1
|
Eshghi S, Mousakhan Bakhtiari M, Behfar M, Izadi E, Naji P, Jafari L, Mohseni R, Saltanatpour Z, Hamidieh AA. Viral-based gene therapy clinical trials for immune deficiencies and blood disorders from 2013 until 2023 - an overview. Regen Ther 2025; 28:262-279. [PMID: 39844821 PMCID: PMC11751425 DOI: 10.1016/j.reth.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/16/2024] [Accepted: 12/04/2024] [Indexed: 01/24/2025] Open
Abstract
Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery. Generally, gene delivery systems are categorized into two types depending on utilized vectors: non-viral and viral. Viral vectors are commonly used in GT because of their high efficiency compared to non-viral vectors. In this article, all clinical trials on viral-based GT (with the exclusion of CRISPR and CAR-T cell Therapy) in the last decade for immune deficiencies and blood disorders including Severe combined immune deficiency (SCID), Wiskott-Aldrich syndrome (WAS), Chronic granulomatous disease (CGD), Leukocyte adhesion deficiency (LAD), Fanconi anemia (FA), Hemoglobinopathies, and Hemophilia will thoroughly be discussed. Moreover, viral vectors used in these trials including Retroviruses (RVs), Lentiviruses (LVs), and Adeno-Associated Viruses (AAVs) will be reviewed. This review provides a concise overview of traditional treatments for the mentioned disease and precise details of their viral-based GT clinical trial studies in the last decade, then presents the advantages, disadvantages, and potential adverse events of GT. In conclusion, this review presents GT as a hopeful and growing field in healthcare that could offer cures to diseases that were previously thought to be untreatable.
Collapse
Affiliation(s)
- Shirin Eshghi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Mahsa Mousakhan Bakhtiari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Elaheh Izadi
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Naji
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Leila Jafari
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Rashin Mohseni
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Liu N, Du J, Ge J, Liu SB. DNA damage-inducing endogenous and exogenous factors and research progress. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-33. [PMID: 39540885 DOI: 10.1080/15257770.2024.2428436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 10/20/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The substances that cause abnormal DNA structures are known as DNA damage-inducing factors, and their resulting DNA damage has been extensively studied and proven to be closely related to cancer, neurodegenerative diseases, and aging. Prolonged exposure to DNA damage-inducing factors can lead to a variety of difficult-to-treat diseases, yet these factors have not been well summarized. It is crucial to use a combination of environmental science and life science to gain a deep understanding of the environmental sources and biological consequences of DNA damage-inducing factors for mechanistic research and prevention of diseases such as cancer. This article selected 14 representative carcinogenic exogenous DNA damage-inducing factors and summarized them through a literature search, including both exogenous and endogenous DNA damage factors, and explored the types of DNA damage caused by the relevant damage factors.
Collapse
Affiliation(s)
- Nian Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Jiahui Du
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
| | - Jiani Ge
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Song-Bai Liu
- Suzhou Key Laboratory of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
3
|
Duarte NL, Bueno APS, Sanches BS, Ramos GA, Batista LA, de Abreu TF, Land MGP, Milito CB. Gallbladder Burkitt's Lymphoma: A Literature Review Including a Case Report in a Child Living with HIV. Infect Dis Rep 2024; 16:981-991. [PMID: 39452163 PMCID: PMC11507614 DOI: 10.3390/idr16050078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Malignant lymphoma is an unusual form of gallbladder neoplasm. Almost all these tumors are diffuse large B-cell lymphomas or mucosa-associated lymphoid tissue-type lymphomas. Herein, we present a literature review of gallbladder Burkitt's lymphoma (BL) cases that includes also an unpublished case in an HIV-infected child, observed by our center. The patient (a five-year-old black female child) attended the Federal Hospital of Lagoa, Rio de Janeiro, Brazil, underwent cholecystectomy, and the postoperative pathological analysis of the gallbladder revealed a diagnosis of BL (EBV-positive). Also, HIV serology was performed and returned positive. She was transferred to the Martagão Gesteira Institute of Pediatrics and Childcare for oncological treatment, dying from sepsis and disease progression about 18 months later. The patient did not undergo ART/cART. Previous cases of gallbladder BL were herein described and analyzed to characterize the clinicopathological features and possible similarities. BL can occur in the gallbladder both in the context of HIV infection and in the pediatric population. A biopsy is mandatory in cases with suggestive findings of lymphoma, and an early diagnosis can change the course of the disease. Furthermore, the case highlights the importance of an early initiation of ART/cART in people living with HIV (PLWH), especially in children.
Collapse
Affiliation(s)
- Nathalia Lopez Duarte
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941590, Rio de Janeiro, Brazil; (B.S.S.); (T.F.d.A.); (M.G.P.L.); (C.B.M.)
- Martagão Gesteira Institute of Pediatrics and Childcare (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941912, Rio de Janeiro, Brazil; (A.P.S.B.); (G.A.R.)
- Internal Medicine Department, Central Air Force Hospital (HCA), Rio de Janeiro 20261005, Rio de Janeiro, Brazil;
- National Institute of Science and Technology in Childhood Cancer Biology and Pediatric Oncology (INCT BioOncoPed), Porto Alegre 90035903, Rio Grande do Sul, Brazil
| | - Ana Paula Silva Bueno
- Martagão Gesteira Institute of Pediatrics and Childcare (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941912, Rio de Janeiro, Brazil; (A.P.S.B.); (G.A.R.)
- Pediatric Hematology Service, Martagão Gesteira Institute of Pediatrics and Childcare (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941912, Rio de Janeiro, Brazil
| | - Bárbara Sarni Sanches
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941590, Rio de Janeiro, Brazil; (B.S.S.); (T.F.d.A.); (M.G.P.L.); (C.B.M.)
- Martagão Gesteira Institute of Pediatrics and Childcare (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941912, Rio de Janeiro, Brazil; (A.P.S.B.); (G.A.R.)
- National Institute of Science and Technology in Childhood Cancer Biology and Pediatric Oncology (INCT BioOncoPed), Porto Alegre 90035903, Rio Grande do Sul, Brazil
| | - Gabriella Alves Ramos
- Martagão Gesteira Institute of Pediatrics and Childcare (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941912, Rio de Janeiro, Brazil; (A.P.S.B.); (G.A.R.)
| | - Layanara Albino Batista
- Internal Medicine Department, Central Air Force Hospital (HCA), Rio de Janeiro 20261005, Rio de Janeiro, Brazil;
| | - Thalita Fernandes de Abreu
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941590, Rio de Janeiro, Brazil; (B.S.S.); (T.F.d.A.); (M.G.P.L.); (C.B.M.)
- Martagão Gesteira Institute of Pediatrics and Childcare (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941912, Rio de Janeiro, Brazil; (A.P.S.B.); (G.A.R.)
- Infectious and Parasitic Diseases Service, Martagão Gesteira Institute of Pediatrics and Childcare (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941912, Rio de Janeiro, Brazil
| | - Marcelo Gerardin Poirot Land
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941590, Rio de Janeiro, Brazil; (B.S.S.); (T.F.d.A.); (M.G.P.L.); (C.B.M.)
- Martagão Gesteira Institute of Pediatrics and Childcare (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941912, Rio de Janeiro, Brazil; (A.P.S.B.); (G.A.R.)
- National Institute of Science and Technology in Childhood Cancer Biology and Pediatric Oncology (INCT BioOncoPed), Porto Alegre 90035903, Rio Grande do Sul, Brazil
- Pediatric Hematology Service, Martagão Gesteira Institute of Pediatrics and Childcare (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941912, Rio de Janeiro, Brazil
| | - Cristiane Bedran Milito
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941590, Rio de Janeiro, Brazil; (B.S.S.); (T.F.d.A.); (M.G.P.L.); (C.B.M.)
- Department of Pathology, Faculty of Medicine (FM), Clementino Fraga Filho University Hospital (HUCFF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941617, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Ge J, Meng Y, Guo J, Chen P, Wang J, Shi L, Wang D, Qu H, Wu P, Fan C, Zhang S, Liao Q, Zhou M, Xiang B, Wang F, Tan M, Gong Z, Xiong W, Zeng Z. Human papillomavirus-encoded circular RNA circE7 promotes immune evasion in head and neck squamous cell carcinoma. Nat Commun 2024; 15:8609. [PMID: 39366979 PMCID: PMC11452643 DOI: 10.1038/s41467-024-52981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Immune evasion represents a crucial milestone in the progression of cancer and serves as the theoretical foundation for tumor immunotherapy. In this study, we reveal a negative association between Human Papillomavirus (HPV)-encoded circular RNA, circE7, and the infiltration of CD8+ T cells in head and neck squamous cell carcinoma (HNSCC). Both in vitro and in vivo experiments demonstrate that circE7 suppresses the function and activity of T cells by downregulating the transcription of LGALS9, which encodes the galectin-9 protein. The molecular mechanism involves circE7 binding to acetyl-CoA carboxylase 1 (ACC1), promoting its dephosphorylation and thereby activating ACC1. Activated ACC1 reduces H3K27 acetylation at the LGALS9 gene promoter, leading to decreased galectin-9 expression. Notably, galectin-9 interacts with immune checkpoint molecules TIM-3 and PD-1, inhibiting the secretion of cytotoxic cytokines by T cells and promoting T cell apoptosis. Here, we demonstrate a mechanism by which HPV promotes immune evasion in HNSCC through a circE7-driven epigenetic modification and propose a potential immunotherapy strategy for HNSCC that involves the combined use of anti-PD-1 and anti-TIM-3 inhibitors.
Collapse
Affiliation(s)
- Junshang Ge
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yi Meng
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiayue Guo
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pan Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jie Wang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Hongke Qu
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Pan Wu
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Chunmei Fan
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Shanshan Zhang
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Fuyan Wang
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China
| | - Ming Tan
- Institute of Biochemistry & Molecular Biology and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medicine Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| |
Collapse
|
5
|
Hassan FS, El-Fakharany EM, El-Maradny YA, Saleh AK, El-Sayed MH, Mazi W, Omer N, Abdelaziz MA, Jame R, Alatawi IS, El-Gendi H. Comprehensive insight into exploring the potential of microbial enzymes in cancer therapy: Progress, challenges, and opportunities: A review. Int J Biol Macromol 2024; 277:134535. [PMID: 39111467 DOI: 10.1016/j.ijbiomac.2024.134535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/03/2024] [Accepted: 08/04/2024] [Indexed: 09/03/2024]
Abstract
Microbial enzymes are crucial catalysts in various industries due to their versatility and efficiency. The microbial enzymes market has recently expanded due to increased demand for many reasons. Among them are eco-friendly solutions, developing novel microbial strains with enhanced enzymes that perform under harsh conditions, providing sustainability, and raising awareness about the benefits of enzyme-based products. By 2030, the global enzyme market is expected to account for $525 billion, with a growth rate of 6.7 %. L-asparaginase and L-glutaminase are among the leading applied microbial enzymes in antitumor therapy, with a growing market share of 16.5 % and 9.5 %, respectively. The use of microbial enzymes has opened new opportunities to fight various tumors, including leukemia, lymphosarcoma, and breast cancer, which has increased their demand in the pharmaceutical and medicine sectors. Despite their promising applications, commercial use of microbial enzymes faces challenges such as short half-life, immunogenicity, toxicity, and other side effects. Therefore, this review explores the industrial production, purification, formulation, and commercial utilization of microbial enzymes, along with an overview of the global enzyme market. With ongoing discoveries of novel enzymes and their applications, enzyme technology offers promising avenues for cancer treatment and other therapeutic interventions.
Collapse
Affiliation(s)
- Fareed Shawky Hassan
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria, Egypt.
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Noha Omer
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Mahmoud A Abdelaziz
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Rasha Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Kingdom of Saudi Arabia
| | - Hamada El-Gendi
- Bioprocess development department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
6
|
Contreras A, Sánchez SA, Rodríguez-Medina C, Botero JE. The role and impact of viruses on cancer development. Periodontol 2000 2024; 96:170-184. [PMID: 38641954 DOI: 10.1111/prd.12566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 03/16/2024] [Indexed: 04/21/2024]
Abstract
This review focuses on three major aspects of oncoviruses' role in cancer development. To begin, we discuss their geographic distribution, revealing that seven oncoviruses cause 20% of all human cancers worldwide. Second, we investigate the primary carcinogenic mechanisms, looking at how these oncogenic viruses can induce cellular transformation, angiogenesis, and local and systemic inflammation. Finally, we investigate the possibility of SARS-CoV-2 infection reactivating latent oncoviruses, which could increase the risk of further disease. The development of oncovirus vaccines holds great promise for reducing cancer burden. Many unanswered questions about the host and environmental cofactors that contribute to cancer development and prevention remain, which ongoing research is attempting to address.
Collapse
Affiliation(s)
| | - Sandra Amaya Sánchez
- Advanced Periodontology Program, Escuela de Odontología, Universidad del Valle, Cali, Colombia
| | | | | |
Collapse
|
7
|
Ndeke JM, Klaunig JE, Commodore S. Nicotine or marijuana vaping exposure during pregnancy and altered immune responses in offspring. JOURNAL OF ENVIRONMENTAL EXPOSURE ASSESSMENT 2024; 3:10.20517/jeea.2024.03. [PMID: 38840831 PMCID: PMC11152453 DOI: 10.20517/jeea.2024.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Electronic nicotine delivery systems (ENDS) - which include electronic cigarettes or e-cigarettes, or simply e-cigs, and marijuana vaping have become increasingly popular. ENDS devices have been established as one of the tobacco quit methods and promoted to be safer compared to traditional tobacco cigarettes. Emerging evidence demonstrates that e-cigarette and marijuana vape use can be harmful, with potential associations with cancer. Herein, we summarize the level of evidence to date for altered immune response, with a focus on cancer risks in the offspring after maternal use of, or aerosol exposures from, ENDS or marijuana vape during pregnancy. From 27 published articles retrieved from PubMed, we sought to find out identified carcinogens in ENDS aerosols and marijuana vapor, which cross the placental barrier and can increase cancer risk in the offspring. Carcinogens in vaping aerosols include aldehydes, metals, tobacco-specific nitrosamines, tobacco alkaloids, polycyclic aromatic hydrocarbons, and volatile organic compounds. Additionally, there was only one passive vaping exposure case study on a human fetus, which noted that glycerol, aluminum, chromium, nickel, copper, zinc, selenium, and lead crossed from the mother to the offspring's cord blood. The carcinogens (metals) in that study were at lower concentrations compared to the mother's biological matrices. Lastly, we observed that in utero exposures to ENDS-associated chemicals can occur in vital organs such as the lungs, kidneys, brain, bladder, and heart. Any resulting DNA damage increases the risk of tumorigenesis. Future epidemiological studies are needed to examine the effects of passive aerosol exposures from existing and emerging electronic nicotine and marijuana products on developing offspring to cancer.
Collapse
Affiliation(s)
- Jonas M. Ndeke
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN 47405, USA
| | - James E. Klaunig
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47408, USA
| | - Sarah Commodore
- Department of Environmental and Occupational Health, Indiana University School of Public Health, Bloomington, IN 47408, USA
| |
Collapse
|
8
|
Dong W, Wang H, Li M, Li P, Ji S. Virus-induced host genomic remodeling dysregulates gene expression, triggering tumorigenesis. Front Cell Infect Microbiol 2024; 14:1359766. [PMID: 38572321 PMCID: PMC10987825 DOI: 10.3389/fcimb.2024.1359766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Virus-induced genomic remodeling and altered gene expression contribute significantly to cancer development. Some oncogenic viruses such as Human papillomavirus (HPV) specifically trigger certain cancers by integrating into the host's DNA, disrupting gene regulation linked to cell growth and migration. The effect can be through direct integration of viral genomes into the host genome or through indirect modulation of host cell pathways/proteins by viral proteins. Viral proteins also disrupt key cellular processes like apoptosis and DNA repair by interacting with host molecules, affecting signaling pathways. These disruptions lead to mutation accumulation and tumorigenesis. This review focuses on recent studies exploring virus-mediated genomic structure, altered gene expression, and epigenetic modifications in tumorigenesis.
Collapse
Affiliation(s)
- Weixia Dong
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Huiqin Wang
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Menghui Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Ping Li
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
| | - Shaoping Ji
- Department of Basic Medicine, Zhengzhou Shuqing Medical College, Zhengzhou, Henan, China
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, Henan, China
| |
Collapse
|
9
|
Su R, Zhang T, Wang H, Yan G, Wu R, Zhang X, Gao C, Li X, Wang C. New sights of low dose IL-2: Restoration of immune homeostasis for viral infection. Immunology 2024; 171:324-338. [PMID: 37985960 DOI: 10.1111/imm.13719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023] Open
Abstract
Viral infection poses a significant threat to human health. In addition to the damage caused by viral replication, the immune response it triggers often leads to more serious adverse consequences. After the occurrence of viral infection, in addition to the adverse consequences of infection, chronic infections can also lead to virus-related autoimmune diseases and tumours. At the same time, the immune response triggered by viral infection is complex, and dysregulated immune response may lead to the occurrence of immune pathology and macrophage activation syndrome. In addition, it may cause secondary immune suppression, especially in patients with compromised immune system, which could lead to the occurrence of secondary infections by other pathogens. This can often result in more severe clinical outcomes. Therefore, regarding the treatment of viral infections, restoring the balance of the immune system is crucial in addition to specific antiviral medications. In recent years, scientists have made an interesting finding that low dose IL-2 (ld-IL-2) could potentially have a crucial function in regulating the immune system and reducing the chances of infection, especially viral infection. Ld-IL-2 exerts immune regulatory effects in different types of viral infections by modulating CD4+ T subsets, CD8+ T cells, natural killer cells, and so on. Our review summarised the role of IL-2 or IL-2 complexes in viral infections. Ld-IL-2 may be an effective strategy for enhancing host antiviral immunity and preventing infection from becoming chronic; additionally, the appropriate use of it can help prevent excessive inflammatory response after infection. In the long term, it may reduce the occurrence of infection-related autoimmune diseases and tumours by promoting the restoration of early immune homeostasis. Furthermore, we have also summarised the application of ld-IL-2 in the context of autoimmune diseases combined with viral infections; it may be a safe and effective strategy for restoring immune homeostasis without compromising the antiviral immune response. In conclusion, focusing on the role of ld-IL-2 in viral infections may provide a new perspective for regulating immune responses following viral infections and improving prognosis.
Collapse
Affiliation(s)
- Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Tingting Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hui Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Gaofei Yan
- Second department, Hamony Long Stomatological Hospital, Taiyuan, China
| | - Ruihe Wu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Xin Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital/Children's Hospital Boston, Joint Program in Transfusion Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| |
Collapse
|
10
|
Yang D, Duan Z, Yuan P, Ding C, Dai X, Chen G, Wu D. How does TCR-T cell therapy exhibit a superior anti-tumor efficacy. Biochem Biophys Res Commun 2023; 687:149209. [PMID: 37944471 DOI: 10.1016/j.bbrc.2023.149209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
TCR-engineered T cells have achieved great progress in solid tumor therapy, some of which have been applicated in clinical trials. Deep knowledge about the current progress of TCR-T in tumor therapy would be beneficial to understand the direction. Here, we classify tumor antigens into tumor-associated antigens, tumor-specific antigens, tumor antigens expressed by oncogenic viruses, and tumor antigens caused by abnormal protein modification; Then we detail the TCR-T cell therapy effects targeting those tumor antigens in clinical or preclinical trials, and propose that neoantigen specific TCR-T cell therapy is expected to be a promising approach for solid tumors; Furthermore, we summarize the optimization strategies, such as tumor microenvironment, TCR pairing and affinity, to improve the therapeutic effect of TCR-T. Overall, this review provides inspiration for the antigen selection and therapy strategies of TCR-T in the future.
Collapse
Affiliation(s)
- Dandan Yang
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhihui Duan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Ping Yuan
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Chengming Ding
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaoming Dai
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guodong Chen
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Laboratory of Structural Immunology, Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
11
|
Dhasmana S, Dhasmana A, Rios S, Enriquez-Perez IA, Khan S, Afaq F, Haque S, Manne U, Yallapu MM, Chauhan SC. An integrated computational biology approach defines the crucial role of TRIP13 in pancreatic cancer. Comput Struct Biotechnol J 2023; 21:5765-5775. [PMID: 38074464 PMCID: PMC10709078 DOI: 10.1016/j.csbj.2023.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/12/2024] Open
Abstract
Pancreatic cancer (PanCa) is one of the most aggressive forms of cancer and its incidence rate is continuously increasing every year. It is expected that by 2030, PanCa will become the 2nd leading cause of cancer-related deaths in the United States due to the lack of early diagnosis and extremely poor survival. Despite great advancements in biomedical research, there are very limited early diagnostic modalities available for the early detection of PanCa. Thus, understanding of disease biology and identification of newer diagnostic and therapeutic modalities are high priority. Herein, we have utilized high dimensional omics data along with some wet laboratory experiments to decipher the expression level of hormone receptor interactor 13 (TRIP13) in various pathological staging including functional enrichment analysis. The functional enrichment analyses specifically suggest that TRIP13 and its related oncogenic network genes are involved in very important patho-physiological pathways. These analyses are supported by qPCR, immunoblotting and IHC analysis. Based on our study we proposed TRIP13 as a novel molecular target for PanCa diagnosis and therapeutic interventions. Overall, we have demonstrated a crucial role of TRIP13 in pathogenic events and progression of PanCa through applied integrated computational biology approaches.
Collapse
Affiliation(s)
- Swati Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | - Stella Rios
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | - Iris A. Enriquez-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | - Sheema Khan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | - Farrukh Afaq
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Upender Manne
- Department of Pathology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- O’Neal Comprehensive Cancer Center, UAB, Birmingham, AL, USA
| | - Murali M. Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| | - Subhash C. Chauhan
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, USA
| |
Collapse
|
12
|
Hatano Y. The Pathology according to p53 Pathway. Pathobiology 2023; 91:230-243. [PMID: 37963443 PMCID: PMC11313058 DOI: 10.1159/000535203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Observations play a pivotal role in the progress of science, including in pathology. The cause of a disease such as cancer is analyzed by breaking it down into smaller organs, tissues, cells, and molecules. The current standard cancer diagnostic procedure, microscopic observation, relies on preserved morphological characteristics. In contrast, molecular analyses explore oncogenic pathway activation that leads to genetic mutations and aberrant protein expression. Such molecular analyses could potentially identify therapeutic targets and has gained considerable attention in clinical oncology. SUMMARY This review summarizes the cardinal biomarkers of the p53 pathway, p53, p16, and mouse double minute 2 (MDM2), in the context of traditional surgical pathology and emerging genomic oncology. The p53 pathway, which is dysregulated in more than a half of all cancers, can be applied in several diagnostic settings. A four-classification model of immunophenotype for p53 pathway gene status, tumor types with a high frequency of abnormalities for each p53 pathway gene, and a minimal p53 pathway immunohistochemical panel is also described. KEY MESSAGES Immunohistochemistry of oncogenic signals should be interpreted according to molecular findings based on genomic oncology, in addition to the microscopic findings of diagnostic pathology.
Collapse
Affiliation(s)
- Yuichiro Hatano
- Department of Pathology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
13
|
Petrović A, Čanković M, Avramov M, Popović ŽD, Janković S, Mojsilović S. High-Risk Human Papillomavirus in Patients with Oral Carcinoma and Oral Potentially Malignant Disorders in Serbia-A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1843. [PMID: 37893561 PMCID: PMC10608774 DOI: 10.3390/medicina59101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Oral squamous cell carcinoma (OSCC) accounts for about 95% of oral cancers. It represents a serious public health problem due to the high degree of morbidity and mortality, as well as multifactorial etiology. Human papillomavirus (HPV) infection is a well-documented risk factor for oropharyngeal carcinoma, but its role in oral carcinogenesis is still debatable. Our aim was to investigate the differences in the prevalence of high-risk HPV genotypes (HR-HPV) in patients with OSCC and oral potentially malignant disorders (OPMD) from that of healthy subjects. Materials and Methods: A total of 90 subjects were included in the cross-sectional study and divided into three groups of 30 patients each: (1) patients with OSCC, (2) patients with OPMD, and (3) healthy subjects. We examined the presence of 12 HR-HPV genotypes in the obtained biological material (oral swabs) using real-time PCR. Results: One or more of the 12 tested HR-HPV genotypes were detected in 5/30 patients with OSCC and 2/30 with OPMD, whereas no healthy subjects were positive for any of the tested genotypes. There was a statistically significant difference in nodal involvement between HPV-positive and HPV-negative patients with OSCC. Conclusions: Oral HR-HPV was detected in patients with oral premalignant and malignant lesions but not in healthy individuals, suggesting a possible role in oral carcinogenesis. Broad HR-HPV panel testing could increase the sensitivity of risk assessment and screening for OSCC.
Collapse
Affiliation(s)
- Anđelija Petrović
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia;
| | - Miloš Čanković
- Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia;
- Oral Medicine Section, Dentistry Department, Clinic for Dentistry of Vojvodina, Hajduk Veljkova 12, 21000 Novi Sad, Serbia
| | - Miloš Avramov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (M.A.); (Ž.D.P.)
| | - Željko D. Popović
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; (M.A.); (Ž.D.P.)
- Molecular Diagnostic Laboratory, GenoLab, Kosovska 7, 21000 Novi Sad, Serbia
| | - Srđa Janković
- Division of Immunology, Department of Hematology and Oncology, University Children’s Hospital, Tiršova 10, 11000 Belgrade, Serbia;
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
14
|
DeCoste RC, Carter MD, Ly TY, Gruchy JR, Nicolela AP, Pasternak S. Merkel cell carcinoma: an update. Hum Pathol 2023; 140:39-52. [PMID: 36898590 DOI: 10.1016/j.humpath.2023.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Merkel cell carcinoma (MCC) is an uncommon primary cutaneous neuroendocrine carcinoma associated with an adverse prognosis. In recent years, our understanding of MCC biology has markedly progressed. Since the discovery of the Merkel cell polyomavirus, it has become clear that MCC represents an ontogenetically dichotomous group of neoplasms with overlapping histopathology. Specifically, most MCCs arise secondary to viral oncogenesis, while a smaller subset is the direct result of UV-associated mutations. The distinction of these groups bears relevance in their immunohistochemical and molecular characterization, as well as in disease prognosis. Further recent developments relate to the landmark utilization of immunotherapeutics in MCC, providing optimistic options for the management of this aggressive disease. In this review, we discuss both fundamental and emerging concepts in MCC, with a particular focus on topics of practical relevance to the surgical or dermatopathologist.
Collapse
Affiliation(s)
- Ryan C DeCoste
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada.
| | - Michael D Carter
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| | - Thai Yen Ly
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| | - Jennette R Gruchy
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| | - Anna P Nicolela
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario, K7L 3N6, Canada
| | - Sylvia Pasternak
- Department of Pathology and Laboratory Medicine, QEII Health Science Centre, Nova Scotia Health, Halifax, Nova Scotia, B3H 1V8, Canada; Department of Pathology, Dalhousie University, Halifax, Nova Scotia, B3H 1V8, Canada
| |
Collapse
|
15
|
Periferakis AT, Periferakis A, Periferakis K, Caruntu A, Badarau IA, Savulescu-Fiedler I, Scheau C, Caruntu C. Antimicrobial Properties of Capsaicin: Available Data and Future Research Perspectives. Nutrients 2023; 15:4097. [PMID: 37836381 PMCID: PMC10574431 DOI: 10.3390/nu15194097] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Capsaicin is a phytochemical derived from plants of the genus Capsicum and subject of intensive phytochemical research due to its numerous physiological and therapeutical effects, including its important antimicrobial properties. Depending on the concentration and the strain of the bacterium, capsaicin can exert either bacteriostatic or even bactericidal effects against a wide range of both Gram-positive and Gram-negative bacteria, while in certain cases it can reduce their pathogenicity by a variety of mechanisms such as mitigating the release of toxins or inhibiting biofilm formation. Likewise, capsaicin has been shown to be effective against fungal pathogens, particularly Candida spp., where it once again interferes with biofilm formation. The parasites Toxoplasma gondi and Trypanosoma cruzi have been found to be susceptible to the action of this compound too while there are also viruses whose invasiveness is significantly dampened by it. Among the most encouraging findings are the prospects for future development, especially using new formulations and drug delivery mechanisms. Finally, the influence of capsaicin in somatostatin and substance P secretion and action, offers an interesting array of possibilities given that these physiologically secreted compounds modulate inflammation and immune response to a significant extent.
Collapse
Affiliation(s)
- Aristodemos-Theodoros Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, “Carol Davila” Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
- Department of Internal Medicine, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, “Foisor” Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 021382 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| |
Collapse
|
16
|
Ritsch M, Cassman NA, Saghaei S, Marz M. Navigating the Landscape: A Comprehensive Review of Current Virus Databases. Viruses 2023; 15:1834. [PMID: 37766241 PMCID: PMC10537806 DOI: 10.3390/v15091834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Viruses are abundant and diverse entities that have important roles in public health, ecology, and agriculture. The identification and surveillance of viruses rely on an understanding of their genome organization, sequences, and replication strategy. Despite technological advancements in sequencing methods, our current understanding of virus diversity remains incomplete, highlighting the need to explore undiscovered viruses. Virus databases play a crucial role in providing access to sequences, annotations and other metadata, and analysis tools for studying viruses. However, there has not been a comprehensive review of virus databases in the last five years. This study aimed to fill this gap by identifying 24 active virus databases and included an extensive evaluation of their content, functionality and compliance with the FAIR principles. In this study, we thoroughly assessed the search capabilities of five database catalogs, which serve as comprehensive repositories housing a diverse array of databases and offering essential metadata. Moreover, we conducted a comprehensive review of different types of errors, encompassing taxonomy, names, missing information, sequences, sequence orientation, and chimeric sequences, with the intention of empowering users to effectively tackle these challenges. We expect this review to aid users in selecting suitable virus databases and other resources, and to help databases in error management and improve their adherence to the FAIR principles. The databases listed here represent the current knowledge of viruses and will help aid users find databases of interest based on content, functionality, and scope. The use of virus databases is integral to gaining new insights into the biology, evolution, and transmission of viruses, and developing new strategies to manage virus outbreaks and preserve global health.
Collapse
Affiliation(s)
- Muriel Ritsch
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Noriko A. Cassman
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Shahram Saghaei
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, 07743 Jena, Germany;
- European Virus Bioinformatics Center, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- FLI Leibniz Institute for Age Research, 07745 Jena, Germany
| |
Collapse
|
17
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
18
|
Das A, Ghose A, Naicker K, Sanchez E, Chargari C, Rassy E, Boussios S. Advances in adoptive T-cell therapy for metastatic melanoma. Curr Res Transl Med 2023; 71:103404. [PMID: 37478776 DOI: 10.1016/j.retram.2023.103404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/30/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
Adoptive T cell therapy (ACT) is a fast developing, niche area of immunotherapy (IO), which is revolutionising the therapeutic landscape of solid tumour oncology, especially metastatic melanoma (MM). Identifying tumour antigens (TAs) as potential targets, the ACT response is mediated by either Tumour Infiltrating Lymphocytes (TILs) or genetically modified T cells with specific receptors - T cell receptors (TCRs) or chimeric antigen receptors (CARs) or more prospectively, natural killer (NK) cells. Clinical trials involving ACT in MM from 2006 to present have shown promising results. Yet it is not without its drawbacks which include significant auto-immune toxicity and need for pre-conditioning lymphodepletion. Although immune-modulation is underway using various combination therapies in the hope of enhancing efficacy and reducing toxicity. Our review article explores the role of ACT in MM, including the various modalities - their safety, efficacy, risks and their development in the trial and the real world setting.
Collapse
Affiliation(s)
- Aparimita Das
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Faculty of Allied Health Sciences, Chettinad Academy of Research and Education, Chennai, India
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Department of Medical Oncology, Barts Cancer Centre, St. Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom; Department of Medical Oncology, Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, London, United Kingdom
| | - Kevin Naicker
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom
| | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom
| | - Cyrus Chargari
- Department of Radiation Oncology, Pitié Salpêtrière University Hospital, Paris, France
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805, Villejuif, France
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, ME7 5NY, Gillingham, Kent, United Kingdom; Kent and Medway Medical School, University of Kent, Canterbury, United Kingdom; Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, SE1 9RT, London, United Kingdom; AELIA Organization, 9th Km Thessaloniki, Thermi 57001, Thessaloniki, Greece.
| |
Collapse
|
19
|
Dammacco F, Lauletta G, Vacca A. The wide spectrum of cryoglobulinemic vasculitis and an overview of therapeutic advancements. Clin Exp Med 2023; 23:255-272. [PMID: 35348938 PMCID: PMC8960698 DOI: 10.1007/s10238-022-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/14/2022] [Indexed: 11/11/2022]
Abstract
Immunoglobulins that reversibly precipitate at temperatures below 37 °C are called cryoglobulins (CGs). Cryoglobulinemia often manifests as cryoglobulinemic vasculitis (CV), whose symptoms range in severity from purpuric eruptions to life-threatening features. The majority of CV patients are infected with hepatitis C virus (HCV), whereas lymphoproliferative disorders or connective tissue diseases (CTD) are commonly diagnosed among patients with CV of non-infectious origin. In the absence of detectable associated disease, cryoglobulinemia is classified as "essential" (EMC). All HCV-positive CV patients should be given direct-acting antiviral agents (DAAs) that are consistently able to induce a sustained virologic response (SVR). Glucocorticoids (GCs) can mitigate CV-associated vasculitis, but they have no role as maintenance therapy. Cyclophosphamide restrains the hyperactive phase(s) of the disease and the post-apheresis rebound of newly synthesized CGs. Its use has been largely replaced by rituximab (RTX) in patients unresponsive to DAAs, patients progressing to B-cell non-Hodgkin lymphoma (B-NHL) and patients in whom CV persists or reappears after clearance of HCV. Therapeutic apheresis is an emergency treatment for CV patients with hyperviscosity syndrome. HCV-positive CV patients are at an increased risk of developing NHL, but the achievement of SVR can effectively prevent HCV-related NHL or induce the remission of an already established lymphoma, even without chemotherapy. The treatment of patients with IgM or IgG monoclonal cryoglobulins and an underlying immunoproliferative disorder is based on the regimens adopted for patients with the same B-cell malignancies but without circulating CGs. For patients with CTD, GCs plus alkylating agents or RTX are similarly effective as first-line therapy and in the relapse/refractory setting. In patients with EMC, treatment should consist of GCs plus RTX, with the dose of GCs tapered as soon as possible to reduce the risk of infectious complications.
Collapse
Affiliation(s)
- Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Gianfranco Lauletta
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro” Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| |
Collapse
|
20
|
Kannampuzha S, Gopalakrishnan AV, Padinharayil H, Alappat RR, Anilkumar KV, George A, Dey A, Vellingiri B, Madhyastha H, Ganesan R, Ramesh T, Jayaraj R, Prabakaran DS. Onco-Pathogen Mediated Cancer Progression and Associated Signaling Pathways in Cancer Development. Pathogens 2023; 12:770. [PMID: 37375460 DOI: 10.3390/pathogens12060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Infection with viruses, bacteria, and parasites are thought to be the underlying cause of about 8-17% of the world's cancer burden, i.e., approximately one in every five malignancies globally is caused by an infectious pathogen. Oncogenesis is thought to be aided by eleven major pathogens. It is crucial to identify microorganisms that potentially act as human carcinogens and to understand how exposure to such pathogens occur as well as the following carcinogenic pathways they induce. Gaining knowledge in this field will give important suggestions for effective pathogen-driven cancer care, control, and, ultimately, prevention. This review will mainly focus on the major onco-pathogens and the types of cancer caused by them. It will also discuss the major pathways which, when altered, lead to the progression of these cancers.
Collapse
Affiliation(s)
- Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Kavya V Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
- Post Graduate and Research Department of Zoology, Maharajas College, Ernakulam 682011, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680596, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Rama Jayaraj
- Jindal Institute of Behavioral Sciences (JIBS), Jindal Global Institution of Eminence Deemed to Be University, Sonipat 131001, India
- Director of Clinical Sciences, Northern Territory Institute of Research and Training, Darwin, NT 0909, Australia
| | - D S Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Republic of Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Srivilliputhur Main Road, Sivakasi 626124, India
| |
Collapse
|
21
|
Duarte NL, Bueno APS, Sanches BS, Ramos GA, Santos JMBD, Silva HFHE, Pondé JDO, Sá JGD, Rossi PM, Horn PRCB, Sztajnbok DCDN, Rubini NDPM, da Costa ES, Milito CB, de Abreu TF, Land MGP. Prognostic Factors in Children and Adolescents with Lymphomas and Vertical Transmission of HIV in Rio de Janeiro, Brazil: A Multicentric Hospital-Based Survival Analysis Study. Cancers (Basel) 2023; 15:cancers15082292. [PMID: 37190220 DOI: 10.3390/cancers15082292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Lymphomas related to HIV are generally aggressive and have a poor prognosis, despite the use of combined antiretroviral therapy (cART) and effective chemotherapy treatment. To determine survival and prognostic factors in children and adolescents living with HIV (CLWH) in Rio de Janeiro (RJ), Brazil, who developed lymphomas, we performed a retrospective and observational study of vertically infected CLWH aged from 0 to 20 incomplete years during1995 to 2018 at five reference centers for cancer and HIV/AIDS treatment. Of the 25 lymphomas, 19 were AIDS-defining malignancies (ADM) and 6 were non-AIDS-defining malignancies (NADM). The 5-year overall survival (OS) and 5-year event-free survival (EFS) probabilities were both 32.00% (95% CI = 13.72-50.23%), and the 5-year disease-free survival (DFS) probability was 53.30% (95% CI = 28.02-78.58%). In the multivariate Cox regression analysis, performance status 4 (PS 4) was considered a poor prognostic factor for OS (HR 4.85, 95% CI = 1.81-12.97, p = 0.002) and EFS (HR 4.95, 95% CI = 1.84-13.34, p = 0.002). For the DFS, higher CD4+ T-cell counts were considered a better prognostic factor (HR 0.86, 95% CI = 0.76-0.97, p = 0.017) in the multivariate Cox regression analysis. This study demonstrates, for the first time, survival and prognostic factors for CLWH who developed lymphomas in RJ, Brazil.
Collapse
Affiliation(s)
- Nathalia Lopez Duarte
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Internal Medicine Postgraduate Program, Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Transdisciplinary Center for Research in Child and Adolescent Health (NTISCA), Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
| | - Ana Paula Silva Bueno
- Transdisciplinary Center for Research in Child and Adolescent Health (NTISCA), Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
- Pediatric Hematology Service, Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
| | - Bárbara Sarni Sanches
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Transdisciplinary Center for Research in Child and Adolescent Health (NTISCA), Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
| | - Gabriella Alves Ramos
- Transdisciplinary Center for Research in Child and Adolescent Health (NTISCA), Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
- Faculty of Medical Sciences (FCM), Pedro Ernesto University Hospital (HUPE), State University of Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Julia Maria Bispo Dos Santos
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Transdisciplinary Center for Research in Child and Adolescent Health (NTISCA), Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
| | - Henrique Floriano Hess E Silva
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Transdisciplinary Center for Research in Child and Adolescent Health (NTISCA), Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
| | - Janaina de Oliveira Pondé
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Transdisciplinary Center for Research in Child and Adolescent Health (NTISCA), Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
| | - José Gilberto de Sá
- Department of Infectious and Parasitic Diseases, Hospital Municipal Jesus (HMJ), Municipal Health Secretariat (SMS-RJ), Rio de Janeiro 20550-200, Brazil
| | - Priscila Mazucanti Rossi
- Department of Infectious and Parasitic Diseases, Hospital Municipal Jesus (HMJ), Municipal Health Secretariat (SMS-RJ), Rio de Janeiro 20550-200, Brazil
| | | | - Denise Cardoso das Neves Sztajnbok
- Pediatric Infectious Diseases Division, Department of Pediatrics, Pedro Ernesto University Hospital (HUPE), State University of Rio de Janeiro (UERJ), Rio de Janeiro 20551-030, Brazil
| | - Norma de Paula Motta Rubini
- Department of Allergy and Immunology, School of Medicine and Surgery, Gaffrée and Guinle University Hospital (HUGG), Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro 20270-004, Brazil
| | - Elaine Sobral da Costa
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Internal Medicine Postgraduate Program, Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Transdisciplinary Center for Research in Child and Adolescent Health (NTISCA), Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
- Pediatric Hematology Service, Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
| | - Cristiane Bedran Milito
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Department of Pathology, Faculty of Medicine (FM), Clementino Fraga Filho University Hospital (HUCFF), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
| | - Thalita Fernandes de Abreu
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Infectious and Parasitic Diseases Service, Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
| | - Marcelo Gerardin Poirot Land
- Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Internal Medicine Postgraduate Program, Faculty of Medicine (FM), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-617, Brazil
- Transdisciplinary Center for Research in Child and Adolescent Health (NTISCA), Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
- Pediatric Hematology Service, Institute of Pediatrics and Childcare Martagão Gesteira (IPPMG), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-612, Brazil
| |
Collapse
|
22
|
Kubelkova K, Bostik V, Joshi L, Macela A. Innate Immune Recognition, Integrated Stress Response, Infection, and Tumorigenesis. BIOLOGY 2023; 12:biology12040499. [PMID: 37106700 PMCID: PMC10135864 DOI: 10.3390/biology12040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Engagement of PRRs in recognition of PAMPs or DAMPs is one of the processes that initiates cellular stress. These sensors are involved in signaling pathways leading to induction of innate immune processes. Signaling initiated by PRRs is associated with the activation of MyD88-dependent signaling pathways and myddosome formation. MyD88 downstream signaling depends upon the context of signaling initiation, the cell (sub)type and the microenvironment of signal initiation. Recognition of PAMPs or DAMPs through PRRs activates the cellular autonomous defence mechanism, which orchestrates the cell responses to resolve specific insults at the single cell level. In general, stressed endoplasmic reticulum is directly linked with the induction of autophagy and initiation of mitochondrial stress. These processes are regulated by the release of Ca2+ from ER stores accepted by mitochondria, which respond through membrane depolarization and the production of reactive oxygen species generating signals leading to inflammasome activation. In parallel, signaling from PRRs initiates the accumulation of misfolded or inappropriately post-translationally modified proteins in the ER and triggers a group of conserved emergency rescue pathways known as unfolded protein response. The cell-autonomous effector mechanisms have evolutionarily ancient roots and were gradually specialized for the defence of specific cell (sub)types. All of these processes are common to the innate immune recognition of microbial pathogens and tumorigenesis as well. PRRs are active in both cases. Downstream are activated signaling pathways initiated by myddosomes, translated by the cellular autonomous defence mechanism, and finalized by inflammasomes.
Collapse
Affiliation(s)
- Klara Kubelkova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
- Correspondence:
| | - Vanda Bostik
- Department of Epidemiology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| | - Lokesh Joshi
- Glycoscience Group, National Centre for Biomedical Engineering Science, University of Galway, H91 W2TY Galway, Ireland
| | - Ales Macela
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, 500 01 Hradec Kralove, Czech Republic
| |
Collapse
|
23
|
Zeng PH, Yin WJ. The cGAS/STING signaling pathway: a cross-talk of infection, senescence and tumors. Cell Cycle 2023; 22:38-56. [PMID: 35946607 PMCID: PMC9769453 DOI: 10.1080/15384101.2022.2109899] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The cGAS/STING signaling pathway is an important part of the cytoplasmic DNA sensor, which can trigger a type I interferon response to microbial infection when pathogenic DNA is detected. However, continuous inhibition of cGAS/STING signaling by viral infection may be an important cause of tumorigenesis. At the same time, recent studies have shown that although the cGAS/STING signaling pathway also plays a core role in anti-tumor immunity and cell senescence, the inflammatory response induced by cGAS/STING signaling will also promote tumorigenesis in different backgrounds. Here, we discuss the role of cGAS/STING in the context of infection, senescence, and tumors, especially with respect to progression, to facilitate a better understanding of the mechanism of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Peng-Hui Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Wen-Jun Yin
- Department of Clinical Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
24
|
Incidence and Clinical Description of Lymphomas in Children and Adolescents with Vertical Transmission of HIV in Rio de Janeiro, Brazil, in Pre- and Post-Combined Antiretroviral Therapy Eras: A Multicentric Hospital-Based Survival Analysis Study. Cancers (Basel) 2022; 14:cancers14246129. [PMID: 36551614 PMCID: PMC9776495 DOI: 10.3390/cancers14246129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
The incidence of cancer in children living with HIV (CLWH) is high and lymphomas are the most common type of cancer in this population. The combined antiretroviral therapy (cART) changed the natural history of HIV infection. To determine the incidence and profile of these CLWH malignancies in Rio de Janeiro (RJ), Brazil, we conducted a retrospective and observational study of vertically infected CLWH, ranging from 0−20 incomplete years, from 1995 to 2018, at five reference centers. The study period was divided into three eras in accordance with the widespread use of cART in Brazil. 1306 patients were included. Of the 25 lymphomas found, 19 were AIDS-defining malignancies (ADM); 6 were non-AIDS-defining malignancies (NADM). The incidence rate (IR) of lymphoma developing was 1.70 per 1000 children-year (95% CI 1.09−2.50). ADM development IR decreased from 2.09−1.75−0.19 per 1000 children-year (p < 0.001) through cART eras. Cumulative Nelson−Aalen hazards of developing ADM over a 20-year period were 3.73% in the Early-cART era, 3.07% in the Mid-cART era, and 0.32% in the Late-cART era (p = 0.013). This study demonstrates the IR of lymphoma in CLWH in RJ, Brazil, as well as the benefit of cART in reducing ADM and death occurrence in the Post-cART era.
Collapse
|
25
|
Ottmann M. [These viruses that inhabit and visit us: The human virome]. Med Sci (Paris) 2022; 38:1028-1038. [PMID: 36692282 DOI: 10.1051/medsci/2022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in new sequencing technologies have opened the way to the deciphering of human virome. So far, human virome is defined as the complete list of viruses found in human body. Those viruses could be endogenous, prokaryotic, archaeal and eukaryotic. In addition, each compartment of the human body constitutes a different microenvironment with its own virome. Viral infections can be categorized according to the outcome of the acute phase and until recently, only symptomatic and pathological infections were studied. It is now well established that a healthy person has an extremely diverse virome. This review summarizes the current state of our knowledge and also proposes another classification of the human virome based on principles of ecology.
Collapse
Affiliation(s)
- Michèle Ottmann
- Centre international de recherche en infectiologie (CIRI), université Claude Bernard-Lyon 1, université de Lyon, Inserm U1111 - CNRS UMR 5308 - ENS, Laboratoire de virologie et pathologies humaines, Faculté de médecine RTH Laennec, 7 rue Guillaume Paradin, 69372 Lyon cedex 08, France
| |
Collapse
|
26
|
Atri-Schuller A, Abushukair H, Cavalcante L, Hentzen S, Saeed A, Saeed A. Tumor Molecular and Microenvironment Characteristics in EBV-Associated Malignancies as Potential Therapeutic Targets: Focus on Gastric Cancer. Curr Issues Mol Biol 2022; 44:5756-5767. [PMID: 36421674 PMCID: PMC9689242 DOI: 10.3390/cimb44110390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 09/30/2023] Open
Abstract
Although most people are infected with Epstein-Barr Virus (EBV) during their lifetime, only a minority of them develop an EBV-associated malignancy. EBV acts in both direct and indirect ways to transform infected cells into tumor cells. There are multiple ways in which the EBV, host, and tumor environment interact to promote malignant transformation. This paper focuses on some of the mechanisms that EBV uses to transform the tumor microenvironment (TME) of EBV-associated gastric cancer (EBVaGC) for its benefit, including overexpression of Indoleamine 2,3-Dioxygenase 1 (IDO1), synergism between H. pylori and EBV co-infection, and M1 to M2 switch. In this review, we expand on different modalities and combinatorial approaches to therapeutically target this mechanism.
Collapse
Affiliation(s)
- Aviva Atri-Schuller
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Hassan Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ludimila Cavalcante
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Stijn Hentzen
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Azhar Saeed
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, University of Kansas Cancer Center, 2330 Shawnee Mission Pkwy, Kansas City, KS 66205, USA
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW The first convincing evidence for a causal relationship between bacterial infection and lymphomagenesis came from the link between gastric lymphoma and chronic Helicobacter pylori gastritis. This review will summarize the current epidemiological, clinical, and biological evidence of a causative role of bacteria in the development of malignant lymphomas, particularly, the extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue type. RECENT FINDINGS Other microorganisms have been associated with specific extranodal lymphoma sites with variable and not always definitive, evidence, including Chlamydia psittaci , Borrelia burgdorferi , Campylobacter jejuni and, most recently, Coxiella Burnetii . According to most plausible models, lymphoma growth is a consequence of continuous antigenic stimulation induced by chronic infection. However, some evidence of a direct oncogenic role of H. pylori has been provided, too. SUMMARY Lymphomas are not the result of a single cause but multifactorial diseases, influenced by a variety of genetic and environmental elements. Hence, ascertaining the specific contribution of bacterial infections is not always easy. Nevertheless, the eradication of the associated chronic infection may result in sustained lymphoma regression. Moreover, the association between infections and lymphoma may offer opportunities for reducing lymphoma incidence by preventing the predisposing infections or treating them early.
Collapse
|
28
|
Prakasam G, Iqbal MA, Srivastava A, Bamezai RNK, Singh RK. HPV18 oncoproteins driven expression of PKM2 reprograms HeLa cell metabolism to maintain aerobic glycolysis and viability. Virusdisease 2022; 33:223-235. [PMID: 36277414 PMCID: PMC9481809 DOI: 10.1007/s13337-022-00776-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/21/2022] [Indexed: 11/30/2022] Open
Abstract
The molecular basis of human papillomavirus (HPV)-mediated cellular immortalization and malignant transformation has illustrated an indispensable role of viral E6/E7-oncoproteins. However, the impact of viral-oncoproteins on the metabolic phenotype of cancer cells remains ambiguous. We showed silencing of HPV18-encoded E6/E7-oncoprotein significantly reduced glucose consumption, lactate production, ATP level and viability. Silencing of HPV18-encoded E6/E7 in HeLa cells significantly down-regulated expression and activity of HK1, HK2, LDHA, and LDHB. Interestingly, there was an increased pyruvate kinase activity due to switch in expression from PKM2 isoform to PKM1. The switch in favor of alternatively spliced isoform PKM1, was regulated by viral-E6/E7-oncoprotein by inhibiting the c-Myc/hnRNP-axis. Further, the near absence of the PKM1 protein despite an adequate amount of PKM1 mRNA in HeLa cells was due to its proteasomal degradation. Our results suggests HPV18-encoded E6/E7 driven preferential expression of PKM2 is essential to support aerobic glycolysis and cell proliferation. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-022-00776-w.
Collapse
Affiliation(s)
- Gopinath Prakasam
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, 110025 India
| | - Anusha Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Rameshwar N. K. Bamezai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Delhi School of Public Health, University of Delhi, New Delhi, 110007 India
| | - Rajnish Kumar Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
29
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
30
|
Wang JF, Cai W, Qiu FS, Yu CH. Pathogenic roles of m6A modification in viral infection and virus-driven carcinogenesis. Endocr Metab Immune Disord Drug Targets 2022; 22:1009-1017. [PMID: 35418293 DOI: 10.2174/2772432817666220412112759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/06/2022] [Accepted: 01/17/2022] [Indexed: 11/22/2022]
Abstract
N6-methyladenosine (m6A) is a prevalent modification of RNA in eukaryotes, bacteria, and viruses. It is highly conserved and can affect the structure, localization, and biology functions of RNA. In recent years, multiple m6A methylation sites have been identified in the viral RNA genome and transcripts of DNA viruses. This modification occurs commonly during the primary infection and is dynamically regulated by a methyltransferase (writers), demethylase (eraser) and m6A-binding proteins (readers) within the host cells. The abnormal m6A modification not only affects the replication of pathogenic viruses and host immune response but also contributes to the pathogenesis of virus-induced cancers. In this review, we highlight recent advances on the mechanism of m6A modification on viral replication, host immune response and carcinogenesis to provide a novel insight for epigenetic prevention of viral infection and virus-driven carcinogenesis.
Collapse
Affiliation(s)
- Jia-Feng Wang
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Wei Cai
- Department of traditional Chinese Medicine, Zhejiang Pharmaceutical College, Ningbo, China
| | - Fen-Sheng Qiu
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| | - Chen-Huan Yu
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
31
|
The Chemokine System in Oncogenic Pathways Driven by Viruses: Perspectives for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14030848. [PMID: 35159113 PMCID: PMC8834488 DOI: 10.3390/cancers14030848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Oncoviruses are viruses with oncogenic potential, responsible for almost 20% of human cancers worldwide. They are from various families, some of which belong to the microbial communities that inhabit several sites in the body of healthy humans. As a result, they most often establish latent infections controlled by the arsenal of human host responses that include the chemokine system playing key roles at the interface between tissue homeostasis and immune surveillance. Yet, chemokines and their receptors also contribute to oncogenic processes as they are targeted by the virus-induced deregulations of host responses and/or directly encoded by viruses. Thus, the chemokine system offers a strong rationale for therapeutic options, some few already approved or in trials, and future ones that we are discussing in view of the pharmacological approaches targeting the different functions of chemokines operating in both cancer cells and the tumor microenvironment. Abstract Chemokines interact with glycosaminoglycans of the extracellular matrix and activate heptahelical cellular receptors that mainly consist of G Protein-Coupled Receptors and a few atypical receptors also with decoy activity. They are well-described targets of oncogenic pathways and key players in cancer development, invasiveness, and metastasis acting both at the level of cancer cells and cells of the tumor microenvironment. Hence, they can regulate cancer cell proliferation and survival and promote immune or endothelial cell migration into the tumor microenvironment. Additionally, oncogenic viruses display the potential of jeopardizing the chemokine system by encoding mimics of chemokines and receptors as well as several products such as oncogenic proteins or microRNAs that deregulate their human host transcriptome. Conversely, the chemokine system participates in the host responses that control the virus life cycle, knowing that most oncoviruses establish asymptomatic latent infections. Therefore, the deregulated expression and function of chemokines and receptors as a consequence of acquired or inherited mutations could bias oncovirus infection toward pro-oncogenic pathways. We here review these different processes and discuss the anticancer therapeutic potential of targeting chemokine availability or receptor activation, from signaling to decoy-associated functions, in combination with immunotherapies.
Collapse
|
32
|
Databases, Knowledgebases, and Software Tools for Virus Informatics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1368:1-19. [DOI: 10.1007/978-981-16-8969-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Liu B, Zhang Q, Wang J, Cao S, Zhou Z, Liu ZX, Cheng H. iCAV: an integrative database of cancer-associated viruses. Database (Oxford) 2021; 2021:6461900. [PMID: 34907423 PMCID: PMC8725190 DOI: 10.1093/database/baab079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/12/2021] [Accepted: 12/07/2021] [Indexed: 11/12/2022]
Abstract
To date, various studies have found that the occurrence of cancer may be related to viral
infections. Therefore, it is important to explore the relationship between viruses and
diseases. The International Agency for Research on Cancer has defined six types of viruses
as Class 1 human carcinogens, including Epstein–Barr virus, hepatitis C virus, hepatitis B
virus, human T-cell lymphotropic virus, human herpesvirus 8 and human papillomavirus,
while Merkel cell polyomavirus is classified as ‘probably carcinogenic to humans’ (Group
2A). Therefore, in-depth research on these viruses will help clarify their relationship
with diseases, and substantial efforts have been made to sequence their genomes. However,
there is no complete database documenting these cancer-associated viruses, and researchers
are not able to easily access and retrieve the published genomes. In this study, we
developed iCAV, a database that integrates the genomes of cancer-related viruses and the
corresponding phenotypes. We collected a total of 18 649 genome sequences from seven human
disease-related viruses, and each virus was further classified by the associated disease,
sample and country. iCAV is a comprehensive resource of cancer-associated viruses that
provides browse and download functions for viral genomes. Database URL: http://icav.omicsbio.info/
Collapse
Affiliation(s)
- Bo Liu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Qingfeng Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jingou Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shumin Cao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhiyuan Zhou
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Ze-Xian Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Han Cheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
34
|
Gaglia MM. Anti-viral and pro-inflammatory functions of Toll-like receptors during gamma-herpesvirus infections. Virol J 2021; 18:218. [PMID: 34749760 PMCID: PMC8576898 DOI: 10.1186/s12985-021-01678-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
Toll-like receptors (TLRs) control anti-viral responses both directly in infected cells and in responding cells of the immune systems. Therefore, they are crucial for responses against the oncogenic γ-herpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus and the related murine virus MHV68, which directly infect immune system cells. However, since these viruses also cause lifelong persistent infections, TLRs may also be involved in modulation of inflammation during latent infection and contribute to virus-driven tumorigenesis. This review summarizes work on both of these aspects of TLR/γ-herpesvirus interactions, as well as results showing that TLR activity can drive these viruses' re-entry into the replicative lytic cycle.
Collapse
Affiliation(s)
- Marta Maria Gaglia
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
35
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|