and quality of life. This study also emphasizes the importance of sex-specific approaches and precision medicine in understanding the unique health challenges women face as they age. By proposing targeted strategies, the review seeks to address these challenges, offering insights into preventive measures that can foster resilience, promote well-being, and extend healthy life expectancy in women. Ultimately, this work provides a sophisticated understanding of the aging process in women, highlighting the pivotal role of tailored interventions in preserving both health and beauty.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Joanna Polom
- Department of Medicine, Academy of Applied Medical and Social Sciences, Lotnicza 2, 82-300 Elblag, Poland;
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, Marii Skłodowskiej-Curie 3a, 80-210 Gdańsk, Poland
| |
Collapse
|
11
|
Wang Z, Wang T, Chen X, Lv L, Luo Y, Gu W. ALTMAN: A Novel Method for Cell Cycle Analysis. ACS OMEGA 2024; 9:37780-37788. [PMID: 39281911 PMCID: PMC11391549 DOI: 10.1021/acsomega.4c03653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 09/18/2024]
Abstract
Accurate analysis of S-phase fraction is crucial for the assessment of cell proliferation levels, tumor malignancy and prognostic effects of treatment. Most of the currently developed methods for S-phase cell analysis rely on flow cytometric analysis of DNA content determination. However, the lack of standardized procedures for sample analysis and interpretation of cell cycle fitting graphs poses a significant limitation in clinical practice for utilizing flow cytometry to measure the cell cycle based on DNA content. Herein, we developed an approach for analyzing S-phase cells based on telomerase activity determination. Briefly, this approach distinguishes S-phase cells in cell populations via direct fluorescence tracking of telomerase activity within individual cells. The dynamic analysis of telomerase activity in different cell cycles was made possible by the ALTMAN strategy developed in our previous studies, which has been successfully employed to distinguish S-phase cells in cultured cells. This method offers a novel avenue for the assessment of cell cycle status and the evaluation of the proliferation status of tumor cells and the prognosis effect of tumor patients via analyzing the differences in telomerase activity during different cell cycle processes.
Collapse
Affiliation(s)
- Zining Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Tian Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaohui Chen
- Department of Clinical Laboratory, Fuling Hospital, Chongqing University, Chongqing 408099, People's Republic of China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing 400044, People's Republic of China
| | - Linxi Lv
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wei Gu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
12
|
Vostatek R, Hohensinner P, Schmaldienst S, Lorenz M, Klauser-Braun R, Pabinger I, Säemann M, Ay C, Königsbrügge O. Telomere Length Is Associated with Increased Risk of Cardiovascular Events in Patients with End-Stage Kidney Disease on Hemodialysis. Cardiorenal Med 2024; 14:524-532. [PMID: 39250900 DOI: 10.1159/000541112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
INTRODUCTION Patients with chronic kidney disease, especially those with end-stage kidney disease (ESKD) on hemodialysis (HD), are at increased risk for cardiovascular disease (CVD), including myocardial infarction and ischemic stroke. A shortening in telomere length, as a parameter for accelerated vascular aging, is an established biomarker for CVD in the general population. We aimed to elucidate the role of telomere length in ESKD patient on HD and its association with cardiovascular outcomes. METHODS Telomere length was measured in a prospective population-based cohort study of prevalent HD patients. DNA was isolated from whole blood, sampled at baseline, and analyzed for telomere length via a qPCR-based approach. The risk for the occurrence of the independently adjudicated three-point major adverse cardiovascular event outcome (myocardial infarction, ischemic stroke, and cardiovascular death) was statistically analyzed considering the competing risk of non-cardiovascular death. RESULTS In the cohort of 308 patients with ESKD (115 [37.3%] women, median [25th-75th percentile] age: 67.0 [56.8-76.0]), the median telomere length was 1.51 kb (25th-75th percentile 0.6-3.2 kb). The 3P-MACE outcome occurred with an incidence rate of 9.4 per 100 patient-years. Patients with longer telomere length more frequently had vascular nephropathy compared to patients with shorter telomere length. Interestingly, patients in the highest quartile of telomere length had a 1.8-fold increased risk for 3P-MACE (95% CI: 1.051-3.201, p = 0.033), after multivariable adjustment for age, history of stroke, myocardial infarction, venous thromboembolism, presence of heart valve replacement, atrial fibrillation, smoking, anticoagulation, or immunosuppressive use. CONCLUSION Surprisingly, in this high-risk cohort of patients with ESKD on HD, longer telomere lengths were associated with increased risk of cardiovascular events.
Collapse
Affiliation(s)
- Rafaela Vostatek
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria,
| | - Philipp Hohensinner
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Marcus Säemann
- Department of Medicine VI, Clinic Ottakring, Vienna, Austria
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Oliver Königsbrügge
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
de Jaeger C, Kruiskamp S, Voronska E, Lamberti C, Baramki H, Beaudeux JL, Cherin P. A Natural Astragalus-Based Nutritional Supplement Lengthens Telomeres in a Middle-Aged Population: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2024; 16:2963. [PMID: 39275278 PMCID: PMC11397652 DOI: 10.3390/nu16172963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Telomeres are ribonucleoprotein structures that form a protective buffer at the ends of chromosomes, maintaining genomic integrity during the cell cycle. A decrease in average telomere length is associated with with age and with aging-related diseases such as cancer and cardiovascular disease. In this study, we conducted a randomized, double-blind, placebo-controlled trial over six months to compare the effects of the Astragalus-based supplement versus a placebo on telomere length (TL) in 40 healthy volunteers (mean age 56.1 ± 6.0 years). Twenty subjects received the supplement, and 20 received placebo capsules. All participants completed the study, and no adverse side effects were reported at six months. Subjects taking the Astragalus-based supplement exhibited significantly longer median TL (p = 0.01) and short TL (p = 0.004), along with a lower percentage of short telomeres, over the six-month period, while the placebo group showed no change in TL. This trial confirmed that the supplement significantly lengthens both median and short telomeres by increasing telomerase activity and reducing the percentage of short telomeres (<3 Kbp) in a statistically and possibly clinically significant manner. These results align with a previous open prospective trial, which found no toxicity associated with the supplement's intake. These findings suggest that this Astragalus-based supplement warrants further investigation for its potential benefits in promoting health, extending life expectancy, and supporting healthy aging.
Collapse
Affiliation(s)
- Christophe de Jaeger
- Institute of Medicine and Physiology of Longevity (Institut de Jaeger), 127, rue de la Faisanderie, 75016 Paris, France
| | - Saskia Kruiskamp
- Institute of Medicine and Physiology of Longevity (Institut de Jaeger), 127, rue de la Faisanderie, 75016 Paris, France
| | - Elena Voronska
- Institute of Medicine and Physiology of Longevity (Institut de Jaeger), 127, rue de la Faisanderie, 75016 Paris, France
| | - Carla Lamberti
- Institute of Medicine and Physiology of Longevity (Institut de Jaeger), 127, rue de la Faisanderie, 75016 Paris, France
| | - Hani Baramki
- Institute of Medicine and Physiology of Longevity (Institut de Jaeger), 127, rue de la Faisanderie, 75016 Paris, France
| | - Jean Louis Beaudeux
- Service de Biochimie Générale, Université Paris Cité, Assistance Publique-Hôpitaux de Paris, CHU Necker, Inserm UMR S_1139, 75015 Paris, France
| | - Patrick Cherin
- Service de Médecine Interne 2, Institut E3M, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, CHU Pitié-Salpêtrière, French National, Referral Center for Autoimmune Disorders, Inserm UMRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), 75013 Paris, France
| |
Collapse
|
14
|
Sun JY, Xu Q, Shen H, Huang W, Qu Q, Sun W, Kong XQ. The Association between Leucocyte Telomere Length and Survival Outcomes in Patients with Cardiovascular Disease. Rev Cardiovasc Med 2024; 25:333. [PMID: 39355591 PMCID: PMC11440408 DOI: 10.31083/j.rcm2509333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 10/03/2024] Open
Abstract
Background We explore the association between leucocyte telomere length (LTL) and all-cause and cardiovascular disease (CVD)-specific death in CVD patients. Methods We acquired 1599 CVD patients from a nationally representative US population survey for this study. We applied Kaplan-Meier curves, adjusted weighted Cox regression models, and restricted cubic spline to investigate the association between LTL and all-cause death. Additionally, we employed competing risk regression to assess the impact of LTL on cardiovascular-specific death, setting non-cardiovascular death as a competing event. Results The overall mortality rate was 31.0% after a median follow-up of 13.9 years. Patients with shorter LTL exhibited a higher risk of all-cause death, with an adjusted hazard ratio (HR) of 1.25 (95% confidence interval (CI): 1.05-1.48). Restricted cubic spline illustrated a linear dose-response relationship. In gender-specific analyses, female patients with shorter LTL showed a higher risk of death (weighted HR, 1.79; 95% CI, 1.29-2.48), whereas this association was not observed in males (weighted HR, 0.90; 95% CI, 0.61-1.32). The Fine-Gray competing risk model revealed no significant relationship between LTL and cardiovascular-specific mortality but a significant association with non-cardiovascular death (adjusted HR, 1.24; 95% CI, 1.02-1.51). Conclusions LTL is inversely associated with all-cause death in female CVD patients. The significant correlation between reduced LTL and increased all-cause mortality emphasizes LTL as a potential marker for tertiary prevention against cardiovascular disease.
Collapse
Affiliation(s)
- Jin-Yu Sun
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Qian Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Hui Shen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Wen Huang
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Qiang Qu
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Wei Sun
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| | - Xiang-Qing Kong
- Department of Cardiology, Gusu School, Nanjing Medical University, 215008 Suzhou, Jiangsu, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 210000 Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Sun P, Gu KJ, Zheng G, Sikora AG, Li C, Zafereo M, Wei P, Wu J, Shete S, Liu J, Li G. Genetic variations associated with telomere length predict the risk of recurrence of non-oropharyngeal head and neck squamous cell carcinoma. Mol Carcinog 2024; 63:1722-1737. [PMID: 38837510 DOI: 10.1002/mc.23768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Genetic factors underlying lymphocyte telomere length (LTL) may provide insights into genomic stability and integrity, with direct links to susceptibility to cancer recurrence. Polymorphisms in telomere-associated genes are strongly associated with LTL and cancer risk, while few large studies have explored the associations between LTL-related polymorphisms and recurrence risk of non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC). Totally 1403 non-OPHNSCC patients were recruited and genotyped for 16 LTL-related polymorphisms identified by genome-wide association studies. Univariate and multivariate analyzes were performed to evaluate associations between the polymorphisms and non-OPHNSCC recurrence risk. Patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes exhibited shorter DFS than those with the rs755017 AA, rs2487999 CC, rs2736108 CC, or s6772228 TT genotypes, respectively (all log-rank p < 0.05). Multivariable analysis confirmed an increased risk of recurrence for patients carrying rs755017 GA/GG, rs2487999 TC/TT, rs2736108 TC/TT, or rs6772228 AT/AA genotypes (adjusted hazard ratio [aHR]: 1.66, 95% confidence interval [CI]: 1.32-2.07; aHR: 1.77, 95% CI: 1.41-2.23; aHR: 1.56, 95% CI: 1.22-1.99; aHR: 1.52, 95% CI: 1.20-1.93, respectively). Further stratified analysis revealed stronger associations between these genotypes and recurrence risk in ever-smokers and patients undergoing chemoradiotherapy. The similar but particularly pronounced results were observed for the combined risk genotypes of the four significant polymorphisms. This is the first large study on non-OPHNSCC patients showing that LTL-related polymorphisms may modify risk of non-OPHNSCC recurrence individually and jointly, particularly when analyzed in the context of smoking status and personized treatment. Larger studies are needed to validate these results.
Collapse
Affiliation(s)
- Peng Sun
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kyle J Gu
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas, USA
| | - Guibin Zheng
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Thyroid Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Andrew G Sikora
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chao Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Mark Zafereo
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanjay Shete
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jisheng Liu
- Department of Otolaryngology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Guojun Li
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
16
|
Boccardi V, Marano L. Aging, Cancer, and Inflammation: The Telomerase Connection. Int J Mol Sci 2024; 25:8542. [PMID: 39126110 PMCID: PMC11313618 DOI: 10.3390/ijms25158542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
Understanding the complex dynamics of telomere biology is important in the strong link between aging and cancer. Telomeres, the protective caps at the end of chromosomes, are central players in this connection. While their gradual shortening due to replication limits tumors expansion by triggering DNA repair mechanisms, it also promotes oncogenic changes within chromosomes, thus sustaining tumorigenesis. The enzyme telomerase, responsible for maintaining telomere length, emerges as a central player in this context. Its expression in cancer cells facilitates the preservation of telomeres, allowing them to circumvent the growth-limiting effects of short telomeres. Interestingly, the influence of telomerase extends beyond telomere maintenance, as evidenced by its involvement in promoting cell growth through alternative pathways. In this context, inflammation accelerates telomere shortening, resulting in telomere dysfunction, while telomere elements also play a role in modulating the inflammatory response. The recognition of this interplay has promoted the development of novel therapeutic approaches centered around telomerase inhibition. This review provides a comprehensive overview of the field, emphasizing recent progress in knowledge and the implications in understanding of cancer biology.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy
| | - Luigi Marano
- Department of Medicine, Academy of Applied Medical and Social Sciences—AMiSNS: Akademia Medycznych I Spolecznych Nauk Stosowanych, 82-300 Elbląg, Poland;
- Department of General Surgery and Surgical Oncology, “Saint Wojciech” Hospital, “Nicolaus Copernicus” Health Center, 80-462 Gdańsk, Poland
| |
Collapse
|
17
|
Boniewska-Bernacka E, Pańczyszyn A, Głąb G, Goc A. Telomere Length, Telomerase Activity, and Vaginal Microbiome in Patients with HPV-Related Precancerous Lesions. Int J Mol Sci 2024; 25:8158. [PMID: 39125728 PMCID: PMC11311766 DOI: 10.3390/ijms25158158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Persistent high-risk human papillomaviruses (HR HPVs) infection leads to the development of squamous intraepithelial lesions in cervical cells that may lead to cancer. The telomere length, telomerase activity, and species composition of the vaginal microbiome may influence the dynamic of changes and the process of carcinogenesis. In the present study, we analyze relative telomere length (RTL), relative hTERT expression (gene for the telomerase component-reverse transcriptase) in cervical smear cells and vaginal microbiomes. Total RNA and DNA were isolated from tissue samples of 109 patients from the following groups: control, carrier, low-grade or high-grade squamous intraepithelial lesion (L SIL and H SIL, respectively), and cancer. The quantitative PCR method was used to measure telomere length and telomerase expression. Vaginal microbiome bacteria were divided into community state types using morphotype criteria. Significant differences between histopathology groups were confirmed for both relative telomere length and relative hTERT expression (p < 0.001 and p = 0.001, respectively). A significant difference in RTL was identified between carriers and H SIL (p adj < 0.001) groups, as well as between carriers and L SIL groups (p adj = 0.048). In both cases, RTL was lower among carriers. The highest relative hTERT expression level was recorded in the H SIL group, and the highest relative hTERT expression level was recorded between carriers and the H SIL group (p adj < 0.001). A correlation between genotype and biocenosis was identified for genotype 16+A (p < 0.001). The results suggest that identification of HPV infection, telomere length assessment, and hTERT expression measurement together may be more predictive than each of these analyses performed separately.
Collapse
Affiliation(s)
- Ewa Boniewska-Bernacka
- Department of Biology and Genetics, Institute of Medical Sciences, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (A.P.); (A.G.)
| | - Anna Pańczyszyn
- Department of Biology and Genetics, Institute of Medical Sciences, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (A.P.); (A.G.)
| | - Grzegorz Głąb
- Department of Pathomorphology, Institute of Medical Sciences, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Anna Goc
- Department of Biology and Genetics, Institute of Medical Sciences, Faculty of Medicine, University of Opole, Oleska 48, 45-052 Opole, Poland; (A.P.); (A.G.)
| |
Collapse
|
18
|
Liu S, Deng Y, Liu H, Fu Z, Wang Y, Zhou M, Feng Z. Causal Relationship between Meat Intake and Biological Aging: Evidence from Mendelian Randomization Analysis. Nutrients 2024; 16:2433. [PMID: 39125314 PMCID: PMC11313912 DOI: 10.3390/nu16152433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Existing research indicates that different types of meat have varying effects on health and aging, but the specific causal relationships remain unclear. This study aimed to explore the causal relationship between different types of meat intake and aging-related phenotypes. This study employed Mendelian randomization (MR) to select genetic variants associated with meat intake from large genomic databases, ensuring the independence and pleiotropy-free nature of these instrumental variables (IVs), and calculated the F-statistic to evaluate the strength of the IVs. The validity of causal estimates was assessed through sensitivity analyses and various MR methods (MR-Egger, weighted median, inverse-variance weighted (IVW), simple mode, and weighted mode), with the MR-Egger regression intercept used to test for pleiotropy bias and Cochran's Q test employed to evaluate the heterogeneity of the results. The findings reveal a positive causal relationship between meat consumers and DNA methylation PhenoAge acceleration, suggesting that increased meat intake may accelerate the biological aging process. Specifically, lamb intake is found to have a positive causal effect on mitochondrial DNA copy number, while processed meat consumption shows a negative causal effect on telomere length. No significant causal relationships were observed for other types of meat intake. This study highlights the significant impact that processing and cooking methods have on meat's role in health and aging, enhancing our understanding of how specific types of meat and their preparation affect the aging process, providing a theoretical basis for dietary strategies aimed at delaying aging and enhancing quality of life.
Collapse
Affiliation(s)
| | | | | | | | | | - Meijuan Zhou
- Department of Radiation medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Y.D.); (H.L.); (Z.F.); (Y.W.)
| | - Zhijun Feng
- Department of Radiation medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou 510515, China; (S.L.); (Y.D.); (H.L.); (Z.F.); (Y.W.)
| |
Collapse
|
19
|
Rodrigues J, Alfieri R, Bione S, Azzalin CM. TERRA ONTseq: a long-read-based sequencing pipeline to study the human telomeric transcriptome. RNA (NEW YORK, N.Y.) 2024; 30:955-966. [PMID: 38777382 PMCID: PMC11251519 DOI: 10.1261/rna.079906.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
The long noncoding RNA TERRA is transcribed from telomeres in virtually all eukaryotes with linear chromosomes. In humans, TERRA transcription is driven in part by promoters comprising CpG dinucleotide-rich repeats of 29 bp repeats, believed to be present in half of the subtelomeres. Thus far, TERRA expression has been analyzed mainly using molecular biology-based approaches that only generate partial and somehow biased results. Here, we present a novel experimental pipeline to study human TERRA based on long-read sequencing (TERRA ONTseq). By applying TERRA ONTseq to different cell lines, we show that the vast majority of human telomeres produce TERRA and that the cellular levels of TERRA transcripts vary according to their chromosomes of origin. Using TERRA ONTseq, we also identified regions containing TERRA transcription start sites (TSSs) in more than half of human subtelomeres. TERRA TSS regions are generally found immediately downstream from 29 bp repeat-related sequences, which appear to be more widespread than previously estimated. Finally, we isolated a novel TERRA promoter from the highly expressed subtelomere of the long arm of Chromosome 7. With the development of TERRA ONTseq, we provide a refined picture of human TERRA biogenesis and expression and we equip the scientific community with an invaluable tool for future studies.
Collapse
Affiliation(s)
- Joana Rodrigues
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Roberta Alfieri
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Ricerche, Segrate (MI) 20054, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare Luigi Luca Cavalli-Sforza, Consiglio Nazionale delle Ricerche, Pavia 27100, Italy
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon 1649-028, Portugal
| |
Collapse
|
20
|
Tomasova K, Seborova K, Kroupa M, Horak J, Kavec M, Vodickova L, Rob L, Hruda M, Mrhalova M, Bartakova A, Bouda J, Fleischer T, Kristensen VN, Vodicka P, Vaclavikova R. Telomere length as a predictor of therapy response and survival in patients diagnosed with ovarian carcinoma. Heliyon 2024; 10:e33525. [PMID: 39050459 PMCID: PMC11268197 DOI: 10.1016/j.heliyon.2024.e33525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
Impaired telomere length (TL) maintenance in ovarian tissue may play a pivotal role in the onset of epithelial ovarian cancer (OvC). TL in either target or surrogate tissue (blood) is currently being investigated for use as a predictor in anti-OvC therapy or as a biomarker of the disease progression, respectively. There is currently an urgent need for an appropriate approach to chemotherapy response prediction. We performed a monochrome multiplex qPCR measurement of TL in peripheral blood leukocytes (PBL) and tumor tissues of 209 OvC patients. The methylation status and gene expression of the shelterin complex and telomerase catalytic subunit (hTERT) were determined within tumor tissues by High-Throughput DNA methylation profiling and RNA sequencing (RNA-Seq) analysis, respectively. The patients sensitive to cancer treatment (n = 46) had shorter telomeres in PBL compared to treatment-resistant patients (n = 93; P = 0.037). In the patients with a different therapy response, transcriptomic analysis showed alterations in the peroxisome proliferator-activated receptor (PPAR) signaling pathway (q = 0.001). Moreover, tumor TL shorter than the median corresponded to better overall survival (OS) (P = 0.006). TPP1 gene expression was positively associated with TL in tumor tissue (P = 0.026). TL measured in PBL could serve as a marker of platinum therapy response in OvC patients. Additionally, TL determined in tumor tissue provides information on OvC patients' OS.
Collapse
Affiliation(s)
- Kristyna Tomasova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
| | - Karolina Seborova
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| | - Michal Kroupa
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
| | - Josef Horak
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Ruska 87, 100 00, Prague, Czech Republic
| | - Miriam Kavec
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Lukas Rob
- Department of Gynecology and Obstetrics, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Martin Hruda
- Department of Gynecology and Obstetrics, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Marcela Mrhalova
- Department of Pathology and Molecular Medicine, Second Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
| | - Alena Bartakova
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jiri Bouda
- Department of Gynecology and Obstetrics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway
| | - Vessela N. Kristensen
- Department of Medical Genetics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 00, Prague, Czech Republic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/77, 32300, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00, Prague, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Srobarova 48, 100 42, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655/76, 323 00, Pilsen, Czech Republic
| |
Collapse
|
21
|
Macamo ED, Mkhize-Kwitshana ZL, Mthombeni J, Naidoo P. The Impact of HIV and Parasite Single Infection and Coinfection on Telomere Length: A Systematic Review. Curr Issues Mol Biol 2024; 46:7258-7290. [PMID: 39057072 PMCID: PMC11275449 DOI: 10.3390/cimb46070431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
HIV and parasite infections accelerate biological aging, resulting in immune senescence, apoptosis and cellular damage. Telomere length is considered to be one of the most effective biomarkers of biological aging. HIV and parasite infection have been reported to shorten telomere length in the host. This systematic review aimed to highlight work that explored the influence of HIV and parasite single infections and coinfection on telomere length. Using specific keywords related to the topic of interest, an electronic search of several online databases (Google Scholar, Web of Science, Scopus, Science Direct and PubMed) was conducted to extract eligible articles. The association between HIV infection or parasite infection and telomere length and the association between HIV and parasite coinfection and telomere length were assessed independently. The studies reported were mostly conducted in the European countries. Of the 42 eligible research articles reviewed, HIV and parasite single infections were independently associated with telomere length shortening. Some studies found no association between antiretroviral therapy (ART) and telomere length shortening, while others found an association between ART and telomere length shortening. No studies reported on the association between HIV and parasite coinfection and telomere length. HIV and parasite infections independently accelerate telomere length shortening and biological aging. It is possible that coinfection with HIV and parasites may further accelerate telomere length shortening; however, this is a neglected field of research with no reported studies to date.
Collapse
Affiliation(s)
- Engelinah D. Macamo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| | - Zilungile L. Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
- Department of Biomedical Sciences, Doorfontein Campus, University of Johannesburg, Johannesburg 1710, South Africa
- Biomedical Sciences Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida Campus, Johannesburg 1710, South Africa
| | - Julian Mthombeni
- Department of Biomedical Sciences, Doorfontein Campus, University of Johannesburg, Johannesburg 1710, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, Nelson R. Mandela Medical School Campus, University of KwaZulu-Natal, Durban 4001, South Africa
- Division of Research Capacity Development (RCD), South African Medical Research Council (SAMRC), Tygerberg, Cape Town 7505, South Africa
| |
Collapse
|
22
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
23
|
Giri P, Thakor F, Dwivedi M. Implication of regulatory T cells' telomere shortening in pathogenesis of generalized vitiligo. Hum Immunol 2024; 85:110812. [PMID: 38755031 DOI: 10.1016/j.humimm.2024.110812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Generalized vitiligo(GV) is a skin depigmenting condition due to loss of melanocytes. Regulatory T cells(Tregs), responsible for peripheral tolerance, show altered numbers and functions in GV patients, likely influenced by the aging process. Therefore, the present study was focused on measuring the relative telomere length of Tregs in 96 GV patients and 90 controls by qPCR, along with correlation of relative telomere length with in vitro Treg suppressive capacity. Interestingly, we found significantly decreased relative telomere length in Tregs of GV patients as compared to controls(p = 0.0001). Additionally, age based-analysis suggested significant decrease in relative telomere length in elderly GV patients(>40 years) in comparison to young GV patients(0-20 years; p = 0.0027). Furthermore, age of onset analysis suggested for reduced relative telomere length in early onset GV patients (0-20 years) in comparison to late onset GV patients(>40 years; p = 0.0036). The correlation analysis suggested positive correlation for relative telomere length with in vitro Tregs suppressive capacity(r = 0.68 & r = 0.45; p < 0.0001). Additionally, the in vitro Tregs suppressive capacity was significantly reduced in elderly GV patients(p = 0.003) and early onset GV patients(p = 0.0074). Overall, our study for the first time demonstrated that, the Tregs ageing due to telomere shortening may be responsible for altered Treg functions and number.
Collapse
Affiliation(s)
- Prashant Giri
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India
| | - Foram Thakor
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India
| | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India.
| |
Collapse
|
24
|
Thasneem A, Sif S, Rahman MM, Crovella S. Can telomeric changes orchestrate the development of autoinflammatory skin diseases? Ital J Dermatol Venerol 2024; 159:318-328. [PMID: 38502535 DOI: 10.23736/s2784-8671.23.07689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Telomeres, the safeguarding caps at the tips of chromosomes, are pivotal in the aging process of cells and have been linked to skin ailments and inflammatory conditions. Telomeres undergo a gradual reduction in length and factors such as oxidative stress hasten this diminishing process. Skin diseases including inflammatory conditions can be correlated with the shortening of telomeres and the persistent activation of DNA damage response in skin tissues. Telomere dysfunction could disrupt the balance of the skin, impairs wound healing, and may contribute to abnormal cytokine production. Skin aging and processes related to telomeres may function as one of the triggers for skin diseases. The presence of proinflammatory cytokines and dysfunctional telomeres in conditions such as Dyskeratosis Congenita implies a possible connection between the shortening of telomeres and the onset of chronic inflammatory skin disorders. In autoinflammatory skin diseases, chronic inflammation hinders wound healing thus aggravating the progression of the disease. The NF-ĸB pathway might contribute to the initiation or progression of chronic disorders by influencing mechanisms associated with telomere biology. The intricate connections between telomeres, telomerase, telomere-associated proteins, and skin diseases are still a complex puzzle to be solved. Here, we provide an overview of the impact of telomeres on both health and disease with a specific emphasis on their role in skin, inflammation and autoinflammatory skin disorders.
Collapse
Affiliation(s)
- Ayshath Thasneem
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Said Sif
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Md Mizanur Rahman
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Sergio Crovella
- Laboratory of Animal Research Center (LARC), Qatar University, Doha, Qatar -
| |
Collapse
|
25
|
Gürel S, Pak EN, Tek NA. Aging Processes Are Affected by Energy Balance: Focused on the Effects of Nutrition and Physical Activity on Telomere Length. Curr Nutr Rep 2024; 13:264-279. [PMID: 38498288 PMCID: PMC11133118 DOI: 10.1007/s13668-024-00529-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 03/20/2024]
Abstract
PURPOSE OF REVIEW The number and proportion of individuals aged 60 and over are increasing globally. The increase in the elderly population has important social and economic effects. Telomere length is an important marker for healthy aging. Here, we review the relevance between telomere length and energy balance by determining the effects of physical activity, nutrients, dietary patterns, and foods on healthy aging and telomere length with related studies. RECENT FINDINGS Evidence emphasizes the importance of telomere length and integrity for healthy aging. It also focuses on the importance of potential interventions such as physical activity and a healthy diet to improve this process. We suggest that ensuring energy balance with regular physical activity and healthy diets can contribute to the aging process by protecting telomere length. In addition, different methods in studies, short and inconsistent durations, different types of exercise, different diet patterns, and non-standard foods have led to conflicting results. More studies are needed to elucidate molecular-based mechanisms.
Collapse
Affiliation(s)
- Satı Gürel
- Department of Nutrition and Dietetics, Faculty of Health Science, Trakya University, 22030, Edirne, Turkey
| | - Elif Nisa Pak
- Department of Nutrition and Dietetics, Faculty of Health Science, Kilis 7 Aralık University, 79000, Kilis, Turkey.
| | - Nilüfer Acar Tek
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gazi University, 06490, Ankara, Turkey
| |
Collapse
|
26
|
Visekruna J, Basa M, Grba T, Andjelkovic M, Pavlovic S, Nathan N, Sovtic A. Ultra-Early Diffuse Lung Disease in an Infant with Pathogenic Variant in Telomerase Reverse Transcriptase ( TERT) Gene. Balkan J Med Genet 2024; 27:59-63. [PMID: 39263645 PMCID: PMC11385016 DOI: 10.2478/bjmg-2024-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
The pathogenic variants in the telomerase reverse transcriptase (TERT) gene have been identified in adults with idiopathic pulmonary fibrosis, while their connection to childhood diffuse lung disease has not yet been described. Within this study, we present a case of a five-month-old, previously healthy infant, with early-onset respiratory failure. The clinical suspicion of diffuse lung disease triggered by cytomegalovirus (CMV) pneumonitis was based on clinical and radiological presentation. Multiorgan involvement was not confirmed. Considering the possible connection between CMV pneumonitis and early-onset respiratory failure, clinical exome sequencing was performed and a novel variant, classified as likely pathogenic in the TERT gene (c.280A>T, p.Lys94Ter) was detected. After segregation analysis yielded negative results, the de novo status of the variant was confirmed. Respiratory support, antiviral and anti-inflammatory therapy offered modest benefits, nevertheless, eighteen months after the initial presentation of disease, an unfavourable outcome occurred. In conclusion, severe viral pneumonia has the potential to induce extremely rare early-onset diffuse lung disease accompanied by chronic respiratory insufficiency. This is linked to pathogenic variants in the TERT gene. Our comprehensive presentation of the patient contributes to valuable insights into the intricate interplay of genetic factors, clinical presentations, and therapeutic outcomes in cases of early-onset respiratory failure.
Collapse
Affiliation(s)
- J Visekruna
- Department of Pulmonology, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - M Basa
- Department of Pulmonology, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - T Grba
- Department of Pulmonology, Mother and Child Health Institute of Serbia, Belgrade, Serbia
| | - M Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - S Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - N Nathan
- AP-HP, Sorbonne Université, Pediatric Pulmonology Department and Reference Centre for Rare Lung Disease RespiRare, Armand Trousseau Hospital, Paris, France
- Sorbonne Université, Inserm UMR_S933 Laboratory of Childhood Genetic Diseases, Armand Trousseau Hospital, Paris, France
| | - A Sovtic
- Department of Pulmonology, Mother and Child Health Institute of Serbia, Belgrade, Serbia
- School of Medicine, University of Belgrade, Serbia
| |
Collapse
|
27
|
Shen C, Jiang K, Zhang W, Su B, Wang Z, Chen X, Zheng B, He T. LASSO regression and WGCNA-based telomerase-associated lncRNA signaling predicts clear cell renal cell carcinoma prognosis and immunotherapy response. Aging (Albany NY) 2024; 16:9386-9409. [PMID: 38819232 PMCID: PMC11210217 DOI: 10.18632/aging.205871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To investigate whether telomerase-associated lncRNA expression affects the prognosis and anti-tumor immunity of patients with renal clear cell carcinoma (ccRCC). METHODS A series of analyses were performed to establish a prognostic risk model and validate its accuracy. Immune-related analyses were performed to assess further the association between immune status, tumor microenvironment, and prognostic risk models. RESULTS Eight telomerase-associated lncRNAs associated with prognosis were identified and applied to establish a prognostic risk model. Overall survival was higher in the low-risk group. CONCLUSION The established prognostic risk model has a good predictive ability for the prognosis of ccRCC patients and provides a new possible therapeutic target for ccRCC.
Collapse
MESH Headings
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/mortality
- Carcinoma, Renal Cell/therapy
- Carcinoma, Renal Cell/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/mortality
- Kidney Neoplasms/therapy
- Telomerase/genetics
- Telomerase/metabolism
- Prognosis
- Immunotherapy/methods
- Gene Expression Regulation, Neoplastic
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Signal Transduction/genetics
- Male
- Female
- Gene Regulatory Networks
Collapse
Affiliation(s)
- Cheng Shen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Kaiyao Jiang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Zhang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Baohui Su
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
- Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Zhenyu Wang
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xinfeng Chen
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Bing Zheng
- Department of Urology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Tao He
- Party Committe and Hospital Administration Office, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
28
|
Deb S, Berei J, Miliavski E, Khan MJ, Broder TJ, Akurugo TA, Lund C, Fleming SE, Hillwig R, Ross J, Puri N. The Effects of Smoking on Telomere Length, Induction of Oncogenic Stress, and Chronic Inflammatory Responses Leading to Aging. Cells 2024; 13:884. [PMID: 38891017 PMCID: PMC11172003 DOI: 10.3390/cells13110884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Telomeres, potential biomarkers of aging, are known to shorten with continued cigarette smoke exposure. In order to further investigate this process and its impact on cellular stress and inflammation, we used an in vitro model with cigarette smoke extract (CSE) and observed the downregulation of telomere stabilizing TRF2 and POT1 genes after CSE treatment. hTERT is a subunit of telomerase and a well-known oncogenic marker, which is overexpressed in over 85% of cancers and may contribute to lung cancer development in smokers. We also observed an increase in hTERT and ISG15 expression levels after CSE treatment, as well as increased protein levels revealed by immunohistochemical staining in smokers' lung tissue samples compared to non-smokers. The effects of ISG15 overexpression were further studied by quantifying IFN-γ, an inflammatory protein induced by ISG15, which showed greater upregulation in smokers compared to non-smokers. Similar changes in gene expression patterns for TRF2, POT1, hTERT, and ISG15 were observed in blood and buccal swab samples from smokers compared to non-smokers. The results from this study provide insight into the mechanisms behind smoking causing telomere shortening and how this may contribute to the induction of inflammation and/or tumorigenesis, which may lead to comorbidities in smokers.
Collapse
Affiliation(s)
- Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Muhammad J. Khan
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Taylor J. Broder
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Thomas A. Akurugo
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Cody Lund
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| | - Sara E. Fleming
- Department of Pathology, UW Health SwedishAmerican Hospital, Rockford, IL 61107, USA;
| | - Robert Hillwig
- Department of Health Sciences Education, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA;
| | - Joseph Ross
- Department of Family and Community Medicine, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA;
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, USA; (S.D.); (J.B.); (E.M.); (M.J.K.); (T.J.B.); (T.A.A.); (C.L.)
| |
Collapse
|
29
|
Duseikaite M, Gedvilaite G, Mikuzis P, Andrulionyte J, Kriauciuniene L, Liutkeviciene R. Investigating the Relationship between Telomere-Related Gene Variants and Leukocyte Telomere Length in Optic Neuritis Patients. J Clin Med 2024; 13:2694. [PMID: 38731223 PMCID: PMC11084964 DOI: 10.3390/jcm13092694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Optic neuritis (ON) is a condition marked by optic nerve inflammation due to various potential triggers. Research indicates a link between telomeres and inflammation, as studies demonstrate that inflammation can lead to increased telomere shortening. Aim: We aimed to determine the associations of telomere-related telomeric repeat binding factor 1 (TERF1) rs1545827, rs10107605, and telomeric repeat binding factor 2 (TERF2) rs251796 polymorphisms and relative leukocyte telomere length (LTL) with the occurrence of ON. Methods: In this research, a total of 73 individuals diagnosed with optic neuritis (ON) were studied and the control group included 170 individuals without any health issues. The DNA samples were obtained from peripheral blood leukocytes, which were purified using the DNA salting-out technique. Real-time polymerase chain reaction (RT-PCR) assessed single-nucleotide polymorphisms (SNPs) and relative leukocyte telomere lengths (LTL). The data obtained were processed and analyzed using the "IBM SPSS Statistics 29.0" program. Results: Our study revealed the following results: in the male group, TERF2 rs251796 (AA, AG, and TT) statistically significantly differed between the long and short telomere group, with frequencies of 65.7%, 22.9%, and 2.0% in long telomeres, compared to 35.1%, 56.8%, and 8.1% in the short telomere group (p = 0.013). The TERF2 rs251796 CT genotype, compared to CC, under the codominant genetic model, was associated with 4.7-fold decreased odds of telomere shortening (p = 0.005). Meanwhile, CT+TT genotypes, compared to CC under the dominant genetic model, were associated with 3.5-fold decreased odds of telomere shortening (p = 0.011). Also, the CT genotype, compared to CC+TT, under the overdominant genetic model, was associated with 4.4-fold decreased odds of telomere shortening (p = 0.004). Conclusions: The current evidence may suggest a protective role of TERF2 rs251796 in the occurrence of ON in men.
Collapse
Affiliation(s)
- Monika Duseikaite
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, Eivenių Street 2, LT-50161 Kaunas, Lithuania; (G.G.); (L.K.); (R.L.)
- Faculty of Pharmacy, Lithuanian University of Health Sciences, Sukilėlių Pr. 13, LT-50166 Kaunas, Lithuania
| | - Greta Gedvilaite
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, Eivenių Street 2, LT-50161 Kaunas, Lithuania; (G.G.); (L.K.); (R.L.)
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (P.M.); (J.A.)
| | - Paulius Mikuzis
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (P.M.); (J.A.)
| | - Juste Andrulionyte
- Medical Faculty, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (P.M.); (J.A.)
| | - Loresa Kriauciuniene
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, Eivenių Street 2, LT-50161 Kaunas, Lithuania; (G.G.); (L.K.); (R.L.)
| | - Rasa Liutkeviciene
- Laboratory of Ophthalmology, Institute of Neuroscience, Lithuanian University of Health Sciences, Eivenių Street 2, LT-50161 Kaunas, Lithuania; (G.G.); (L.K.); (R.L.)
| |
Collapse
|
30
|
Subošić B, Kotur-Stevuljević J, Bogavac-Stanojević N, Zdravković V, Ješić M, Kovačević S, Đuričić I. Circulating Fatty Acids Associate with Metabolic Changes in Adolescents Living with Obesity. Biomedicines 2024; 12:883. [PMID: 38672237 PMCID: PMC11048623 DOI: 10.3390/biomedicines12040883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Fatty acids play a crucial role in obesity development and in the comorbidities of obesity in both adults and children. This study aimed to assess the impact of circulating fatty acids on biomarkers of metabolic health of adolescents living with obesity. Parameters such as blood lipids, redox status, and leukocyte telomere length (rLTL) were measured alongside the proportions of individual fatty acids. The Mann-Whitney U test revealed that individuals with obesity exhibited an unfavorable lipid and redox status compared to the control normal weight group. The group with obesity also had lower plasma n-3 polyunsaturated fatty acids (PUFAs) and a higher ratio of n-6 to n-3 PUFAs than the control group. They also had a shorter rLTL, indicating accelerated biological aging. There was an inverse association of rLTL and plasma n-6-to-n-3 PUFA ratio. Future studies should explore the impact of recommended nutrition plans and increased physical activity on these parameters to determine if these interventions can enhance the health and well-being of adolescents with obesity, knowing that early obesity can track into adulthood.
Collapse
Affiliation(s)
- Branko Subošić
- Biochemical Laboratory, University Children’s Hospital, 11000 Belgrade, Serbia;
| | - Jelena Kotur-Stevuljević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (J.K.-S.); (N.B.-S.)
| | - Nataša Bogavac-Stanojević
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia; (J.K.-S.); (N.B.-S.)
| | - Vera Zdravković
- Department of Endocrinology, Medical Faculty, University Children’s Hospital, 11000 Belgrade, Serbia; (V.Z.); (M.J.); (S.K.)
| | - Maja Ješić
- Department of Endocrinology, Medical Faculty, University Children’s Hospital, 11000 Belgrade, Serbia; (V.Z.); (M.J.); (S.K.)
| | - Smiljka Kovačević
- Department of Endocrinology, Medical Faculty, University Children’s Hospital, 11000 Belgrade, Serbia; (V.Z.); (M.J.); (S.K.)
| | - Ivana Đuričić
- Department of Bromatology, Faculty of Pharmacy, University of Belgrade, 11221 Belgrade, Serbia
| |
Collapse
|
31
|
Alanazi AR, Parkinson GN, Haider S. Structural Motifs at the Telomeres and Their Role in Regulatory Pathways. Biochemistry 2024; 63:827-842. [PMID: 38481135 PMCID: PMC10993422 DOI: 10.1021/acs.biochem.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Telomeres are specialized structures, found at the ends of linear chromosomes in eukaryotic cells, that play a crucial role in maintaining the stability and integrity of genomes. They are composed of repetitive DNA sequences, ssDNA overhangs, and several associated proteins. The length of telomeres is linked to cellular aging in humans, and deficiencies in their maintenance are associated with various diseases. Key structural motifs at the telomeres serve to protect vulnerable chromosomal ends. Telomeric DNA also has the ability to form diverse complex DNA higher-order structures, including T-loops, D-loops, R-loops, G-loops, G-quadruplexes, and i-motifs, in the complementary C-rich strand. While many essential proteins at telomeres have been identified, the intricacies of their interactions and structural details are still not fully understood. This Perspective highlights recent advancements in comprehending the structures associated with human telomeres. It emphasizes the significance of telomeres, explores various telomeric structural motifs, and delves into the structural biology surrounding telomeres and telomerase. Furthermore, telomeric loops, their topologies, and the associated proteins that contribute to the safeguarding of telomeres are discussed.
Collapse
Affiliation(s)
- Abeer
F R Alanazi
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Gary N Parkinson
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
| | - Shozeb Haider
- UCL
School of Pharmacy, University College London, London WC1N 1AX, United Kingdom
- UCL
Centre for Advanced Research Computing, University College London, London WC1H 9RN, United
Kingdom
| |
Collapse
|
32
|
Zhou X, Sampath V, Nadeau KC. Effect of air pollution on asthma. Ann Allergy Asthma Immunol 2024; 132:426-432. [PMID: 38253122 PMCID: PMC10990824 DOI: 10.1016/j.anai.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Asthma is a chronic inflammatory airway disease characterized by respiratory symptoms, variable airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Exposure to air pollution has been linked to an increased risk of asthma development and exacerbation. This review aims to comprehensively summarize recent data on the impact of air pollution on asthma development and exacerbation. Specifically, we reviewed the effects of air pollution on the pathogenic pathways of asthma, including type 2 and non-type 2 inflammatory responses, and airway epithelial barrier dysfunction. Air pollution promotes the release of epithelial cytokines, driving TH2 responses, and induces oxidative stress and the production of proinflammatory cytokines. The enhanced type 2 inflammation, furthered by air pollution-induced dysfunction of the airway epithelial barrier, may be associated with the exacerbation of asthma. Disruption of the TH17/regulatory T cell balance by air pollutants is also related to asthma exacerbation. As the effects of air pollution exposure may accumulate over time, with potentially stronger impacts in the development of asthma during certain sensitive life periods, we also reviewed the effects of air pollution on asthma across the lifespan. Future research is needed to better characterize the sensitive period contributing to the development of air pollution-induced asthma and to map air pollution-associated epigenetic biomarkers contributing to the epigenetic ages onto asthma-related genes.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Vanitha Sampath
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
| |
Collapse
|
33
|
Yurchenko A, Pšenička T, Mora P, Ortega JAM, Baca AS, Rovatsos M. Cytogenetic Analysis of Satellitome of Madagascar Leaf-Tailed Geckos. Genes (Basel) 2024; 15:429. [PMID: 38674364 PMCID: PMC11049218 DOI: 10.3390/genes15040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Satellite DNA (satDNA) consists of sequences of DNA that form tandem repetitions across the genome, and it is notorious for its diversity and fast evolutionary rate. Despite its importance, satDNA has been only sporadically studied in reptile lineages. Here, we sequenced genomic DNA and PCR-amplified microdissected W chromosomes on the Illumina platform in order to characterize the monomers of satDNA from the Henkel's leaf-tailed gecko U. henkeli and to compare their topology by in situ hybridization in the karyotypes of the closely related Günther's flat-tail gecko U. guentheri and gold dust day gecko P. laticauda. We identified seventeen different satDNAs; twelve of them seem to accumulate in centromeres, telomeres and/or the W chromosome. Notably, centromeric and telomeric regions seem to share similar types of satDNAs, and we found two that seem to accumulate at both edges of all chromosomes in all three species. We speculate that the long-term stability of all-acrocentric karyotypes in geckos might be explained from the presence of specific satDNAs at the centromeric regions that are strong meiotic drivers, a hypothesis that should be further tested.
Collapse
Affiliation(s)
- Alona Yurchenko
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Tomáš Pšenička
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| | - Pablo Mora
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Juan Alberto Marchal Ortega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Antonio Sánchez Baca
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaén, Campus Las Lagunillas s/n, E-23071 Jaen, Spain; (P.M.); (J.A.M.O.); (A.S.B.)
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic; (A.Y.); (T.P.)
| |
Collapse
|
34
|
Campisi M, Cannella L, Celik D, Gabelli C, Gollin D, Simoni M, Ruaro C, Fantinato E, Pavanello S. Mitigating cellular aging and enhancing cognitive functionality: visual arts-mediated Cognitive Activation Therapy in neurocognitive disorders. Front Aging Neurosci 2024; 16:1354025. [PMID: 38524114 PMCID: PMC10957554 DOI: 10.3389/fnagi.2024.1354025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
The growing phenomenon of population aging is redefining demographic dynamics, intensifying age-related conditions, especially dementia, projected to triple by 2050 with an enormous global economic burden. This study investigates visual arts-mediated Cognitive Activation Therapy (CAT) as a non-pharmacological CAT intervention targets both biological aging [leukocyte telomere length (LTL), DNA methylation age (DNAmAge)] and cognitive functionality. Aligning with a broader trend of integrating non-pharmacological approaches into dementia care. The longitudinal study involved 20 patients with mild to moderate neurocognitive disorders. Cognitive and functional assessments, and biological aging markers -i.e., LTL and DNAmAge- were analyzed before and after CAT intervention. Change in LTL was positively correlated with days of treatment (p =0.0518). LTL significantly elongated after intervention (p =0.0269), especially in men (p =0.0142), correlating with younger age (p =0.0357), and higher education (p =0.0008). DNAmAge remained instead stable post-treatment. Cognitive and functional improvements were observed for Copy of complex geometric figure, Progressive Silhouettes, Position Discrimination, Communication Activities of Daily Living-Second edition, Direct Functional Status (p < 0.0001) and Object decision (p =0.0594), but no correlations were found between LTL and cognitive gains. Visual arts-mediated CAT effectively mitigates cellular aging, especially in men, by elongating LTL. These findings underscore the potential of non-pharmacological interventions in enhancing cognitive and functional status and general well-being in dementia care. Further research with larger and longer-term studies is essential for validation.
Collapse
Affiliation(s)
- Manuela Campisi
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Luana Cannella
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Dilek Celik
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Carlo Gabelli
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Donata Gollin
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Marco Simoni
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Cristina Ruaro
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Elena Fantinato
- Regional Centre for the Aging Brain (CRIC), University Hospital of Padua, Padua, Italy
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
- University Hospital of Padua, Padua, Italy
| |
Collapse
|
35
|
Ding K, Zhangwang J, Lei M, Xiong C. Insight into telomere regulation: road to discovery and intervention in plasma drug-protein targets. BMC Genomics 2024; 25:231. [PMID: 38431573 PMCID: PMC10909270 DOI: 10.1186/s12864-024-10116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Telomere length is a critical metric linked to aging, health, and disease. Currently, the exploration of target proteins related to telomere length is usually limited to the context of aging and specific diseases, which limits the discovery of more relevant drug targets. This study integrated large-scale plasma cis-pQTLs data and telomere length GWAS datasets. We used Mendelian randomization(MR) to identify drug target proteins for telomere length, providing essential clues for future precision therapy and targeted drug development. METHODS Using plasma cis-pQTLs data from a previous GWAS study (3,606 Pqtls associated with 2,656 proteins) and a GWAS dataset of telomere length (sample size: 472,174; GWAS ID: ieu-b-4879) from UK Biobank, using MR, external validation, and reverse causality testing, we identified essential drug target proteins for telomere length. We also performed co-localization, Phenome-wide association studies and enrichment analysis, protein-protein interaction network construction, search for existing intervening drugs, and potential drug/compound prediction for these critical targets to strengthen and expand our findings. RESULTS After Bonferron correction (p < 0.05/734), RPN1 (OR: 0.96; 95%CI: (0.95, 0.97)), GDI2 (OR: 0.94; 95%CI: (0.92, 0.96)), NT5C (OR: 0.97; 95%CI: (0.95, 0.98)) had a significant negative causal association with telomere length; TYRO3 (OR: 1.11; 95%CI: (1.09, 1.15)) had a significant positive causal association with telomere length. GDI2 shared the same genetic variants with telomere length (coloc.abf-PPH 4 > 0.8). CONCLUSION Genetically determined plasma RPN1, GDI2, NT5C, and TYRO3 have significant causal effects on telomere length and can potentially be drug targets. Further exploration of the role and mechanism of these proteins/genes in regulating telomere length is needed.
Collapse
Affiliation(s)
- Kaixi Ding
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Juejue Zhangwang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ming Lei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Chunping Xiong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
36
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
37
|
Lu G, Fang T, Li X, Zhang X, Li H, Wu N, Liu F, Hao W, Ye QN, Cheng L, Li J, Li F. Methamphetamine use shortens telomere length in male adults and rats. Drug Alcohol Depend 2024; 256:111094. [PMID: 38262198 DOI: 10.1016/j.drugalcdep.2024.111094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Methamphetamine (MA) use increases the risk of age-related diseases. However, it remains uncertain whether MA use exhibits accelerated biological aging, as indicated by telomere length (TL), a proposed marker of aging. Here we conducted studies in both humans and rats to investigate the association between MA use and TL. METHODS We recruited 125 male MA users and 66 healthy controls, aged 30-40 years. MA users were diagnosed using DSM-5 criteria and categorized into two groups: non-severe (n = 78) and severe (n = 47) MA use disorder (MUD). MA-treated conditioned place preference (CPP) rats were utilized to validate our clinical investigations. TL was assessed using real-time polymerase chain reaction. RESULTS At clinical levels, MA users exhibited significantly shorter leukocyte TL compared to healthy controls. Among MA users, individuals with severe MUD had significantly shorter leukocyte TL than those with non-severe MUD. Importantly, both univariate and multivariate linear regression analyses demonstrated a negative association between the severity of MA use and leukocyte TL. In a rat model of MA-induced CPP, leukocyte TL was also significantly shortened after MA administration, especially in rats with higher CPP expression or reinstatement scores. CONCLUSION MA use shortened TL, and the severity of MA use was negatively correlated with TL. These findings provide new insights into the pathophysiology of accelerated aging caused by MA use and may have implications for identifying biomarkers and developing novel treatment strategies for MUD.
Collapse
Affiliation(s)
- Guanyi Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ting Fang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinyue Li
- Beijing Institute of Biotechnology, Beijing, China
| | - XiaoJie Zhang
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Feng Liu
- Compulsory Detoxification Center of Changsha Public Security Bureau, Changsha, Hunan, China
| | - Wei Hao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi-Nong Ye
- Beijing Institute of Biotechnology, Beijing, China
| | - Long Cheng
- Beijing Institute of Biotechnology, Beijing, China; The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China.
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| | - Fei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China.
| |
Collapse
|
38
|
Scorza C, Goncalves V, Finsterer J, Scorza F, Fonseca F. Exploring the Prospective Role of Propolis in Modifying Aging Hallmarks. Cells 2024; 13:390. [PMID: 38474354 DOI: 10.3390/cells13050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aging populations worldwide are placing age-related diseases at the forefront of the research agenda. The therapeutic potential of natural substances, especially propolis and its components, has led to these products being promising agents for alleviating several cellular and molecular-level changes associated with age-related diseases. With this in mind, scientists have introduced a contextual framework to guide future aging research, called the hallmarks of aging. This framework encompasses various mechanisms including genomic instability, epigenetic changes, mitochondrial dysfunction, inflammation, impaired nutrient sensing, and altered intercellular communication. Propolis, with its rich array of bioactive compounds, functions as a potent functional food, modulating metabolism, gut microbiota, inflammation, and immune response, offering significant health benefits. Studies emphasize propolis' properties, such as antitumor, cardioprotective, and neuroprotective effects, as well as its ability to mitigate inflammation, oxidative stress, DNA damage, and pathogenic gut bacteria growth. This article underscores current scientific evidence supporting propolis' role in controlling molecular and cellular characteristics linked to aging and its hallmarks, hypothesizing its potential in geroscience research. The aim is to discover novel therapeutic strategies to improve health and quality of life in older individuals, addressing existing deficits and perspectives in this research area.
Collapse
Affiliation(s)
- Carla Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Valeria Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | | | - Fúlvio Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Fernando Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André 09060-650, Brazil
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo (UNIFESP), Diadema 09972-270, Brazil
| |
Collapse
|
39
|
Wang D, Lin D, Yang X, Wu D, Li P, Zhang Z, Zhang W, Guo Y, Fu S, Zhang N. Alterations in leukocyte telomere length and mitochondrial DNA copy number in benzene poisoning patients. Mol Biol Rep 2024; 51:309. [PMID: 38372835 DOI: 10.1007/s11033-024-09238-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE The aim of this study is to examine and evaluate the impact of benzene poisoning on the relative content of the mitochondrial MT-ND1 gene and telomere length in individuals with occupational chronic benzene poisoning (CBP) compared to a control group. The study will analyze and gather data on the mitochondrial gene content and telomere length in cases of benzene poisoning, and investigate the relationship with blood routine parameters in order to contribute scientific experimental data for the prevention and treatment of CBP. METHOD The case group comprised 30 individuals diagnosed with occupational chronic benzene poisoning, whereas the control group consisted of 60 healthy individuals who underwent physical examinations at our hospital concurrently. Blood routine indicators were detected and analyzed, and the PCR method was employed to measure changes in mitochondrial MT-ND1 content and telomere length. Subsequently, a comparison and analysis of the aforementioned indicators was conducted. RESULT The case group exhibited a higher mitochondrial gene content (median 366.2, IQR 90.0 rate) compared to the control group (median 101.5, IQR 12.0 rate), with a statistically significant difference between the two groups (P < 0.05). Additionally, the case group demonstrated lower white blood cell levels (3.78 ± 1.387 × 109/L) compared to the control group (5.74 ± 1.41 × 109/L), with a significant difference between the two groups (P < 0.05). Furthermore, the case group displayed lower red blood cell levels (3.86 ± 0.65 × 1012/L) compared to the control group (4.89 ± 0.65 × 1012/L), with a significant difference between the two groups (P < 0.05). The hemoglobin level in the case group (113.33 ± 16.34 g/L) was lower than that in the control group (138.22 ± 13.22 g/L). There was a significant difference between the two groups (P < 0.05). Platelet levels in the case group (153.80 ± 58.31 × 109/L) is smaller than the control group (244.92 ± 51.99 × 109/L), there was a significant difference between the two groups (P < 0.05). The average telomere length of the normal control group was 1.451 ± 0.475 (rate); The mean telomere length of individuals in the case group diagnosed with benzene poisoning was determined to be 1.237 ± 0.457 (rate). No significant correlation was observed between telomere length and three blood routine parameters, namely white blood cells (WBC), hemoglobin (HB), and platelets (PLT). However, a significant correlation was found between telomere length and red blood cell count (RBC). Additionally, a negative correlation was observed between mitochondrial gene content and white blood cell count (r = - 0.314, P = 0.026), as well as between mitochondrial gene content and red blood cell count (r = - 0.226, P = 0.032). Furthermore, a negative correlation was identified between mitochondrial gene content and hemoglobin (r = - 0.314, P = 0.028), and platelets (r = - 0.445, P = 0.001). CONCLUSION Individuals diagnosed with occupational chronic benzene poisoning exhibit a reduction in telomere length and an elevation in the relative content of the mitochondrial MT-ND1 gene. Moreover, a negative correlation is observed between the content of the mitochondrial MT-ND1 gene and four blood routine parameters, namely white blood cells (WBC), red blood cells (RBC), hemoglobin (HB), and platelets (PLT). Consequently, benzene exposure may potentially contribute to the onset of premature aging.
Collapse
Affiliation(s)
- Dianpeng Wang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
- School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| | - Dafeng Lin
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Xiangli Yang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Dongpeng Wu
- Medical Laboratory College Hebei North University in China, Zhangjiakou, 075000, Hebei, China
| | - Peimao Li
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Zhimin Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Wen Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Yan Guo
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China
| | - Song Fu
- Medical Laboratory College Hebei North University in China, Zhangjiakou, 075000, Hebei, China
| | - Naixing Zhang
- Medical Laboratory, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, 518020, China.
| |
Collapse
|
40
|
Mastrogiovanni M, Martínez-Navarro FJ, Bowman TV, Cayuela ML. Inflammation in Development and Aging: Insights from the Zebrafish Model. Int J Mol Sci 2024; 25:2145. [PMID: 38396822 PMCID: PMC10889087 DOI: 10.3390/ijms25042145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Zebrafish are an emergent animal model to study human diseases due to their significant genetic similarity to humans, swift development, and genetic manipulability. Their utility extends to the exploration of the involvement of inflammation in host defense, immune responses, and tissue regeneration. Additionally, the zebrafish model system facilitates prompt screening of chemical compounds that affect inflammation. This study explored the diverse roles of inflammatory pathways in zebrafish development and aging. Serving as a crucial model, zebrafish provides insights into the intricate interplay of inflammation in both developmental and aging contexts. The evidence presented suggests that the same inflammatory signaling pathways often play instructive or beneficial roles during embryogenesis and are associated with malignancies in adults.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Francisco Juan Martínez-Navarro
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
| | - Teresa V. Bowman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - María L. Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria-Arrixaca, 30120 Murcia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 30100 Murcia, Spain
| |
Collapse
|
41
|
Gorria T, Crous C, Pineda E, Hernandez A, Domenech M, Sanz C, Jares P, Muñoz-Mármol AM, Arpí-Llucía O, Melendez B, Gut M, Esteve A, Esteve-Codina A, Parra G, Alameda F, Carrato C, Aldecoa I, Mallo M, de la Iglesia N, Balana C. The C250T Mutation of TERTp Might Grant a Better Prognosis to Glioblastoma by Exerting Less Biological Effect on Telomeres and Chromosomes Than the C228T Mutation. Cancers (Basel) 2024; 16:735. [PMID: 38398126 PMCID: PMC10886885 DOI: 10.3390/cancers16040735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The aim of this study was to determine how TERTp mutations impact glioblastoma prognosis. MATERIALS AND METHODS TERTp mutations were assessed in a retrospective cohort of 258 uniformly treated glioblastoma patients. RNA-sequencing and whole exome sequencing results were available in a subset of patients. RESULTS Overall, there were no differences in outcomes between patients with mutated TERTp-wt or TERTp. However, we found significant differences according to the type of TERTp mutation. Progression-free survival (mPFS) was 9.1 months for those with the C250T mutation and 7 months for those with either the C228T mutation or TERTp-wt (p = 0.016). Overall survival (mOS) was 21.9 and 15 months, respectively (p = 0.026). This differential effect was more pronounced in patients with MGMTp methylation (mPFS: p = 0.008; mOS: p = 0.021). Multivariate analysis identified the C250T mutation as an independent prognostic factor for longer mOS (HR 0.69; p = 0.044). We found no differences according to TERTp mutation status in molecular alterations common in glioblastoma, nor in copy number variants in genes related to alternative lengthening of telomeres. Nevertheless, in the gene enrichment analysis adjusted for MGMTp methylation status, some Reactome gene sets were differentially enriched, suggesting that the C250T mutation may exert a lesser effect on telomeres or chromosomes. CONCLUSIONS In our series, patients exhibiting the C250T mutation had a more favorable prognosis compared to those with either TERPp-wt or TERTp C228T mutations. Additionally, our findings suggest a reduced involvement of the C250T mutation in the underlying biological mechanisms related to telomeres.
Collapse
Affiliation(s)
- Teresa Gorria
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Carme Crous
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain; (T.G.); (C.C.); (E.P.)
| | - Ainhoa Hernandez
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Marta Domenech
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
| | - Carolina Sanz
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Pedro Jares
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Ana María Muñoz-Mármol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Oriol Arpí-Llucía
- Cancer Research Program, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Bárbara Melendez
- Molecular Pathology Research Unit, Hospital Universitario de Toledo, 45007 Toledo, Spain;
| | - Marta Gut
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Anna Esteve
- Medical Oncology, Institut Catala d’Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain; (A.H.); (M.D.); (A.E.)
- Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), 08916 Badalona, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Genis Parra
- Centro Nacional de Análisis Genómico, C/Baldiri Reixac 4, 08028 Barcelona, Spain; (M.G.); (A.E.-C.); (G.P.)
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain; (C.S.); (A.M.M.-M.); (C.C.)
| | - Iban Aldecoa
- Department of Pathology, Biomedical Diagnostic Centre (CDB) and Neurological Tissue Bank of the Biobank-IDIBAPS, Hospital Clinic, University of Barcelona, 08036 Barcelona, Spain; (P.J.); (I.A.)
| | - Mar Mallo
- Unidad de Microarrays, Institut de Recerca Contra la Leucèmia Josep Carreras (IJC), ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain;
| | - Nuria de la Iglesia
- IrsiCaixa AIDS Research Institute, Hospital Universitari Germans Trias i Pujol, 08916 Badalona, Spain;
| | - Carmen Balana
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d’Investigacions Mèdiques (IMIM), 08003 Barcelona, Spain;
| |
Collapse
|
42
|
Qin S, Sheng Z, Chen C, Cao Y. Genetic relationship between ageing and coronary heart disease: a Mendelian randomization study. Eur Geriatr Med 2024; 15:159-167. [PMID: 37948032 DOI: 10.1007/s41999-023-00888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Genetic relationship between ageing and coronary heart disease has not been well investigated. The aim of the study was to explore the association of several ageing biomarkers with the risk of several types of coronary heart disease using the Mendelian randomization approach. METHODS Summary data for telomere length, four epigenetic clocks (such as intrinsic epigenetic age acceleration), four types of coronary heart disease (such as myocardial infarction) were collected from the most updated and available genome-wide association studies. Instrumental variables were extracted from the exposure-related summary data according to correlation, independence and exclusivity assumptions. Three Mendelian randomization methods (such as inverse variance weighted) were used for causal inference. Four sensitivity analyses (such as MR-Egger intercept) were performed to prevent horizontal pleiotropy. RESULTS Inverse variance weighted reported that longer telomere length was related to the lower risk of myocardial infarction, angina pectoris, unstable angina pectoris and coronary atherosclerosis (P = 8.840e-11, P = 9.830e-04, P = 1.539e-05, P = 2.607e-09). Inverse variance weighted also reported that four epigenetic clocks might be not implicated in the risk of these coronary heart diseases. Furthermore, there was not enough evidence to confirm the effect of coronary heart disease on these ageing biomarkers. CONCLUSION Longer telomere length, but not the epigenetic clock changes, genetically decreased the risk of coronary heart disease. Considering that telomere length and epigenetic clocks were two independent ageing biomarkers, the correlation between ageing and coronary heart disease might be redefined at the genetic level.
Collapse
Affiliation(s)
- Sirun Qin
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, China
| | - Zhe Sheng
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, China
| | - Chenyang Chen
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, China
| | - Yu Cao
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
43
|
Huang X, Meng Y, Hu X, Zhang A, Ji Q, Liang Z, Fang F, Zhan Y. Association between cytomegalovirus seropositivity and all-cause mortality: An original cohort study. J Med Virol 2024; 96:e29444. [PMID: 38294040 DOI: 10.1002/jmv.29444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
To examine the association between cytomegalovirus (CMV) seropositivity and all-cause mortality in a nationwide cohort of US adults. We obtained data from the National Health and Nutrition Examination Survey III (1988-1994), including 16,547 participants aged 18-90 years old with CMV serology assessments. Mortality status was ascertained until December 2019 using the National Death Index linkage data. The Cox proportional hazard model was applied to estimate the association between CMV seropositivity and mortality. During a median follow-up of 26.3 years, 6,930 deaths were recorded. CMV seropositivity was associated with a higher hazard of all-cause mortality after adjusting for attained age, sex, and ethnicity (HR: 1.22, 95% CI: 1.10, 1.36, p < 0.001). The magnitude of the association attenuated slightly after adjusting further for body mass index, family income, smoking status, diabetes, and self-reported cancer history (HR = 1.11, 95% CI: 1.00, 1.23, p = 0.04). While the association was observed for both men and women, it was only statistically significant among non-Hispanic white people (HR: 1.16, 95% CI: 1.06, 1.26, p = 0.001) but not among other ethnic populations. CMV seropositivity might be an independent risk factor for all-cause mortality among US adults. If the findings are validated in an independent population, further research is needed to unveil the biological mechanisms driving the increased mortality with CMV seropositivity.
Collapse
Affiliation(s)
- Xiaoping Huang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yaxian Meng
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Xinyi Hu
- School of Medicine, Lishui University, Lishui, China
| | - Aijie Zhang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Zhirou Liang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
44
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
45
|
Bukic E, Dragovic G, Toljic B, Obradovic B, Jadzic J, Jevtovic D, Milasin JM. TERT single nucleotide polymorphism rs2736098 but not rs2736100 is associated with telomere length in HIV-infected patients on cART. Mol Biol Rep 2024; 51:147. [PMID: 38236501 DOI: 10.1007/s11033-023-08967-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/14/2023] [Indexed: 01/19/2024]
Abstract
BACKGROUND Continuous application of "combination antiretroviral therapy" (cART) has transformed Human immunodeficiency virus (HIV) infection into a manageable chronic disease; however, due to lasting inflammation and cumulative toxicity, progressive pathophysiological changes do occur and potentially lead to accelerated aging, among others, contributing to telomere shortening. The single nucleotide polymorphisms (SNP) rs2736100 and rs2736098 are particularly important for human telomerase (TERT) gene expression. The objective of this study was to evaluate the effects of clinical parameters and single nucleotide polymorphisms in TERT (rs2736100 and rs2736098) on telomere length in HIV-infected patients. METHODS AND RESULTS This cross-sectional study included 176 patients diagnosed with HIV infection. Relative telomere length (RTL) was determined by real-time polymerase chain reaction (qPCR), whereas genotyping was performed by polymerase chain reaction, followed by restriction fragment length polymorphism analysis (PCR-RFLP). The mean age of the patients (p = .904), time since HIV diagnosis (p = .220), therapy-related variables such as the cART regimen (0.761), and total cART duration (p = .096) did not significantly affect RTL. TERT rs2736100 genotype showed no association with RTL. However, TERT rs2736098 heterozygotes (GA) had significantly longer telomeres (P = .049) than both homozygotes (GG and AA). CONCLUSIONS Our findings support the fact that cellular aging in HIV-infected patients is influenced by the TERT rs2736098 polymorphism.
Collapse
Affiliation(s)
- Ena Bukic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Gordana Dragovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bosko Toljic
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia
| | - Bozana Obradovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Jadzic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Belgrade, Serbia
| | - Djordje Jevtovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Infectious and Tropical Diseases Hospital, University Clinical Center Serbia, Belgrade, Serbia
| | - Jelena M Milasin
- Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, Belgrade, 11000, Serbia.
| |
Collapse
|
46
|
Spanakis M, Fragkiadaki P, Renieri E, Vakonaki E, Fragkiadoulaki I, Alegakis A, Kiriakakis M, Panagiotou N, Ntoumou E, Gratsias I, Zoubaneas E, Morozova GD, Ovchinnikova MA, Tsitsimpikou C, Tsarouhas K, Drakoulis N, Skalny AV, Tsatsakis A. Advancing athletic assessment by integrating conventional methods with cutting-edge biomedical technologies for comprehensive performance, wellness, and longevity insights. Front Sports Act Living 2024; 5:1327792. [PMID: 38260814 PMCID: PMC10801261 DOI: 10.3389/fspor.2023.1327792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
In modern athlete assessment, the integration of conventional biochemical and ergophysiologic monitoring with innovative methods like telomere analysis, genotyping/phenotypic profiling, and metabolomics has the potential to offer a comprehensive understanding of athletes' performance and potential longevity. Telomeres provide insights into cellular functioning, aging, and adaptation and elucidate the effects of training on cellular health. Genotype/phenotype analysis explores genetic variations associated with athletic performance, injury predisposition, and recovery needs, enabling personalization of training plans and interventions. Metabolomics especially focusing on low-molecular weight metabolites, reveal metabolic pathways and responses to exercise. Biochemical tests assess key biomarkers related to energy metabolism, inflammation, and recovery. Essential elements depict the micronutrient status of the individual, which is critical for optimal performance. Echocardiography provides detailed monitoring of cardiac structure and function, while burnout testing evaluates psychological stress, fatigue, and readiness for optimal performance. By integrating this scientific testing battery, a multidimensional understanding of athlete health status can be achieved, leading to personalized interventions in training, nutrition, supplementation, injury prevention, and mental wellness support. This scientifically rigorous approach hereby presented holds significant potential for improving athletic performance and longevity through evidence-based, individualized interventions, contributing to advances in the field of sports performance optimization.
Collapse
Affiliation(s)
- Marios Spanakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Persefoni Fragkiadaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Elisavet Renieri
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Irene Fragkiadoulaki
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Athanasios Alegakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | - Mixalis Kiriakakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| | | | | | - Ioannis Gratsias
- Check Up Medicus Biopathology & Ultrasound Diagnostic Center – Polyclinic, Athens, Greece
| | | | - Galina Dmitrievna Morozova
- Bioelementology and Human Ecology Center, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Marina Alekseevna Ovchinnikova
- Department of Sport Medicine and Medical Rehabilitation, I.M. Sechenov First Moscow State Medical University (Sechenov Univercity), Moscow, Russia
| | | | | | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Anatoly Viktorovich Skalny
- Bioelementology and Human Ecology Center, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Medical Elementology Department, Peoples Friendship University of Russia, Moscow, Russia
| | - Aristides Tsatsakis
- Department of Forensic Sciences and Toxicology, School of Medicine, University of Crete, Heraklion, Greece
- Computational Bio-Medicine Laboratory, Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
- LifePlus Diagnostic & Consulting Health Services, Science Technology Park of Crete, Heraklion, Greece
| |
Collapse
|
47
|
Zhao XX, Bai LL. Correlation between telomere shortening in maternal peripheral blood and fetal aneuploidy. BMC Pregnancy Childbirth 2024; 24:2. [PMID: 38166713 PMCID: PMC10759364 DOI: 10.1186/s12884-023-06185-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND This study aimed to assess whether maternal telomere length is a more accurate predictor of trisomy 21 than maternal age while also exploring the factors influencing maternal and fetal telomere length. METHODS Forty mothers with fetuses carrying extra maternal copies of chromosome 21 were defined as trisomy 21 cases, and 18 mothers with normal karyotype fetuses were defined as controls. Telomere lengths of maternal blood lymphocytes and amniotic fluid cells were determined using real-time polymerase chain reaction. Fetal and maternal telomere lengths were compared between the two groups. Moreover, we analyzed the factors influencing maternal and fetal telomere length in the trisomy 21 pedigree. A logistic regression model was used to analyze the correlation between maternal telomere length and trisomy 21 risk. In addition, receiver operating characteristic (ROC) curve analysis was used to determine the accuracy of using maternal telomere length as an indicator of trisomy 21 risk. RESULTS The study revealed that both maternal and fetal telomere lengths were significantly shorter in trisomy 21 cases than in the controls. In the trisomy 21 group, the maternal age, occupation, and nationality showed no significant correlation with their telomere length; fetal telomere length exhibited a positive correlation with maternal telomere length. Furthermore, maternal telomere length shortening is associated with trisomy 21 (OR = 0.311; 95% CI, 0.109-0.885, P < 0.05). The results of ROC curve analysis indicated that a combined assessment of maternal age and maternal telomere length predicted fetal chromosome trisomy more effectively than a single assessment (area under the curve 0.808, 95% CI, 0.674-0.941, P < 0.001). CONCLUSION Maternal age combined with maternal telomere length proved to be a superior predictor of trisomy risk. Additionally, maternal telomere length was found to influence fetal telomere length.
Collapse
Affiliation(s)
- Xiao-Xi Zhao
- Department of Gynecology and Obstetrics, Affiliate Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010050, China.
| | - Le Le Bai
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
48
|
Minoretti P, Emanuele E. Clinically Actionable Topical Strategies for Addressing the Hallmarks of Skin Aging: A Primer for Aesthetic Medicine Practitioners. Cureus 2024; 16:e52548. [PMID: 38371024 PMCID: PMC10874500 DOI: 10.7759/cureus.52548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
In this narrative review, we sought to provide a comprehensive overview of the mechanisms underlying cutaneous senescence, framed by the twelve traditional hallmarks of aging. These include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, impaired macroautophagy, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation, and dysbiosis. We also examined how topical interventions targeting these hallmarks can be integrated with conventional aesthetic medicine techniques to enhance skin rejuvenation. The potential of combining targeted topical therapies against the aging hallmarks with minimally invasive procedures represents a significant advancement in aesthetic medicine, offering personalized and effective strategies to combat skin aging. The reviewed evidence paves the way for future advancements and underscores the transformative potential of integrating scientifically validated interventions targeted against aging hallmarks into traditional aesthetic practices.
Collapse
|
49
|
Zhang Y, Zhang C, Zhang C, Bin X, Jiang J, Huang C. Leukocyte telomere length mediates the association between cadmium exposure and cognitive function in US older adults. J Psychiatr Res 2024; 169:166-173. [PMID: 38039691 DOI: 10.1016/j.jpsychires.2023.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Long-term exposure to cadmium-polluted environments may lead to shortened leukocyte telomere length and cognitive decline. This study aims to investigate (1) the associations among blood cadmium levels, leukocyte telomere length, and cognitive function, and (2) the mediating role of leukocyte telomere length between blood cadmium levels and cognitive function among older adults in the United States. METHODS Using data from the National Health and Nutrition Examination Survey (NHANES) 1999-2002. Cadmium exposure level was assessed by measuring cadmium levels in blood samples. Leukocyte telomere length was measured by quantitative polymerase chain reaction, and cognitive function was measured by the digit symbol substitution test (DSST). RESULTS A total of 2185 older adults aged over 60 were included in this study, comprising 1109 (49.65%) males. Elevated blood cadmium levels were significantly associated with the risk of a decline in cognitive function (β = - 2.842, p = 0.018). Shorter leukocyte telomere lengths were significantly associated with a higher risk of a decline in cognitive function (β = 4.144, p = 0.020). The total indirect effect on the blood cadmium level and cognitive function via leukocyte telomere length was - 0.218 (p = 0.012). The mediation effect was estimated to be 0.218/2.084 × 100% = 10.46%. CONCLUSION The findings suggest that cadmium exposure may increase the risk of cognitive impairment by causing shortened leukocyte telomere length.
Collapse
Affiliation(s)
- Yongpeng Zhang
- Department of General Practice, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Caiyun Zhang
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Chunlei Zhang
- Department of General Practice, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xueqiong Bin
- Department of General Practice, First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jinghan Jiang
- Department of General Practice, First Affiliated Hospital of Wannan Medical College, Wuhu, China.
| | - Changbao Huang
- Emergency Medicine, First Affiliated Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
50
|
Huang X, Yi C, Ji Q, Meng Y, Zhang A, Yang C, Zhou L, Zhan Y. Association between cytomegalovirus infection and cancer‑related mortality in the US adults. Cancer Epidemiol 2023; 87:102487. [PMID: 37979224 DOI: 10.1016/j.canep.2023.102487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/20/2023]
Abstract
PURPOSE In a nationwide cohort of US adults, an exploration of the association between cytomegalovirus (CMV) infection and cancer‑related mortality was conducted. MATERIALS AND METHODS We acquired data from the National Health and Nutrition Examination Survey III (1988-1994), including 11,138 individuals who were aged 18-90 years at enrollment and underwent CMV serology assessments. CMV infection was determined by CMV antibody testing. Cancer‑related mortality status was ascertained until December 2019 utilizing the National Death Index linkage data and determined by neoplasms. The Cox proportional hazard model was applied to estimate the potential association between CMV infection and the risk of cancer-related mortality. RESULTS During a median follow-up of 26.1 years, 1514 cancer‑related deaths were identified in the study cohort. After adjusting for age, sex, and ethnicity, CMV infection was associated with a higher hazard of cancer‑related mortality (hazard ratio [HR]: 1.39, 95 % CI: 1.13, 1.70). Further adjustments for body mass index, family income, and smoking status slightly attenuated the magnitude of the association (HR: 1.24, 95 % CI: 1.00, 1.53). However, no significant interaction was observed among gender by subgroup analysis. CONCLUSIONS CMV infection might be an independent risk factor for cancer‑related mortality among US adults. Future studies could focus on the mechanisms through which CMV infection influences mortality induced by neoplasms and develop targeted interventions to reduce the risk.
Collapse
Affiliation(s)
- Xiaoping Huang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Chao Yi
- Guangming Center for Disease Control and Prevention, Shenzhen, China
| | - Qianqian Ji
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yaxian Meng
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Aijie Zhang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Chongguang Yang
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Liqiong Zhou
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China
| | - Yiqiang Zhan
- Department of Epidemiology, School of Public Health (Shenzhen), Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|