1
|
Muhammad FA, Adhab AH, Mahdi MS, Jain V, Ganesan S, Bhanot D, Naidu KS, Kaur S, Mansoor AS, Radi UK, Abd NS, Kariem M. Unveiling Novel Targets in Lung Tumors for Enhanced Radiotherapy Efficacy: A Comprehensive Review. J Biochem Mol Toxicol 2025; 39:e70180. [PMID: 39987513 DOI: 10.1002/jbt.70180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/06/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025]
Abstract
Radiotherapy is a cornerstone of lung cancer management, though its efficacy is frequently undermined by intrinsic and acquired radioresistance. This review examines the complexity of lung tumors, highlighting their potential as a reservoir of novel targets for radiosensitization. Ionizing radiation (IR) primarily exerts its effects through oxidative damage and DNA double-strand breaks (DSBs). Lung cancer cells, however, develop mutations that enhance DNA damage response (DDR) and suppress cell death pathways. Additionally, interactions between tumor cells and tumor microenvironment (TME) components-including immune cells, stromal cells, and molecular mediators such as cytokines, chemokines, and growth factors-contribute to resistance against IR. Understanding these intricate relationships reveals potential targets to improve radiotherapy outcomes. Promising targets include DDR pathways, immunosuppressive cells and molecules, hypoxia, proangiogenic mediators, and other key signaling pathways. This review discusses emerging strategies, such as combining radiotherapy with immunomodulators, hypoxia and proangiogenic inhibitors, DDR-targeting agents, and other innovative approaches. By offering a comprehensive analysis of the lung TME, this review underscores opportunities to enhance radiotherapy effectiveness through targeted radiosensitization strategies.
Collapse
Affiliation(s)
| | | | | | - Vicky Jain
- Department of Chemistry, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, India
| | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, India
| | - Deepak Bhanot
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, India
| | - Sharnjeet Kaur
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges-Jhanjeri, Mohali, India
| | | | - Usama Kadem Radi
- Collage of Pharmacy, National University of Science and Technology, Nasiriyah, Iraq
| | - Nasr Saadoun Abd
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Li L, Pu H, Zhang X, Guo X, Li G, Zhang M. Resistance to PD-1/PD-L1 immune checkpoint blockade in advanced non-small cell lung cancer. Crit Rev Oncol Hematol 2025:104683. [PMID: 40024354 DOI: 10.1016/j.critrevonc.2025.104683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025] Open
Abstract
Lung cancer is one of the most common malignant tumors, of which non-small cell lung cancer (NSCLC) accounts for about 85%. Although immune checkpoint inhibitors (ICIs), particularly PD-1/PD-L1 inhibitors, have significantly improved the prognosis of patients with NSCLC. There are still many patients do not benefit from ICIs. Primary resistance remains a major challenge in advanced NSCLC. The cancer-immunity cycle describes the process from antigen release to T cell recognition and killing of the tumor, which provides a framework for understanding anti-tumor immunity. The classical cycle consists of seven steps, and alterations at each stage can result in resistance. This review examines the current status of PD-1/PD-L1 blockade in the treatment of advanced NSCLC and explores potential mechanisms of resistance. We summarize the latest clinical trials of PD-1/PD-L1 inhibitors combined with other therapies and explore potential targets for overcoming primary resistance to PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Lijun Li
- Clinical Trials Center, Harbin Medical University Cancer Hospital, Harbin, China; Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haihong Pu
- Clinical Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaoxin Zhang
- Clinical Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaotian Guo
- Clinical Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangrui Li
- Clinical Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Minghui Zhang
- Clinical Trials Center, Harbin Medical University Cancer Hospital, Harbin, China; Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
3
|
Tomarchio V, Crescenzi A, Tafuri M, Verri M, Di Cecca M, Rigacci L, Annibali O. The past, the present and the future of immune checkpoints inhibitors in multiple myeloma. Expert Rev Hematol 2025:1-14. [PMID: 39987500 DOI: 10.1080/17474086.2025.2469720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/20/2025] [Accepted: 02/17/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Myeloma genesis is a very complex mechanism in which the interaction between plasma cells and microenvironments with immune cells, cytokines and chemokines have a central role. In the last years, the improved knowledge of immune checkpoint models led to the development of new drugs (anti-PD1/PD-L1 axis or anti-TIGIT) that now have a crucial role in the treatment of many hematological malignancies. AREAS COVERED In this review, the current significant literature was discussed. In the past, initial trials combining immune checkpoint inhibitors (ICIs) with immunomodulatory drugs or proteasome inhibitors demonstrated suboptimal results in terms of efficacy and safety. On the other hand, recent trials based on the combination of ICIs with immunotherapies, such as CAR-T cells or bispecific antibodies, are a particularly promising area of investigation. EXPERT OPINION Our idea after the evaluation of scientific literature is that despite the past, ICIs may represent a promising therapeutic approach for myeloma, particularly when combined with CAR-T cells or bispecific antibodies. By targeting immune evasion mechanisms, ICIs may enhance the efficacy of these treatments and provide new hope for patients with resistant disease. Future research will be crucial to further elucidate their optimal use in myeloma and to develop personalized treatment strategies.
Collapse
Affiliation(s)
- Valeria Tomarchio
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Anna Crescenzi
- Operative Research Unit of Unit of Phatological Anatomy, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Mariantonietta Tafuri
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Martina Verri
- Operative Research Unit of Unit of Phatological Anatomy, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Monica Di Cecca
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Luigi Rigacci
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Ombretta Annibali
- Operative Research Unit of Hematology, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| |
Collapse
|
4
|
Piao Y, Zhai N, Zhang X, Zhao W, Li M. Post-translational modifications in hepatocellular carcinoma: unlocking new frontiers in immunotherapy. Front Immunol 2025; 16:1554372. [PMID: 40040703 PMCID: PMC11876159 DOI: 10.3389/fimmu.2025.1554372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), is one of the most common and aggressive malignancies worldwide. Immunotherapy has shown promising results in treating HCC, but its efficacy is often limited by complex mechanisms of immune evasion. Post-translational modifications (PTMs) of proteins play a critical role in regulating the immune responses within the tumor microenvironment (TME). These modifications influence protein function, stability, and interactions, which either promote or inhibit immune cell activity in cancer. In this mini-review, we explore the diverse PTMs that impact immune evasion in liver cancer, including glycosylation, phosphorylation, acetylation, and ubiquitination. We focus on how these PTMs regulate key immune checkpoint molecules such as PD-L1, CTLA-4, and the TCR complex. Furthermore, we discuss the potential of targeting PTMs in combination with existing immunotherapies to enhance the effectiveness of treatment in HCC. Understanding the role of PTMs in immune regulation may lead to the development of novel therapeutic strategies to overcome resistance to immunotherapy in liver cancer.
Collapse
Affiliation(s)
- Yuexian Piao
- Department of Interventional Therapy, First Hospital of Jilin University, Changchun, China
| | - Naicui Zhai
- Core Facility of First Hospital of Jilin University, Changchun, China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Wenjie Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Min Li
- Department of Interventional Therapy, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Abdelazeem KNM, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Van Court B, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. Oncogene 2025; 44:130-146. [PMID: 39489818 PMCID: PMC11725500 DOI: 10.1038/s41388-024-03208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with hallmark pathways of metastasis along with classical and non-classical epithelial-mesenchymal transition. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered ligands ephrinB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggests that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N M Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, ON, Canada
| | - Rachel S Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA.
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Yang L, Wang X, Wang S, Shen J, Li Y, Wan S, Xiao Z, Wu Z. Targeting lipid metabolism in regulatory T cells for enhancing cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189259. [PMID: 39798823 DOI: 10.1016/j.bbcan.2025.189259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
As immunosuppressive cells, Regulatory T cells (Tregs) exert their influence on tumor immune escape within the tumor microenvironment (TME) by effectively suppressing the activity of other immune cells, thereby significantly impeding the anti-tumor immune response. In recent years, the metabolic characteristics of Tregs have become a focus of research, especially the important role of lipid metabolism in maintaining the function of Tregs. Consequently, targeted interventions aimed at modulating lipid metabolism in Tregs have been recognized as an innovative and promising approach to enhance the effectiveness of tumor immunotherapy. This review presents a comprehensive overview of the pivotal role of lipid metabolism in regulating the function of Tregs, with a specific focus on targeting Tregs lipid metabolism as an innovative approach to augment anti-tumor immune responses. Furthermore, we discuss potential opportunities and challenges associated with this strategy, aiming to provide novel insights for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Liu Yang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xingyue Wang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shurong Wang
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yaling Li
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shengli Wan
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Zhigui Wu
- Department of Pharmacy, Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China; Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; South Sichuan Institute of Translational Medicine, Luzhou, Sichuan 646000, China; Laboratory of Personalised Cell Therapy and Cell Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
7
|
Agarwal D, Sharma G, Khadwal A, Toor D, Malhotra P. Advances in Vaccines, Checkpoint Blockade, and Chimeric Antigen Receptor-Based Cancer Immunotherapeutics. Crit Rev Immunol 2025; 45:65-80. [PMID: 39612278 DOI: 10.1615/critrevimmunol.2024053025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Increase in cancer cases and research driven by understanding its causes, facilitated development of novel targeted immunotherapeutic strategies to overcome nonspecific cytotoxicity associated with conventional chemotherapy and radiotherapy. These target specific immunotherapeutic regimens have been evaluated for their efficacy, including: (1) vaccines harnessing tumor specific/associated antigens, (2) checkpoint blockade therapy using monoclonal antibodies against PD1, CTLA-4 and others, and (3) adoptive cell transfer approaches viz. chimeric antigen receptor (CAR)-cell-based therapies. Here, we review recent advancements on these target specific translational immunotherapeutic strategies against cancer/s and concerned limitations.
Collapse
Affiliation(s)
- Disha Agarwal
- Department of Translational & Regenerative Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | | | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Devinder Toor
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida, 201313, Uttar Pradesh, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
8
|
Ahmed MM, Hussein S, Abdalsalam MM, Sameh H, Waley AB, Ebian HF, Sakr MMH, Attia RN, Sameh R. Prognostic implication of CD47 and CTLA-4 expressions in endometrial carcinoma. Hum Immunol 2025; 86:111210. [PMID: 39667206 DOI: 10.1016/j.humimm.2024.111210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND CD47 is an immune-regulatory protein that belongs to the immunoglobulin family. It inhibits the phagocytic ability of immune cells. So, it is related to an unfavorable outcome in leukemia and various solid tumors. One of the immune checkpoint molecules is cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) which interferes with anticancer immunity and has an important role in anti-cancer surveillance. This study aimed to investigate CD47 and CTLA-4 mRNA and protein expressions in relation to P53 mutation and different clinicopathological parameters in endometrial carcinoma (EC). We also investigated the relation between CD47 and CTLA-4 expressions in EC. SUBJECT & METHOD This study included sixty-eight patients with EC. Tissue samples of the tumor with adequate safety margin were obtained. Part of the tissues was preserved in formalin for histopathological and immunohistochemical examination while the other part was kept frozen at -80 °C for molecular profile. RESULTS CD47 and CTLA-4 gene expressions were upregulated in the tissues of EC in comparison with the adjacent control tissues. Significantly higher CD47 and CTLA-4 gene expressions were detected in the serous type, higher stage, muscle invasion ≥50 %, higher grade, LN metastasis, and distant metastasis. CD47 gene expression was a good marker of P53 mutation at a cut-off of 1.65. It showed a high sensitivity of 84 %, a high specificity of 75.3 %, an average PPV of 65.6 %, a high NPV of 88.9 %, and an accuracy of 77.9 % (P < 0.001). Similarly, CTLA-4 gene expression was a good marker of P53 mutation at a cut-off of 3.75. It showed a sensitivity of 88 %, a specificity of 74.3 %, a PPV of 66.7 %, an NPV of 91.4 %, and an accuracy of 79.4 % (P < 0.001). CONCLUSION CD47 and CTLA-4 expressions can be considered possible diagnostic and prognostic markers in EC. They were good markers of P53 mutation, and higher tumor grades and stages.
Collapse
Affiliation(s)
| | - Samia Hussein
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Egypt
| | | | - Hend Sameh
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Egypt
| | | | - Huda F Ebian
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | | | - Rana Nabil Attia
- Obstetrics and Gynaecology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Reham Sameh
- Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
9
|
Anvari S, Nikbakht M, Vaezi M, Amini-Kafiabad S, Ahmadvand M. Immune checkpoints and ncRNAs: pioneering immunotherapy approaches for hematological malignancies. Cancer Cell Int 2024; 24:410. [PMID: 39702293 DOI: 10.1186/s12935-024-03596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
Hematological malignancies are typically treated with chemotherapy and radiotherapy as the first-line conventional therapies. However, non-coding RNAs (ncRNAs) are a rapidly expanding field of study in cancer biology that influences the growth, differentiation, and proliferation of tumors by targeting immunological checkpoints. This study reviews the results of studies (from 2012 to 2024) that consider the immune checkpoints and ncRNAs in relation to hematological malignancies receiving immunotherapy. This article provides a summary of the latest advancements in immunotherapy for treating hematological malignancies, focusing on the role of immune checkpoints and ncRNAs in the immune response and their capacity for innovative strategies. The paper also discusses the function of immune checkpoints in maintaining immune homeostasis and how their dysregulation can contribute to developing leukemia and lymphoma. Finally, this research concludes with a discussion on the obstacles and future directions in this rapidly evolving field, emphasizing the need for continued research to fully harness the capacity of immune checkpoints and ncRNAs in immunotherapy for hematological malignancies.
Collapse
Affiliation(s)
- Samira Anvari
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Mohsen Nikbakht
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Vaezi
- Hematology, Oncology, and Stem Cell Transplantation Research Center Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Sedigheh Amini-Kafiabad
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.
| | - Mohammad Ahmadvand
- Cell Therapy and Hematopoietic Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ahuja S, Zaheer S. The evolution of cancer immunotherapy: a comprehensive review of its history and current perspectives. KOREAN JOURNAL OF CLINICAL ONCOLOGY 2024; 20:51-73. [PMID: 39778508 PMCID: PMC11717579 DOI: 10.14216/kjco.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/24/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025]
Abstract
Cancer immunotherapy uses the body's immune system to combat cancer, marking a significant advancement in treatment. This review traces its evolution from the late 19th century to its current status. It began with William Coley's pioneering work using bacterial toxins to stimulate the immune system against cancer cells, establishing the foundational concept of immunotherapy. In the mid-20th century, cytokine therapies like interferons and interleukins emerged, demonstrating that altering the immune response could reduce tumors and highlighting the complex interplay between cancer and the immune system. The discovery of immune checkpoints, regulatory pathways that prevent autoimmunity but are exploited by cancer cells to evade detection, was a pivotal development. Another major breakthrough is CAR-T cell therapy, which involves modifying a patient's T cells to target cancer-specific antigens. This personalized treatment has shown remarkable success in certain blood cancers. Additionally, cancer vaccines aim to trigger immune responses against tumor-specific or associated antigens, and while challenging, ongoing research is improving their efficacy. The historical progression of cancer immunotherapy, from Coley's toxins to modern innovations like checkpoint inhibitors and CAR-T cell therapy, underscores its transformative impact on cancer treatment. As research delves deeper into the immune system's complexities, immunotherapy is poised to become even more crucial in oncology, offering renewed hope to patients globally.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Safdarjung Hospital, Vardhman Mahavir Medical College, New Delhi, India
| |
Collapse
|
11
|
Tzang CC, Lee YW, Lin WC, Lin LH, Kang YF, Lin TY, Wu WT, Chang KV. Evaluation of immune checkpoint inhibitors for colorectal cancer: A network meta‑analysis. Oncol Lett 2024; 28:569. [PMID: 39390977 PMCID: PMC11465421 DOI: 10.3892/ol.2024.14702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Colorectal cancer (CRC) is challenging to treat due to its high metastatic rate. Recent strategies have focused on combining immune checkpoint inhibitors (ICIs) with other treatments. The aim of the present study was to conduct a network meta-analysis of randomized controlled trials (RCTs) to assess the efficacy and adverse effects of different ICI treatments for CRC. A literature search for RCTs was conducted using PubMed, the Cochrane Library, Embase, ClinicalTrials.gov and Web of Science databases, covering the period from the inception of each database until April 2024. A total of 12 RCTs involving 2,050 participants were selected for inclusion in the analysis. The network meta-analysis employed the MetaInsight tool to assess multiple endpoints. The criteria for study selection were based on the Population, Intervention, Comparison, Outcome and Studies framework as follows: i) Population, patients with CRC; ii) intervention, studies using ICI to treat CRC; iii) comparison, active comparators, including placebo; iv) outcome, overall survival, progression-free survival, objective response rate and adverse events; and v) study design, RCTs. The results of the analysis revealed that programmed cell death-ligand 1 (PD-L1) inhibitors significantly improved overall survival time [mean difference (MD), 2.28 months; 95% confidence interval (CI), 0.44 to 4.11], while programmed cell death protein 1 (PD-1) inhibitors exhibited a superior progression-free survival time (MD, 4.79 months; 95% CI, 3.18 to 6.40) compared with active comparators. However, none of the ICI treatments had significant differences in odds ratios for the objective response rate and adverse events compared with active comparators. These findings indicate that treatment with PD-L1 and PD-1 inhibitors improved the overall survival time and delayed disease progression in patients with CRC. These findings offer valuable insights for future research aimed at improving CRC patient outcomes.
Collapse
Affiliation(s)
- Chih-Chen Tzang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Yen-Wei Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan, R.O.C
| | - Wei-Chen Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Long-Huei Lin
- School of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan, R.O.C
| | - Yuan-Fu Kang
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
| | - Ting-Yu Lin
- Department of Physical Medicine and Rehabilitation, Lo-Hsu Medical Foundation, Inc., Lotung Poh-Ai Hospital, Yilan 265, Taiwan, R.O.C
| | - Wei-Ting Wu
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan, R.O.C
| | - Ke-Vin Chang
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei 100, Taiwan, R.O.C
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei 108, Taiwan, R.O.C
- Center for Regional Anesthesia and Pain Medicine, Wang-Fang Hospital, Taipei Medical University, Taipei 116, Taiwan, R.O.C
| |
Collapse
|
12
|
Hamid O, Hamidi N. Enhancing immuno-oncology efficacy with H1-antihistamine in cancer therapy: a review of current research and findings. Curr Med Res Opin 2024; 40:2139-2146. [PMID: 39503414 DOI: 10.1080/03007995.2024.2427323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/11/2024]
Abstract
Cancer remains a major global cause of death, posing significant treatment challenges. The interactions between tumor cells and the tumor microenvironment (TME) are crucial in influencing tumor initiation, progression, metastasis, and treatment response. There has been significant research and clinical interest in targeting the TME as a therapeutic approach in cancer, with advancements being made through drug development. Histamine binds to HRH1 receptors on the TME, which inhibit CD8+ T cell activity, promote tumor growth, and contribute to resistance against immunotherapy. By inhibiting CD8+ T cells, the effectiveness of immunotherapies targeting these cells is reduced. By blocking the HRH1 pathway, H1-antihistamines can mitigate this suppression and enhance the response to immunotherapies that target CD8+ T cells. Therefore, understanding the role of histamine and its potential impact on T cells and the role of H1-antihistamines in improving immune-oncology (I/O) agents' efficacy ultimately could lead to more effective cancer therapies. The objective of this review is to examine the current literature to investigate the potential role of H1-antihistamines on the effectiveness of I/O drugs and their role in enhancing treatment against cancer. We conducted a comprehensive literature search, which included multiple databases including PubMed, Google Scholar, and EMBASE, as well as a search of oncology congresses. Our literature review initially identified thirty studies. Twenty-three of these were excluded for failing to meet inclusion criteria, which varied from study design to the type of antihistamines and patient populations involved. The clinical studies investigated the effect of different generations of H1-antihistamines in combination with I/O treatments on patients' outcomes. The findings from these studies indicated that patients using H1-antihistamines concomitantly with I/O agents experienced longer median overall survival (mOS), progression-free survival (mPFS), or improved survival compared to those who did not use antihistamines. Additionally, these trials differentiated between cationic and non-cationic H1-antihistamines, revealing that users of cationic antihistamines had overall better outcomes in terms of longer mOS and mPFS. The assessed trials were consistent in their comparisons of quantitative and qualitative, efficacy, and safety outcomes.
Collapse
Affiliation(s)
- Oday Hamid
- Department of Oncology, AstraZeneca/University of Michigan College of Pharmacy, Gaithersburg, MD, USA
| | - Negar Hamidi
- Department of Oncology, AstraZeneca/University of Maryland School of Pharmacy, Baltimore, MD, USA
| |
Collapse
|
13
|
Xiong D, Li Z, Zuo L, Ge J, Gu Y, Zhang E, Zhou X, Yu G, Sang M. Comprehensive Analysis Reveals That ISCA1 Is Correlated with Ferroptosis-Related Genes Across Cancers and Is a Biomarker in Thyroid Carcinoma. Genes (Basel) 2024; 15:1538. [PMID: 39766805 PMCID: PMC11675480 DOI: 10.3390/genes15121538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND ISCA1 (Iron-Sulfur Cluster Assembly 1) is involved in the assembly of iron-sulfur (Fe-S) clusters, which are vital for electron transport and enzyme activity. Some studies suggest the potential involvement of ISCA1 in tumor progression through interactions with ferroptosis-related genes (FRGs) and the tumor immune microenvironment (TME). However, there has been no systematic analysis of its role in FRGs and the TME or its predictive value for prognosis and immunotherapy response across different cancer types. METHODS In this study, we analyzed the expression and prognosis of ISCA1 RNA, CNV, methylation, and protein in multiple tumor tissues via data from the TCGA and CPTAC databases and clinical information. We conducted a comprehensive analysis of the correlations between ISCA1 and FRGs, immune-related genes (including immune regulatory genes and immune checkpoint genes), immune cell infiltration, immune infiltration scores, tumor stemness, and genomic heterogeneity. RESULTS We performed drug prediction and validation through molecular docking and molecular dynamics analysis to identify candidate drugs that could promote or inhibit ISCA1 RNA expression. Our findings revealed that ISCA1 could serve as a biomarker in thyroid carcinoma, play a role with different FRGs in various cell types, and mediate different ligand-receptor pathways for cell-cell communication. CONCLUSIONS Overall, our study highlights the potential of ISCA1 as a novel biomarker for predicting prognosis and immunotherapeutic efficacy in thyroid carcinoma and suggests its potential for developing novel antitumor drugs or improving immunotherapy.
Collapse
Affiliation(s)
- Dejun Xiong
- Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China; (D.X.); (Z.L.); (L.Z.); (J.G.); (Y.G.); (E.Z.); (X.Z.)
| | - Zhao Li
- Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China; (D.X.); (Z.L.); (L.Z.); (J.G.); (Y.G.); (E.Z.); (X.Z.)
| | - Ling Zuo
- Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China; (D.X.); (Z.L.); (L.Z.); (J.G.); (Y.G.); (E.Z.); (X.Z.)
| | - Juan Ge
- Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China; (D.X.); (Z.L.); (L.Z.); (J.G.); (Y.G.); (E.Z.); (X.Z.)
- Department of Respiratory Medicine, Affiliated Nantong Hospital of Shanghai University, Nantong 226011, China
| | - Yuhan Gu
- Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China; (D.X.); (Z.L.); (L.Z.); (J.G.); (Y.G.); (E.Z.); (X.Z.)
| | - Erhao Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China; (D.X.); (Z.L.); (L.Z.); (J.G.); (Y.G.); (E.Z.); (X.Z.)
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China; (D.X.); (Z.L.); (L.Z.); (J.G.); (Y.G.); (E.Z.); (X.Z.)
| | - Guiping Yu
- Department of Cardiothoracic Surgery, Jiangyin People’s Hospital Affiliated to Nantong University, Jiangyin 214499, China
| | - Mengmeng Sang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226019, China; (D.X.); (Z.L.); (L.Z.); (J.G.); (Y.G.); (E.Z.); (X.Z.)
| |
Collapse
|
14
|
Bhardwaj JS, Paliwal S, Singhvi G, Taliyan R. Immunological challenges and opportunities in glioblastoma multiforme: A comprehensive view from immune system lens. Life Sci 2024; 357:123089. [PMID: 39362586 DOI: 10.1016/j.lfs.2024.123089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Glioblastoma multiforme (GBM), also known as grade IV astrocytoma, is the most common and deadly brain tumour. It has a poor prognosis and a low survival rate. GBM cells' immunological escape mechanism helps them resist advanced multimodal therapy. In physiological homeostasis, brain astrocytes and microglia suppress infections and clear the potential pathogen from the system. However, in severe pathological conditions like cancer, the immune response fails to eliminate mutated and rapidly over-proliferating GBM cells. The malignant cells' interactions with immune cells and the neoplasm's immunosuppressive environment enable the avoidance and their clearance. Immunotherapy efficiently addresses these difficulties, as shown by sufficient evidence. This review discusses how GBM cells inhibit and elude the immune system. These include MHC molecule expression alteration and PD-L1 and CTLA-4 immune checkpoint overexpression. Without co-stimulation, these changes induce effector T-cell tolerance and anergy. The review also covers how MDSCs, TAMs, Herpes Virus Entry Mediators, and Human cytomegalovirus protein decrease the effector immune response against glioblastoma. The latter part discusses various therapies that are available in the market or under clinical trials which revolves around combating resistance against the available multimodal therapies. The recent trends indicate that there are various monoclonal antibodies and peptide-based vaccines that can be utilized to overcome the immune evasion technique harbored by GBM cells. A strategic development of Immunotherapy considering these hallmarks of immune evasion may help in designing a therapy that may prove to be effective in killing the GBM cells thereby, improving the overall survival of GBM-affected patients.
Collapse
Affiliation(s)
- Jayant Singh Bhardwaj
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Shivangi Paliwal
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Sciences, Pilani, Rajasthan 333031, India.
| |
Collapse
|
15
|
van Solinge TS, Oh J, Abels E, Koch P, Breakefield XO, Weissleder R, Broekman MLD. Probing the glioma micro-environment: Analysis using biopsy in combination with ultra-fast cyclic immunolabeling. Neoplasia 2024; 57:101051. [PMID: 39270598 PMCID: PMC11415813 DOI: 10.1016/j.neo.2024.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The interaction between gliomas and the immune system is poorly understood and thus hindering development of effective immunotherapies for glioma patients. The immune response is highly variable during tumor development, and affected by therapies such as surgery, radiation, and chemotherapy. Currently, analysis of these local changes is difficult due to poor accessibility of the tumor and high-morbidity of sampling. In this study, we developed a model for repeat-biopsy in mice to study these local immunological changes over time. Using fine needle biopsy we were able to safely and repeatedly collect cells from intracranial tumors in mice. Ultra-fast cycling technology (FAST) was used for multi-cycle immunofluorescence of retrieved cells, and provided insights in the changing immune response over time. The combination of these techniques can be utilized to study changes in the immune response in glioma or other intracranial diseases over time, and in response to treatment within the same animal.
Collapse
Affiliation(s)
- Thomas S van Solinge
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Erik Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Koch
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Marike L D Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, MA, USA; Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, The Hague, the Netherlands.
| |
Collapse
|
16
|
Speranza D, Santarpia M, Luppino F, Omero F, Maiorana E, Cavaleri M, Sapuppo E, Cianci V, Pugliese A, Racanelli V, Camerino GM, Rodolico C, Silvestris N. Immune checkpoint inhibitors and neurotoxicity: a focus on diagnosis and management for a multidisciplinary approach. Expert Opin Drug Saf 2024; 23:1405-1418. [PMID: 38819976 DOI: 10.1080/14740338.2024.2363471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION Although immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment, the consequential over activation of the immune system is often complicated by adverse events that can affect several organs and systems, including the nervous system. The precise pathophysiology underlying neurological irAEs (n-irAEs) is not completely known. Around 3.8% of patients receiving anti-CTLA-4 agents, 6.1% of patients receiving anti-PD-1/PD-L1, and 12% of patients receiving combination therapies have n-irAEs. Most n-irAEs are low-grade, while severe toxicities have rarely been reported. in this article, we performed an updated literature search on immuno-related neurotoxicity on main medical research database, from February 2017 to December 2023. AREAS COVERED We have also compared the latest national and international guidelines on n-irAEs management with each other in order to better define patient management. EXPERT OPINION A multidisciplinary approach appears necessary in the management of oncological patients during immunotherapy. Therefore, in order to better manage these toxicities, we believe that it is essential to collaborate with neurologists specialized in the diagnosis and treatment of n-irAEs, and that a global neurological assessment, both central and peripheral, is necessary before starting immunotherapy, with regular reassessment during treatment.
Collapse
Affiliation(s)
- Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Francesco Luppino
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Fausto Omero
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Enrica Maiorana
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Mariacarmela Cavaleri
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Elena Sapuppo
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Vincenzo Cianci
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Alessia Pugliese
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Department, Trento, Italy
| | | | - Carmelo Rodolico
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| |
Collapse
|
17
|
Huang Q, Zhu J. Regulatory T cell-based therapy in type 1 diabetes: Latest breakthroughs and evidence. Int Immunopharmacol 2024; 140:112724. [PMID: 39098233 DOI: 10.1016/j.intimp.2024.112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
Autoimmune diseases (ADs) are among the most significant health complications, with their incidence rising in recent years. Type 1 diabetes (T1D), an AD, targets the insulin-producing β cells in the pancreas, leading to chronic insulin deficiency in genetically susceptible individuals. Regulatory immune cells, particularly T-cells (Tregs), have been shown to play a crucial role in the pathogenesis of diabetes by modulating immune responses. In diabetic patients, Tregs often exhibit diminished effectiveness due to various factors, such as instability in forkhead box P3 (Foxp3) expression or abnormal production of the proinflammatory cytokine interferon-gamma (IFN-γ) by autoreactive T-cells. Consequently, Tregs represent a potential therapeutic target for diabetes treatment. Building on the successful clinical outcomes of chimeric antigen receptor (CAR) T-cell therapy in cancer treatment, particularly in leukemias, the concept of designing and utilizing CAR Tregs for ADs has emerged. This review summarizes the findings on Treg targeting in T1D and discusses the benefits and limitations of this treatment approach for patients suffering from T1D.
Collapse
Affiliation(s)
- Qiongxiao Huang
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China
| | - Jing Zhu
- Center for Reproductive Medicine, Department of Reproductive Endocrinology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
18
|
Oli AN, Adejumo SA, Rowaiye AB, Ogidigo JO, Hampton-Marcell J, Ibeanu GC. Tumour Immunotherapy and Applications of Immunological Products: A Review of Literature. J Immunol Res 2024; 2024:8481761. [PMID: 39483536 PMCID: PMC11527548 DOI: 10.1155/2024/8481761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant tumors, characterized by uncontrolled cell proliferation, are a leading global health challenge, responsible for over 9.7 million deaths in 2022, with new cases expected to rise to 35 million annually by 2050. Immunotherapy is preferred to other cancer therapies, offering precise targeting of malignant cells while simultaneously strengthening the immune system's complex responses. Advances in this novel field of science have been closely linked to a deeper knowledge of tumor biology, particularly the intricate interplay between tumor cells, the immune system, and the tumor microenvironment (TME), which are central to cancer progression and immune evasion. This review offers a comprehensive analysis of the molecular mechanisms that govern these interactions, emphasizing their critical role in the development of effective immunotherapeutic products. We critically evaluate the current immunotherapy approaches, including cancer vaccines, adoptive T cell therapies, and cytokine-based treatments, highlighting their efficacy and safety. We also explore the latest advancements in combination therapies, which synergistically integrate multiple immunotherapeutic strategies to overcome resistance and enhance therapeutic outcomes. This review offers key insights into the future of cancer immunotherapy with a focus on advancing more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 420211, Nigeria
| | - Samson Adedeji Adejumo
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Adekunle Babajide Rowaiye
- National Biotechnology Development Agency, Abuja 900211, Nigeria
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| | | | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
| | - Gordon C. Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| |
Collapse
|
19
|
Yang J, Ding Z, Yu Y, Liu J, Song S, Zheng Z, Yu H. Sequential Autologous CIK/NK Cells Combined with Chemotherapy to Induce Long-Term Tumor Control in Advanced Rectal Cancer: A Case Report. Cancer Manag Res 2024; 16:1425-1433. [PMID: 39430003 PMCID: PMC11490250 DOI: 10.2147/cmar.s482306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Objective Colorectal carcinoma (CRC) is the third most common malignancy. In addition to comprehensive cancer treatments, such as surgery, chemotherapy, and radiotherapy, the adoptive immune cell therapy (ACT) has played an increasingly important role in recent years, and the adaptive transfusion of autologous NK cells and CIK cells is a brand-new approach to cellular therapy for solid tumors. Case Presentation A 57-year-old man underwent a radical resection of microsatellite stable (MSS) rectal cancer with synchronous liver metastases. After surgery of the primary lesion surgery, he was treated with autologous CIK/NK cells combined with XELOX translational therapy. Each cycle can obtain over 10 × 109 CIK cells or over 6 × 109 NK cells combined chemotherapy of XELOX every 3 weeks. After 2 cycles of therapy, he achieved partial response (PR). He immediately underwent a hepatic metastasis resection. After surgery, the patient continued to receive autologous CIK/NK cells in combined with 4 cycles of XELOX. To date, he has achieved and maintained no evidence of disease (NED) for over 40 months. Conclusion This is a case of successful treatment of rectal cancer with liver metastasis using ACT in conjunction with first-line chemotherapy. The advantage of this treatment plan is that it has few side effects and achieves long-term control of tumor recurrence by improving the patient's immune function. However, its responsiveness and benefit rate still need further investigation.
Collapse
Affiliation(s)
- Ji Yang
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Zhenyu Ding
- Department of Clinical Oncology, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Ying Yu
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Junde Liu
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Shuang Song
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Zhendong Zheng
- Department of Clinical Oncology, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| | - Huiying Yu
- Basic Medicine Laboratory, General Hospital of Northern Theater Command, Shenyang, 110016, People’s Republic of China
| |
Collapse
|
20
|
Greenman M, Chang YE, McNamara B, Mutlu L, Santin AD. Unmet needs in cervical cancer - can biological therapies plug the gap? Expert Opin Biol Ther 2024; 24:995-1003. [PMID: 39311611 DOI: 10.1080/14712598.2024.2408754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/22/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Cervical cancer remains one of the most common gynecologic malignancies worldwide. A disproportionate burden of cases occurs in developing countries due to inadequate screening and treatment. Even among patients adequately treated, in the presence of locally advanced or recurrent disease, outcomes tend to be poor. The introduction of biologic therapy into treatment has increased overall survival; however, a considerable opportunity still exists to improve current standards in treatment. Biologics have shown antitumor activity in multiple tumor types and are actively being pursued for the management of cervical cancer. AREAS COVERED In this article, we will discuss the historical evolution of biologic therapy in cervical cancer including use of angiogenesis inhibitors, immune checkpoint inhibitors, antibody-drug conjugates, and vaccines. We will review how these therapies have been integrated into current treatment recommendations and discuss ongoing investigations intended to improve clinical outcomes. We also postulate on persistent gaps in care. EXPERT OPINION Biologic therapies have had a tremendous impact on our current approach to managing cervical cancer. We anticipate that significant more research and development will be committed to the continued investigation of biologics in cervical cancer in an effort to improve a historically difficult to treat malignancy.
Collapse
Affiliation(s)
- Michelle Greenman
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Yifan Emily Chang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Blair McNamara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Levent Mutlu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Hashemi Karoii D, Bavandi S, Djamali M, Abroudi AS. Exploring the interaction between immune cells in the prostate cancer microenvironment combining weighted correlation gene network analysis and single-cell sequencing: An integrated bioinformatics analysis. Discov Oncol 2024; 15:513. [PMID: 39349877 PMCID: PMC11442730 DOI: 10.1007/s12672-024-01399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND The rise of treatment resistance and variability across malignant profiles has made precision oncology an imperative in today's medical landscape. Prostate cancer is a prevalent form of cancer in males, characterized by significant diversity in both genomic and clinical characteristics. The tumor microenvironment consists of stroma, tumor cells, and various immune cells. The stromal components and tumor cells engage in mutual communication and facilitate the development of a low-oxygen and pro-cancer milieu by producing cytokines and activating pro-inflammatory signaling pathways. METHODS In order to discover new genes associated with tumor cells that interact and facilitate a hypoxic environment in prostate cancer, we conducted a cutting-edge bioinformatics investigation. This included analyzing high-throughput genomic datasets obtained from the cancer genome atlas (TCGA). RESULTS A combination of weighted gene co-expression network analysis and single-cell sequencing has identified nine dysregulated immune hub genes (AMACR, KCNN3, MME, EGFR, FLT1, GDF15, KDR, IGF1, and KRT7) that are believed to have significant involvement in the biological pathways involved with the advancement of prostate cancer enviriment. In the prostate cancer environment, we observed the overexpression of GDF15 and KRT7 genes, as well as the downregulation of other genes. Additionally, the cBioPortal platform was used to investigate the frequency of alterations in the genes and their effects on the survival of the patients. The Kaplan-Meier survival analysis indicated that the changes in the candidate genes were associated with a reduction in the overall survival of the patients. CONCLUSIONS In summary, the findings indicate that studying the genes and their genomic changes may be used to develop precise treatments for prostate cancer. This approach involves early detection and targeted therapy.
Collapse
Affiliation(s)
- Danial Hashemi Karoii
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sobhan Bavandi
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Melika Djamali
- Department of Biology, Faculty of Science, Tehran University, Tehran, Iran
| | - Ali Shakeri Abroudi
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
22
|
Hashemi M, Mohandesi Khosroshahi E, Tanha M, Khoushab S, Bizhanpour A, Azizi F, Mohammadzadeh M, Matinahmadi A, Khazaei Koohpar Z, Asadi S, Taheri H, Khorrami R, Ramezani Farani M, Rashidi M, Rezaei M, Fattah E, Taheriazam A, Entezari M. Targeting autophagy can synergize the efficacy of immune checkpoint inhibitors against therapeutic resistance: New promising strategy to reinvigorate cancer therapy. Heliyon 2024; 10:e37376. [PMID: 39309904 PMCID: PMC11415696 DOI: 10.1016/j.heliyon.2024.e37376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/29/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Immune checkpoints are a set of inhibitory and stimulatory molecules/mechanisms that affect the activity of immune cells to maintain the existing balance between pro- and anti-inflammatory signaling pathways and avoid the progression of autoimmune disorders. Tumor cells can employ these checkpoints to evade immune system. The discovery and development of immune checkpoint inhibitors (ICIs) was thereby a milestone in the area of immuno-oncology. ICIs stimulate anti-tumor immune responses primarily by disrupting co-inhibitory signaling mechanisms and accelerate immune-mediated killing of tumor cells. Despite the beneficial effects of ICIs, they sometimes encounter some degrees of therapeutic resistance, and thereby do not effectively act against tumors. Among multiple combination therapies have been introduced to date, targeting autophagy, as a cellular degradative process to remove expired organelles and subcellular constituents, has represented with potential capacities to overcome ICI-related therapy resistance. It has experimentally been illuminated that autophagy induction blocks the immune checkpoint molecules when administered in conjugation with ICIs, suggesting that autophagy activation may restrict therapeutic challenges that ICIs have encountered with. However, the autophagy flux can also provoke the immune escape of tumors, which must be considered. Since the conventional FDA-approved ICIs have designed and developed to target programmed cell death receptor/ligand 1 (PD-1/PD-L1) as well as cytotoxic T lymphocyte-associated molecule 4 (CTLA-4) immune checkpoint molecules, we aim to review the effects of autophagy targeting in combination with anti-PD-1/PD-L1- and anti-CTLA-4-based ICIs on cancer therapeutic resistance and tumor immune evasion.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Tanha
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anahita Bizhanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farnaz Azizi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Mohammadzadeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hengameh Taheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Marzieh Ramezani Farani
- Department of Biological Sciences and Bioengineering, Nano Bio High-Tech Materials Research Center, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Rezaei
- Health Research Center, Chamran Hospital, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
23
|
Yadav R, Khatkar R, Yap KCH, Kang CYH, Lyu J, Singh RK, Mandal S, Mohanta A, Lam HY, Okina E, Kumar RR, Uttam V, Sharma U, Jain M, Prakash H, Tuli HS, Kumar AP, Jain A. The miRNA and PD-1/PD-L1 signaling axis: an arsenal of immunotherapeutic targets against lung cancer. Cell Death Discov 2024; 10:414. [PMID: 39343796 PMCID: PMC11439964 DOI: 10.1038/s41420-024-02182-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Lung cancer is a severe challenge to the health care system with intrinsic resistance to first and second-line chemo/radiotherapies. In view of the sterile environment of lung cancer, several immunotherapeutic drugs including nivolumab, pembrolizumab, atezolizumab, and durvalumab are currently being used in clinics globally with the intention of releasing exhausted T-cells back against refractory tumor cells. Immunotherapies have a limited response rate and may cause immune-related adverse events (irAEs) in some patients. Hence, a deeper understanding of regulating immune checkpoint interactions could significantly enhance lung cancer treatments. In this review, we explore the role of miRNAs in modulating immunogenic responses against tumors. We discuss various aspects of how manipulating these checkpoints can bias the immune system's response against lung cancer. Specifically, we examine how altering the miRNA profile can impact the activity of various immune checkpoint inhibitors, focusing on the PD-1/PD-L1 pathway within the complex landscape of lung cancer. We believe that a clear understanding of the host's miRNA profile can influence the efficacy of checkpoint inhibitors and significantly contribute to existing immunotherapies for lung cancer patients. Additionally, we discuss ongoing clinical trials involving immunotherapeutic drugs, both as standalone treatments and in combination with other therapies, intending to advance the development of immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Ritu Yadav
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Rinku Khatkar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Kenneth C-H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chloe Yun-Hui Kang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Juncheng Lyu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rahul Kumar Singh
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Surojit Mandal
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Adrija Mohanta
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rajiv Ranjan Kumar
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Uttam Sharma
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | | | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Aklank Jain
- Non-Coding RNA and Cancer Biology Laboratory, Department of Zoology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
24
|
Ryba-Stanisławowska M. Unraveling Th subsets: insights into their role in immune checkpoint inhibitor therapy. Cell Oncol (Dordr) 2024:10.1007/s13402-024-00992-0. [PMID: 39325360 DOI: 10.1007/s13402-024-00992-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
T helper (Th) cell subsets play pivotal roles in regulating immune responses within the tumor microenvironment, influencing both tumor progression and anti-tumor immunity. Among these subsets, Th1 cells promote cytotoxic responses through the production of IFN-γ, while Th2 cells and regulatory T cells (Tregs) exert immunosuppressive effects that support tumor growth. Th9 and Th17 cells have context-dependent roles, contributing to both pro-inflammatory and regulatory processes in tumor immunity. Tumor antigen-specific T cells within the tumor microenvironment often exhibit a dysfunctional phenotype due to increased expression of inhibitory receptors such as CTLA-4 and PD-1, leading to reduced antitumor activity. Monoclonal antibodies that block these inhibitory signals-collectively known as immune checkpoint inhibitors (ICIs)-can reactivate these T cells, enhancing their ability to target and destroy cancer cells. Recent advancements have highlighted the critical role of T helper subsets in modulating responses to ICIs, with their interactions remaining a focus of ongoing research. Both positive and negative effects of ICIs have been reported in relation to Th cell subsets, with some effects depending on the type of tumor microenvironment. This review summarizes the crucial roles of different T helper cell subsets in tumor immunity and their complex relationship with immune checkpoint inhibitor therapy.
Collapse
Affiliation(s)
- Monika Ryba-Stanisławowska
- Department of Medical Immunology, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, Gdańsk, 80-211, Poland.
| |
Collapse
|
25
|
Nader NE, Frederico SC, Miller T, Huq S, Zhang X, Kohanbash G, Hadjipanayis CG. Barriers to T Cell Functionality in the Glioblastoma Microenvironment. Cancers (Basel) 2024; 16:3273. [PMID: 39409893 PMCID: PMC11476085 DOI: 10.3390/cancers16193273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor depicted by a cold tumor microenvironment, low immunogenicity, and limited effective therapeutic interventions. Its location in the brain, a highly immune-selective organ, acts as a barrier, limiting immune access and promoting GBM dissemination, despite therapeutic interventions. Currently, chemotherapy and radiation combined with surgical resection are the standard of care for GBM treatment. Although immune checkpoint blockade has revolutionized the treatment of solid tumors, its observed success in extracranial tumors has not translated into a significant survival benefit for GBM patients. To develop effective immunotherapies for GBM, it is vital to tailor treatments to overcome the numerous immunosuppressive barriers that inhibit T cell responses to these tumors. In this review, we address the unique physical and immunological barriers that make GBM challenging to treat. Additionally, we explore potential therapeutic mechanisms, studied in central nervous system (CNS) and non-CNS cancers, that may overcome these barriers. Furthermore, we examine current and promising immunotherapy clinical trials and immunotherapeutic interventions for GBM. By highlighting the array of challenges T cell-based therapies face in GBM, we hope this review can guide investigators as they develop future immunotherapies for this highly aggressive malignancy.
Collapse
Affiliation(s)
- Noor E. Nader
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Tracy Miller
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA; (N.E.N.); (S.C.F.); (T.M.)
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Xiaoran Zhang
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | - Gary Kohanbash
- Sloan Kettering Memorial Cancer Center, New York, NY 10065, USA;
| | | |
Collapse
|
26
|
Pascal W, Gotowiec M, Smoliński A, Suchecki M, Kopka M, Pascal AM, Włodarski PK. Biologic Brachytherapy: Genetically Modified Surgical Flap as a Therapeutic Tool-A Systematic Review of Animal Studies. Int J Mol Sci 2024; 25:10330. [PMID: 39408659 PMCID: PMC11476562 DOI: 10.3390/ijms251910330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Surgical flaps are rudimentary tools in reconstructive surgery, especially following extensive solid tumour resections. They cover skin and soft tissue defects but are prone to ischaemia and necrosis. Since their primary aim is reconstruction, they rarely exhibit a therapeutic activity against the treated disease. Attempts have been made to develop a new therapeutic strategy-biologic brachytherapy, which uses genetically engineered surgical flaps as a drug delivery vehicle, allowing the flap tissue to act as a "biologic pump". This systematic review summarizes the preclinical evidence on using genetically modified surgical flaps. A literature search was conducted in PubMed, EMBASE, Scopus and Web of Science. The initial literature search yielded 714 papers, and, eventually, seventy-seven studies were included in qualitative analysis. The results show that genetic enhancement of flaps has been used as a local or systemic therapy for numerous disease models. Frequently, it has been used to increase flap survival and limit ischaemia or promote flap survival in a non-ischemic context, with some studies focusing on optimizing the technique of such gene therapy. The results show that genetically modified flaps can be successfully used in a variety of contexts, but we need more studies to implement this research into specific clinical scenarios.
Collapse
Affiliation(s)
- Wiktor Pascal
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Mateusz Gotowiec
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Antoni Smoliński
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Michał Suchecki
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Michał Kopka
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
- Doctoral School, Medical University of Warsaw, 81 Żwirki i Wigury Street, 02-091 Warsaw, Poland
| | - Adriana M. Pascal
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 1b Banacha Street, 02-091 Warsaw, Poland; (M.G.); (A.S.); (M.S.); (M.K.); (A.M.P.); (P.K.W.)
| |
Collapse
|
27
|
Ghosh S, Dutta R, Ghatak D, Goswami D, De R. Immunometabolic characteristics of Dendritic Cells and its significant modulation by mitochondria-associated signaling in the tumor microenvironment influence cancer progression. Biochem Biophys Res Commun 2024; 726:150268. [PMID: 38909531 DOI: 10.1016/j.bbrc.2024.150268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/27/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Dendritic cells (DCs) mediated T-cell responses is critical to anti-tumor immunity. This study explores immunometabolic attributes of DC, emphasizing on mitochondrial association, in Tumor Microenvironment (TME) that regulate cancer progression. Conventional DC subtypes cross-present tumor-associated antigens to activate lymphocytes. However, plasmacytoid DCs participate in both pro- and anti-tumor signaling where mitochondrial reactive oxygen species (mtROS) play crucial role. CTLA-4, CD-47 and other surface-receptors of DC negatively regulates T-cell. Increased glycolysis-mediated mitochondrial citrate buildup and translocation to cytosol with augmented NADPH, enhances mitochondrial fatty acid synthesis fueling DCs. Different DC subtypes and stages, exhibit variable mitochondrial content, membrane potential, structural dynamics and bioenergetic metabolism regulated by various cytokine stimulation, e.g., GM-CSF, IL-4, etc. CD8α+ cDC1s augmented oxidative phosphorylation (OXPHOS) which diminishes at advance effector stages. Glutaminolysis in mitochondria supplement energy in DCs but production of kynurenine and other oncometabolites leads to immunosuppression. Mitochondria-associated DAMPs cause activation of cGAS-STING pathway and inflammasome oligomerization stimulating DC and T cells. In this study, through a comprehensive survey and critical analysis of the latest literature, the potential of DC metabolism for more effective tumor therapy is highlighted. This underscores the need for future research to explore specific therapeutic targets and potential drug candidates.
Collapse
Affiliation(s)
- Sayak Ghosh
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rittick Dutta
- Swami Vivekananda University, Kolkata, 700121, West Bengal, India
| | - Debapriya Ghatak
- Indian Association for the Cultivation of Science, Jadavpur, Kolkata, 700032, West Bengal, India
| | - Devyani Goswami
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India
| | - Rudranil De
- Amity Institute of Biotechnology, Amity University Kolkata, Plot No: 36, 37 & 38, Major Arterial Road, Action Area II, Kadampukur Village, Newtown, Kolkata, 700135, West Bengal, India.
| |
Collapse
|
28
|
Wu Y, Liang X, Sun Y, Ning J, Dai Y, Jin S, Xu Y, Chen S, Pan L. A general pHLA-CD80 scaffold fusion protein to promote efficient antigen-specific T cell-based immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200827. [PMID: 39027379 PMCID: PMC11255371 DOI: 10.1016/j.omton.2024.200827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/23/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Inadequate antigen-specific T cells activation hampers immunotherapy due to complex antigen presentation. In addition, therapeutic in vivo T cell expansion is constrained by slow expansion rates and limited functionality. Herein, we introduce a model fusion protein termed antigen-presenting cell-mimic fusion protein (APC-mimic), designed to greatly mimicking the natural antigen presentation pattern of antigen-presenting cells and directly expand T cells both in vitro and in vivo. The APC-mimic comprises the cognate peptide-human leukocyte antigen (pHLA) complex and the co-stimulatory marker CD80, which are natural ligands on APCs. Following a single stimulation, APC-mimic leads to an approximately 400-fold increase in the polyclonal expansion of antigen-specific T cells compared with the untreated group in vitro without the requirement for specialized antigen-presenting cells. Through the combination of single-cell TCR sequencing (scTCR-seq) and single-cell RNA sequencing (scRNA-seq), we identify an approximately 600-fold monoclonal expansion clonotype among these polyclonal clonotypes. It also exhibits suitability for in vivo applications confirmed in the OT-1 mouse model. Furthermore, T cells expanded by APC-mimic effectively inhibits tumor growth in adoptive cell transfer (ACT) murine models. These findings pave the way for the versatile APC-mimic platform for personalized therapeutics, enabling direct expansion of polyfunctional antigen-specific T cell subsets in vitro and in vivo.
Collapse
Affiliation(s)
- Yue Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Liang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanping Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiangtao Ning
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yukun Dai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shijie Jin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuqing Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Precision Medicine on Tumor Therapeutics, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Liqiang Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
29
|
Saad EE, Michel R, Borahay MA. Cholesterol and Immune Microenvironment: Path Towards Tumorigenesis. Curr Nutr Rep 2024; 13:557-565. [PMID: 38696074 DOI: 10.1007/s13668-024-00542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE OF REVIEW Since obesity is a major risk factor for many different types of cancer, examining one of the most closely associated comorbidities, such as hypercholesterolemia, is crucial to understanding how obesity causes cancer. Hypercholesterolemia is usually associated with many cardiovascular complications such as hypertension, angina, and atherosclerosis. In addition, cholesterol may be a major factor in increasing cancer risk. Cancer patients who received statins, an anti-hypercholesteremic medicine, demonstrated improved prognosis possibly through its effect on tumor proliferation, apoptosis, and oxidative stress. Cholesterol could also aid in tumor progression through reprogramming tumor immunological architecture and mediators. This review focuses on the immunomodulatory role of cholesterol on cellular and molecular levels, which may explain its oncogenic driving activity. We look at how cholesterol modulates tumor immune cells like dendritic cells, T cells, Tregs, and neutrophils. Further, this study sheds light on the modification of the expression pattern of the common cancer-related immune mediators in the tumor immune microenvironment, such as programmed cell death 1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), transforming growth factor-beta (TGF-β), interleukin 12 (IL-12), IL-23, and forkhead box protein P3 (FOXP3). RECENT FINDINGS We highlight relevant literature demonstrating cholesterol's immunosuppressive role, leading to a worse cancer prognosis. This review invites further research regarding the pathobiological role of cholesterol in many obesity-related cancers such as uterine fibroids, post-menopausal breast, colorectal, endometrial, kidney, esophageal, pancreatic, liver, and gallbladder cancers. This review suggests that targeting cholesterol synthesis may be a fruitful approach to cancer targeting, in addition to traditional chemotherapeutics.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Ranawat P, Sharma B, Singh P, Kaur T. Exploring Cancer Immunotherapy and the Promise of Cancer Vaccine. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2024:265-310. [DOI: 10.4018/979-8-3693-3976-3.ch008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The goal of immunotherapy is to enhance the immune system by managing the immunological-mediated microenvironment, which makes it possible for immune cells to locate and destroy tumour cells at vital nodes. In the tumor microenvironment, immune responses against tumour cells are reduced when these cells take up immune-regulatory mechanisms. An environment that suppresses the immune system is facilitated by immune cells, including regulatory T cells, regulatory B cells, dendritic cells, and myeloid-derived suppressor cells. In a number of cancer types, adoptive immune cells and immune checkpoint modulators have shown impressive anticancer benefits. Tumour growth is facilitated in large part by immune cells found in the tumour microenvironment (TME). Tumour growth may be stimulated or inhibited by these cells. The ability of the immune system to elude detection by cancer cells offers new possibilities for innovative cancer treatment strategies.
Collapse
|
31
|
Bhattacharya S, Paraskar G, Jha M, Gupta GL, Prajapati BG. Deciphering Regulatory T-Cell Dynamics in Cancer Immunotherapy: Mechanisms, Implications, and Therapeutic Innovations. ACS Pharmacol Transl Sci 2024; 7:2215-2236. [PMID: 39144553 PMCID: PMC11320738 DOI: 10.1021/acsptsci.4c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024]
Abstract
This Review explores how tumor-associated regulatory cells (Tregs) affect cancer immunotherapy. It shows how Tregs play a role in keeping the immune system in check, how cancers grow, and how well immunotherapy work. Tregs use many ways to suppress the immune system, and these ways are affected by the tumor microenvironment (TME). New approaches to cancer therapy are showing promise, such as targeting Treg checkpoint receptors precisely and using Fc-engineered antibodies. It is important to tailor treatments to each patient's TME in order to provide personalized care. Understanding Treg biology is essential for creating effective cancer treatments and improving the long-term outcomes of immunotherapy.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Gaurav Paraskar
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Megha Jha
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Girdhari Lal Gupta
- School
of Pharmacy and Technology Management, SVKM’S
NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405, India
| | - Bhupendra G. Prajapati
- Shree.
S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat 384012, India
- Faculty
of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| |
Collapse
|
32
|
Yang Z, Zhang Z, Li L, Jing Z, Ma Y, Lan T, Li Y, Lin Z, Fang W, Zhang J, Zhang J, Liang X, Wu B, Zheng Y, Zhang X. Bioengineered Artificial Extracellular Vesicles Presenting PD-L1 and Gal-9 Ameliorate New-Onset Type 1 Diabetes. Diabetes 2024; 73:1325-1335. [PMID: 38771941 DOI: 10.2337/db23-0987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
An important factor in the development of type 1 diabetes (T1D) is the deficiency of inhibitory immune checkpoint ligands, specifically programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9), in β-cells. Therefore, modulation of pancreas-infiltrated T lymphocytes by exogenous PD-L1 or Gal-9 is an ideal approach for treating new-onset T1D. We genetically engineered macrophage cells to generate artificial extracellular vesicles (aEVs) overexpressing PD-L1 and Gal-9, which could restrict islet autoreactive T lymphocytes and protect β-cells from destruction. Intriguingly, overexpression of Gal-9 stimulated macrophage polarization to the M2 phenotype with immunosuppressive attributes. Alternatively, both PD-L1- and Gal-9-presenting aEVs (PD-L1-Gal-9 aEVs) favorably adhered to T cells via the interaction of programmed cell death protein 1/PD-L1 or T-cell immunoglobulin mucin 3/Gal-9. Moreover, PD-L1-Gal-9 aEVs prominently promoted effector T-cell apoptosis and splenic regulatory T (Treg) cell formation in vitro. Notably, PD-L1-Gal-9 aEVs efficaciously reversed new-onset hyperglycemia in NOD mice, prevented T1D progression, and decreased the proportion and activation of CD4+ and CD8+ T cells infiltrating the pancreas, which together contributed to the preservation of residual β-cell survival and mitigation of hyperglycemia. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Zhaoxin Yang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhirang Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Liyan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhangyan Jing
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yumeng Ma
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tianyu Lan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Yuan Li
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zhongda Lin
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wenli Fang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinxie Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jinling Zhang
- Department of Gynaecology, Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, China
| | - Benqing Wu
- Center for Medical Experiments (CME), Benqing Laboratory, Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Yi Zheng
- Center for Medical Experiments (CME), Benqing Laboratory, Guangming District People's Hospital, Shenzhen, Guangdong, China
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China
| |
Collapse
|
33
|
Abdelazeem KN, Nguyen D, Corbo S, Darragh LB, Matsumoto MW, Court BV, Neupert B, Yu J, Olimpo NA, Osborne DG, Gadwa J, Ross RB, Nguyen A, Bhatia S, Kapoor M, Friedman RS, Jacobelli J, Saviola AJ, Knitz MW, Pasquale EB, Karam SD. Manipulating the EphB4-ephrinB2 axis to reduce metastasis in HNSCC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.21.604518. [PMID: 39091728 PMCID: PMC11291065 DOI: 10.1101/2024.07.21.604518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The EphB4-ephrinB2 signaling axis has been heavily implicated in metastasis across numerous cancer types. Our emerging understanding of the dichotomous roles that EphB4 and ephrinB2 play in head and neck squamous cell carcinoma (HNSCC) poses a significant challenge to rational drug design. We find that EphB4 knockdown in cancer cells enhances metastasis in preclinical HNSCC models by augmenting immunosuppressive cells like T regulatory cells (Tregs) within the tumor microenvironment. EphB4 inhibition in cancer cells also amplifies their ability to metastasize through increased expression of genes associated with epithelial mesenchymal transition and hallmark pathways of metastasis. In contrast, vascular ephrinB2 knockout coupled with radiation therapy (RT) enhances anti-tumor immunity, reduces Treg accumulation into the tumor, and decreases metastasis. Notably, targeting the EphB4-ephrinB2 signaling axis with the engineered EphB4 ligands EFNB2-Fc-His and Fc-TNYL-RAW-GS reduces local tumor growth and distant metastasis in a preclinical model of HNSCC. Our data suggest that targeted inhibition of vascular ephrinB2 while avoiding inhibition of EphB4 in cancer cells could be a promising strategy to mitigate HNSCC metastasis.
Collapse
Affiliation(s)
- Khalid N.M. Abdelazeem
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Diemmy Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Sophia Corbo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Laurel B. Darragh
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mike W. Matsumoto
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Benjamin Van Court
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Brooke Neupert
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Justin Yu
- Department of Otolaryngology - Head and Neck Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas A. Olimpo
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Douglas Grant Osborne
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jacob Gadwa
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard B. Ross
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander Nguyen
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Shilpa Bhatia
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Mohit Kapoor
- Krembil Research Institute, University Health Network, and University of Toronto, Toronto, Ontario, Canada
| | - Rachel S. Friedman
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Barbara Davis Research Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony J. Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Center, Aurora, CO, USA
| | - Michael W. Knitz
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Elena B. Pasquale
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
34
|
Mardi A, Alizadeh M, Abdolalizadeh AS, Baghbanzadeh A, Baradaran B, Aghebaqti-Maleki A, Sandoghchian Shotorbani S, Movloudi M, Aghebati-Maleki L. CTLA-4 silencing could promote anti-tumor effects in hepatocellular. Med Oncol 2024; 41:193. [PMID: 38955918 DOI: 10.1007/s12032-024-02361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 07/04/2024]
Abstract
Preclinical and clinical research showed that immune checkpoint blockade provides beneficial effects for many patients with liver cancer. This study aimed to assess the effect of CTLA-4-specific siRNA on the proliferation, cell cycle, migration, and apoptosis of HePG2 cells. Transfection of siRNA was performed by electroporation. The viability of cells was determined through MTT assay. Flow cytometry was performed to investigate the cell cycle and apoptosis rate, and the wound-healing assay was used to determine HepG2 cells migration. The expression levels of CTLA-4, c-Myc, Ki-67, BCL-2, BAX, caspase-9 (CAS9), and MMP-2,9,13 were measured by qRT-PCR. Transfection of specific CTLA-4-siRNA significantly inhibited the expression of the CTLA-4 gene. Also, our results revealed that CTLA-4 silencing diminished the proliferation and migration as well as induced the apoptosis of HePG2 cells. CTLA-4-siRNA transfection induced the cell cycle arrest in G2 phase. Moreover, CTLA-4-siRNA transfection reduced the expression levels of c-Myc, Ki-67, BCL-2, MMP-2,9,13, and elevated the expression levels of BAX and caspase-9. Our results suggest that silencing CTLA-4 through specific siRNA may be a promising strategy for future therapeutic interventions for treating liver cancer.
Collapse
Affiliation(s)
- Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mahsan Alizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Amir Shahabaddin Abdolalizadeh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Tabriz Medical Sciences, Islamic Azad University, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebaqti-Maleki
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Movloudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
35
|
Jama M, Tabana Y, Barakat KH. Targeting cytotoxic lymphocyte antigen 4 (CTLA-4) in breast cancer. Eur J Med Res 2024; 29:353. [PMID: 38956700 PMCID: PMC11218087 DOI: 10.1186/s40001-024-01901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Breast cancer (BC) has a high mortality rate and is one of the most common malignancies in the world. Initially, BC was considered non-immunogenic, but a paradigm shift occurred with the discovery of tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs) in the BC tumor microenvironment. CTLA-4 (Cytotoxic T-lymphocyte-associated protein 4) immunotherapy has emerged as a treatment option for BC, but it has limitations, including suboptimal antitumor effects and toxicity. Research has demonstrated that anti-CTLA-4 combination therapies, such as Treg depletion, cancer vaccines, and modulation of the gut microbiome, are significantly more effective than CTLA-4 monoclonal antibody (mAB) monotherapy. Second-generation CTLA-4 antibodies are currently being developed to mitigate immune-related adverse events (irAEs) and augment antitumor efficacy. This review examines anti-CTLA-4 mAB in BC, both as monotherapy and in combination with other treatments, and sheds light on ongoing clinical trials, novel CTLA-4 therapeutic strategies, and potential utility of biomarkers in BC.
Collapse
Affiliation(s)
- Maryam Jama
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Khaled H Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
36
|
López-Castro R, Fuentes-Martín Á, Medina del Valle A, García Peña T, Soro García J, López González L, Cilleruelo Ramos Á. Advances in Immunotherapy for Malignant Pleural Mesothelioma: From Emerging Strategies to Translational Insights. OPEN RESPIRATORY ARCHIVES 2024; 6:100323. [PMID: 38660145 PMCID: PMC11041830 DOI: 10.1016/j.opresp.2024.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/16/2024] [Indexed: 04/26/2024] Open
Abstract
MPM stands as a rare malignancy necessitating improved therapeutic strategies due to its limited treatment choices and unfavorable prognosis. The advent of immune checkpoint inhibitors has heralded a paradigm shift in the therapeutic landscape of MPM, offering promising avenues across diverse clinical scenarios. In the context of advanced stages of the disease, Immune check-point inhibitors targeting programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-as-sociated protein 4 (CTLA-4), have exhibited encouraging potential in clinical trials, particularly manifesting efficacy among patients exhibiting disease progression following chemotherapy regimens. Innovative combination regimens, exemplified by the concurrent administration of nivolumab and ipilimumab, have demonstrated marked improvement in survival and patient's benefits. A deeper comprehension of the intricate genetic underpinnings of MPM, encompassing key mutations such as cyclin-dependent kinase inhibitor 2A (CDKN2A), neurofibromin 2 (NF2), and BRCA1-associated protein 1 (BAP1) mutations, has elucidated novel avenues for targeted therapeutic interventions. This review accentuates the transformative capacity of immunotherapy in revolutionizing the therapeutic outlook for MPM, thereby potentially translating into augmented survival rates and offering glimpses of new approaches on the horizon. Despite the persisting challenges, the synergistic crossroads of interdisciplinary research and collaborative clinical endeavors portend a hopeful landscape for MPM treatment.
Collapse
Affiliation(s)
| | - Álvaro Fuentes-Martín
- Faculty of Medicine, University of Valladolid, Spain
- Thoracic Surgery Department, Hospital Clínico Universitario de Valladolid, Spain
| | | | - Tania García Peña
- Medical Oncology Department, Hospital Clínico Universitario de Valladolid, Spain
| | - José Soro García
- Thoracic Surgery Department, Hospital Clínico Universitario de Valladolid, Spain
| | | | - Ángel Cilleruelo Ramos
- Faculty of Medicine, University of Valladolid, Spain
- Thoracic Surgery Department, Hospital Clínico Universitario de Valladolid, Spain
| |
Collapse
|
37
|
Ramapriyan R, Vykunta VS, Vandecandelaere G, Richardson LGK, Sun J, Curry WT, Choi BD. Altered cancer metabolism and implications for next-generation CAR T-cell therapies. Pharmacol Ther 2024; 259:108667. [PMID: 38763321 DOI: 10.1016/j.pharmthera.2024.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.
Collapse
Affiliation(s)
- Rishab Ramapriyan
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Vivasvan S Vykunta
- Department of Pathology, University of California, San Francisco, San Francisco, CA 94143, USA; ImmunoX Initiative, University of California, San Francisco, San Francisco, CA 94143, USA; Medical Scientist Training Program, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Gust Vandecandelaere
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Leland G K Richardson
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Jing Sun
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
38
|
Miraki Feriz A, Khosrojerdi A, Erfanian N, Azarkar S, Sajjadi SM, Shojaei MJ, Vaferi MJ, Safarpour H, Racanelli V. Targeting the dynamic transcriptional landscape of Treg subpopulations in pancreatic ductal adenocarcinoma: Insights from single-cell RNA sequencing analysis with a focus on CTLA4 and TIGIT. Immunobiology 2024; 229:152822. [PMID: 38852289 DOI: 10.1016/j.imbio.2024.152822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/12/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that represents a significant challenge in cancer research and clinical management. In this study, we reanalyzed a published single-cell RNA sequencing (scRNA-seq) dataset from PDAC and adjacent tissues to investigate the heterogeneity of tumor and normal tissue, specifically focusing on the regulatory T cells (Tregs) and their interactions with other cells in the tumor microenvironment (TME). Treg cells were identified and clustered into natural Tregs (nTreg) and induced Tregs (iTreg) based on the expression of specific genes. It was found that the number of iTregs was higher in the tumor than in healthy tissues, while the number of n Tregs was higher in healthy tissues. Differential gene expression analysis was performed, and biological process analysis revealed that the Tregs in PDAC were mostly involved in protein targeting and translation pathways. In addition, ligand-receptor pairs between Tregs and other cell types were identified, and the critical communication pathways between Tregs and endothelial and ductal cells were revealed, which could potentially contribute to the immunosuppressive TME of PDAC. These findings provide insights into the role of Tregs in PDAC and their interactions with other cell types in the TME, highlighting potential targets for immunotherapy, such as the inhibitory immune checkpoint receptors CTLA4 and TIGIT, which are known to be expressed on Tregs and have been shown to play a role in suppressing anti-tumor immune responses.
Collapse
Affiliation(s)
- Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Nafiseh Erfanian
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Setareh Azarkar
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | | | - Mohammad Javad Vaferi
- Student Research Committee, Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | | | - Vito Racanelli
- Centre for Medical Sciences (CISMed), University of Trento and Internal Medicine Division, Santa Chiara Hospital, Provincial Health Care Agency (APSS), 38122, Trento, Italy.
| |
Collapse
|
39
|
Anurogo D, Luthfiana D, Anripa N, Fauziah AI, Soleha M, Rahmah L, Ratnawati H, Wargasetia TL, Pratiwi SE, Siregar RN, Sholichah RN, Maulana MS, Ikrar T, Chang YH, Qiu JT. The Art of Bioimmunogenomics (BIGs) 5.0 in CAR-T Cell Therapy for Lymphoma Management. Adv Pharm Bull 2024; 14:314-330. [PMID: 39206402 PMCID: PMC11347730 DOI: 10.34172/apb.2024.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 01/13/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Lymphoma, the most predominant neoplastic disorder, is divided into Hodgkin and Non-Hodgkin Lymphoma classifications. Immunotherapeutic modalities have emerged as essential methodologies in combating lymphoid malignancies. Chimeric Antigen Receptor (CAR) T cells exhibit promising responses in chemotherapy-resistant B-cell non-Hodgkin lymphoma cases. Methods This comprehensive review delineates the advancement of CAR-T cell therapy as an immunotherapeutic instrument, the selection of lymphoma antigens for CAR-T cell targeting, and the conceptualization, synthesis, and deployment of CAR-T cells. Furthermore, it encompasses the advantages and disadvantages of CAR-T cell therapy and the prospective horizons of CAR-T cells from a computational research perspective. In order to improve the design and functionality of artificial CARs, there is a need for TCR recognition investigation, followed by the implementation of a quality surveillance methodology. Results Various lymphoma antigens are amenable to CAR-T cell targeting, such as CD19, CD20, CD22, CD30, the kappa light chain, and ROR1. A notable merit of CAR-T cell therapy is the augmentation of the immune system's capacity to generate tumoricidal activity in patients exhibiting chemotherapy-resistant lymphoma. Nevertheless, it also introduces manufacturing impediments that are laborious, technologically demanding, and financially burdensome. Physical, physicochemical, and physiological limitations further exacerbate the challenge of treating solid neoplasms with CAR-T cells. Conclusion While the efficacy and safety of CAR-T cell immunotherapy remain subjects of fervent investigation, the promise of this cutting-edge technology offers valuable insights for the future evolution of lymphoma treatment management approaches. Moreover, CAR-T cell therapies potentially benefit patients, motivating regulatory bodies to foster international collaboration.
Collapse
Affiliation(s)
- Dito Anurogo
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Faculty of Medicine and Health Sciences, Muhammadiyah University of Makassar, Makassar, South Sulawesi, 90221, Indonesia
| | - Dewi Luthfiana
- Bioinformatics Research Center, Indonesian Institute of Bioinformatics (INBIO), Malang, East Java, 65162, Indonesia
| | - Nuralfin Anripa
- Department of Environmental Science, Dumoga University, Kotamobagu, South Sulawesi, 95711, Indonesia
- Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Apriliani Ismi Fauziah
- MSc Program in Tropical Medicine, Kaohsiung Medical University, Kaohsiung City, 807378, Taiwan
| | - Maratu Soleha
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
- IKIFA College of Health Sciences, East Jakarta, Special Capital Region of Jakarta, 13470, Indonesia
| | - Laila Rahmah
- Department of Digital Health, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran
- Faculty of Medicine, Muhammadiyah University of Surabaya, Surabaya, East Java, 60113, Indonesia
| | - Hana Ratnawati
- Faculty of Medicine, Maranatha Christian University, Bandung, West Java, 40164, Indonesia
| | | | - Sari Eka Pratiwi
- Department of Biology and Pathobiology, Faculty of Medicine, Tanjungpura University, Pontianak, West Kalimantan, 78115, Indonesia
| | - Riswal Nafi Siregar
- National Research and Innovation Agency (BRIN), Central Jakarta, 10340, Indonesia
| | - Ratis Nour Sholichah
- Department of Biotechnology, Postgraduate School of Gadjah Mada University, Yogyakarta, 55284, Indonesia
| | - Muhammad Sobri Maulana
- Community Health Center (Puskesmas) Temon 1, Kulon Progo, Special Region of Yogyakarta, 55654, Indonesia
| | - Taruna Ikrar
- Director of Members-at-Large, International Association of Medical Regulatory Authorities (IAMRA), Texas, 76039, USA
- Aivita Biomedical Inc., Irvine, California, 92612, USA
- Chairman of Medical Council, The Indonesian Medical Council (KKI), Central Jakarta, 10350, Indonesia
- Adjunct Professor, School of Military Medicine, The Republic of Indonesia Defense University (RIDU), Jakarta Pusat, 10440, Indonesia
- Department of Pharmacology, Faculty of Medicine, Malahayati University, Bandar Lampung, Lampung, 35152, Indonesia
| | - Yu Hsiang Chang
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Locus Cell Co., LTD., Xizhi Dist., New Taipei City, 221, Taiwan
| | - Jiantai Timothy Qiu
- International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| |
Collapse
|
40
|
De Stefano N, Patrono D, Colli F, Rizza G, Paraluppi G, Romagnoli R. Liver Transplantation for Hepatocellular Carcinoma in the Era of Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 16:2374. [PMID: 39001436 PMCID: PMC11240403 DOI: 10.3390/cancers16132374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains the leading oncological indication for liver transplantation (LT), with evolving and broadened inclusion criteria. Immune checkpoint inhibitors (ICIs) gained a central role in systemic HCC treatment and showed potential in the peri-transplant setting as downstaging/bridging therapy before LT or as a treatment for HCC recurrence following LT. However, the antagonistic mechanisms of action between ICIs and immunosuppressive drugs pose significant challenges, particularly regarding the risk of acute rejection (AR). This review analyzes the main signaling pathways targeted by ICI therapies and summarizes current studies on ICI therapy before and after LT. The literature on this topic is limited and highly heterogeneous, precluding definitive evidence-based conclusions. The use of ICIs before LT appears promising, provided that a sufficient wash-out period is implemented. In contrast, the results of post-LT ICI therapy do not support its wide clinical application due to high AR rates and overall poor response to treatment. In the future, modern graft preservation techniques might support the selection of good ICI responders, but data from high-level studies are urgently needed.
Collapse
Affiliation(s)
| | | | | | | | | | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, University of Torino, Corso Bramante 88-90, 10126 Torino, Italy; (N.D.S.); (D.P.); (F.C.); (G.R.); (G.P.)
| |
Collapse
|
41
|
van Solinge TS, Oh J, Abels E, Koch P, Breakefield XO, Weissleder R, Broekman MLD. Probing the glioma micro-environment: analysis using biopsy in combination with ultra-fast cyclic immunolabeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.15.599078. [PMID: 38948851 PMCID: PMC11212862 DOI: 10.1101/2024.06.15.599078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The interaction between gliomas and the immune system is poorly understood and thus hindering development of effective immunotherapies for glioma patients. The immune response is highly variable during tumor development, and affected by therapies such as surgery, radiation, and chemotherapy. Currently, analysis of these local changes is difficult due to poor accessibility of the tumor and high-morbidity of sampling. In this study, we developed a model for repeat-biopsy in mice to study these local immunological changes over time. Using fine needle biopsy we were able to safely and repeatedly collect cells from intracranial tumors in mice. Ultra-fast cycling technology (FAST) was used for multi-cycle immunofluorescence of retrieved cells, and provided insights in the changing immune response over time. The combination of these techniques can be utilized to study changes in the immune response in glioma or other intracranial diseases over time, and in response to treatment within the same animal.
Collapse
Affiliation(s)
- Thomas S van Solinge
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Juhyun Oh
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
- Center for Systems Biology, Massachusetts General Hospital, Boston , Massachusetts, USA
| | - Erik Abels
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Koch
- Center for Systems Biology, Massachusetts General Hospital, Boston , Massachusetts, USA
| | - Xandra O Breakefield
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston , Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Marike L D Broekman
- Departments of Neurology and Radiology, Massachusetts General Hospital, and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurosurgery, Haaglanden Medical Center, The Hague, The Netherlands
| |
Collapse
|
42
|
Tominaga K, Toda E, Takeuchi K, Takakuma S, Sakamoto E, Kuno H, Kajimoto Y, Terasaki Y, Kunugi S, Mii A, Sakai Y, Terasaki M, Shimizu A. Predominant CD8 + cell infiltration and low accumulation of regulatory T cells in immune checkpoint inhibitor-induced tubulointerstitial nephritis. Pathol Int 2024; 74:317-326. [PMID: 38634742 PMCID: PMC11551812 DOI: 10.1111/pin.13428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Immune checkpoint inhibitors (ICIs) can provide survival benefits to cancer patients; however, they sometimes result in the development of renal immune-related adverse events (irAEs). Tubulointerstitial nephritis (TIN) is the most representative pathological feature of renal irAEs. However, the clinicopathological entity and underlying pathogenesis of ICI-induced TIN are unclear. Therefore, we compared the clinical and histological features of this condition with those of non-ICI drug-induced TIN. Age and C-reactive protein levels were significantly higher in ICI-induced TIN, but there were no significant differences in renal function. Immunophenotyping of ICI-induced TIN showed massive T cell and macrophage infiltration with fewer B cells, plasma cells, neutrophils, and eosinophils. Compared with those in non-ICI drug-induced TIN, CD4+ cell numbers were significantly lower in ICI-induced TIN but CD8+ cell numbers were not significantly different. However, CD8/CD3 and CD8/CD4 ratios were higher in ICI-induced TIN. Moreover, CD25+ and FOXP3+ cells, namely regulatory T cells, were less abundant in ICI-induced TIN. In conclusion, T cell, B cell, plasma cell, neutrophil, and eosinophil numbers proved useful for differentiating ICI-induced and non-ICI drug-induced TIN. Furthermore, the predominant distribution of CD8+ cells and low accumulation of regulatory T cells might be associated with ICI-induced TIN development.
Collapse
Affiliation(s)
- Kenta Tominaga
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Etsuko Toda
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Kazuhiro Takeuchi
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Shoichiro Takakuma
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Emi Sakamoto
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Hideaki Kuno
- Division of Nephrology and HypertensionThe Jikei University School of MedicineMinato‐kuTokyoJapan
| | - Yusuke Kajimoto
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Yasuhiro Terasaki
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
- Division of PathologyNippon Medical School HospitalBunkyo‐kuTokyoJapan
| | - Shinobu Kunugi
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Akiko Mii
- Department of NephrologyNippon Medical School Musashi Kosugi HospitalKawasaki‐shiKanagawaJapan
| | - Yukinao Sakai
- Department of Endocrinology, Metabolism and NephrologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Mika Terasaki
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| | - Akira Shimizu
- Department of Analytic Human PathologyNippon Medical SchoolBunkyo‐kuTokyoJapan
| |
Collapse
|
43
|
Uehara M, Inoue T, Hase S, Sasaki E, Toyoda A, Sakakibara Y. Decoding host-microbiome interactions through co-expression network analysis within the non-human primate intestine. mSystems 2024; 9:e0140523. [PMID: 38557130 PMCID: PMC11097647 DOI: 10.1128/msystems.01405-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
The gut microbiome affects the health status of the host through complex interactions with the host's intestinal wall. These host-microbiome interactions may spatially vary along the physical and chemical environment of the intestine, but these changes remain unknown. This study investigated these intricate relationships through a gene co-expression network analysis based on dual transcriptome profiling of different intestinal sites-cecum, transverse colon, and rectum-of the primate common marmoset. We proposed a gene module extraction algorithm based on the graph theory to find tightly interacting gene modules of the host and the microbiome from a vast co-expression network. The 27 gene modules identified by this method, which include both host and microbiome genes, not only produced results consistent with previous studies regarding the host-microbiome relationships, but also provided new insights into microbiome genes acting as potential mediators in host-microbiome interplays. Specifically, we discovered associations between the host gene FBP1, a cancer marker, and polysaccharide degradation-related genes (pfkA and fucI) coded by Bacteroides vulgatus, as well as relationships between host B cell-specific genes (CD19, CD22, CD79B, and PTPN6) and a tryptophan synthesis gene (trpB) coded by Parabacteroides distasonis. Furthermore, our proposed module extraction algorithm surpassed existing approaches by successfully defining more functionally related gene modules, providing insights for understanding the complex relationship between the host and the microbiome.IMPORTANCEWe unveiled the intricate dynamics of the host-microbiome interactions along the colon by identifying closely interacting gene modules from a vast gene co-expression network, constructed based on simultaneous profiling of both host and microbiome transcriptomes. Our proposed gene module extraction algorithm, designed to interpret inter-species interactions, enabled the identification of functionally related gene modules encompassing both host and microbiome genes, which was challenging with conventional modularity maximization algorithms. Through these identified gene modules, we discerned previously unrecognized bacterial genes that potentially mediate in known relationships between host genes and specific bacterial species. Our findings underscore the spatial variations in host-microbiome interactions along the colon, rather than displaying a uniform pattern throughout the colon.
Collapse
Affiliation(s)
- Mika Uehara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Takashi Inoue
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
| | - Sumitaka Hase
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Kanagawa, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Atsushi Toyoda
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yasubumi Sakakibara
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, Japan
| |
Collapse
|
44
|
Zong Y, Deng K, Chong WP. Regulation of Treg cells by cytokine signaling and co-stimulatory molecules. Front Immunol 2024; 15:1387975. [PMID: 38807592 PMCID: PMC11131382 DOI: 10.3389/fimmu.2024.1387975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs), a vital component of the immune system, are responsible for maintaining immune homeostasis and preventing excessive immune responses. This review explores the signaling pathways of the cytokines that regulate Treg cells, including transforming growth factor beta (TGF-β), interleukin (IL)-2, IL-10, and IL-35, which foster the differentiation and enhance the immunosuppressive capabilities of Tregs. It also examines how, conversely, signals mediated by IL-6 and tumor necrosis factor -alpha (TNF-α) can undermine Treg suppressive functions or even drive their reprogramming into effector T cells. The B7 family comprises indispensable co-stimulators for T cell activation. Among its members, this review focuses on the capacity of CTLA-4 and PD-1 to regulate the differentiation, function, and survival of Tregs. As Tregs play an essential role in maintaining immune homeostasis, their dysfunction contributes to the pathogenesis of autoimmune diseases. This review delves into the potential of employing Treg-based immunotherapy for the treatment of autoimmune diseases, transplant rejection, and cancer. By shedding light on these topics, this article aims to enhance our understanding of the regulation of Tregs by cytokines and their therapeutic potential for various pathological conditions.
Collapse
Affiliation(s)
- Yuan Zong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kaihang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Wai Po Chong
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| |
Collapse
|
45
|
Sun A, Xing Z, Lv R, Niu P, Zhao B, Ma S, Li H. Research progress of immunotherapy for advanced head and neck cancer. Med Oncol 2024; 41:133. [PMID: 38703250 DOI: 10.1007/s12032-024-02375-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/28/2024] [Indexed: 05/06/2024]
Abstract
Head and neck cancer accounts for about one-fifth of all malignant tumors, and the incidence is increasing year by year. The overall mortality rate was high and the 5-year survival rate was low. At present, the combination of surgery, radiotherapy, and chemotherapy is the main treatment in clinical practice, but the treatment of recurrent or metastatic advanced head and neck cancer is still a challenge. With the rise of immunotherapy, more and more studies on immune checkpoint inhibitors have been conducted. This review summarizes the mechanism, clinical application and safety of immunotherapy for advanced head and neck cancer.
Collapse
Affiliation(s)
- Anchi Sun
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, 2600 Donghai Avenue, Bengbu, 233030, Anhui, China
| | - Zhiwei Xing
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Rongrong Lv
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Pengyuan Niu
- Department of Neurosurgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
| | - Bao Zhao
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230071, Anhui, China
| | - Shiyin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China.
| | - Hui Li
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233004, Anhui, China.
| |
Collapse
|
46
|
Werner W, Kuzminskaya M, Lurje I, Tacke F, Hammerich L. Overcoming Resistance to Immune Checkpoint Blockade in Liver Cancer with Combination Therapy: Stronger Together? Semin Liver Dis 2024; 44:159-179. [PMID: 38806159 PMCID: PMC11245330 DOI: 10.1055/a-2334-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Primary liver cancer, represented mainly by hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (CCA), is one of the most common and deadliest tumors worldwide. While surgical resection or liver transplantation are the best option in early disease stages, these tumors often present in advanced stages and systemic treatment is required to improve survival time. The emergence of immune checkpoint inhibitor (ICI) therapy has had a positive impact especially on the treatment of advanced cancers, thereby establishing immunotherapy as part of first-line treatment in HCC and CCA. Nevertheless, low response rates reflect on the usually cold or immunosuppressed tumor microenvironment of primary liver cancer. In this review, we aim to summarize mechanisms of resistance leading to tumor immune escape with a special focus on the composition of tumor microenvironment in both HCC and CCA, also reflecting on recent important developments in ICI combination therapy. Furthermore, we discuss how combination of ICIs with established primary liver cancer treatments (e.g. multikinase inhibitors and chemotherapy) as well as more complex combinations with state-of-the-art therapeutic concepts may reshape the tumor microenvironment, leading to higher response rates and long-lasting antitumor immunity for primary liver cancer patients.
Collapse
Affiliation(s)
- Wiebke Werner
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Maria Kuzminskaya
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Isabella Lurje
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| | - Linda Hammerich
- Department of Hepatology and Gastroenterology, Charité Universitaetsmedizin Berlin, Berlin, Germany
| |
Collapse
|
47
|
Sharma S, Kumar N, Rouse BT, Sharma K, Chaubey KK, Singh S, Kumar P, Kumar P. The role, relevance and management of immune exhaustion in bovine infectious diseases. Heliyon 2024; 10:e28663. [PMID: 38596123 PMCID: PMC11002068 DOI: 10.1016/j.heliyon.2024.e28663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024] Open
Abstract
Immune exhaustion is a state of immune cell dysfunction that occurs most commonly following chronic exposure to an antigen which persists after the immune response fails to remove it. Exhaustion has been studied most thoroughly with several cancers, but has also been observed in several chronic infectious diseases. The topic has mainly been studied with CD8+ T cells, but it can also occur with CD4+ T cells and other immune cell types too. Exhaustion is characterized by a hierarchical loss of effector cell functions, up-regulation of immuno-inhibitory receptors, disruption of metabolic activities, and altered chromatin landscapes. Exhaustion has received minimal attention so far in diseases of veterinary significance and this review's purpose is to describe examples where immune exhaustion is occurring in several bovine disease situations. We also describe methodology to evaluate immune exhaustion as well as the prospects of controlling exhaustion and achieving a more suitable outcome of therapy in some chronic disease scenarios.
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Naveen Kumar
- National Center for Veterinary Type Cultures, ICAR-NRC on Equines, Sirsa Road, Hisar, Haryana, 125001, India
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996-0845, USA
| | - Khushbu Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Kundan Kumar Chaubey
- Department of Biotechnology, School of Basic and Applied Sciences, Sanskriti University, Mathura, Uttar Pradesh, 281 401, India
| | - ShoorVir Singh
- Department of Bio-technology, GLA University, Post-Chaumuhan, Dist. Mathura, Uttar Pradesh, 281 406, India
| | - Praveen Kumar
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| | - Pradeep Kumar
- Department of Veterinary Medicine, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, 125004, Haryana, India
| |
Collapse
|
48
|
Grosu-Bularda A, Hodea FV, Zamfirescu D, Stoian A, Teodoreanu RN, Lascăr I, Hariga CS. Exploring Costimulatory Blockade-Based Immunologic Strategies in Transplantation: Are They a Promising Immunomodulatory Approach for Organ and Vascularized Composite Allotransplantation? J Pers Med 2024; 14:322. [PMID: 38541064 PMCID: PMC10971463 DOI: 10.3390/jpm14030322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 11/12/2024] Open
Abstract
The field of transplantation, including the specialized area of vascularized composite allotransplantation (VCA), has been transformed since the first hand transplant in 1998. The major challenge in VCA comes from the need for life-long immunosuppressive therapy due to its non-vital nature and a high rate of systemic complications. Ongoing research is focused on immunosuppressive therapeutic strategies to avoid toxicity and promote donor-specific tolerance. This includes studying the balance between tolerance and effector mechanisms in immune modulation, particularly the role of costimulatory signals in T lymphocyte activation. Costimulatory signals during T cell activation can have either stimulatory or inhibitory effects. Interfering with T cell activation through costimulation blockade strategies shows potential in avoiding rejection and prolonging the survival of transplanted organs. This review paper aims to summarize current data on the immunologic role of costimulatory blockade in the field of transplantation. It focuses on strategies that can be applied in vascularized composite allotransplantation, offering insights into novel methods for enhancing the success and safety of these procedures.
Collapse
Affiliation(s)
- Andreea Grosu-Bularda
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Florin-Vlad Hodea
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | | | | | - Răzvan Nicolae Teodoreanu
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Ioan Lascăr
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| | - Cristian Sorin Hariga
- Department 11, Discipline Plastic and Reconstructive Surgery, Bucharest Clinical Emergency Hospital, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (A.G.-B.); (R.N.T.); (I.L.); (C.S.H.)
- Clinic of Plastic Surgery, Aesthetic and Reconstructive Microsurgery, Emergency Clinical Hospital Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
49
|
Hu J, Ascierto P, Cesano A, Herrmann V, Marincola FM. Shifting the paradigm: engaging multicellular networks for cancer therapy. J Transl Med 2024; 22:270. [PMID: 38475820 PMCID: PMC10936124 DOI: 10.1186/s12967-024-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 03/14/2024] Open
Abstract
Most anti-cancer modalities are designed to directly kill cancer cells deploying mechanisms of action (MOAs) centered on the presence of a precise target on cancer cells. The efficacy of these approaches is limited because the rapidly evolving genetics of neoplasia swiftly circumvents the MOA generating therapy-resistant cancer cell clones. Other modalities engage endogenous anti-cancer mechanisms by activating the multi-cellular network (MCN) surrounding neoplastic cells in the tumor microenvironment (TME). These modalities hold a better chance of success because they activate numerous types of immune effector cells that deploy distinct cytotoxic MOAs. This in turn decreases the chance of developing treatment-resistance. Engagement of the MCN can be attained through activation of immune effector cells that in turn kill cancer cells or when direct cancer killing is complemented by the production of proinflammatory factors that secondarily recruit and activate immune effector cells. For instance, adoptive cell therapy (ACT) supplements cancer cell killing with the release of homeostatic and pro-inflammatory cytokines by the immune cells and damage associated molecular patterns (DAMPs) by dying cancer cells. The latter phenomenon, referred to as immunogenic cell death (ICD), results in an exponential escalation of anti-cancer MOAs at the tumor site. Other approaches can also induce exponential cancer killing by engaging the MCN of the TME through the release of DAMPs and additional pro-inflammatory factors by dying cancer cells. In this commentary, we will review the basic principles that support emerging paradigms likely to significantly improve the efficacy of anti-cancer therapy.
Collapse
Affiliation(s)
- Joyce Hu
- Sonata Therapeutics, Watertown, MA, 02472, USA.
| | - Paolo Ascierto
- Cancer Immunotherapy and Innovative Therapy, National Tumor Institute, Fondazione G. Pascale, 80131, Naples, Italy
| | | | | | | |
Collapse
|
50
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|