1
|
Arabi S, Fadaee M, Kazemi T, Rahmani M. Advancements in colorectal cancer immunotherapy: from CAR-T cells to exosome-based therapies. J Drug Target 2025:1-12. [PMID: 39754507 DOI: 10.1080/1061186x.2024.2449482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Colorectal cancer (CRC) continues to be a major worldwide health issue, with elevated death rates linked to late stages of the illness. Immunotherapy has made significant progress in developing effective techniques to improve the immune system's capacity to identify and eradicate cancerous cells. This study examines the most recent advancements in CAR-T cell treatment and exosome-based immunotherapy for CRC. CAR-T cell therapy, although effective in treating blood cancers, encounters obstacles when used against solid tumours such as CRC. These obstacles include the presence of an immunosuppressive tumour microenvironment and a scarcity of tumour-specific antigens. Nevertheless, novel strategies like dual-receptor CAR-T cells and combination therapy involving cytokines have demonstrated promise in surmounting these obstacles. Exosome-based immunotherapy is a promising approach for targeted delivery of therapeutic drugs to tumour cells, with high specificity and minimal off-target effects. However, there are still obstacles to overcome in the field, such as resistance to treatment, adverse effects associated with the immune system, and the necessity for more individualised methods. The current research is focused on enhancing these therapies, enhancing the results for patients, and ultimately incorporating these innovative immunotherapeutic approaches into the standard treatment protocols for CRC.
Collapse
Affiliation(s)
- Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Manouchehr Fadaee
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammadreza Rahmani
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
2
|
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, Duttaroy AK, Pathak S. Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective. Int J Colorectal Dis 2024; 40:1. [PMID: 39731596 DOI: 10.1007/s00384-024-04790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2024] [Indexed: 12/30/2024]
Abstract
PURPOSE Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Metastatic colorectal cancer (mCRC) continues to present significant challenges, particularly in patients with proficient mismatch repair/microsatellite stable (pMMR/MSS) tumors. This narrative review aims to provide recent developments in immunotherapy for CRC treatment, focusing on its efficacy and challenges. METHODS This review discussed the various immunotherapeutic strategies for CRC treatment, including immune checkpoint inhibitors (ICIs) targeting PD-1 and PD-L1, combination therapies involving ICIs with other modalities, chimeric antigen receptor T-cell (CAR-T) cell therapy, and cancer vaccines. The role of the tumor microenvironment and immune evasion mechanisms was also explored to understand their impact on the effectiveness of these therapies. RESULTS This review provides a comprehensive update of recent advancements in immunotherapy for CRC, highlighting the potential of various immunotherapeutic approaches, including immune checkpoint inhibitors, combination therapies, CAR-T therapy, and vaccination strategies. The results of checkpoint inhibitors, particularly in patients with MSI-H/dMMR tumors, which have significant improvements in survival rates have been observed. Furthermore, this review also addresses the challenges faced in treating pMMR/MSS CRC, which remains resistant to immunotherapy. CONCLUSION Immunotherapy plays a significant role in the treatment of CRC, particularly in patients with MSI-H/dMMR tumors. However, many challenges remain, especially in treating pMMR/MSS CRC. This review discussed the need for further research into combination therapies, biomarker development, CAR-T cell therapy, and a deeper understanding of immune evasion mechanisms for CRC treatment.
Collapse
Affiliation(s)
- Vaishak Kaviyarasan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Alakesh Das
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Dikshita Deka
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Biki Saha
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India
| | - Antara Banerjee
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Surajit Pathak
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, Tamil Nadu, 603103, India.
| |
Collapse
|
3
|
Zheng C, Jiang L, Gong X, Zhang W, Pu R, Zhang Y, Zhao M, Jiang C, Wang H, Zhang P, Li Y. Cabozantinib-encapsulated and maytansine-conjugated high-density lipoprotein for immunotherapy in colorectal cancer. J Control Release 2024; 376:138-148. [PMID: 39362608 DOI: 10.1016/j.jconrel.2024.09.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Advanced colorectal cancer (CRC) responds poorly to current adjuvant therapies, partially due to its immunosuppressive intestinal microenvironment. We found that myeloid-derived suppressor cells (MDSCs) were enriched in orthotopic tumors due to treatment-induced succinate release, which activated tuft cells and upregulated interleukin 25 (IL-25) and interleukin 13 (IL-13). We engineered a cabozantinib (Cabo)-encapsulated and maytansine (DM1)-conjugated synthetic high-density lipoprotein (ECCD-sHDL) to modulate the tumor microenvironment. DM1 induced immunogenic cell death and promoted the maturation of dendritic cells. Meanwhile, Cabo alleviated DM1-induced succinate release, preventing tuft cell activation, downregulating IL-25 and IL-13 secretion, and reducing intratumoral MDSC infiltration. ECCD-sHDL increased the densities of active cytotoxic T lymphocytes (CTLs) and M1 macrophages in the tumors, effectively inhibiting tumor growth and metastasis, thereby prolonging survival in murine CRC models. Our study sheds light on the mechanism of treatment-induced immunosuppression in orthotopic CRC and demonstrates that this combinatorial therapy could be an effective treatment for CRC.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.; State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Linyang Jiang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Wen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Rong Pu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Mengmeng Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China..
| | - Hao Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, China.; National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, China.
| | - Pengcheng Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Nanjing University of Chinese Medicine, Nanjing 210023, China; Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China.
| |
Collapse
|
4
|
Ouyang Z, Chen P, Zhang M, Wu S, Qin Z, Zhou L. Arginine on immune function and post-operative obstructions in colorectal cancer patients: a meta-analysis. BMC Cancer 2024; 24:1089. [PMID: 39223466 PMCID: PMC11370068 DOI: 10.1186/s12885-024-12858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The aim of this study is to investigate the impact of arginine on immune function and postoperative complications in colorectal cancer (CRC) patients. METHODS We conducted a comprehensive search to identify eligible RCTs in various databases, such as PubMed, Cochrane Library, EMBASE, Web of Science, MEDLINE, China National Knowledge Infrastructure (CNKI), Wanfang, VIP Medicine Information System (VIP), and Chinese Biomedical Database (CBM). This study aimed to examine IgA, IgG, and IgM levels as well as CD4+ and CD8+ counts as well as the CD4+/CD8+ ratio. Anastomotic leaking, length of stay (LOS), and surgical site infection (SSI) were included as secondary outcomes. Stata (StataCorp, version 14.0) was utilized for data analysis. To ensure the results were reliable, we used meta-regression, sensitivity analysis, and publication bias analysis. RESULTS A total of 24 publications (including 1883 patients) out of 681 that were retrieved fulfilled the inclusion criteria. The arginine group showed notable improvements in humoral immunity, with gains in IgA (SMD=0.45, 95% CI: 0.30-0.60), IgG (SMD=0.80, 95% CI: 0.64-0.96), and IgM (SMD=0.66, 95% CI: 0.39-0.93). With regards to cellular immunity, the arginine group exhibited a substantial increase in the CD4+ T cell count (SMD = 1.03, 95% CI: 0.67-1.38) compared to the control group. However, the CD4+/CD8+ ratio decreased significantly (SMD=1.37, 95% CI: 0.88-1.86) in the same arginine group, indicating a change in the balance between these two cell types. Additionally, the CD8+ T cell count showed a notable decrease (SMD=-0.70, 95% CI: -1.09 to -0.32) in the arginine group when compared to the control group. Anastomotic leakage was also considerably lower in the arginine group (SMD=-0.05, 95% CI: -0.08 to -0.02), the rate of SSIs was lower (RR = -0.02, 95% CI: -0.05-0), and the length of time patients spent in the hospital was shorter (SMD=-0.15, 95% CI: -0.38 to -0.08). CONCLUSIONS After radiation treatment for CRC, arginine improves immune function and decreases the risk of infection problems. TRIAL REGISTRATION Registration with PROSPERO for this meta-analysis is number CRD42024520509.
Collapse
Affiliation(s)
- Zan Ouyang
- Colorectal and Anal Surgery, Deyang People's Hospital, No. 173, North Taishan Road, Jingyang District, Deyang, 618000, China
| | - Ping Chen
- Colorectal and Anal Surgery, Jiangbei Hospital of Traditional Chinese Medicine, Chongqing, 400020, China
| | - Min Zhang
- Colorectal and Anal Surgery, Deyang People's Hospital, No. 173, North Taishan Road, Jingyang District, Deyang, 618000, China
| | - Sijia Wu
- Clinical Laboratory, Jinjiang Maternity and Child Health Hospital, Chengdu, 610011, China
| | - Zongying Qin
- Colorectal and Anal Surgery, Zizhong People's Hospital, Zizhong, 641200, China.
| | - Li Zhou
- Colorectal and Anal Surgery, Deyang People's Hospital, No. 173, North Taishan Road, Jingyang District, Deyang, 618000, China.
| |
Collapse
|
5
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
6
|
Xu JZ, Wan TQ, Su JS, Song JM. Exploration of the ubiquitination-related molecular classification and signature to predict the survival and immune microenvironment in colon cancer. Front Genet 2024; 15:1292249. [PMID: 39268080 PMCID: PMC11390591 DOI: 10.3389/fgene.2024.1292249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Background Ubiquitination, a major post-translational modification, significantly impacts tumorigenesis, progression, and prognosis. This study aims to classify colon cancer at the molecular level and create a reliable signature using ubiquitination-related genes (URGs) to assess the immune microenvironment and prognosis. Methods We employed non-negative matrix factorization to subtype colon cancer based on ubiquitination-related gene (URG) expression patterns. Quantitative scores for 28 immune cell infiltrates and the tumor microenvironment were computed using single-sample gene set enrichment analysis (ssGSEA) and the Estimate algorithm. Subtype feature genes were selected through Lasso logistic regression and SVM-RFE algorithm. The ubiquitination-related signature was constructed using univariate Cox, Lasso, and stepwise regression methods to categorize patients into high and low-risk groups. Validation included log-rank tests, receiver operating characteristic (ROC) analysis, decision curve analysis (DCA), and external dataset validation. Immune therapy response was compared using Tumor Immune Dysfunction and Exclusion (TIDE), Immunophenoscore (IPS), and submap analyses. Clinical variables and risk scores were integrated into an enhanced nomogram. The early diagnostic value of four URGs was confirmed via quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry. The cell proliferation was assessed through colony formation, EdU staining, and xenograft tumorigenesis assays. Results Prognostic ubiquitination-related genes (URGs) stratified patients into subtypes, revealing differences in survival, immune cell infiltration, and pathological staging. A signature of 6 URGs (ARHGAP4, MID2, SIAH2, TRIM45, UBE2D2, WDR72) was identified from 57 subtype-related genes. The high-risk group exhibited characteristics indicative of enhanced epithelial-mesenchymal transition, immune escape, immunosuppressive myeloid-derived suppressor cells, regulatory T cell infiltration, and lower immunogenicity. In contrast, the low-risk group demonstrated the opposite trend but showed a better response to CTLA4 checkpoint inhibitors. The predictive performance of the nomogram significantly improved with the integration of risk score, stage, and age. ARHGAP4 and SIAH2 exhibit promising early diagnostic capabilities. Additionally, WDR72 knockdown significantly inhibited CRC cell proliferation both in vitro and in vivo. Conclusion Our developed ubiquitination-related signature and genes serve as promising biomarkers for colon cancer prognosis, immune microenvironment, and diagnosis.
Collapse
Affiliation(s)
- Ji-Zhong Xu
- Department of Colorectal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Qi Wan
- Department of Colorectal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin-Song Su
- Department of Colorectal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun-Min Song
- Department of Colorectal Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Bi S, Zhu J, Huang L, Feng W, Peng L, Leng L, Wang Y, Shan P, Kong W, Zhu S. Comprehensive Analysis of the Function and Prognostic Value of TAS2Rs Family-Related Genes in Colon Cancer. Int J Mol Sci 2024; 25:6849. [PMID: 38999959 PMCID: PMC11241446 DOI: 10.3390/ijms25136849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/09/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
In the realm of colon carcinoma, significant genetic and epigenetic diversity is observed, underscoring the necessity for tailored prognostic features that can guide personalized therapeutic strategies. In this study, we explored the association between the type 2 bitter taste receptor (TAS2Rs) family-related genes and colon cancer using RNA-sequencing and clinical datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO). Our preliminary analysis identified seven TAS2Rs genes associated with survival using univariate Cox regression analysis, all of which were observed to be overexpressed in colon cancer. Subsequently, based on these seven TAS2Rs prognostic genes, two colon cancer molecular subtypes (Cluster A and Cluster B) were defined. These subtypes exhibited distinct prognostic and immune characteristics, with Cluster A characterized by low immune cell infiltration and less favorable outcomes, while Cluster B was associated with high immune cell infiltration and better prognosis. Finally, we developed a robust scoring system using a gradient boosting machine (GBM) approach, integrated with the gene-pairing method, to predict the prognosis of colon cancer patients. This machine learning model could improve our predictive accuracy for colon cancer outcomes, underscoring its value in the precision oncology framework.
Collapse
Affiliation(s)
- Suzhen Bi
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Jie Zhu
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland;
| | - Liting Huang
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Wanting Feng
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Lulu Peng
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Liangqi Leng
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Yin Wang
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Peipei Shan
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| | - Weikaixin Kong
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, 00014 Helsinki, Finland;
| | - Sujie Zhu
- Institute of Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China; (S.B.); (L.H.); (W.F.); (L.P.); (L.L.); (Y.W.); (P.S.)
| |
Collapse
|
8
|
Jeri-Yabar A, Vittini-Hernandez L, Aller-Rojas R, Arias-Reyes F, Lozada Zingoni C. From No Disease to Stage IV Colon Cancer in Four Months: A Case Report. Cureus 2024; 16:e58134. [PMID: 38741884 PMCID: PMC11088957 DOI: 10.7759/cureus.58134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Colorectal cancer remains one of the most common cancers in the population. Meanwhile, steroids or other immunosuppressive drugs are usually given in rheumatological diseases as a treatment for flare-ups. Herein, we present the case of a 61-year-old female diagnosed with metastatic colorectal cancer merely four months following the commencement of glucocorticoid therapy for a recently diagnosed rheumatologic condition, despite a clear colorectal cancer screening colonoscopy conducted four months prior. The case report discusses the possible impact of corticosteroids on the fast disease progression of colorectal cancer and raises awareness regarding this potential risk.
Collapse
Affiliation(s)
- Antoine Jeri-Yabar
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai Beth Israel, New York, USA
| | | | | | | | | |
Collapse
|
9
|
Park JM, Koo HY, Lee JR, Lee H, Lee JY. COVID-19 Mortality and Severity in Cancer Patients and Cancer Survivors. J Korean Med Sci 2024; 39:e6. [PMID: 38225782 PMCID: PMC10789529 DOI: 10.3346/jkms.2024.39.e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND We aimed to investigate mortality, severity, and risk of hospitalization in coronavirus disease 2019 (COVID-19) patients with cancer. METHODS Data of all patients aged 40-79 years from the Korean Disease Control and Prevention Agency-COVID19-National Health Insurance Service who were diagnosed with COVID-19 between January 1, 2020 and March 31, 2022, in Korea were included. After 1:1 propensity score matching, 397,050 patients with cancer and 397,050 patients without cancer were enrolled in the main analysis. A cancer survivor was defined as a patient who had survived 5 or more years since the diagnosis of cancer. Multiple logistic regression analysis was performed to compare the risk of COVID-19 according to the diagnosis of cancer and time since diagnosis. RESULTS Cancer, old age, male sex, incomplete vaccination against COVID-19, lower economic status, and a higher Charlson comorbidity index were associated with an increased risk of hospitalization, hospitalization with severe state, and death. Compared to patients without cancer, the adjusted odds ratios (ORs) and 95% confidence intervals (CIs) for hospitalization, hospitalization with severe state, and death in patients with cancer were 1.09 (1.08-1.11), 1.17 (1.11-1.24), and 1.94 (1.84-2.05), respectively. Compared to patients without cancer, the ORs (95% CIs) for hospitalization in cancer survivors, patients with cancer diagnosed 2-5 years, 1-2 years, and < 1 year ago were 0.96 (0.94-0.98), 1.10 (1.07-1.13), 1.30 (1.25-1.34), and 1.82 (1.77-1.87), respectively; the ORs (95% CIs) for hospitalization for severe disease among these patients were 0.90 (0.85-0.97), 1.22 (1.12-1.32), 1.60 (1.43-1.79), and 2.29 (2.09-2.50), respectively. CONCLUSION The risks of death, severe state, and hospitalization due to COVID-19 were higher in patients with cancer than in those without; the more recent the diagnosis, the higher the aforementioned risks. Cancer survivors had a lower risk of hospitalization and hospitalization with severe disease than those without cancer.
Collapse
Affiliation(s)
- Jae-Min Park
- Department of Family Medicine, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Korea
- Department of Medicine, Graduate School of Medicine, Yonsei University, Seoul, Korea
| | - Hye Yeon Koo
- Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Ryun Lee
- Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyejin Lee
- Department of Family Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Family Medicine, Seoul National University College of Medicine, Seoul, Korea.
| | - Jin Yong Lee
- Department of Health Policy and Management, Seoul National University College of Medicine, Seoul, Korea
- Public Healthcare Center, Seoul National University Hospital, Seoul, Korea
- Institute of Health Policy and Management, Seoul National University Medical Research Center, Seoul, Korea.
| |
Collapse
|
10
|
Wangmo D, Gates TJ, Zhao X, Sun R, Subramanian S. Centrosomal Protein 55 (CEP55) Drives Immune Exclusion and Resistance to Immune Checkpoint Inhibitors in Colorectal Cancer. Vaccines (Basel) 2024; 12:63. [PMID: 38250876 PMCID: PMC10820828 DOI: 10.3390/vaccines12010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
Colorectal cancer (CRC) currently ranks as the third most common cancer in the United States, and its incidence is on the rise, especially among younger individuals. Despite the remarkable success of immune checkpoint inhibitors (ICIs) in various cancers, most CRC patients fail to respond due to intrinsic resistance mechanisms. While microsatellite instability-high phenotypes serve as a reliable positive predictive biomarker for ICI treatment, the majority of CRC patients with microsatellite-stable (MSS) tumors remain ineligible for this therapeutic approach. In this study, we investigated the role of centrosomal protein 55 (CEP55) in shaping the tumor immune microenvironment in CRC. CEP55 is overexpressed in multiple cancer types and was shown to promote tumorigenesis by upregulating the PI3K/AKT pathway. Our data revealed that elevated CEP55 expression in CRC was associated with reduced T cell infiltration, contributing to immune exclusion. As CRC tumors progressed, CEP55 expression increased alongside sequential mutations in crucial driver genes (APC, KRAS, TP53, and SMAD4), indicating its involvement in tumor progression. CEP55 knockout significantly impaired tumor growth in vitro and in vivo, suggesting that CEP55 plays a crucial role in tumorigenesis. Furthermore, the CEP55 knockout increased CD8+ T cell infiltration and granzyme B production, indicating improved anti-tumor immunity. Additionally, we observed reduced regulatory T cell infiltration in CEP55 knockout tumors, suggesting diminished immune suppression. Most significantly, CEP55 knockout tumors demonstrated enhanced responsiveness to immune checkpoint inhibition in a clinically relevant orthotopic CRC model. Treatment with anti-PD1 significantly reduced tumor growth in CEP55 knockout tumors compared to control tumors, suggesting that inhibiting CEP55 could improve the efficacy of ICIs. Collectively, our study underscores the crucial role of CEP55 in driving immune exclusion and resistance to ICIs in CRC. Targeting CEP55 emerges as a promising therapeutic strategy to sensitize CRC to immune checkpoint inhibition, thereby improving survival outcomes for CRC patients.
Collapse
Affiliation(s)
- Dechen Wangmo
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.W.); (T.J.G.); (X.Z.)
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Travis J. Gates
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.W.); (T.J.G.); (X.Z.)
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Xianda Zhao
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.W.); (T.J.G.); (X.Z.)
| | - Ruping Sun
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Subbaya Subramanian
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 55455, USA; (D.W.); (T.J.G.); (X.Z.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Swierczynski M, Kasprzak Z, Makaro A, Salaga M. Regulators of G-Protein Signaling (RGS) in Sporadic and Colitis-Associated Colorectal Cancer. Int J Mol Sci 2024; 25:577. [PMID: 38203748 PMCID: PMC10778579 DOI: 10.3390/ijms25010577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common neoplasms worldwide. Among the risk factors of CRC, inflammatory bowel disease (IBD) is one of the most important ones leading to the development of colitis-associated CRC (CAC). G-protein coupled receptors (GPCR) are transmembrane receptors that orchestrate a multitude of signaling cascades in response to external stimuli. Because of their functionality, they are promising targets in research on new strategies for CRC diagnostics and treatment. Recently, regulators of G-proteins (RGS) have been attracting attention in the field of oncology. Typically, they serve as negative regulators of GPCR responses to both physiological stimuli and medications. RGS activity can lead to both beneficial and harmful effects depending on the nature of the stimulus. However, the atypical RGS-AXIN uses its RGS domain to antagonize key signaling pathways in CRC development through the stabilization of the β-catenin destruction complex. Since AXIN does not limit the efficiency of medications, it seems to be an even more promising pharmacological target in CRC treatment. In this review, we discuss the current state of knowledge on RGS significance in sporadic CRC and CAC with particular emphasis on the regulation of GPCR involved in IBD-related inflammation comprising opioid, cannabinoid and serotonin receptors.
Collapse
Affiliation(s)
| | | | | | - Maciej Salaga
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92-215 Lodz, Poland; (M.S.); (Z.K.); (A.M.)
| |
Collapse
|
12
|
Baban B, Eklund D, Tuerxun K, Alshamari M, Laviano A, Ljungqvist O, Särndahl E. Altered insulin sensitivity and immune function in patients with colorectal cancer. Clin Nutr ESPEN 2023; 58:193-200. [PMID: 38057005 DOI: 10.1016/j.clnesp.2023.09.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND & AIMS Insulin resistance and chronic inflammation have been reported in patients with cancer. However, many of the underlying mechanisms and associations are yet to be unveiled. We examined both the level of insulin sensitivity and markers of inflammation in patients with colorectal cancer for comparison to controls. METHODS Clinical exploratory study of patients with colorectal cancer (n = 20) and matched controls (n = 10). Insulin sensitivity was quantified using the hyperinsulinemic normoglycemic clamp and blood samples were taken for quantification of several key, both intra- and extracellular, inflammatory markers. We analysed the differences in these parameters between the two groups. RESULTS Patients exhibited both insulin resistance (M-value, patients median (Mdn) 4.57 interquartile range (IQR) 3.49-5.75; controls Mdn 5.79 (IQR 5.20-6.81), p = 0.049), as well as increased plasma levels of the pro-inflammatory cytokines IL-1β (patients Mdn 0.48 (IQR 0.33-0.58); controls Mdn 0.36 (IQR 0.29-0.42), p = 0.02) and IL-6 (patients Mdn 3.21 (IQR 2.31-4.93); controls Mdn 2.16 (IQR 1.50-2.65), p = 0.02). The latter is present despite an almost two to three fold decrease (p < 0.01) in caspase-1 activity, a facilitating enzyme of IL-1β production, within circulating immune cells. CONCLUSION Patients with colorectal cancer displayed insulin resistance and higher levels of plasma IL-1β and IL-6, in comparison to matched healthy controls. The finding of a seemingly disconnect between inflammasome (caspase-1) activity and plasma levels of key pro-inflammatory cytokines in cancer patients may suggest that, in parallel to dysregulated immune cells, tumour-driven inflammatory pathways also are in effect.
Collapse
Affiliation(s)
- Bayar Baban
- Department of Surgery, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden.
| | - Daniel Eklund
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Kedeye Tuerxun
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Muhammed Alshamari
- School of Medical Sciences, Department of Radiology, Örebro University & Örebro University Hospital, SE-701 85 Örebro, Sweden
| | - Alessandro Laviano
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Olle Ljungqvist
- Department of Surgery, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| | - Eva Särndahl
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden; Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, SE-701 82 Örebro, Sweden
| |
Collapse
|
13
|
Gautier C, Huynh MA, Peron C, Pol J. [Bacteria engineered to produce L-arginine potentiate cancer immunotherapy]. Med Sci (Paris) 2023; 39:793-795. [PMID: 37943143 DOI: 10.1051/medsci/2023109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Affiliation(s)
- Candice Gautier
- Master 2 Immunologie intégrative et systémique (I2S), parcours Immunologie, mention Biologie moléculaire et cellulaire (BMC), Sorbonne université, Paris, France
| | - Minh-Anh Huynh
- Master 2 Immunologie intégrative et systémique (I2S), parcours Immunologie, mention Biologie moléculaire et cellulaire (BMC), Sorbonne université, Paris, France
| | - Camille Peron
- Master 2 Immunologie translationnelle et biothérapies (ITB), parcours immunologie, mention Biologie moléculaire et cellulaire (BMC), Sorbonne Université, Paris, France
| | - Jonathan Pol
- Inserm U1138, Sorbonne Université, Université de Paris, Paris, France
| |
Collapse
|
14
|
Khorramdelazad H, Bagherzadeh K, Rahimi A, Safari E, Hassanshahi G, Khoshmirsafa M, Karimi M, Mohammadi M, Darehkordi A, Falak R. Antitumor activities of a novel fluorinated small molecule (A1) in CT26 colorectal cancer cells: molecular docking and in vitro studies. J Biomol Struct Dyn 2023; 42:10175-10188. [PMID: 37705281 DOI: 10.1080/07391102.2023.2256406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
Chemotherapeutic treatment of colorectal cancer (CRC) has not been satisfactory until now; therefore, the discovery of more efficient medications is of great significance. Based on available knowledge, the CXCL12/CXCR4 axis plays a significant role in tumorigenesis, and inhibition of CXCR4 chemokine receptor with AMD3100 is one of the most known therapeutic modalities in cancer therapy. Herein, N, N''-thiocarbonylbis(N'-(3,4-dimethylphenyl)-2,2,2-trifluoroacetimidamide) (A1) was synthesized as a potent CXCR4 inhibitor. A1 inhibitory activity was first evaluated employing Molecular Docking simulations in comparison with the most potent CXCR4 inhibitors. Then, the antiproliferative and cytotoxic effect of A1 on CT26 mouse CRC cells was investigated by MTT assay technique and compared with those of the control molecule, AMD3100. The impact of the target compounds IC50 on apoptosis, cell cycle arrest, and CXCR4 expression was determined by flow cytometry technique. Our finding demonstrated that A1 induces a cytotoxic effect on CT26 cells at 60 μg/mL concentration within 72 h and provokes cell apoptosis and G2/M cell cycle arrest in comparison with the untreated cells, while AMD3100 did not show a cytotoxic effect up to 800 μg/mL dose. The obtained results show that A1 (at a concentration of 40 μg/mL) significantly reduced the proliferation of CT26 cells treated with 100 ng/mL of CXCL12 in 72 h. Moreover, treatment with 60 μg/mL of A1 and 100 ng/mL of CXCL12 for 72 h significantly decreased the number of cells expressing the CXCR4 receptor compared to the control group treated with CXCL12. Eventually, the obtained results indicate that A1, as a dual-function fluorinated small molecule, may benefit CRC treatment through inhibition of CXCR4 and exert a cytotoxic effect on tumor cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kowsar Bagherzadeh
- Eye Research Center, the Five Senses Health Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Rahimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elaheh Safari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Hassanshahi
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Majid Khoshmirsafa
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Karimi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Mohammadi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Ali Darehkordi
- Department of Chemistry, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
El Dirani M, Nagaratnam JM, Amalathasan T, Patel C, Kholoki M, Kholoki S. Findings of Epstein-Barr Virus Large B-Cell Lymphoma in a Patient With a History of Rectal Adenocarcinoma: A Case Report. Cureus 2023; 15:e40680. [PMID: 37485177 PMCID: PMC10357892 DOI: 10.7759/cureus.40680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Colorectal adenocarcinoma is the neoplastic proliferation of glandular tissue in the distal gastrointestinal system and can be managed using surgical resection, novel chemotherapeutic regimens, and radiation therapy. Epstein-Barr virus (EBV) is a common double-stranded DNA virus that has the potential to transform B-cells into lymphoproliferative disorders given the presence of particular conditions such as immunocompromised and chronic inflammatory states. Colorectal cancer is one of the most common malignancies worldwide; however, the additional finding of EBV-positive lymphoma in a patient with a history of colorectal malignancy is uncommon, and this phenomenon has not been thoroughly explored. This report investigates the association between rectal adenocarcinoma and EBV-positive large B-cell lymphoma in an 87-year-old Caucasian male residing in the United States and explores possible causes for this occurrence.
Collapse
Affiliation(s)
- Mirna El Dirani
- Internal Medicine, Saint James School of Medicine, Chicago, USA
| | | | | | - Chandni Patel
- General Surgery, Saint George's University School of Medicine, Chicago, USA
| | | | - Samer Kholoki
- Internal Medicine, La Grange Memorial Hospital, Chicago, USA
| |
Collapse
|
16
|
Yari A, Bamdad T, Hosseini SY. Comparison of Three Different Methods of Transfection for the Production of Recombinant Adenovirus Expressing Human Carcinoembryonic Antigen Gene. ARCHIVES OF RAZI INSTITUTE 2023; 78:1057-1064. [PMID: 38028844 PMCID: PMC10657935 DOI: 10.22092/ari.2021.354824.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/28/2021] [Indexed: 12/01/2023]
Abstract
Adenoviral vectors (AdVs) are widely used as a gene delivery vehicle and vaccine design due to their genetic stability, transfer capacity of large genes, production at high titers, and remarkable efficacy of transduction. One of the most important applications of AdVs is in cancer immunotherapy. Tumor-associated antigens are overexpressed in cancer cells; however, they cannot induce immune responses sufficiently. Therefore, the immune system must be stimulated against these antigens to kill the cancer cells. This study described the construction steps of a recombinant AdV expressing human carcinoembryonic antigen (CEA) gene. Furthermore, in order to achieve a high titer of the virus, an efficient transfection was required. Three various transfection reagents were compared to achieve the best method of transfection. Carcinoembryonic antigen was cloned into the pAdV and transfected into the A293 cells using three different reagents, including polyethylenimine (PEI), calcium phosphate, and DMRIE-C. The PEI had the highest transfection efficiency, which was selected for the transfection of the recombinant plasmid. It has low toxicity for cells and is suitable for large-scale transfection. The virus produced in this study can be applied as a vaccine in cancer immunotherapy for stimulating the immune system against CEA-expressing tumors.
Collapse
Affiliation(s)
- A Yari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - T Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Y Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Dugerdil A, Semenzato L, Weill A, Zureik M, Flahault A. Severe SARS-CoV-2 infection as a marker of undiagnosed cancer: a population-based study. Sci Rep 2023; 13:8729. [PMID: 37253848 PMCID: PMC10227779 DOI: 10.1038/s41598-023-36013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/27/2023] [Indexed: 06/01/2023] Open
Abstract
No study has yet investigated if a severe SARS-CoV-2 infection represents a marker of an undiagnosed cancer. This population-based study, using the SNDS database, identified from 02/15/2020 to 08/31/2021, 41,302 individuals hospitalized in intensive care unit due to SARS-CoV-2 (ICU-gr) and 713,670 control individuals not hospitalized for SARS-CoV-2 (C-gr). Individuals were matched according to year of birth, sex and French department. The cancer incidence was compared in the two groups during the follow-up period (index date-12/31/2021), using Cox proportional hazards models adjusted on matching variables, socioeconomic characteristics and comorbidities. In the ICU-gr, 2.2% (n = 897) was diagnosed with a cancer in the following months, compared to 1.5% (n = 10,944) in the C-gr. The ICU-gr had a 1.31 higher risk of being diagnosed with a cancer following hospital discharge compared to the C-gr (aHR 1.31, 95% CI 1.22-1.41). A global similar trend was found when competing risk of death was taken into account (aHR 1.25, 95% CI 1.16-1.34). A significant higher risk was found concerning renal (aHR 3.16, 95% CI 2.33-4.27), hematological (aHR 2.54, 95% CI 2.07-3.12), colon (aHR 1.72, 95% CI 1.34-2.21), and lung (aHR 1.70, 95% CI 1.39-2.08) cancers. This suggests that a severe SARS-CoV-2 infection may represent a marker of an undiagnosed cancer.
Collapse
Affiliation(s)
- Adeline Dugerdil
- Institute of Global Health, Faculty of Medicine, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland.
| | - Laura Semenzato
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products from the French National Agency for the Safety of Medicines and Health Products and the French National Health Insurance, 93285, Saint-Denis Cedex, France
| | - Alain Weill
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products from the French National Agency for the Safety of Medicines and Health Products and the French National Health Insurance, 93285, Saint-Denis Cedex, France
| | - Mahmoud Zureik
- EPI-PHARE Scientific Interest Group in Epidemiology of Health Products from the French National Agency for the Safety of Medicines and Health Products and the French National Health Insurance, 93285, Saint-Denis Cedex, France
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, University of Geneva, Campus Biotech, Chemin des Mines 9, 1202, Geneva, Switzerland
| |
Collapse
|
18
|
Kouidhi S, Zidi O, Belkhiria Z, Rais H, Ayadi A, Ben Ayed F, Mosbah A, Cherif A, El Gaaied ABA. Gut microbiota, an emergent target to shape the efficiency of cancer therapy. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:240-265. [PMID: 37205307 PMCID: PMC10185446 DOI: 10.37349/etat.2023.00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/04/2023] [Indexed: 05/21/2023] Open
Abstract
It is now well-acknowledged that microbiota has a profound influence on both human health and illness. The gut microbiota has recently come to light as a crucial element that influences cancer through a variety of mechanisms. The connections between the microbiome and cancer therapy are further highlighted by a number of preclinical and clinical evidence, suggesting that these complicated interactions may vary by cancer type, treatment, or even by tumor stage. The paradoxical relationship between gut microbiota and cancer therapies is that in some cancers, the gut microbiota may be necessary to maintain therapeutic efficacy, whereas, in other cancers, gut microbiota depletion significantly increases efficacy. Actually, mounting research has shown that the gut microbiota plays a crucial role in regulating the host immune response and boosting the efficacy of anticancer medications like chemotherapy and immunotherapy. Therefore, gut microbiota modulation, which aims to restore gut microbial balance, is a viable technique for cancer prevention and therapy given the expanding understanding of how the gut microbiome regulates treatment response and contributes to carcinogenesis. This review will provide an outline of the gut microbiota's role in health and disease, along with a summary of the most recent research on how it may influence the effectiveness of various anticancer medicines and affect the growth of cancer. This study will next cover the newly developed microbiota-targeting strategies including prebiotics, probiotics, and fecal microbiota transplantation (FMT) to enhance anticancer therapy effectiveness, given its significance.
Collapse
Affiliation(s)
- Soumaya Kouidhi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Oumaima Zidi
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
- Department of Biologu, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| | | | - Henda Rais
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
- Service d’Oncologie Médicale, Hôpital Salah-Azaïz, Tunis 1006, Tunisia
| | - Aida Ayadi
- Department of Pathology, Abderrahman Mami Hospital, University of Tunis El Manar, Ariana 2080, Tunisia
| | - Farhat Ben Ayed
- Association Tunisienne de Lutte contre le Cancer (ATCC), Tunis, Tunisia
| | - Amor Mosbah
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Biotechnopole Sidi Thabet, University Manouba, ISBST, Ariana 2020, Tunisia
| | - Amel Ben Ammar El Gaaied
- Laboratory of Genetics, Immunology and Human Pathology, Department of Biology, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
19
|
Zhang N, Li J, Yu J, Wan Y, Zhang C, Zhang H, Cao Y. Construction of an IL12 and CXCL11 armed oncolytic herpes simplex virus using the CRISPR/Cas9 system for colon cancer treatment. Virus Res 2023; 323:198979. [PMID: 36283533 PMCID: PMC10194376 DOI: 10.1016/j.virusres.2022.198979] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Oncolytic viruses are an emerging cancer treatment modality with promising results in clinical trials. The new generation of oncolytic viruses are genetically modified to enhance virus selectivity for tumor cells and allow local expression of therapeutic genes in tumors. The traditional technique for viral genome engineering based on homologous recombination using a bacterial artificial chromosome (BAC) system is laborious and time-consuming. With the advent of the CRISPR/Cas9 system, the efficiency of gene editing in human cells and other organisms has dramatically increased. In this report, we successfully applied the CRISPR/Cas9 technique to construct an HSV-based oncolytic virus, where the ICP34.5 coding region was replaced with the therapeutic genes murine interleukin 12 (IL12, p40-p35) and C-X-C motif chemokine ligand 11 (CXCL11), and ICP47 gene was deleted. The combination of IL12 and CXCL11 in oncolytic viruses showed considerable promise in colorectal cancer (CRC) treatment. Overall, our study describes genetic modification of the HSV-1 genome using the CRISPR/Cas9 system and provides evidence from principle studies for engineering of the HSV genome to express foreign genes.
Collapse
Affiliation(s)
- Nianchao Zhang
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jie Li
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jingxuan Yu
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Yajuan Wan
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Cuizhu Zhang
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Hongkai Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
| | - Youjia Cao
- College of Life Sciences, Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Nankai University, 94 Weijin Road, Tianjin 300071, China; College of Life Sciences, Tianjin Key Laboratory of Protein Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
20
|
Prakash A, Gates T, Zhao X, Wangmo D, Subramanian S. Tumor-derived extracellular vesicles in the colorectal cancer immune environment and immunotherapy. Pharmacol Ther 2023; 241:108332. [PMID: 36526013 DOI: 10.1016/j.pharmthera.2022.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Despite significant advances in the screening, diagnosis, and treatment of colorectal cancer (CRC) immune checkpoint inhibitors (ICIs) continue to have limited utility outside of microsatellite-high disease. Given the durable response to immunotherapy seen across malignancies, increasing CRC response rates to ICI therapy is an active area of clinical research. An increasing body of work has demonstrated that tumor-derived extracellular vesicles (TEVs) are key modulators in tumor signaling and the determinants of the tumor microenvironment. Pre-clinical models have shown that TEVs are directly involved in antigen presentation and are involved in radiation-induced DNA damage signaling. Both direct and indirect modifications of these TEVs can alter CRC immunogenicity and ICI treatment response, making them attractive targets for potential therapeutic development. In addition, modified TEVs can be developed using several different mechanisms, with varied cargo including micro-RNAs and small peptide molecules. Recent work has shown strong pre-clinical evidence of injected modified TEV-induced ICI activity, with knockdown of the micro-RNA miR-424 in TEVs improving CRC immunogenicity and increasing anti-PD-1 activity in mouse models. Clinical trials are ongoing in the evaluation of modified TEVs in cancer therapy, but they appear to be a promising therapeutic target in CRC.
Collapse
Affiliation(s)
- Ajay Prakash
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, United States of America.
| | - Travis Gates
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Xianda Zhao
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Dechen Wangmo
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America
| | - Subbaya Subramanian
- Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, United States of America; Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, United States of America; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States of America
| |
Collapse
|
21
|
Yuan J, Li J, Gao C, Jiang C, Xiang Z, Wu J. Immunotherapies catering to the unmet medical need of cold colorectal cancer. Front Immunol 2022; 13:1022190. [PMID: 36275766 PMCID: PMC9579278 DOI: 10.3389/fimmu.2022.1022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
As a common malignant tumor of gastrointestinal tract, the incidence of colorectal cancer (CRC) has gradually increased in recent years. In western developed countries, it has even become the second largest malignant tumor next to lung cancer. Immunotherapy is a hot topic in the field of cancer therapy, including immune checkpoint blockade (ICB), adoptive cell therapy (ACT), cancer vaccines and cytokines, aiming to improve the ability of the immune system to recognize, target and eliminate cancer cells. However, cold CRC, which accounts for a high proportion of CRC, is not so reactive to it. The development of immunotherapy to prevent cancer cells from forming “immune escape” pathways to the immune system in cold CRC, has been under increasing study attention. There is proof that an organic combination of radiotherapy, chemotherapy, and several immunotherapies can considerably boost the immune system’s capacity to eradicate tumor cells. In this review, we summarized the role of immunotherapy in colorectal cancer. In addition, we propose a breakthrough and strategy to improve the role of immunotherapy in cold CRC based on its characteristics.
Collapse
Affiliation(s)
- Jun Yuan
- Department of Clinical Laboratory, The Yancheng Clinical College of Xuzhou Medical University, The First People’s Hospital of Yancheng, Yancheng, China
| | - Jiarui Li
- Zhejiang University School of Medicine, Hangzhou, China
| | - Ce Gao
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Chun Jiang
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jian Wu, ; Ze Xiang,
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- *Correspondence: Jian Wu, ; Ze Xiang,
| |
Collapse
|
22
|
Wei W, Zhang Y. PSEN1 is associated with colon cancer development via potential influences on PD-L1 nuclear translocation and tumor-immune interactions. Front Immunol 2022; 13:927474. [PMID: 36059511 PMCID: PMC9428321 DOI: 10.3389/fimmu.2022.927474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Presenilin 1 (PSEN1), as a catalytical core of the γ-secretase complex, plays multiple actions through mediating transmembrane domain shedding of the substrates. Unlike extensive studies performed on investigating the functions of γ-secretase substrates or the effects of γ-secretase inhibitors, our findings uncover a potential action of PSEN1 on PD-L1 alternative truncation and nuclear translocation, broadening our understanding on how the γ-secretase contributes to colon cancer development as well as suggesting a potential strategy to improve the efficacy of PD-1/PD-L1 blockade. Immunohistochemical data showed loss of PD-L1 protein expression in all the primary colon adenocarcioma (COAD) cases in the HPA collection, while PSEN1 was scored to be highly expressed, indicating their converse expression patterns (p<0.001). Meanwhile a strongly positive gene correlation was explored by TIMER2 and GEPIA (p<0.001). Up-regulated PSEN1 expression in COAD might facilitate liberating a C-terminal PD-L1 truncation via proteolytic processing. Then following an established regulatory pathway of PD-L1 nuclear translocation, we found that PSEN1 showed significant correlations with multiple components in HDAC2-mediated deacetylation, clathrin-dependent endocytosis, vimentin-associated nucleocytoplasmic shuttling and importin family-mediated nuclear import. Moreover, connections of PSEN1 to the immune response genes transactivated by nuclear PD-L1 were tested. Additionally, contributions of PSEN1 to the tumor invasiveness (p<0.05) and the tumor infiltrating cell enrichments (p<0.001) were investigated by cBioportal and the ESTIMATE algorithm. Levels of PSEN1 were negatively correlated with infiltrating CD8+ T (p<0.05) and CD4+ T helper (Th) 1 cells (p<0.001), while positively correlated with regulatory T cells (Tregs) (p<0.001) and cancer associated fibroblasts (CAFs) (p<0.001). It also displayed significant associations with diverse immune metagenes characteristic of T cell exhaustion, Tregs and CAFs, indicating possible actions in immune escape. Despite still a preliminary stage of this study, we anticipate to deciphering a novel function of PSEN1, and supporting more researchers toward the elucidations of the mechanisms linking the γ-secretase to cancers, which has yet to be fully addressed.
Collapse
|
23
|
Bhat AA, Nisar S, Singh M, Ashraf B, Masoodi T, Prasad CP, Sharma A, Maacha S, Karedath T, Hashem S, Yasin SB, Bagga P, Reddy R, Frennaux MP, Uddin S, Dhawan P, Haris M, Macha MA. Cytokine- and chemokine-induced inflammatory colorectal tumor microenvironment: Emerging avenue for targeted therapy. Cancer Commun (Lond) 2022; 42:689-715. [PMID: 35791509 PMCID: PMC9395317 DOI: 10.1002/cac2.12295] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/24/2022] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) is a predominant life-threatening cancer, with liver and peritoneal metastases as the primary causes of death. Intestinal inflammation, a known CRC risk factor, nurtures a local inflammatory environment enriched with tumor cells, endothelial cells, immune cells, cancer-associated fibroblasts, immunosuppressive cells, and secretory growth factors. The complex interactions of aberrantly expressed cytokines, chemokines, growth factors, and matrix-remodeling enzymes promote CRC pathogenesis and evoke systemic responses that affect disease outcomes. Mounting evidence suggests that these cytokines and chemokines play a role in the progression of CRC through immunosuppression and modulation of the tumor microenvironment, which is partly achieved by the recruitment of immunosuppressive cells. These cells impart features such as cancer stem cell-like properties, drug resistance, invasion, and formation of the premetastatic niche in distant organs, promoting metastasis and aggressive CRC growth. A deeper understanding of the cytokine- and chemokine-mediated signaling networks that link tumor progression and metastasis will provide insights into the mechanistic details of disease aggressiveness and facilitate the development of novel therapeutics for CRC. Here, we summarized the current knowledge of cytokine- and chemokine-mediated crosstalk in the inflammatory tumor microenvironment, which drives immunosuppression, resistance to therapeutics, and metastasis during CRC progression. We also outlined the potential of this crosstalk as a novel therapeutic target for CRC. The major cytokine/chemokine pathways involved in cancer immunotherapy are also discussed in this review.
Collapse
Affiliation(s)
- Ajaz A. Bhat
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Sabah Nisar
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Mayank Singh
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Bazella Ashraf
- Department of BiotechnologySchool of Life SciencesCentral University of KashmirGanderbalJammu & Kashmir191201India
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Chandra P. Prasad
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Atul Sharma
- Department of Medical OncologyDr. B. R. Ambedkar Institute Rotary Cancer HospitalAll India Institute of Medical Sciences (AIIMS)New Delhi110029India
| | - Selma Maacha
- Division of Translational MedicineResearch BranchSidra MedicineDoha26999Qatar
| | | | - Sheema Hashem
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
| | - Syed Besina Yasin
- Department of PathologySher‐I‐Kashmir Institute of Medical SciencesSrinagarJammu & Kashmir190011India
| | - Puneet Bagga
- Department of Diagnostic ImagingSt. Jude Children's Research HospitalMemphisTN38105USA
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision MedicineDepartment of RadiologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPA19104USA
| | | | - Shahab Uddin
- Translational Research InstituteHamad Medical CorporationDoha3050Qatar
| | - Punita Dhawan
- Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaNE68198USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic ImagingCancer Research DepartmentSidra MedicineDoha26999Qatar
- Laboratory Animal Research CenterQatar UniversityDoha2713Qatar
| | - Muzafar A. Macha
- Watson‐Crick Centre for Molecular MedicineIslamic University of Science and TechnologyAwantiporaJammu & Kashmir192122India
| |
Collapse
|
24
|
Pennel KAF, Quinn JA, Nixon C, Inthagard J, van Wyk HC, Chang D, Rebus S, Hay J, Maka NN, Roxburgh CSD, Horgan PG, McMillan DC, Park JH, Roseweir AK, Steele CW, Edwards J. CXCL8 expression is associated with advanced stage, right sidedness, and distinct histological features of colorectal cancer. J Pathol Clin Res 2022; 8:509-520. [PMID: 35879507 PMCID: PMC9535100 DOI: 10.1002/cjp2.290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 12/29/2022]
Abstract
CXCL8 is an inflammatory chemokine elevated in the colorectal cancer (CRC) tumour microenvironment. CXCR2, the major receptor for CXCL8, is predominantly expressed by neutrophils. In the cancer setting, CXCL8 plays important roles in neutrophil chemotaxis, facilitating angiogenesis, invasion, and metastasis. This study aimed to assess the spatial distribution of CXCL8 mRNA expression in CRC specimens, explore associations with clinical characteristics, and investigate the underlying biology of aberrant CXCL8 levels. CXCR2 expression was also assessed in a second cohort of unique CRC primary tumours and synchronously resected matched liver metastases. A previously constructed tissue microarray consisting of a cohort of stage I-IV CRC patients undergoing surgical resection with curative intent (n = 438) was probed for CXCL8 via RNAscope®. Analysis was performed using HALO® digital pathology software to quantify expression in the tumour and stromal compartments. Scores were assessed for association with clinical characteristics. Mutational analyses were performed on a subset of these patients to determine genomic differences in patients with high CXCL8 expression. A second cohort of stage IV CRC patients with primary and matched metastatic liver tumours was stained via immunohistochemistry for CXCR2, and scores were assessed for clinical significance. CXCL8 expression within the stromal compartment was associated with reduced cancer-specific survival in the first cohort (p = 0.035), and this relationship was potentiated in right-sided colon cancer cases (p = 0.009). High CXCL8 within the stroma was associated with driving a more stromal-rich phenotype and the presence of metastases. When stromal CXCL8 scores were combined with tumour-infiltrating macrophage counts or systemic neutrophil counts, patients classified as high for both markers had significantly poorer prognosis. CXCR2+ immune cell infiltration was associated with increased stromal invasion in liver metastases (p = 0.037). These data indicate a role for CXCL8 in driving unfavourable tumour histological features and promoting metastases. This study suggests that inhibiting CXCL8/CXCR2 should be investigated in patients with right-sided colonic disease and stroma-rich tumours.
Collapse
Affiliation(s)
- Kathryn AF Pennel
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Jean A Quinn
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | | | - Jitwadee Inthagard
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Hester C van Wyk
- Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - David Chang
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Selma Rebus
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - GPOL Group
- Glasgow Precision Oncology Laboratory, Wolfson Wohl Cancer Research Centre, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Jennifer Hay
- Glasgow Tissue Research FacilityQueen Elizabeth University HospitalGlasgowUK
| | - Noori N Maka
- Department of PathologyQueen Elizabeth University HospitalGlasgowUK
| | - Campbell SD Roxburgh
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Paul G Horgan
- Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Donald C McMillan
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - James H Park
- Department of SurgeryQueen Elizabeth University HospitalGlasgowUK
| | | | - Colin W Steele
- CRUK Beatson InstituteGlasgowUK,Department of SurgeryUniversity of Glasgow, Glasgow Royal InfirmaryGlasgowUK
| | - Joanne Edwards
- Wolfson Wohl Cancer Research Institute, Institute of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
25
|
The Role of Inflammatory Cytokines in the Pathogenesis of Colorectal Carcinoma—Recent Findings and Review. Biomedicines 2022; 10:biomedicines10071670. [PMID: 35884974 PMCID: PMC9312930 DOI: 10.3390/biomedicines10071670] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The inflammatory process plays a significant role in the development of colon cancer (CRC). Intestinal cytokine networks are critical mediators of tissue homeostasis and inflammation but also impact carcinogenesis at all stages of the disease. Recent studies suggest that inflammation is of greater importance in the serrated pathway than in the adenoma-carcinoma pathway. Interleukins have gained the most attention due to their potential role in CRC pathogenesis and promising results of clinical trials. Malignant transformation is associated with the pro-tumorigenic and anti-tumorigenic cytokines. The harmony between proinflammatory and anti-inflammatory factors is crucial to maintaining homeostasis. Immune cells in the tumor microenvironment modulate immune sensitivity and facilitate cancer escape from immune surveillance. Therefore, clarifying the role of underlying cytokine pathways and the effects of their modulation may be an important step to improve the effectiveness of cancer immunotherapy.
Collapse
|
26
|
Della Chiesa M, Setti C, Giordano C, Obino V, Greppi M, Pesce S, Marcenaro E, Rutigliani M, Provinciali N, Paleari L, DeCensi A, Sivori S, Carlomagno S. NK Cell-Based Immunotherapy in Colorectal Cancer. Vaccines (Basel) 2022; 10:1033. [PMID: 35891197 PMCID: PMC9323201 DOI: 10.3390/vaccines10071033] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Giordano
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | | | | | - Laura Paleari
- A.Li.Sa., Liguria Region Health Authority, 16121 Genoa, Italy;
| | - Andrea DeCensi
- Medical Oncology, Galliera Hospital, 16128 Genoa, Italy; (N.P.); (A.D.)
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Simona Carlomagno
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| |
Collapse
|
27
|
Manojlovic N, Savic G, Nikolic B, Rancic N. Dynamic monitoring of carcinoembryonic antigen, CA19-9 and inflammation-based indices in patients with advanced colorectal cancer undergoing chemotherapy. World J Clin Cases 2022; 10:899-918. [PMID: 35127905 PMCID: PMC8790463 DOI: 10.12998/wjcc.v10.i3.899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/21/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The roles of carcinoembryonic antigen (CEA) and carbohydrate antigen (CA19-9) in monitoring the patient response to chemotherapy for metastatic colorectal cancer (mCRC) are not clearly defined, and inflammatory indices, including the neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR) and systemic immune-inflammation index (SII), have been sparsely investigated for this purpose.
AIM To aim of this study was to evaluate the relationship between the kinetics of CEA, CA19-9, NLR, LMR, PLR and SII in serum and patient response to chemotherapy estimated by computed tomography (CT) in patients with unresectable mCRC.
METHODS Patients with mCRC treated with a 1st-line and 2nd-line chemotherapy underwent at least 3 whole-body spiral CT scans during response monitoring according to the Response Evaluation Criteria in Solid Tumour 1.1 (RECIST 1.1), and simultaneous determination of CEA, CA19-9, neutrophil, lymphocyte, platelet and monocyte levels was performed. The kinetics of changes in the tumour markers and inflammatory indices were calculated as the percentage change from baseline or nadir, while receiver operating characteristic curves were drawn to select the thresholds to define patients with progressive or responsive disease with the highest sensitivity (Se) and specificity (Sp). The correlation of tumour marker kinetics with inflammatory index changes and RECIST response was determined by univariate and multivariate logistic regression analysis and the clinical utility index (CUI).
RESULTS A total of 102 patients with mCRC treated with chemotherapy were included. Progressive disease (PD), defined as a CEA increase of 25.52%, resulted in an Se of 80.3%, an Sp of 84%, a good CUI negative [CUI (Ve-)] value of 0.75 and a good fraction correct (FC) value of 81.2; at a CEA cut-off of -60.85% with an Se of 100% and an Sp of 35.7% for PD, CT could be avoided in 25.49% of patients. The 21.49% CA19-9 cut-off for PD had an Se of 66.5%, an Sp of 87.4%, an acceptable CUI (Ve-) value of 0.65 and an acceptable FC value of 75. An NLR increase of 11.5% for PD had an Se of 67% and an Sp of 66%; a PLR increase of 5.9% had an Se of 53% and an Sp of 69%; an SII increase above -6.04% had an Se of 72% and an Sp of 63%; and all had acceptable CUI (Ve-) values at 0.55. In the univariate logistic regression analysis, CEA (P < 0.001), CA19-9 (P < 0.05), NLR (P < 0.05), PLR (P < 0.05) and SII (P < 0.05) were important predictors of tumour progression, but in the multivariate logistic regression analysis, CEA was the only independent predictor of PD (P < 0.05).
CONCLUSION CEA is a useful marker for monitoring the chemotherapy response of patients with unresectable mCRC and could replace a quarter of CT examinations. CA19-9 has poorer diagnostic characteristics than CEA but could be useful in some clinical circumstances, particularly when CEA is not increased. Dynamic changes in the inflammatory indices NLR, PLR and SII could be promising for further investigation as markers of the chemotherapy response.
Collapse
Affiliation(s)
- Nebojsa Manojlovic
- Clinic for Gastroenterology and Hepatology, Military Medical Academy, Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade 11000, Serbia
| | - Goran Savic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade, Serbia, Military Medical Academy, Belgrade 11000, Serbia
| | - Bojan Nikolic
- Institute for Radiology, Military Medical Academy, Belgrade 11000, Serbia
| | - Nemanja Rancic
- Center for Clinical Pharmacology, Institute for Radiology, Military Medical Academy, Faculty of Medicine of the Military Medical Academy, University of Defence, Belgrade 11000, Serbia
| |
Collapse
|
28
|
Hu LF, Lan HR, Huang D, Li XM, Jin KT. Personalized Immunotherapy in Colorectal Cancers: Where Do We Stand? Front Oncol 2021; 11:769305. [PMID: 34888246 PMCID: PMC8649954 DOI: 10.3389/fonc.2021.769305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death in the world. Immunotherapy using monoclonal antibodies, immune-checkpoint inhibitors, adoptive cell therapy, and cancer vaccines has raised great hopes for treating poor prognosis metastatic CRCs that are resistant to the conventional therapies. However, high inter-tumor and intra-tumor heterogeneity hinder the success of immunotherapy in CRC. Patients with a similar tumor phenotype respond differently to the same immunotherapy regimen. Mutation-based classification, molecular subtyping, and immunoscoring of CRCs facilitated the multi-aspect grouping of CRC patients and improved immunotherapy. Personalized immunotherapy using tumor-specific neoantigens provides the opportunity to consider each patient as an independent group deserving of individualized immunotherapy. In the recent decade, the development of sequencing and multi-omics techniques has helped us classify patients more precisely. The expansion of such advanced techniques along with the neoantigen-based immunotherapy could herald a new era in treating heterogeneous tumors such as CRC. In this review article, we provided the latest findings in immunotherapy of CRC. We elaborated on the heterogeneity of CRC patients as a bottleneck of CRC immunotherapy and reviewed the latest advances in personalized immunotherapy to overcome CRC heterogeneity.
Collapse
Affiliation(s)
- Li-Feng Hu
- Department of Colorectal Surgery, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Dong Huang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xue-Min Li
- Department of Hepatobiliary Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
29
|
Coletta S, Lonardi S, Sensi F, D’Angelo E, Fassan M, Pucciarelli S, Valzelli A, Biccari A, Vermi W, Della Bella C, Barizza A, D’Elios MM, de Bernard M, Agostini M, Codolo G. Tumor Cells and the Extracellular Matrix Dictate the Pro-Tumoral Profile of Macrophages in CRC. Cancers (Basel) 2021; 13:cancers13205199. [PMID: 34680345 PMCID: PMC8533926 DOI: 10.3390/cancers13205199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are major components of the tumor microenvironment. In colorectal cancer (CRC), a strong infiltration of TAMs is accompanied by a decrease in effector T cells and an increase in the metastatic potential of CRC. We investigated the functional profile of TAMs infiltrating CRC tissue by immunohistochemistry, flow cytometry, ELISA, and qRT-PCR and their involvement in impairing the activation of effector T cells. In CRC biopsies, we evidenced a high percentage of macrophages with low expression of the antigen-presenting complex MHC-II and high expression of CD206. Monocytes co-cultured with tumor cells or a decellularized tumor matrix differentiated toward a pro-tumoral macrophage phenotype characterized by decreased expression of MHC-II and CD86 and increased expression of CD206 and an abundant release of pro-tumoral cytokines and chemokines. We demonstrated that the hampered expression of MHC-II in macrophages is due to the downregulation of the MHC-II transactivator CIITA and that this effect relies on increased expression of miRNAs targeting CIITA. As a result, macrophages become unable to present antigens to CD4 T lymphocytes. Our data suggest that the tumor microenvironment contributes to defining a pro-tumoral profile of macrophages infiltrating CRC tissue with impaired capacity to activate T cell effector functions.
Collapse
Affiliation(s)
- Sara Coletta
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Silvia Lonardi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Francesca Sensi
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, 30172 Venice, Italy;
- Pediatric Research Institute, 35127 Padova, Italy
| | - Edoardo D’Angelo
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35124 Padova, Italy;
- Veneto Institute of Oncology, IOV-IRCCS, 35100 Padova, Italy
| | - Salvatore Pucciarelli
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
| | - Arianna Valzelli
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Andrea Biccari
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
| | - William Vermi
- Section of Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (S.L.); (A.V.); (W.V.)
| | - Chiara Della Bella
- Department of Experimental and Clinical Medicine, University of Firenze, 50121 Firenze, Italy; (C.D.B.); (M.M.D.)
| | - Annica Barizza
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Mario Milco D’Elios
- Department of Experimental and Clinical Medicine, University of Firenze, 50121 Firenze, Italy; (C.D.B.); (M.M.D.)
| | - Marina de Bernard
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
| | - Marco Agostini
- Pediatric Research Institute, 35127 Padova, Italy
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padova, 35124 Padova, Italy; (E.D.); (S.P.); (A.B.)
- LIFELAB Program, Consorzio per la Ricerca Sanitaria-CORIS, Veneto Region, 35128 Padova, Italy
- Correspondence: (M.A.); (G.C.); Tel.: +39-049-964-0160 (M.A.); +39-049-827-6182 (G.C.)
| | - Gaia Codolo
- Department of Biology, University of Padova, 35131 Padova, Italy; (S.C.); (A.B.); (M.d.B.)
- Correspondence: (M.A.); (G.C.); Tel.: +39-049-964-0160 (M.A.); +39-049-827-6182 (G.C.)
| |
Collapse
|
30
|
Denti V, Mahajneh A, Capitoli G, Clerici F, Piga I, Pagani L, Chinello C, Bolognesi MM, Paglia G, Galimberti S, Magni F, Smith A. Lipidomic Typing of Colorectal Cancer Tissue Containing Tumour-Infiltrating Lymphocytes by MALDI Mass Spectrometry Imaging. Metabolites 2021; 11:599. [PMID: 34564418 PMCID: PMC8471593 DOI: 10.3390/metabo11090599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 12/24/2022] Open
Abstract
Predicting the prognosis of colorectal cancer (CRC) patients remains challenging and a characterisation of the tumour immune environment represents one of the most crucial avenues when attempting to do so. For this reason, molecular approaches which are capable of classifying the immune environments associated with tumour infiltrating lymphocytes (TILs) are being readily investigated. In this proof of concept study, we aim to explore the feasibility of using spatial lipidomics by MALDI-MSI to distinguish CRC tissue based upon their TIL content. Formalin-fixed paraffin-embedded tissue from human thymus and tonsil was first analysed by MALDI-MSI to obtain a curated mass list from a pool of single positive T lymphocytes, whose putative identities were annotated using an LC-MS-based lipidomic approach. A CRC tissue microarray (TMA, n = 30) was then investigated to determine whether these cases could be distinguished based upon their TIL content in the tumour and its microenvironment. MALDI-MSI from the pool of mature T lymphocytes resulted in the generation of a curated mass list containing 18 annotated m/z features. Initially, subsets of T lymphocytes were then distinguished based on their state of maturation and differentiation in the human thymus and tonsil tissue. Then, when applied to a CRC TMA containing differing amounts of T lymphocyte infiltration, those cases with a high TIL content were distinguishable from those with a lower TIL content, especially within the tumour microenvironment, with three lipid signals being shown to have the greatest impact on this separation (p < 0.05). On the whole, this preliminary study represents a promising starting point and suggests that a lipidomics MALDI-MSI approach could be a promising tool for subtyping the diverse immune environments in CRC.
Collapse
Affiliation(s)
- Vanna Denti
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (V.D.); (A.M.); (F.C.); (I.P.); (L.P.); (C.C.); (G.P.); (F.M.)
| | - Allia Mahajneh
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (V.D.); (A.M.); (F.C.); (I.P.); (L.P.); (C.C.); (G.P.); (F.M.)
| | - Giulia Capitoli
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.C.) (S.G.)
| | - Francesca Clerici
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (V.D.); (A.M.); (F.C.); (I.P.); (L.P.); (C.C.); (G.P.); (F.M.)
| | - Isabella Piga
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (V.D.); (A.M.); (F.C.); (I.P.); (L.P.); (C.C.); (G.P.); (F.M.)
| | - Lisa Pagani
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (V.D.); (A.M.); (F.C.); (I.P.); (L.P.); (C.C.); (G.P.); (F.M.)
| | - Clizia Chinello
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (V.D.); (A.M.); (F.C.); (I.P.); (L.P.); (C.C.); (G.P.); (F.M.)
| | - Maddalena Maria Bolognesi
- Department of Medicine and Surgery, Anatomy and Pathology, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Giuseppe Paglia
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (V.D.); (A.M.); (F.C.); (I.P.); (L.P.); (C.C.); (G.P.); (F.M.)
| | - Stefania Galimberti
- Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.C.) (S.G.)
| | - Fulvio Magni
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (V.D.); (A.M.); (F.C.); (I.P.); (L.P.); (C.C.); (G.P.); (F.M.)
| | - Andrew Smith
- Department of Medicine and Surgery, Proteomics and Metabolomics Unit, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy; (V.D.); (A.M.); (F.C.); (I.P.); (L.P.); (C.C.); (G.P.); (F.M.)
| |
Collapse
|
31
|
Soluble SIGLEC5: A New Prognosis Marker in Colorectal Cancer Patients. Cancers (Basel) 2021; 13:cancers13153896. [PMID: 34359797 PMCID: PMC8345516 DOI: 10.3390/cancers13153896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Amongst colorectal cancers, there is significant heterogeneity, which hinders the search for a single disease detection approach. Clinical prognostic markers are urgently needed. The aim of our prospective study was to analyse the possible role of pre-operative soluble SIGLEC5 plasma levels in patient prognosis and evolution. In a cohort of 114 patients with colorectal cancer, our data confirmed the relevance of soluble SIGLEC5 levels as a prognosis marker and exitus predictor. Altogether, our data indicate that levels of this protein could be a novel and promising biomarker for patients with colorectal cancer. Abstract Colorectal cancer (CRC) is the second most deadly and third most commonly diagnosed cancer worldwide. There is significant heterogeneity among patients with CRC, which hinders the search for a standard approach for the detection of this disease. Therefore, the identification of robust prognostic markers for patients with CRC represents an urgent clinical need. In search of such biomarkers, a total of 114 patients with colorectal cancer and 67 healthy participants were studied. Soluble SIGLEC5 (sSIGLEC5) levels were higher in plasma from patients with CRC compared with healthy volunteers. Additionally, sSIGLEC5 levels were higher in exitus than in survivors, and the receiver operating characteristic curve analysis revealed sSIGLEC5 to be an exitus predictor (area under the curve 0.853; cut-off > 412.6 ng/mL) in these patients. A Kaplan–Meier analysis showed that patients with high levels of sSIGLEC5 had significantly shorter overall survival (hazard ratio 15.68; 95% CI 4.571–53.81; p ≤ 0.0001) than those with lower sSIGLEC5 levels. Our study suggests that sSIGLEC5 is a soluble prognosis marker and exitus predictor in CRC.
Collapse
|
32
|
Wei W, Zhao W, Zhang Y. CBX4 Provides an Alternate Mode of Colon Cancer Development via Potential Influences on Circadian Rhythm and Immune Infiltration. Front Cell Dev Biol 2021; 9:669254. [PMID: 34222240 PMCID: PMC8253160 DOI: 10.3389/fcell.2021.669254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022] Open
Abstract
The circadian machinery is critical for the normal physiological functions and cellular processes. Circadian rhythm disruption has been associated with immune suppression which leads to higher cancer risk, suggesting a putative tumor protective role of circadian clock homeostasis. CBX4, as an epigenetic regulator, has been explored for its involvement in tumorigenesis. However, little is known about the correlation between CBX4 and circadian rhythm disruption in colon cancer as well as the potential impact on the tumor immunity. A significant upregulation of CBX4 was identified in the TCGA colon adenocarcinoma (COAD) samples when compared with the normal controls (p < 0.001). This differential expression was confirmed at the protein level using colon adenocarcinoma tissue array (p < 0.01). CBX4 was up-regulated in the recurred/progressed colon cancer cases compared with the disease-free samples (p < 0.01), suggesting CBX4 as a potential predictor for poor prognosis. With regard to nodular metastasis, CBX4 was found to be associated with early onset of metastatic diseases but not late progression. The circadian rhythm is orchestrated by the alternating activation and suppression of the CLOCK/ARNTL-driven positive loop and the PER/CRY-controlled negative loop. In COAD, CBX4 was negatively correlated with CLOCK (p < 0.001), and positively correlated with PER1 (p < 0.001), PER3 (p < 0.01), and CRY2 (p < 0.001) as well as NR1D1 (p < 0.001), a critical negative regulator of the circadian clock. These interactions consistently impacted on patient survival based on the colorectal cancer cohorts GSE17536 and GSE14333 of PrognoScan. CBX4 showed significant negative correlations with infiltrating B cells (p < 0.05) and CD4+ T cells (p < 0.01), and positive correlations with myeloid derived suppressor cells (MDSCs) (p < 0.05) and cancer associated fibroblast (CAFs) (p < 0.001), as well as a low immunoscore. Moreover, CBX4 displayed significant correlations with diverse immune metagenes. PER1 and PER3, consistent with their coordinated expression with CBX4, also had strong correlations with these gene representatives in COAD, suggesting a potential interaction of CBX4 with the circadian machinery. Our studies implicate that CBX4 may contribute to colon cancer development via potential influence on circadian rhythm and immune infiltration. These findings provide new insights into deciphering the function of CBX4, and may contribute to the development of new targeting strategies.
Collapse
Affiliation(s)
- Wangzhi Wei
- Life Science Institute of Jinzhou Medical University, Jinzhou, China
| | - Wei Zhao
- Life Science Institute of Jinzhou Medical University, Jinzhou, China
| | - Yu Zhang
- Life Science Institute of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
33
|
Torreggiani E, Bononi I, Pietrobon S, Mazzoni E, Guerra G, Feo C, Martini F, Tognon M. Colorectal Carcinoma Affected Patients Are Significantly Poor Responders Against the Oncogenic JC Polyomavirus. Front Immunol 2021; 12:632129. [PMID: 34113338 PMCID: PMC8185217 DOI: 10.3389/fimmu.2021.632129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Many investigations reported the association between human tumors and JCPyV, a polyomavirus with oncogenic potential. The association has been supported by studies that found JCPyV footprints in CRC and gliomas of different types. Indeed, JCPyV footprints including its nucleic acids and Tag oncoprotein have been revealed in CRC tissues. Methods Herein, sera from colorectal carcinoma (CRC) affected patients and healthy individuals (HS), employed as control, were analysed for immunoglobulin G (IgG) antibodies against specific JCPyV viral capsid protein 1 (VP1) antigens. The investigation was carried out employing an innovative immunological assay. Indeed, an indirect enzyme-linked immunosorbent assay (ELISA) with JCPyV VP1 mimotopes was used. JCPyV VP1 mimotopes consisted of synthetic peptides mimicking VP1 epitopes. Results Sera from CRC affected patients, evaluated using indirect ELISAs with synthetic mimotopes, showed a significant lower prevalence of IgG antibodies against JCPyV VP1 mimotopes (26%) compared to HS (51%), p<0.005. These data were confirmed by another method, the hemagglutination inhibition (HAI) assay. Altogether these results, i.e. the prevalence of serum IgG antibodies against JCPyV VP1 mimotopes from patients with CRC is approximately 50% lower than in HS, are of interest. Discussion Our data suggest that patients with CRC are significantly poor responders against JCPyV VP1 antigens. It is possible that CRC patients are affected by a specific immunological deregulation. This immunological dysfunction, revelled in CRC patients, may account for their predisposition to the colorectal carcinoma onset.
Collapse
Affiliation(s)
- Elena Torreggiani
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Translational Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Silvia Pietrobon
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni Guerra
- Clinical Laboratory Analysis, University-Hospital of Ferrara, Ferrara, Italy
| | - Carlo Feo
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, School of Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Immune Contexture of MMR-Proficient Primary Colorectal Cancer and Matched Liver and Lung Metastases. Cancers (Basel) 2021; 13:cancers13071530. [PMID: 33810354 PMCID: PMC8037224 DOI: 10.3390/cancers13071530] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/12/2021] [Accepted: 03/24/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Metastasis is the main cause for cancer mortality. The most common metastatic sites of colorectal cancer (CRC) are the liver and lungs. Tumour-infiltrating lymphocytes are recognized as beneficial prognostic factors both in primary and metastatic CRC, but less is known about their reciprocal differences. The aim of our study was to evaluate immune microenvironment and its prognostic value in a series of mismatch proficient (pMMR) CRC with matched liver and lung metastases. The proportion of tumours with high immune cell infiltration together with PD-L1-positivity almost doubled in metastases compared to primary tumours. Our study confirmed the prognostic value of high ICS in least immune-infiltrated metastases in pMMR CRC patients. Major differences observed in immune contexture between primary tumours and metastases may have significance for treatment strategies for patients with advanced CRC. Abstract Purpose: To evaluate immune cell infiltration, the programmed death-1/programmed death ligand-1 (PD-1/PD-L1) expression and their prognostic value in a series of mismatch proficient (pMMR) CRC with matched liver and lung metastases. Methods: Formalin-fixed paraffin-embedded tissue sections stained for CD3, CD8, PD-L1 and PD-1 from 113 primary CRC tumours with 105 liver and 59 lung metastases were analyzed. The amount of CD3 and CD8 positive lymphocytes were combined as immune cell score (ICS). Comparative analyses on immune contexture were performed both between the primary tumour and matched metastases and between the metastatic sites. Results: In liver metastases, immune cell infiltration was increased in general compared to primary tumours but did not correlate case by case. On the contrary, ICS between lung metastases and primary tumours correlated well, but the expression of PD-1/PD-L1 was increased in lung metastases. The proportion of tumours with high ICS together with PD-L1-positivity almost doubled in metastases (39%) compared to primary tumours (20%). High ICS (compared to lowest) in patient’s least immune-infiltrated metastasis was an independent prognostic marker for disease-specific (HR 9.14, 95%CI 2.81–29.68) and overall survival (HR 6.95, 95%CI 2.30–21.00). Conclusions: Our study confirms the prognostic value of high ICS in least immune-infiltrated metastases in pMMR CRC patients. Major differences observed in immune contexture between primary tumours and metastases may have significance for treatment strategies for patients with advanced CRC.
Collapse
|
35
|
Inhibitory effects of cynaropicrin and related sesquiterpene lactones from leaves of artichoke (Cynara scolymus L.) on induction of iNOS in RAW264.7 cells and its high-affinity proteins. J Nat Med 2021; 75:381-392. [PMID: 33484417 DOI: 10.1007/s11418-020-01479-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
The methanolic extract of the leaves of artichoke (Cynara scolymus L.) was found to inhibit nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Among the constituents of the extract, six sesquiterpene lactones (cynaropicrin, grosheimin, 11β,13-dihydrocynaropicrin, 3β-hydroxy-8α-[(S)-3-hydroxy-2-methylpropionyloxy]guaia-4(15),10(14),11(13)-trien-1α,5α,6βH-12,6-olide, 3β-hydroxy-8α-[2-methoxymethyl-2-propenoyloxy]guaia-4(15),10(14),11(13)-trien-1α,5α,6βH-12,6-olide, and deacylcynaropicrin) inhibited NO production and/or inducible nitric oxide synthase (iNOS) induction. The acyl group having an α,β-unsaturated carbonyl group at the 8-position and the α-methylene-γ-butyrolactone moiety were important for the strong inhibitory activity. Our results suggested that these sesquiterpene lactones inhibited the LPS-induced iNOS expression via the suppression of the JAK-STAT signaling pathway in addition to the κNF-κB signaling pathway. With regard to the target molecules of the sesquiterpene lactones, high-affinity proteins of cynaropicrin were purified from the cell extract. ATP/ADP translocase 2 and tubulin were identified and suggested to be involved in the cytotoxic effects of cynaropicrin, although the target molecules for the inhibition of iNOS expression were not clarified.
Collapse
|
36
|
Mouratidis PXE, Ter Haar G. HSP90 inhibition acts synergistically with heat to induce a pro-immunogenic form of cell death in colon cancer cells. Int J Hyperthermia 2021; 38:1443-1456. [PMID: 34612127 DOI: 10.1080/02656736.2021.1983036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Sub-ablative heat induces pleiotropic biological effects in cancer cells, activating programmed cell death or survival processes. These processes decide the fate of the heated cell. This study investigates these and assesses whether heat, in combination with HSP90 inhibition, augments cell death and induces a pro-immune phenotype in these cells. METHODS HCT116 and HT29 cells were subjected to thermal doses (TID) of 60 and 120CEM43 using a PCR thermal cycler. HSP90 was inhibited with NVP-AUY922. Viability was assessed using the MTT assay. Cellular ATP and HSP70 release were assessed using ATP and Enzyme-linked Immunosorbent assays, respectively. Flow cytometry and immunoblotting were used to study the regulation of biomarkers associated with the heat shock response, the cell cycle, and immunogenic and programmed cell death. RESULTS Exposure of HCT116 and HT29 cells to TIDs of 60 and 120CEM43 decreased their viability. In addition, treatment with 120CEM43 increased intracellular HSP70 and the percentage of HCT116/HT29 cells in the G2/M cell cycle phase, ATP release and Calreticulin/HSP70/HSP90 exposure in the plasma membrane, while downregulating CD47 compared to sham-exposed cells. When combined with NVP-AUY922, treatment of HCT116/HT29 cells with 120CEM43 resulted in a synergistic decrease of cell viability associated with the induction of apoptosis. Also, the combined treatments increased Calreticulin exposure, CD47 downregulation, and HSP70 release compared to the sham-exposed cells. CONCLUSION Sub-ablative heating can act synergistically with the clinically relevant HSP90 inhibitor NVP-AUY922 to induce a pro-immunogenic form of cell death in colon cancer cells.
Collapse
Affiliation(s)
- Petros X E Mouratidis
- Joint Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research: Royal Marsden Hospital, Sutton, London, UK
| | - Gail Ter Haar
- Joint Department of Physics, Division of Radiotherapy and Imaging, The Institute of Cancer Research: Royal Marsden Hospital, Sutton, London, UK
| |
Collapse
|