1
|
Kim J, Gilbert JL, Lv WW, Du P, Pan H. Reduction reactions dominate the interactions between Mg alloys and cells: Understanding the mechanisms. Bioact Mater 2025; 45:363-387. [PMID: 39687558 PMCID: PMC11647666 DOI: 10.1016/j.bioactmat.2024.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 12/18/2024] Open
Abstract
Magnesium (Mg) alloys are popular biodegradable metals studied for orthopedic and cardiovascular applications, mainly because Mg ions are essential trace elements known to promote angiogenesis and osteogenesis. However, Mg corrosion consists of oxidation and reduction reactions that produce by-products, such as hydrogen gas, reactive oxygen species, and hydroxides. It is still unclear how all these by-products and Mg ions concomitantly alter the microenvironment and cell behaviors spatially and temporally. This study shows that Mg corrosion can enhance cell proliferation by reducing intracellular ROS. However, Mg cannot decrease ROS and promote cell proliferation in simulated inflammatory conditions, meaning the microenvironment is critical. Furthermore, cells may respond to Mg ions differently in chronic or acute alkaline pH or oxidative stress. Depending on the corrosion rate, Mg modulates HIF1α and many signaling pathways like PI3K/AKT/mTOR, mitophagy, cell cycle, and oxidative phosphorylation. Therefore, this study provides a fundamental insight into the importance of reduction reactions in Mg alloys.
Collapse
Affiliation(s)
- Jua Kim
- Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse University, Syracuse, NY, 13244, USA
| | - Jeremy L. Gilbert
- Syracuse Biomaterials Institute, Syracuse University, 318 Bowne Hall, Syracuse University, Syracuse, NY, 13244, USA
- Clemson- Medical University of South Carolina Bioengineering Program, Department of Bioengineering, Clemson University, 68 Presidents St, Charleston, SC, 39425, USA
| | - William W. Lv
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, 999077, PR China
| | - Ping Du
- Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomaterials, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, PR China
- Shenzhen Healthemes Biotechnology Co. Ltd, Shenzhen, 518102, PR China
- College of Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, PR China
| |
Collapse
|
2
|
Chieppa M, Kashyrina M, Miraglia A, Vardanyan D. Enhanced CRC Growth in Iron-Rich Environment, Facts and Speculations. Int J Mol Sci 2024; 25:12389. [PMID: 39596454 PMCID: PMC11594836 DOI: 10.3390/ijms252212389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
The contribution of nutritional factors to disease development has been demonstrated for several chronic conditions including obesity, type 2 diabetes, metabolic syndrome, and about 30 percent of cancers. Nutrients include macronutrients and micronutrients, which are required in large and trace quantities, respectively. Macronutrients, which include protein, carbohydrates, and lipids, are mainly involved in energy production and biomolecule synthesis; micronutrients include vitamins and minerals, which are mainly involved in immune functions, enzymatic reactions, blood clotting, and gene transcription. Among the numerous micronutrients potentially involved in disease development, the present review will focus on iron and its relation to tumor development. Recent advances in the understanding of iron-related proteins accumulating in the tumor microenvironment shed light on the pivotal role of iron availability in sustaining pathological tumor hallmarks, including cell cycle regulation, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Marcello Chieppa
- Department of Experimental Medicine, University of Salento Centro Ecotekne, S.P.6, 73100 Lecce, Italy; (M.K.); (D.V.)
| | - Marianna Kashyrina
- Department of Experimental Medicine, University of Salento Centro Ecotekne, S.P.6, 73100 Lecce, Italy; (M.K.); (D.V.)
| | - Alessandro Miraglia
- Institute of Science of Food Production, Unit of Lecce, C.N.R., 73100 Lecce, Italy;
| | - Diana Vardanyan
- Department of Experimental Medicine, University of Salento Centro Ecotekne, S.P.6, 73100 Lecce, Italy; (M.K.); (D.V.)
| |
Collapse
|
3
|
Fernando A, Liyanage C, Srinivasan S, Panchadsaram J, Rothnagel JA, Clements J, Batra J. Iroquois homeobox 4 (IRX4) derived micropeptide promotes prostate cancer progression and chemoresistance through Wnt signalling dysregulation. COMMUNICATIONS MEDICINE 2024; 4:224. [PMID: 39487222 PMCID: PMC11530646 DOI: 10.1038/s43856-024-00613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/17/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a commonly diagnosed cancer. Genome-wide association studies have implicated Iroquois homeobox 4 (IRX4) in PCa susceptibility, yet its functional roles remain unclear. We discovered a 78-amino acid micropeptide (miPEP, IRX4_PEP1), encoded from the alternative start site within the IRX4 gene. The miPEPs, encoded through short open reading frames (sORFs) have emerged as regulators of diverse biological processes. However, the significance of miPEPs in prostate tumorigenesis and therapy response remains unexplored to date. Here, we demonstrated the unique role of IRX4_PEP1 in PCa. METHODS The role of IRX4_PEP1 was evaluated in PCa in vitro via functional assays and comprehensive pathway analysis. The interacting partners of IRX4_PEP1 were identified using an immunoprecipitation assay, and the impact of IRX4_PEP1 on PCa stem cells was assessed through a stem cell enrichment assay. Additionally, the expression of IRX4_PEP1 was evaluated in PCa patient samples for its potential diagnostic and prognostic significance. RESULTS Here we show IRX4_PEP1 promotes PCa cell proliferation, migration, and invasion by interacting with heterogeneous nuclear ribonucleoprotein K (HNRPK). Notably, IRX4_PEP1 dysregulates Wnt signalling by interacting with Catenin beta 1 (β catenin; CTNB1), elevating PCa stemness markers, and fostering docetaxel resistance. Clinically, IRX4_PEP1 expression is elevated in PCa tissues and correlates positively with disease aggressiveness. CTNNB1, HNRNPK levels, and ssGSEA enrichment score of WNT/CTNB1 signalling correlate positively with IRX4_PEP1 in PCa tissues. CONCLUSIONS These findings highlight IRX4_PEP1 role in PCa stemness and chemoresistance, suggesting it as a therapeutic target and potential diagnostic marker.
Collapse
Affiliation(s)
- Achala Fernando
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Chamikara Liyanage
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Srilakshmi Srinivasan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Janaththani Panchadsaram
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Joseph A Rothnagel
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia Campus, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia.
- The Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, Australia.
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.
| |
Collapse
|
4
|
Liu H, Li H, Bai X, Zhao Y, Cai Y, Pan H, Guo L, Liu K, Liu Q, Huang X, Zampetaki A, Margariti A, Zeng L, Cai T. Histone Deacetylase 7-Derived 7-Amino Acid Peptide Increases Skin Wound Healing via Regulating Epidermal Fibroblast Proliferation and Migration. J Cell Mol Med 2024; 28:e70209. [PMID: 39601342 PMCID: PMC11600263 DOI: 10.1111/jcmm.70209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Due to the complexity of wound healing, how to achieve successful healing is a significant clinical challenge. In this study, we found that the histone deacetylase-7-derived 7-amino acid peptide (7A, MHSPGAD), especially its phosphorylated version 7Ap (MH[pSer]PGAD), increased dermal fibroblast cell HDFα proliferation and migration via elevated delta-catenin (CTNND1) serine phosphorylation-mediated beta-catenin (CTNNB) nuclear translocation and subsequent upregulation of c-Myc and cyclin D1 expression. 7Ap physically interacted with platelet-derived growth factor receptor (PDGFR) and increased PDGFR interaction with cyclin-dependent kinase 6 (CDK6). The PDGFR siRNA or CDK6 siRNA knockdown ablated 7AP-induced CTNND1 phosphorylation and subsequent c-Myc/cyclin D1 expression, indicating a novel 7Ap-PDGFR-CDK6-CTNND1/CTNNB signal pathway in regulating fibroblast proliferation and migration. Furthermore, 7Ap increased human umbilic vein endothelial cell proliferation and tube formation, suggesting an angiogenic effect. In a full-thickness excision wound rat model, the local administration of 50 ng/mL of 7Ap in hydrogel exerted a similar effect as 1 μg/mL vascular endothelial growth factor on accelerating wound healing, featured by enhanced fibroblast proliferation and migration, collagen deposition, and increased new vessel formation during the early phase of wound healing. Taken together, this study not only elicited a novel signal pathway in fibroblast proliferation but also paved an avenue to develop 7Ap as a treatment option for skin wound healing.
Collapse
Affiliation(s)
- Huina Liu
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Hua Li
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Xuefeng Bai
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yue Zhao
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Yannan Cai
- Ningbo Women and Children's HospitalNingboChina
| | - Huiqing Pan
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Linyan Guo
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| | - Kun Liu
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Qian Liu
- Department of GeriatricChengdu Fifth People's HospitalChengduChina
| | | | - Anna Zampetaki
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Andriana Margariti
- School of Medicine, Dentistry and Biomedical SciencesThe Wellcome‐Wolfson Institute of Experimental MedicineBelfastUK
| | - Lingfang Zeng
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Science and MedicineKing's College LondonLondonUK
| | - Ting Cai
- Ningbo No.2 HospitalNingboChina
- Ningbo Institute of Life and Health IndustryUniversity of Chinese Academy of SciencesNingboChina
| |
Collapse
|
5
|
Hartl K, Bayram Ş, Wetzel A, Harnack C, Lin M, Fischer AS, Liu L, Beccaceci G, Mastrobuoni G, Geisberger S, Forbes M, Monteiro BJE, Macino M, Flores RE, Engelmann C, Mollenkopf HJ, Schupp M, Tacke F, Sanders AD, Kempa S, Berger H, Sigal M. p53 terminates the regenerative fetal-like state after colitis-associated injury. SCIENCE ADVANCES 2024; 10:eadp8783. [PMID: 39453996 PMCID: PMC11506124 DOI: 10.1126/sciadv.adp8783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
Cells that lack p53 signaling frequently occur in ulcerative colitis (UC) and are considered early drivers in UC-associated colorectal cancer (CRC). Epithelial injury during colitis is associated with transient stem cell reprogramming from the adult, homeostatic to a "fetal-like" regenerative state. Here, we use murine and organoid-based models to study the role of Trp53 during epithelial reprogramming. We find that p53 signaling is silent and dispensable during homeostasis but strongly up-regulated in the epithelium upon DSS-induced colitis. While in WT cells this causes termination of the regenerative state, crypts that lack Trp53 remain locked in the highly proliferative, regenerative state long-term. The regenerative state in WT cells requires high Wnt signaling to maintain elevated levels of glycolysis. Instead, Trp53 deficiency enables Wnt-independent glycolysis due to overexpression of rate-limiting enzyme PKM2. Our study reveals the context-dependent relevance of p53 signaling specifically in the injury-induced regenerative state, explaining the high abundance of clones lacking p53 signaling in UC and UC-associated CRC.
Collapse
Affiliation(s)
- Kimberly Hartl
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Şafak Bayram
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexandra Wetzel
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christine Harnack
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Manqiang Lin
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Anne-Sophie Fischer
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lichao Liu
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Giulia Beccaceci
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Guido Mastrobuoni
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sabrina Geisberger
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Martin Forbes
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Benedict J. E. Monteiro
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Martina Macino
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Roberto E. Flores
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Cornelius Engelmann
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Michael Schupp
- Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Tacke
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ashley D. Sanders
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Berlin Institute of Health (BIH) at Charité–Universitätsmedizin Berlin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Kempa
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Hilmar Berger
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
6
|
Mihailov R, Beznea A, Popazu C, Voicu D, Toma A, Tudorașcu I, Rebegea L, Mihailov OM, Lutenco V, Constantin GB, Țocu G, Niculeț E, Bîrlă R, Georgescu DE, Șerban C. The pathological and immunohistochemical profile of tumor angiogenesis in perforated sigmoid carcinoma–Case report and short literature review. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2024; 21:em600. [DOI: 10.29333/ejgm/14847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
<b>Background:</b> Little is known about the physiopathological factors or mechanisms that underlie tumor invasion of the serosa and lead to perforation in the peritoneal cavity. The aim of the work was to analyze the pathological and immunohistochemical factors of tumor neoangiogenesis which could influence tumor perforation in colorectal cancer.<br />
<b>Results and discussions:</b> 451 cases of complicated colorectal carcinomas were statistically analyzed, of which 19 cases were perforated sigmoid tumors. The immunohistochemical detection of mutant p53 proteins was the first molecular parameter examined in the context of the search for markers predicting the natural evolution mode in colorectal carcinomas.<br />
<b>Conclusions</b>: Both loss of p53 and overexpression of bcl-2 proteins confer immortalization on cancer cells by inhibiting the processes leading to apoptosis. The paper proposes a review of the specialized literature, but also the presentation of a clinical case.
Collapse
Affiliation(s)
- Raul Mihailov
- Surgery Clinic, “Sf. Ap. Andrei” Emergency Clinical Hospital, Galati, ROMANIA
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| | - Adrian Beznea
- Surgery Clinic, “Sf. Ap. Andrei” Emergency Clinical Hospital, Galati, ROMANIA
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| | - Constantin Popazu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| | - Dragoș Voicu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| | - Alexandra Toma
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| | - Iulia Tudorașcu
- University of Medicine and Pharmacy of Craiova, Craiova, ROMANIA
| | - Laura Rebegea
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| | | | - Valerii Lutenco
- Surgery Clinic, “Sf. Ap. Andrei” Emergency Clinical Hospital, Galati, ROMANIA
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| | | | - George Țocu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| | - Elena Niculeț
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| | - Rodica Bîrlă
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, ROMANIA
| | - Dragoș Eugen Georgescu
- “Carol Davila” University of Medicine and Pharmacy, Bucharest, ROMANIA
- Department of General Surgery, Dr. Ion Cantacuzino Hospital, Bucharest, ROMANIA
| | - Cristina Șerban
- Surgery Clinic, “Sf. Ap. Andrei” Emergency Clinical Hospital, Galati, ROMANIA
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University, Galati, ROMANIA
| |
Collapse
|
7
|
Shin N, Lee HJ, Sim DY, Ahn CH, Park SY, Koh W, Khil J, Shim BS, Kim B, Kim SH. Anti-Warburg Mechanism of Ginsenoside F2 in Human Cervical Cancer Cells via Activation of miR193a-5p and Inhibition of β-Catenin/c-Myc/Hexokinase 2 Signaling Axis. Int J Mol Sci 2024; 25:9418. [PMID: 39273365 PMCID: PMC11394963 DOI: 10.3390/ijms25179418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Though Ginsenoside F2 (GF2), a protopanaxadiol saponin from Panax ginseng, is known to have an anticancer effect, its underlying mechanism still remains unclear. In our model, the anti-glycolytic mechanism of GF2 was investigated in human cervical cancer cells in association with miR193a-5p and the β-catenin/c-Myc/Hexokinase 2 (HK2) signaling axis. Here, GF2 exerted significant cytotoxicity and antiproliferation activity, increased sub-G1, and attenuated the expression of pro-Poly (ADPribose) polymerase (pro-PARP) and pro-cysteine aspartyl-specific protease (procaspase3) in HeLa and SiHa cells. Consistently, GF2 attenuated the expression of Wnt, β-catenin, and c-Myc and their downstream target genes such as HK2, pyruvate kinase isozymes M2 (PKM2), and lactate dehydrogenase A (LDHA), along with a decreased production of glucose and lactate in HeLa and SiHa cells. Moreover, GF2 suppressed β-catenin and c-Myc stability in the presence and absence of cycloheximide in HeLa cells, respectively. Additionally, the depletion of β-catenin reduced the expression of c-Myc and HK2 in HeLa cells, while pyruvate treatment reversed the ability of GF2 to inhibit β-catenin, c-Myc, and PKM2 in GF2-treated HeLa cells. Notably, GF2 upregulated the expression of microRNA139a-5p (miR139a-5p) in HeLa cells. Consistently, the miR139a-5p mimic enhanced the suppression of β-catenin, c-Myc, and HK2, while the miR193a-5p inhibitor reversed the ability of GF2 to attenuate the expression of β-catenin, c-Myc, and HK2 in HeLa cells. Overall, these findings suggest that GF2 induces apoptosis via the activation of miR193a-5p and the inhibition of β-catenin/c-Myc/HK signaling in cervical cancer cells.
Collapse
Affiliation(s)
- Nari Shin
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Chi-Hoon Ahn
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Su-Yeon Park
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Wonil Koh
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Jaeho Khil
- Institute of Sports Science, Kyung Hee University, Yongin 17104, Republic of Korea;
| | - Bum-Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (N.S.); (H.-J.L.); (D.Y.S.); (C.-H.A.); (S.-Y.P.); (W.K.); (B.-S.S.); (B.K.)
| |
Collapse
|
8
|
LIU ZIYONG, MA TAO, LI JINFANG, REN WEI, ZHANG ZHIXIN. IL13RA2 promotes progression of infantile haemangioma by activating glycolysis and the Wnt/β-catenin signaling pathway. Oncol Res 2024; 32:1453-1465. [PMID: 39220137 PMCID: PMC11361910 DOI: 10.32604/or.2024.048315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background Interleukin 13 receptor subunit alpha 2 (IL13RA2) plays an essential role in the progression of many cancers. However, the role of IL13RA2 in infantile haemangioma (IH) is still unknown. Materials and Methods IL13RA2 expression in IH tissues was analyzed using western blot, qRT-PCR, and immunofluorescence. The role of IL13RA2 in haemangioma-derived endothelial cells (HemECs) was determined following knockdown or overexpression of IL13RA2 using CCK-8, colony formation, apoptosis, wound healing, tubule formation, Transwell, and western blot. Results IL13RA2 expression was upregulated in IH tissues. IL13RA2 overexpression promoted proliferation, migration, and invasion of HemECs and induced glycolysis, which was confirmed with a glycolysis inhibitor. Specifically, IL13RA2 interacted with β-catenin and activated the Wnt/β-catenin pathway in HemECs, which were involved in the above-mentioned effects of IL13RA2. Conclusions These findings revealed that targeting IL13RA2 is a potential therapeutic approach for IH.
Collapse
Affiliation(s)
- ZIYONG LIU
- Department of Cardiothoracic Surgery, 970th Hospital of the People’s Liberation Army, Weihai, 264209, China
| | - TAO MA
- Department of Cardiothoracic Surgery, 970th Hospital of the People’s Liberation Army, Weihai, 264209, China
| | - JINFANG LI
- Department of Cardiac Ultrasound, Weihai Municipal Hospital, Weihai, 264200, China
| | - WEI REN
- Department of Cardiothoracic Surgery, 970th Hospital of the People’s Liberation Army, Weihai, 264209, China
| | - ZHIXIN ZHANG
- Department of Cardiothoracic Surgery, 970th Hospital of the People’s Liberation Army, Weihai, 264209, China
| |
Collapse
|
9
|
Lin Z, Hua G, Hu X. Lipid metabolism associated crosstalk: the bidirectional interaction between cancer cells and immune/stromal cells within the tumor microenvironment for prognostic insight. Cancer Cell Int 2024; 24:295. [PMID: 39174964 PMCID: PMC11342506 DOI: 10.1186/s12935-024-03481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024] Open
Abstract
Cancer is closely related to lipid metabolism, with the tumor microenvironment (TME) containing numerous lipid metabolic interactions. Cancer cells can bidirectionally interact with immune and stromal cells, the major components of the TME. This interaction is primarily mediated by fatty acids (FAs), cholesterol, and phospholipids. These interactions can lead to various physiological changes, including immune suppression, cancer cell proliferation, dissemination, and anti-apoptotic effects on cancer cells. The physiological modulation resulting from this lipid metabolism-associated crosstalk between cancer cells and immune/stromal cells provides valuable insights into cancer prognosis. A comprehensive literature review was conducted to examine the function of the bidirectional lipid metabolism interactions between cancer cells and immune/stromal cells within the TME, particularly how these interactions influence cancer prognosis. A novel autophagy-extracellular vesicle (EV) pathway has been proposed as a mediator of lipid metabolism interactions between cancer cells and immune cells/stromal cells, impacting cancer prognosis. As a result, different forms of lipid metabolism interactions have been described as being linked to cancer prognosis, including those mediated by the autophagy-EV pathway. In conclusion, understanding the bidirectional lipid metabolism interactions between cancer cells and stromal/immune cells in the TME can help develop more advanced prognostic approaches for cancer patients.
Collapse
Affiliation(s)
- Zhongshu Lin
- Queen Mary College, Nanchang University, Nanchang, China
- School of Biological and Behavioural Science, Queen Mary University of London, London, UK
| | - Guanxiang Hua
- Queen Mary College, Nanchang University, Nanchang, China
- School of Biological and Behavioural Science, Queen Mary University of London, London, UK
| | - Xiaojuan Hu
- Queen Mary College, Nanchang University, Nanchang, China.
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
10
|
Ou LP, Liu YJ, Qiu ST, Yang C, Tang JX, Li XY, Liu HF, Ye ZN. Glutaminolysis is a Potential Therapeutic Target for Kidney Diseases. Diabetes Metab Syndr Obes 2024; 17:2789-2807. [PMID: 39072347 PMCID: PMC11283263 DOI: 10.2147/dmso.s471711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
Metabolic reprogramming contributes to the progression and prognosis of various kidney diseases. Glutamine is the most abundant free amino acid in the body and participates in more metabolic processes than other amino acids. Altered glutamine metabolism is a prominent feature in different kidney diseases. Glutaminolysis converts glutamine into the TCA cycle metabolite, alpha-ketoglutarate, via a cascade of enzymatic reactions. This metabolic pathway plays pivotal roles in inflammation, maladaptive repair, cell survival and proliferation, redox homeostasis, and immune regulation. Given the crucial role of glutaminolysis in bioenergetics and anaplerotic fluxes in kidney pathogenesis, studies on this cascade could provide a better understanding of kidney diseases, thus inspiring the development of potential methods for targeted therapy. Emerging evidence has shown that targeting glutaminolysis is a promising therapeutic strategy for ameliorating kidney disease. In this narrative review, equation including keywords related to glutamine, glutaminolysis and kidney are subjected to an exhaustive search on Pubmed database, we identified all relevant articles published before 1 April, 2024. Afterwards, we summarize the regulation of glutaminolysis in major kidney diseases and its underlying molecular mechanisms. Furthermore, we highlight therapeutic strategies targeting glutaminolysis and their potential clinical applications.
Collapse
Affiliation(s)
- Li-Ping Ou
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Yong-Jian Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shi-Tong Qiu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Chen Yang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Ji-Xin Tang
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Xiao-Yu Li
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Hua-Feng Liu
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen-Nan Ye
- Institute of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|
11
|
Wang Q, Meng D, Shen S, Cao Y, Zhang P, Liu Y, Du L, Li H, Shao C, Dong Q. P4HA3 promotes head and neck squamous cell carcinoma progression via the WNT/β-catenin signaling pathway. Pathol Res Pract 2024; 260:155481. [PMID: 39053135 DOI: 10.1016/j.prp.2024.155481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/12/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Here, we explored the role of Prolyl 4-Hydroxylase Subunit Alpha 3 (P4HA3), the most recently identified member of the prolyl-4-hydroxylase (P4H) family, in head and neck squamous cell carcinoma (HNSCC) progression. P4HA3 is upregulated during cancer progression; however, its specific role in HNSCC progression remains elusive. Thus, this study aimed to elucidate the regulatory function of P4HA3 in HNSCC development and progression and to describe the underlying mechanisms. Initially, we analyzed the correlation between the expression of P4HA3 and the WNT pathway genes and clinicopathologic features in HNSCC based on microarray data from The Cancer Genome Atlas (TCGA). Next, we used Gene Oncology (GO) functional data to describe several potentially associated pathways in HNSCC. Then, we knocked down P4HA3 in SCC15 and SCC25 cells, two classic HNSCC cell lines, and assessed the resulting changes using RT-qPCR. Furthermore, we used Western blot to evaluate the regulatory role of P4HA3 in the epithelial-to-mesenchymal transition (EMT) and the WNT/β-catenin signaling pathway. To explore the effect of P4HA3 knockdown on tumor progression, in vivo experiments were conducted using a murine model. Immunohistochemistry assays were then employed to identify proteins associated with EMT and the WNT/β-catenin signaling pathway in tumor tissues. Upregulated P4HA3 in HNSCC patient tumor tissues was positively correlated with poor prognosis. Notably, P4HA3 knockdown significantly inhibited the proliferative and invasive abilities of HNSCC. The levels of genes and proteins associated with EMT and the WNT/β-catenin signaling pathway were also markedly reduced by P4HA3 knockdown. Importantly, the in vivo experiments demonstrated that P4HA3 can promote subcutaneous tumorigenesis in nude mice and knockdown of P4HA3 induce a significant ihibitation of EMT and WNT/β-catenin pathway detected by immunohistochemistry assay in tumor tissues. In summary, we demonstrated that P4HA3 is a promising diagnostic and therapeutic biomarker for HNSCC. As an oncogene, P4HA3 increases HNSCC proliferation by inducing the EMT and activating the WNT/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Quannian Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Danyang Meng
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China; Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Si Shen
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Yang Cao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Pengcheng Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Ying Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Lianqun Du
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Hua Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300050, China.
| | - Changli Shao
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, China.
| | - Qingyang Dong
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
12
|
Rathee M, Umar SM, Dev AJR, Kashyap A, Mathur SR, Gogia A, Mohapatra P, Prasad CP. Canonical WNT/β-catenin signaling upregulates aerobic glycolysis in diverse cancer types. Mol Biol Rep 2024; 51:788. [PMID: 38970704 DOI: 10.1007/s11033-024-09694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/31/2024] [Indexed: 07/08/2024]
Abstract
Despite many efforts, a comprehensive understanding and clarification of the intricate connections within cancer cell metabolism remain elusive. This might pertain to intracellular dynamics and the complex interplay between cancer cells, and cells with the tumor stroma. Almost a century ago, Otto Warburg found that cancer cells exhibit a glycolytic phenotype, which continues to be a subject of thorough investigation. Past and ongoing investigations have demonstrated intricate mechanisms by which tumors modulate their functionality by utilizing extracellular glucose as a substrate, thereby sustaining the essential proliferation of cancer cells. This concept of "aerobic glycolysis," where cancer cells (even in the presence of enough oxygen) metabolize glucose to produce lactate plays a critical role in cancer progression and is regulated by various signaling pathways. Recent research has revealed that the canonical wingless-related integrated site (WNT) pathway promotes aerobic glycolysis, directly and indirectly, thereby influencing cancer development and progression. The present review seeks to gather knowledge about how the WNT/β-catenin pathway influences aerobic glycolysis, referring to relevant studies in different types of cancer. Furthermore, we propose the concept of impeding the glycolytic phenotype of tumors by employing specific inhibitors that target WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Meetu Rathee
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sheikh Mohammad Umar
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Arundhathi J R Dev
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Akanksha Kashyap
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India
| | - Sandeep R Mathur
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, 110029, India
| | | | - Chandra Prakash Prasad
- Department of Medical Oncology Lab, DR BRA IRCH, All India Institute of Medical Sciences (AIIMS), 4thFloor, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
13
|
Yang F, Duan Y, Li Y, Zhu D, Wang Z, Luo Z, Zhang Y, Zhang G, He X, Kang X. S100A6 Regulates nucleus pulposus cell apoptosis via Wnt/β-catenin signaling pathway: an in vitro and in vivo study. Mol Med 2024; 30:87. [PMID: 38877413 PMCID: PMC11179208 DOI: 10.1186/s10020-024-00853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a common musculoskeletal degenerative disease, which often leads to low back pain and even disability, resulting in loss of labor ability and decreased quality of life. Although many progresses have been made in the current research, the underlying mechanism of IDD remains unclear. The apoptosis of nucleus pulposus (NP) cells (NPCs) is an important pathological mechanism in intervertebral disc degeneration (IDD). This study evaluated the relationship between S100A6 and NPCs and its underlying mechanism. METHODS Mass spectrometry, bioinformatics, and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were used to screen and verify hub genes for IDD in human IVD specimens with different degeneration degrees. Western blotting, immunohistochemistry (IHC), and/or immunofluorescence (IF) were used to detect the expression level of S100A6 in human NP tissues and NPCs. The apoptotic phenotype of NPCs and Wnt/β-catenin signaling pathway were evaluated using flow cytometry, western blotting, and IF. S100A6 was overexpressed or knocked down in NPCs to determine its impact on apoptosis and Wnt/β-catenin signaling pathway activity. Moreover, we used the XAV-939 to inhibit and SKL2001 to activate the Wnt/β-catenin signaling pathway. The therapeutic effect of S100A6 inhibition on IDD was also evaluated. RESULTS S100A6 expression increased in IDD. In vitro, increased S100A6 expression promoted apoptosis in interleukin (IL)-1β-induced NPCs. In contrast, the inhibition of S100A6 expression partially alleviated the progression of annulus fibrosus (AF) puncture-induced IDD in rats. Mechanistic studies revealed that S100A6 regulates NPC apoptosis via Wnt/β-catenin signaling pathway. CONCLUSIONS This study showed that S100A6 expression increased during IDD and promoted NPCs apoptosis by regulating the Wnt/β-catenin signaling pathway, suggesting that S100A6 is a promising new therapeutic target for IDD.
Collapse
Affiliation(s)
- Fengguang Yang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanni Duan
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yanhu Li
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Daxue Zhu
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhaoheng Wang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Zhangbin Luo
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Yizhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Guangzhi Zhang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuegang He
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Xuewen Kang
- Department of Orthopedics, The Second Hospital of Lanzhou University, 82 Cuiying Men, Lanzhou, Gansu Province, 730030, China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China.
- Orthopaedics Key Laboratory of Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
14
|
Malla A, Gupta S, Sur R. Glycolytic enzymes in non-glycolytic web: functional analysis of the key players. Cell Biochem Biophys 2024; 82:351-378. [PMID: 38196050 DOI: 10.1007/s12013-023-01213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/26/2023] [Indexed: 01/11/2024]
Abstract
To survive in the tumour microenvironment, cancer cells undergo rapid metabolic reprograming and adaptability. One of the key characteristics of cancer is increased glycolytic selectivity and decreased oxidative phosphorylation (OXPHOS). Apart from ATP synthesis, glycolysis is also responsible for NADH regeneration and macromolecular biosynthesis, such as amino acid biosynthesis and nucleotide biosynthesis. This allows cancer cells to survive and proliferate even in low-nutrient and oxygen conditions, making glycolytic enzymes a promising target for various anti-cancer agents. Oncogenic activation is also caused by the uncontrolled production and activity of glycolytic enzymes. Nevertheless, in addition to conventional glycolytic processes, some glycolytic enzymes are involved in non-canonical functions such as transcriptional regulation, autophagy, epigenetic changes, inflammation, various signaling cascades, redox regulation, oxidative stress, obesity and fatty acid metabolism, diabetes and neurodegenerative disorders, and hypoxia. The mechanisms underlying the non-canonical glycolytic enzyme activities are still not comprehensive. This review summarizes the current findings on the mechanisms fundamental to the non-glycolytic actions of glycolytic enzymes and their intermediates in maintaining the tumor microenvironment.
Collapse
Affiliation(s)
- Avirup Malla
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Suvroma Gupta
- Department of Aquaculture Management, Khejuri college, West Bengal, Baratala, India.
| | - Runa Sur
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India.
| |
Collapse
|
15
|
Su M, Liang Z, Shan S, Gao Y, He L, Liu X, Wang A, Wang H, Cai H. Long non-coding RNA NEAT1 promotes aerobic glycolysis and progression of cervical cancer through WNT/β-catenin/PDK1 axis. Cancer Med 2024; 13:e7221. [PMID: 38733179 PMCID: PMC11087816 DOI: 10.1002/cam4.7221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/07/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cervical cancer is one of the most common gynecological cancers. Accumulated evidence shows that long non-coding RNAs (lncRNAs) play essential roles in cervical cancer occurrence and progression, but their specific functions and mechanisms remain to be further explored. METHODS The RT-qPCR assay was used to detect the expression of NEAT1 in cervical cancer tissues and cell lines. CCK-8, colony formation, flow cytometry, western blotting, and Transwell assays were used to evaluate the impact of NEAT1 on the malignant behavior of cervical cancer cells. Glucose consumption, lactate production, ATP levels, ROS levels, MMP levels, and the mRNA expressions of glycolysis-related genes and tricarboxylic acid cycle-related genes were detected to analyze the effect of NEAT1 on metabolism reprograming in cervical cancer cells. The expressions of PDK1, β-catenin and downstream molecules of the WNT/β-catenin signaling pathway in cervical cancer cells and tissues were detected by western blotting, RT-qPCR, immunofluorescence and immunohistochemistry assays. RESULTS This study investigated the role and possible molecular mechanism of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in cervical cancer. Our results showed that NEAT1 was highly expressed in cervical cancer tissues and cell lines. Downregulation of NEAT1 inhibited the proliferation, migration, invasion and glycolysis of cervical cancer cells, while overexpression of NEAT1 led to the opposite effects. Mechanistically, NEAT1 upregulated pyruvate dehydrogenase kinase (PDK1) through the WNT/β-catenin signaling pathway, which enhanced glycolysis and then facilitated cervical cancer metastasis. Furthermore, NEAT1 maintained the protein stability of β-catenin but did not affect its mRNA level. We also excluded the direct binding of NEAT1 to the β-catenin protein via RNA pull-down assay. The suppressive impact of NEAT1 knockdown on cell proliferation, invasion, and migration was rescued by β-catenin overexpression. The WNT inhibitor iCRT3 attenuated the carcinogenic effect induced by NEAT1 overexpression. CONCLUSION In summary, these findings indicated that NEAT1 may contribute to the progression of cervical cancer by activating the WNT/β-catenin/PDK1 signaling axis.
Collapse
Affiliation(s)
- Min Su
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Ziyan Liang
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Shidong Shan
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Department of Urology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Li He
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Department of Radiation and Medical Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
| | - Xuelian Liu
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Anjin Wang
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan HospitalWuhan UniversityWuhanPeople's Republic of China
- Hubei Key Laboratory of Tumor Biological BehaviorsWuhanPeople's Republic of China
- Hubei Cancer Clinical Study CenterWuhanPeople's Republic of China
| |
Collapse
|
16
|
Huang Y, Zhang R, Lyu H, Xiao S, Guo D, Chen XZ, Zhou C, Tang J. LncRNAs as nodes for the cross-talk between autophagy and Wnt signaling in pancreatic cancer drug resistance. Int J Biol Sci 2024; 20:2698-2726. [PMID: 38725864 PMCID: PMC11077374 DOI: 10.7150/ijbs.91832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/06/2024] [Indexed: 05/12/2024] Open
Abstract
Pancreatic cancer is a malignancy with high mortality. In addition to the few symptoms until the disease reaches an advanced stage, the high fatality rate is attributed to its rapid development, drug resistance and lack of appropriate treatment. In the selection and research of therapeutic drugs, gemcitabine is the first-line drug for pancreatic cancer. Solving the problem of gemcitabine resistance in pancreatic cancer will contribute to the progress of pancreatic cancer treatment. Long non coding RNAs (lncRNAs), which are RNA transcripts longer than 200 nucleotides, play vital roles in cellular physiological metabolic activities. Currently, our group and others have found that some lncRNAs are aberrantly expressed in pancreatic cancer cells, which can regulate the process of cancer through autophagy and Wnt/β-catenin pathways simultaneously and affect the sensitivity of cancer cells to therapeutic drugs. This review presents an overview of the recent evidence concerning the node of lncRNA for the cross-talk between autophagy and Wnt/β-catenin signaling in pancreatic cancer, together with the practicability of lncRNAs and the core regulatory factors as targets in therapeutic resistance.
Collapse
Affiliation(s)
- Yuhan Huang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada, T6G2R3
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China, 430068
| |
Collapse
|
17
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
18
|
Gao S, Wang Y, Xu Y, Liu L, Liu S. USP46 enhances tamoxifen resistance in breast cancer cells by stabilizing PTBP1 to facilitate glycolysis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167011. [PMID: 38176460 DOI: 10.1016/j.bbadis.2023.167011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Tamoxifen (TAM) is the primary drug for treating estrogen receptor alpha-positive (ER+) breast cancer (BC). However, resistance to TAM can develop in some patients, limiting its therapeutic efficacy. The ubiquitin-specific protease (USP) family has been associated with the development, progression, and drug resistance of various cancers. To explore the role of USPs in TAM resistance in BC, we used qRT-PCR to compare USP expression between TAM-sensitive (MCF-7 and T47D) and TAM-resistant cells (MCF-7R and T47DR). We then modulated USP46 expression and examined its impact on cell proliferation, drug resistance (via CCK-8 and EdU experiments), glycolysis levels (using a glycolysis detection assay), protein interactions (confirmed by co-IP), and protein changes (analyzed through Western blotting). Our findings revealed that USP46 was significantly overexpressed in TAM-resistant BC cells, leading to the inhibition of the ubiquitin degradation of polypyrimidine tract-binding protein 1 (PTBP1). Overexpression of PTBP1 increased the PKM2/PKM1 ratio, promoted glycolysis, and intensified TAM resistance in BC cells. Knockdown of USP46 induced downregulation of PTBP1 protein by promoting its K48-linked ubiquitination, resulting in a decreased PKM2/PKM1 ratio, reduced glycolysis, and heightened TAM sensitivity in BC cells. In conclusion, this study highlights the critical role of the USP46/PTBP1/PKM2 axis in TAM resistance in BC. Targeted therapy against USP46 may represent a promising strategy to improve the prognosis of TAM-resistant patients.
Collapse
Affiliation(s)
- Shun Gao
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
19
|
Bai Y, Li T, Wang Q, You W, Yang H, Xu X, Li Z, Zhang Y, Yan C, Yang L, Qiu J, Liu Y, Chen S, Wang D, Huang B, Liu K, Song BL, Wang Z, Li K, Liu X, Wang G, Yang W, Chen J, Hao P, Zhang Z, Wang Z, Zhu ZJ, Xu C. Shaping immune landscape of colorectal cancer by cholesterol metabolites. EMBO Mol Med 2024; 16:334-360. [PMID: 38177537 PMCID: PMC10897227 DOI: 10.1038/s44321-023-00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Cancer immunotherapies have achieved unprecedented success in clinic, but they remain largely ineffective in some major types of cancer, such as colorectal cancer with microsatellite stability (MSS CRC). It is therefore important to study tumor microenvironment of resistant cancers for developing new intervention strategies. In this study, we identify a metabolic cue that determines the unique immune landscape of MSS CRC. Through secretion of distal cholesterol precursors, which directly activate RORγt, MSS CRC cells can polarize T cells toward Th17 cells that have well-characterized pro-tumor functions in colorectal cancer. Analysis of large human cancer cohorts revealed an asynchronous pattern of the cholesterol biosynthesis in MSS CRC, which is responsible for the abnormal accumulation of distal cholesterol precursors. Inhibiting the cholesterol biosynthesis enzyme Cyp51, by pharmacological or genetic interventions, reduced the levels of intratumoral distal cholesterol precursors and suppressed tumor progression through a Th17-modulation mechanism in preclinical MSS CRC models. Our study therefore reveals a novel mechanism of cancer-immune interaction and an intervention strategy for the difficult-to-treat MSS CRC.
Collapse
Affiliation(s)
- Yibing Bai
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tongzhou Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qinshu Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weiqiang You
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haochen Yang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xintian Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Ziyi Li
- Beijing Advanced Innovation Center for Genomics, BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Yu Zhang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chengsong Yan
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lei Yang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yuanhua Liu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Shiyang Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongfang Wang
- Beijing Advanced Innovation Center for Genomics, BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Binlu Huang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Liu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bao- Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhuozhong Wang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kang Li
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Xin Liu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangchuan Wang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiwei Yang
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianfeng Chen
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pei Hao
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Shanghai, China
| | - Zemin Zhang
- Beijing Advanced Innovation Center for Genomics, BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Chenqi Xu
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
20
|
MacColl Garfinkel A, Mnatsakanyan N, Patel JH, Wills AE, Shteyman A, Smith PJS, Alavian KN, Jonas EA, Khokha MK. Mitochondrial leak metabolism induces the Spemann-Mangold Organizer via Hif-1α in Xenopus. Dev Cell 2023; 58:2597-2613.e4. [PMID: 37673063 PMCID: PMC10840693 DOI: 10.1016/j.devcel.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when β-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.
Collapse
Affiliation(s)
- Alexandra MacColl Garfinkel
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Nelli Mnatsakanyan
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jeet H Patel
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Andrea E Wills
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Amy Shteyman
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA
| | - Peter J S Smith
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | | | - Elizabeth Ann Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University, New Haven, CT 06510, USA.
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Department of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
21
|
Ijurko C, Romo-González M, García-Calvo C, Sardina JL, Sánchez-Bernal C, Sánchez-Yagüe J, Elena-Herrmann B, Villaret J, Garrel C, Mondet J, Mossuz P, Hernández-Hernández Á. NOX2 control over energy metabolism plays a role in acute myeloid leukaemia prognosis and survival. Free Radic Biol Med 2023; 209:18-28. [PMID: 37806599 DOI: 10.1016/j.freeradbiomed.2023.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous disease, however the therapeutic approaches have hardly changed in the last decades. Metabolism rewiring and the enhanced production of reactive oxygen species (ROS) are hallmarks of cancer. A deeper understanding of these features could be instrumental for the development of specific AML-subtypes treatments. NADPH oxidases (NOX), the only cellular system specialised in ROS production, are also involved in leukemic metabolism control. NOX2 shows a variable expression in AML patients, so patients can be classified based on such difference. Here we have analysed whether NOX2 levels are important for AML metabolism control. The lack of NOX2 in AML cells slowdowns basal glycolysis and oxidative phosphorylation (OXPHOS), along with the accumulation of metabolites that feed such routes, and a sharp decrease of glutathione. In addition, we found changes in the expression of 725 genes. Among them, we have discovered a panel of 30 differentially expressed metabolic genes, whose relevance was validated in patients. This panel can segregate AML patients according to CYBB expression, and it can predict patient prognosis and survival. In summary, our data strongly support the relevance of NOX2 for AML metabolism, and highlights the potential of our discoveries in AML prognosis.
Collapse
Affiliation(s)
- Carla Ijurko
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Marta Romo-González
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Clara García-Calvo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - José Luis Sardina
- Epigenetic Control of Haematopoiesis Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
| | - Carmen Sánchez-Bernal
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Jesús Sánchez-Yagüe
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain
| | - Bénédicte Elena-Herrmann
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, GEMELI Platform, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Joran Villaret
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, GEMELI Platform, Institute for Advanced Biosciences, 38000, Grenoble, France
| | - Catherine Garrel
- Department of Biochemistry, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043, Grenoble, CEDEX 9, France
| | - Julie Mondet
- Team "Epigenetic Regulations", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700, Grenoble, France; Department of Molecular Pathology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043, Grenoble, CEDEX 9, France
| | - Pascal Mossuz
- Team "Epigenetic Regulations", Institute for Advanced Biosciences, University Grenoble Alpes (UGA), INSERM U1209/CNRS 5309, 38700, Grenoble, France; Department of Biological Hematology, Institute of Biology and Pathology, Hospital of Grenoble Alpes (CHUGA), CS 20217, 38043, Grenoble, CEDEX 9, France
| | - Ángel Hernández-Hernández
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, Salamanca, 37007, Spain; IBSAL (Instituto de Investigación Biomédica de Salamanca), Salamanca, 37007, Spain.
| |
Collapse
|
22
|
Tufail M. Unlocking the potential of the tumor microenvironment for cancer therapy. Pathol Res Pract 2023; 251:154846. [PMID: 37837860 DOI: 10.1016/j.prp.2023.154846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The tumor microenvironment (TME) holds a crucial role in the progression of cancer. Epithelial-derived tumors share common traits in shaping the TME. The Warburg effect is a notable phenomenon wherein tumor cells exhibit resistance to apoptosis and an increased reliance on anaerobic glycolysis for energy production. Recognizing the pivotal role of the TME in controlling tumor growth and influencing responses to chemotherapy, researchers have focused on developing potential cancer treatment strategies. A wide array of therapies, including immunotherapies, antiangiogenic agents, interventions targeting cancer-associated fibroblasts (CAF), and therapies directed at the extracellular matrix, have been under investigation and have demonstrated efficacy. Additionally, innovative techniques such as tumor tissue explants, "tumor-on-a-chip" models, and multicellular tumor spheres have been explored in laboratory research. This comprehensive review aims to provide insights into the intricate cross-talk between cancer-associated signaling pathways and the TME in cancer progression, current therapeutic approaches targeting the TME, the immune landscape within solid tumors, the role of the viral TME, and cancer cell metabolism.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
23
|
Niu M, Zhu Y, Ding X, Zu Y, Zhao Y, Wang Y. Biomimetic Alveoli System with Vivid Mechanical Response and Cell-Cell Interface. Adv Healthc Mater 2023; 12:e2300850. [PMID: 37288987 DOI: 10.1002/adhm.202300850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/05/2023] [Indexed: 06/09/2023]
Abstract
Alveolar microenvironmental models are important for studying the basic biology of the alveolus, therapeutic trials, and drug testing. However, a few systems can fully reproduce the in vivo alveolar microenvironment including dynamic stretching and the cell-cell interface. Here, a novel biomimetic alveolus-on-a-chip microsystem is presented suitable for visualizing physiological breathing for simulating the 3D architecture and function of human pulmonary alveoli. This biomimetic microsystem contains an inverse opal structured polyurethane membrane that achieves real-time observation of mechanical stretching. In this microsystem, the alveolar-capillary barrier is created by alveolar type 2 (ATII) cells cocultured with vascular endothelial cells (ECs) on this membrane. Based on this microsystem, the phenomena of flattening and the tendency of differentiation in ATII cells are observed. The synergistic effects of mechanical stretching and ECs on the proliferation of ATII cells are also observed during the repair process following lung injury. These features indicate the potential of this novel biomimetic microsystem for exploring the mechanisms of lung diseases, which can provide future guidance concerning drug targets for clinical therapies.
Collapse
Affiliation(s)
- Mengying Niu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yujuan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Xiaoya Ding
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yuanjin Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yongan Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| |
Collapse
|
24
|
Yang L, Li JN. E3 ubiquitin ligase neural precursor cell-expressed developmentally downregulated gene 4 motivates FOXA1 ubiquitination and restrains proliferation of diffuse large B-cell lymphoma cells via the Wnt/β-Catenin pathway. Cell Biol Int 2023; 47:1688-1701. [PMID: 37415495 DOI: 10.1002/cbin.12061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) is an E3 ubiquitin ligase that recognizes substrates via protein-protein interactions and takes part in tumor development. This study aims to clarify NEDD4's functions in diffuse large B-cell lymphoma (DLBCL) and its downstream mechanisms. Collection of 53 DLBCL tissues and adjacent normal lymphoid tissues, and detection of NEDD4 and Forkhead box protein A1 (FOXA1) in the tissues were conducted. The selection of DLBCL cells was for FARAGE, and test of cells' advancement was after transfection. Analysis of NEDD4 and FOXA1's link, and test of Wnt/β-catenin pathway were implemented. In vivo tumor xenograft experiments were put into effect. Detection of the pathological conditions of tumor tissues and the positive Ki67 in the family was implemented. It came out NEDD4 was reduced in DLBCL tissues and cell lines, and FOXA1 was elevated; Enhancing NEDD4 or repressing FOXA1 refrained DLBCL cells' advancement; NEDD4 could combine with FOXA1 and trigger its ubiquitination and degradation; NEDD4 inactivates the Wnt/β-catenin pathway by motivating FOXA1 ubiquitination; NEDD4 enhancement refrained DLBCL growth in vivo. In conclusion, the E3 ubiquitin ligase NEDD4 accelerates FOXA1 ubiquitination but refrains DLBCL cell proliferation via the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| | - Jun Nan Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|
25
|
Zhan W, Quan J, Chen Z, Liu T, Deng M, Zhao Z, Wu X, Zhong Z, Gao F, Chu J. Toxoplasma gondii excretory/secretory proteins promotes osteogenic differentiation of bone marrow mesenchymal stem cells via aerobic glycolysis mediated by Wnt/β‑catenin signaling pathway. Int J Mol Med 2023; 52:91. [PMID: 37594122 PMCID: PMC10483926 DOI: 10.3892/ijmm.2023.5294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Toxoplasma gondii excretory/secretory proteins (TgESPs) are a group of proteins secreted by the parasite and have an important role in the interaction between the host and Toxoplasma gondii (T. gondii). They can participate in various biological processes in different cells and regulate cellular energy metabolism. However, the effect of TgESPs on energy metabolism and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) has remained elusive. In the present study, TgESPs were extracted from the T. gondii RH strain and used to treat BMSCs to observe the effect of TgESPs on energy metabolism and osteogenic differentiation of BMSCs and to explore the molecular mechanisms involved. The osteogenic differentiation and energy metabolism of BMSCs were evaluated using Alizarin Red S staining, qRT-PCR, western blot, immunofluorescence and Seahorse extracellular flux assays. The results indicated that TgESPs activated the Wnt/β‑catenin signaling pathway to enhance glycolysis and lactate production in BMSCs, and promoted cell mineralization and expression of osteogenic markers. In conclusion, the present study uncovered the potential mechanism by which TgESPs regulate BMSCs, which will provide a theoretical reference for the study of the function of TgESPs in the future.
Collapse
Affiliation(s)
- Weiqiang Zhan
- Orthopaedic Center
- Stem Cell Research and Cellular Therapy Center
| | - Juanhua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University
| | - Zhuming Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | | | - Mingzhu Deng
- Orthopaedic Center
- Stem Cell Research and Cellular Therapy Center
| | - Ziquan Zhao
- Orthopaedic Center
- Stem Cell Research and Cellular Therapy Center
| | - Xuyang Wu
- Orthopaedic Center
- Stem Cell Research and Cellular Therapy Center
| | - Zhuolan Zhong
- Orthopaedic Center
- Stem Cell Research and Cellular Therapy Center
| | - Feifei Gao
- Stem Cell Research and Cellular Therapy Center
| | - Jiaqi Chu
- Orthopaedic Center
- Stem Cell Research and Cellular Therapy Center
| |
Collapse
|
26
|
Yan P, Li N, Ma M, Liu Z, Yang H, Li J, Wan C, Gao S, Li S, Zheng L, Waddington JL, Xu L, Zhen X. Hypoxia-inducible factor upregulation by roxadustat attenuates drug reward by altering brain iron homoeostasis. Signal Transduct Target Ther 2023; 8:355. [PMID: 37718358 PMCID: PMC10505610 DOI: 10.1038/s41392-023-01578-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/16/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Substance use disorder remains a major challenge, with an enduring need to identify and evaluate new, translational targets for effective treatment. Here, we report the upregulation of Hypoxia-inducible factor-1α (HIF-1α) expression by roxadustat (Rox), a drug developed for renal anemia that inhibits HIF prolyl hydroxylase to prevent degradation of HIF-1α, administered either systemically or locally into selected brain regions, suppressed morphine (Mor)-induced conditioned place preference (CPP). A similar effect was observed with methamphetamine (METH). Moreover, Rox also inhibited the expression of both established and reinstated Mor-CPP and promoted the extinction of Mor-CPP. Additionally, the elevation of HIF-1α enhanced hepcidin/ferroportin 1 (FPN1)-mediated iron efflux and resulted in cellular iron deficiency, which led to the functional accumulation of the dopamine transporter (DAT) in plasma membranes due to iron deficiency-impaired ubiquitin degradation. Notably, iron-deficient mice generated via a low iron diet mimicked the effect of Rox on the prevention of Mor- or METH-CPP formation, without affecting other types of memory. These data reveal a novel mechanism for HIF-1α and iron involvement in substance use disorder, which may represent a potential novel therapeutic strategy for the treatment of drug abuse. The findings also repurpose Rox by suggesting a potential new indication for the treatment of substance use disorder.
Collapse
Affiliation(s)
- Pengju Yan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ningning Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ming Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhaoli Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Huicui Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jinnan Li
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China
| | - Chunlei Wan
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuliu Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Shuai Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Longtai Zheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - John L Waddington
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Lin Xu
- CAS Key Laboratory of Animal Models and Human Disease Mechanisms, and KIZ-SU Joint Laboratory of Animal Model and Drug Development, and Laboratory of Learning and Memory, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, 650223, China.
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
27
|
Kwon HH, Ahn CH, Lee HJ, Sim DY, Park JE, Park SY, Kim B, Shim BS, Kim SH. The Apoptotic and Anti-Warburg Effects of Brassinin in PC-3 Cells via Reactive Oxygen Species Production and the Inhibition of the c-Myc, SIRT1, and β-Catenin Signaling Axis. Int J Mol Sci 2023; 24:13912. [PMID: 37762214 PMCID: PMC10530901 DOI: 10.3390/ijms241813912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Though Brassinin is known to have antiangiogenic, anti-inflammatory, and antitumor effects in colon, prostate, breast, lung, and liver cancers, the underlying antitumor mechanism of Brassinin is not fully understood so far. Hence, in the current study, the apoptotic mechanism of Brassinin was explored in prostate cancer. Herein, Brassinin significantly increased the cytotoxicity and reduced the expressions of pro-Poly ADP-ribose polymerase (PARP), pro-caspase 3, and B-cell lymphoma 2 (Bcl-2) in PC-3 cells compared to DU145 and LNCaP cells. Consistently, Brassinin reduced the number of colonies and increased the sub-G1 population and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL)-positive cells in the PC-3 cells. Of note, Brassinin suppressed the expressions of pyruvate kinase-M2 (PKM2), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), and lactate dehydrogenase (LDH) as glycolytic proteins in the PC-3 cells. Furthermore, Brassinin significantly reduced the expressions of SIRT1, c-Myc, and β-catenin in the PC-3 cells and also disrupted the binding of SIRT1 with β-catenin, along with a protein-protein interaction (PPI) score of 0.879 and spearman's correlation coefficient of 0.47 being observed between SIRT1 and β-catenin. Of note, Brassinin significantly increased the reactive oxygen species (ROS) generation in the PC-3 cells. Conversely, ROS scavenger NAC reversed the ability of Brassinin to attenuate pro-PARP, pro-Caspase3, SIRT1, and β-catenin in the PC-3 cells. Taken together, these findings support evidence that Brassinin induces apoptosis via the ROS-mediated inhibition of SIRT1, c-Myc, β-catenin, and glycolysis proteins as a potent anticancer candidate.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (H.H.K.); (C.-H.A.); (H.-J.L.); (D.Y.S.); (J.E.P.); (S.-Y.P.); (B.K.); (B.-S.S.)
| |
Collapse
|
28
|
Li Q, Zhang D, Sui X, Song T, Hu L, Xu X, Wang X, Wang F. The Warburg effect drives cachectic states in patients with pancreatobiliary adenocarcinoma. FASEB J 2023; 37:e23144. [PMID: 37584661 DOI: 10.1096/fj.202300649r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
We have studied whether the Warburg effect (uncontrolled glycolysis) in pancreatobiliary adenocarcinoma triggers cachexia in the patient. After 74 pancreatobiliary adenocarcinomas were removed by surgery, their glucose transporter-1 and four glycolytic enzymes were quantified using Western blotting. Based on the resulting data, the adenocarcinomas were equally divided into a group of low glycolysis (LG) and a group of high glycolysis (HG). Energy homeostasis was assessed in these cancer patients and in 74 non-cancer controls, using serum albumin and C-reactive protein and morphometrical analysis of abdominal skeletal muscle and fat on computed tomography scans. Some removed adenocarcinomas were transplanted in nude mice to see their impacts on host energy homeostasis. Separately, nude mice carrying tumor grafts of MiaPaCa-2 pancreatic adenocarcinoma cells were treated with the glycolytic inhibitor 3-bromopyruvate and with emodin that inhibited glycolysis by decreasing hypoxia-inducible factor-1α. Adenocarcinomas in both group LG and group HG impaired energy homeostasis in the cancer patients, compared to the non-cancer reference. The impaired energy homeostasis induced by the adenocarcinomas in group HG was more pronounced than that by the adenocarcinomas in group LG. When original adenocarcinomas were grown in nude mice, their glycolytic abilities determined the levels of hepatic gluconeogenesis, skeletal muscle proteolysis, adipose-tissue lipolysis, and weight loss in the mice. When MiaPaCa-2 cells were grown as tumors in nude mice, 3-bromopyruvate and emodin decreased tumor-induced glycolysis and cachexia, with the best effects being seen when the drugs were administered in combination. In conclusion, the Warburg effect in pancreatobiliary adenocarcinoma triggers cancer cachexia.
Collapse
Affiliation(s)
- Qiuju Li
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Dapeng Zhang
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Xiaojun Sui
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Tao Song
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Lijuan Hu
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| | - Xiaoqing Xu
- The Graduate School, Tianjin Medical University, Tianjin, China
| | - Ximo Wang
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
- Haihe Hospital, Tianjin, China
| | - Feng Wang
- Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China
| |
Collapse
|
29
|
Vallée R, Vallée JN, Guillevin C, Lallouette A, Thomas C, Rittano G, Wager M, Guillevin R, Vallée A. Machine learning decision tree models for multiclass classification of common malignant brain tumors using perfusion and spectroscopy MRI data. Front Oncol 2023; 13:1089998. [PMID: 37614505 PMCID: PMC10442801 DOI: 10.3389/fonc.2023.1089998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/17/2023] [Indexed: 08/25/2023] Open
Abstract
Background To investigate the contribution of machine learning decision tree models applied to perfusion and spectroscopy MRI for multiclass classification of lymphomas, glioblastomas, and metastases, and then to bring out the underlying key pathophysiological processes involved in the hierarchization of the decision-making algorithms of the models. Methods From 2013 to 2020, 180 consecutive patients with histopathologically proved lymphomas (n = 77), glioblastomas (n = 45), and metastases (n = 58) were included in machine learning analysis after undergoing MRI. The perfusion parameters (rCBVmax, PSRmax) and spectroscopic concentration ratios (lac/Cr, Cho/NAA, Cho/Cr, and lip/Cr) were applied to construct Classification and Regression Tree (CART) models for multiclass classification of these brain tumors. A 5-fold random cross validation was performed on the dataset. Results The decision tree model thus constructed successfully classified all 3 tumor types with a performance (AUC) of 0.98 for PCNSLs, 0.98 for GBM and 1.00 for METs. The model accuracy was 0.96 with a RSquare of 0.887. Five rules of classifier combinations were extracted with a predicted probability from 0.907 to 0.989 for that end nodes of the decision tree for tumor multiclass classification. In hierarchical order of importance, the root node (Cho/NAA) in the decision tree algorithm was primarily based on the proliferative, infiltrative, and neuronal destructive characteristics of the tumor, the internal node (PSRmax), on tumor tissue capillary permeability characteristics, and the end node (Lac/Cr or Cho/Cr), on tumor energy glycolytic (Warburg effect), or on membrane lipid tumor metabolism. Conclusion Our study shows potential implementation of machine learning decision tree model algorithms based on a hierarchical, convenient, and personalized use of perfusion and spectroscopy MRI data for multiclass classification of these brain tumors.
Collapse
Affiliation(s)
- Rodolphe Vallée
- Interdisciplinary Laboratory in Neurosciences, Physiology and Psychology (LINP2), Université Paris Lumière (UPL), Paris Nanterre University, Nanterre, France
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Glaucoma Research Center, Swiss Visio Network, Lausanne, Switzerland
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Diagnostic and Functional Neuroradiology and Brain stimulation Department, 15-20 National Vision Hospital of Paris - Paris University Hospital Center, University of PARIS-SACLAY - UVSQ, Paris, France
| | - Carole Guillevin
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Radiology Department, Poitiers University Hospital, Poitiers University, Poitiers, France
| | | | - Clément Thomas
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Diagnostic and Functional Neuroradiology and Brain stimulation Department, 15-20 National Vision Hospital of Paris - Paris University Hospital Center, University of PARIS-SACLAY - UVSQ, Paris, France
| | | | - Michel Wager
- Neurosurgery Department, Poitiers University Hospital, Poitiers University, Poitiers, France
| | - Rémy Guillevin
- Laboratory of Mathematics and Applications (LMA) Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)7348, i3M-DACTIM-MIH (Data Analysis and Computations Through Imaging Modeling - Mathematics, Image, Health), Poitiers University, Poitiers, France
- Radiology Department, Poitiers University Hospital, Poitiers University, Poitiers, France
| | - Alexandre Vallée
- Department of Epidemiology and Public Health, Foch Hospital, Suresnes, France
| |
Collapse
|
30
|
Katsi V, Papakonstantinou I, Tsioufis K. Atherosclerosis, Diabetes Mellitus, and Cancer: Common Epidemiology, Shared Mechanisms, and Future Management. Int J Mol Sci 2023; 24:11786. [PMID: 37511551 PMCID: PMC10381022 DOI: 10.3390/ijms241411786] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of cardiovascular disease in cancer onset and development represents a contemporary interest in basic science. It has been recognized, from the most recent research, that metabolic syndrome-related conditions, ranging from atherosclerosis to diabetes, elicit many pathways regulating lipid metabolism and lipid signaling that are also linked to the same framework of multiple potential mechanisms for inducing cancer. Otherwise, dyslipidemia and endothelial cell dysfunction in atherosclerosis may present common or even interdependent changes, similar to oncogenic molecules elevated in many forms of cancer. However, whether endothelial cell dysfunction in atherosclerotic disease provides signals that promote the pre-clinical onset and proliferation of malignant cells is an issue that requires further understanding, even though more questions are presented with every answer. Here, we highlight the molecular mechanisms that point to a causal link between lipid metabolism and glucose homeostasis in metabolic syndrome-related atherosclerotic disease with the development of cancer. The knowledge of these breakthrough mechanisms may pave the way for the application of new therapeutic targets and for implementing interventions in clinical practice.
Collapse
Affiliation(s)
- Vasiliki Katsi
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
| | | | - Konstantinos Tsioufis
- Department of Cardiology, Hippokration Hospital, 11527 Athens, Greece
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
31
|
Huang Y, Qian Y, Xing Y, Pei Y, Zhang B, Li T, Pan X, Zhong A, Du J, Zhou T, Shi M. POLRMT over-expression is linked to WNT/beta-catenin signaling, immune infiltration, and unfavorable outcomes in lung adenocarcinoma patients. Cancer Med 2023; 12:15691-15703. [PMID: 37283308 PMCID: PMC10417304 DOI: 10.1002/cam4.6174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/10/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Mitochondrial RNA polymerase (POLRMT) is essential for the expression of mitochondrial genes. In recent studies, POLRMT expression promoted non-small cell cancer cell proliferation in cell lines and xenografts. The present study investigated the impact of POLRMT expression and function on lung adenocarcinoma (LUAD) patients. METHOD Multi-omics data (genomics, transcriptomics, and proteomics) from publicly available databases were used to assess the role of POLRMT expression and function in LUAD. These findings were further verified using cancer tissues from clinical samples. RESULTS POLRMT was over-expressed in LUADs, with mutation frequencies ranging from 1.30% to 5.71%. Over-expression of POLRMT was associated with an abnormal clinicopathological condition resulting in a decreased lifespan. Furthermore, gene sets enrich analysis revealed that POLRMT expression was linked to WNT/beta-catenin signaling; the expression of downstream target genes was positively correlated with POLRMT expression. Also, POLRMT expression was positively correlated with immunosuppressive genes, thereby affecting immune infiltration. CONCLUSION POLRMT is over-expressed in LUAD, thereby impacting patient survival. It is also involved in WNT/beta-catenin signaling and may affect tumor infiltration.
Collapse
Affiliation(s)
- Yongkang Huang
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yajuan Qian
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yufei Xing
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yongjian Pei
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Beilei Zhang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ting Li
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Xue Pan
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Anyuan Zhong
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Juan Du
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Tong Zhou
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Minhua Shi
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
32
|
Zhang L, Wu L, Zhu X, Mei J, Chen Y. Paeonol represses A549 cell glycolytic reprogramming and proliferation by decreasing m6A modification of Acyl-CoA dehydrogenase. CHINESE J PHYSIOL 2023; 66:248-256. [PMID: 37635484 DOI: 10.4103/cjop.cjop-d-22-00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Aberrant glycolytic reprogramming is involved in lung cancer progression by promoting the proliferation of non-small cell lung cancer cells. Paeonol, as a traditional Chinese medicine, plays a critical role in multiple cancer cell proliferation and inflammation. Acyl-CoA dehydrogenase (ACADM) is involved in the development of metabolic diseases. N6-methyladenosine (m6A) modification is important for the regulation of messenger RNA stability, splicing, and translation. Here, we investigated whether paeonol regulates the proliferation and glycolytic reprogramming via ACADM with m6A modification in A549 cells (human non-small cell lung cancer cells). Cell counting kit 8, 5-Bromo-2-deoxyuridine, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, flow cytometry analysis, western blotting and seahorse XFe24 extracellular flux analyzer assays showed that paeonol had a significant inhibitory effect against A549 cell proliferation and glycolysis. Mechanistically, ACADM was a functional target of paeonol. We also showed that the m6A reader YTH domain containing 1 plays an important role in m6A-modified ACADM expression, which is negatively regulated by paeonol, and is involved in A549 cell proliferation and glycolytic reprogramming. These results indicated the central function of paeonol in regulating A549 cell glycolytic reprogramming and proliferation via m6A modification of ACADM.
Collapse
Affiliation(s)
- Lixin Zhang
- Central Laboratory of Harbin Medical University, Daqing, China; Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Lihua Wu
- Department of Geriatrics, Daqing Oilfield General Hospital, Daqing, China
| | - Xiangrui Zhu
- Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Jian Mei
- Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| | - Yingli Chen
- Central Laboratory of Harbin Medical University, Daqing, China; Department of Immunology, College of Medical Laboratory Science and Technology, Harbin Medical University, Daqing, China
| |
Collapse
|
33
|
Goncharova EA, Kudryashova TV, de Jesus Perez V, Rafikova O. UnWNTing the Heart: Targeting WNT Signaling in Pulmonary Arterial Hypertension. Circ Res 2023; 132:1486-1488. [PMID: 37228239 PMCID: PMC10213998 DOI: 10.1161/circresaha.123.322912] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Elena A. Goncharova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
| | - Tatiana V. Kudryashova
- Lung Center, Division of Pulmonary, Critical Care and Sleep Medicine, University of California, Davis School of Medicine, Davis, CA, USA
| | - Vinicio de Jesus Perez
- Division of Pulmonary and Critical Care Medicine, Stanford University Medical Center, Stanford, CA, USA
| | - Olga Rafikova
- Department of Medicine, Division of Endocrinology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
34
|
Marcucci F, Rumio C. On the Role of Glycolysis in Early Tumorigenesis-Permissive and Executioner Effects. Cells 2023; 12:cells12081124. [PMID: 37190033 DOI: 10.3390/cells12081124] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 04/06/2023] [Indexed: 05/17/2023] Open
Abstract
Reprogramming energy production from mitochondrial respiration to glycolysis is now considered a hallmark of cancer. When tumors grow beyond a certain size they give rise to changes in their microenvironment (e.g., hypoxia, mechanical stress) that are conducive to the upregulation of glycolysis. Over the years, however, it has become clear that glycolysis can also associate with the earliest steps of tumorigenesis. Thus, many of the oncoproteins most commonly involved in tumor initiation and progression upregulate glycolysis. Moreover, in recent years, considerable evidence has been reported suggesting that upregulated glycolysis itself, through its enzymes and/or metabolites, may play a causative role in tumorigenesis, either by acting itself as an oncogenic stimulus or by facilitating the appearance of oncogenic mutations. In fact, several changes induced by upregulated glycolysis have been shown to be involved in tumor initiation and early tumorigenesis: glycolysis-induced chromatin remodeling, inhibition of premature senescence and induction of proliferation, effects on DNA repair, O-linked N-acetylglucosamine modification of target proteins, antiapoptotic effects, induction of epithelial-mesenchymal transition or autophagy, and induction of angiogenesis. In this article we summarize the evidence that upregulated glycolysis is involved in tumor initiation and, in the following, we propose a mechanistic model aimed at explaining how upregulated glycolysis may play such a role.
Collapse
Affiliation(s)
- Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
35
|
He X, Guo X, Deng B, Kang J, Liu W, Zhang G, Wang Y, Yang Y, Kang X. HSPA1A ameliorated spinal cord injury in rats by inhibiting apoptosis to exert neuroprotective effects. Exp Neurol 2023; 361:114301. [PMID: 36538982 DOI: 10.1016/j.expneurol.2022.114301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/23/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Traumatic spinal cord injury (TSCI) is a serious nervous system insult, and apoptosis in secondary injury is an important barrier to recovery from TSCI. Heat shock protein family A member 1A (HSPA1A) is a protective protein whose expression is elevated after stress. However, whether HSPA1A can inhibit apoptosis after spinal cord injury, and the potential mechanism of this inhibition, remain unclear. In this study, we established in vivo and in vitro models of TSCI and induced HSPA1A overexpression and silencing. HSPA1A upregulation promoted the recovery of neurological function and pathological morphology at the injury site, enhanced neurological cell survival, and inhibited apoptosis in rats following TSCI. In the in vitro model, HSPA1A overexpression inhibited H2O2-induced apoptosis, indicating that HSPA1A suppressed the expression of Bax, caspase-9, and cleaved-caspase-3, promoted the expression of Bcl-2. Furthermore, inhibition of HSPA1A expression can aggravate H2O2-induced apoptosis. We also found that HSPA1A overexpression activated the Wnt/β-catenin signaling pathway, and that inhibition of this pathway attenuated the inhibitory effect of HSPA1A overexpression on apoptosis. Together, these results indicate that HSPA1A has neuroprotective effects against TSCI that may be exerted through activation of the Wnt/β-catenin signaling pathway to inhibit apoptosis.
Collapse
Affiliation(s)
- Xuegang He
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xudong Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Bo Deng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Jihe Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Wenzhao Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Guangzhi Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Yong Yang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China
| | - Xuewen Kang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China; The Second Clinical Medical College, Lanzhou University, Lanzhou, China; The International Cooperation Base of Gansu Province for the Pain Research in Spinal Disorders, Lanzhou, China.
| |
Collapse
|
36
|
Su M, Shan S, Gao Y, Dai M, Wang H, He C, Zhao M, Liang Z, Wan S, Yang J, Cai H. 2-Deoxy-D-glucose simultaneously targets glycolysis and Wnt/β-catenin signaling to inhibit cervical cancer progression. IUBMB Life 2023. [PMID: 36809563 DOI: 10.1002/iub.2706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
Cervical cancer is one of the most common female malignant tumors, with typical cancer metabolism characteristics of increased glycolysis flux and lactate accumulation. 2-Deoxy-D-glucose (2-DG) is a glycolysis inhibitor that acts on hexokinase, the first rate-limiting enzyme in the glycolysis pathway. In this research, we demonstrated that 2-DG effectively reduced glycolysis and impaired mitochondrial function in cervical cancer cell lines HeLa and SiHa. Cell function experiments revealed that 2-DG significantly inhibited cell growth, migration, and invasion, and induced G0/G1 phase arrest at non-cytotoxic concentrations. In addition, we found that 2-DG down-regulated Wingless-type (Wnt)/β-catenin signaling. Mechanistically, 2-DG accelerated the degradation of β-catenin protein, which resulted in the decrease of β-catenin expression in both nucleus and cytoplasm. The Wnt agonist lithium chloride and β-catenin overexpression vector could partially reverse the inhibition of malignant phenotype by 2-DG. These data suggested that 2-DG exerted its anti-cancer effects on cervical cancer by co-targeting glycolysis and Wnt/β-catenin signaling. As expected, the combination of 2-DG and Wnt inhibitor synergistically inhibited cell growth. It is noteworthy that, down-regulation of Wnt/β-catenin signaling also inhibited glycolysis, indicating a similar positive feedback regulation between glycolysis and Wnt/β-catenin signaling. In conclusion, we investigated the molecular mechanism by which 2-DG inhibits the progression of cervical cancer in vitro, elucidated the interregulation between glycolysis and Wnt/β-catenin signaling, and preliminarily explored the effect of combined targeting of glycolysis and Wnt/β-catenin signaling on cell proliferation, which provides more possibilities for the formulation of subsequent clinical treatment strategies.
Collapse
Affiliation(s)
- Min Su
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Shidong Shan
- Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Department of Urology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China
| | - Yang Gao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Mengyuan Dai
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Hua Wang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Can He
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Mengna Zhao
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Ziyan Liang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Shimeng Wan
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Junyuan Yang
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| | - Hongbing Cai
- Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, People's Republic of China.,Hubei Clinical Cancer Study Center, Wuhan, People's Republic of China
| |
Collapse
|
37
|
Liang Y, Rao Z, Du D, Wang Y, Fang T. Butyrate prevents the migration and invasion, and aerobic glycolysis in gastric cancer via inhibiting Wnt/β-catenin/c-Myc signaling. Drug Dev Res 2023; 84:532-541. [PMID: 36782390 DOI: 10.1002/ddr.22043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Gastric cancer (GC) remains a common cause of cancer death worldwide. Evidence has found that butyrate exhibited antitumor effects on GC cells. However, the mechanism by which butyrate regulate GC cell proliferation, migration, invasion, and aerobic glycolysis remains largely unknown. The proliferation, migration, and invasion of GC cells were tested by EdU staining, transwell assays. Additionally, protein expressions were determined by western blot assay. Next, glucose uptake, lactate production, and cellular ATP levels in GC cells were detected. Furthermore, the antitumor effects of butyrate in tumor-bearing nude mice were evaluated. We found, butyrate significantly prevented GC cell proliferation, migration, and invasion (p < .01). Additionally, butyrate markedly inhibited GC cell aerobic glycolysis, as shown by the reduced expressions of GLUT1, HK2, and LDHA (p < .01). Moreover, butyrate notably decreased nuclear β-catenin and c-Myc levels in GC cells (p < .01). Remarkably, through activating Wnt/β-catenin signaling with LiCl, the inhibitory effects of butyrate on the growth and aerobic glycolysis of GC cells were diminished (p < .01). Moreover, butyrate notably suppressed tumor volume and weight in GC cell xenograft nude mice in vivo (p < .01). Meanwhile, butyrate obviously reduced nuclear β-catenin, c-Myc, GLUT1, HK2 and LDHA levels in tumor tissues in GC cell xenograft mice (p < .01). Collectively, butyrate could suppress the growth and aerobic glycolysis of GC cells in vitro and in vivo via downregulating wnt/β-catenin/c-Myc signaling. These findings are likely to prove useful in better understanding the role of butyrate in GC.
Collapse
Affiliation(s)
- Yizhi Liang
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Zilan Rao
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Dongwei Du
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Yiwen Wang
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Clinical Medical College of Fujian Medical University, The Second Affiliated Hospital of Fujian Medical University, Fujian, China
| |
Collapse
|
38
|
Guo D, Meng Y, Jiang X, Lu Z. Hexokinases in cancer and other pathologies. CELL INSIGHT 2023; 2:100077. [PMID: 37192912 PMCID: PMC10120283 DOI: 10.1016/j.cellin.2023.100077] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 05/18/2023]
Abstract
Glucose metabolism is indispensable for cell growth and survival. Hexokinases play pivotal roles in glucose metabolism through canonical functions of hexokinases as well as in immune response, cell stemness, autophagy, and other cellular activities through noncanonical functions. The aberrant regulation of hexokinases contributes to the development and progression of pathologies, including cancer and immune diseases.
Collapse
Affiliation(s)
- Dong Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Meng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Jiang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhimin Lu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
39
|
Park SJ, Kim JH, Oh S, Lee DY. Metabolome-Wide Reprogramming Modulated by Wnt/β-Catenin Signaling Pathway. J Microbiol Biotechnol 2023; 33:114-122. [PMID: 36474320 PMCID: PMC9895996 DOI: 10.4014/jmb.2211.11013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022]
Abstract
A family of signal transduction pathways known as wingless type (Wnt) signaling pathways is essential to developmental processes like cell division and proliferation. Mutation in Wnt signaling results in a variety of diseases, including cancers of the breast, colon, and skin, metabolic disease, and neurodegenerative disease; thus, the Wnt signaling pathways have been attractive targets for disease treatment. However, the complicatedness and large involveness of the pathway often hampers pinpointing the specific targets of the metabolic process. In our current study, we investigated the differential metabolic regulation by the overexpression of the Wnt signaling pathway in a timely-resolved manner by applying high-throughput and un-targeted metabolite profiling. We have detected and annotated 321 metabolite peaks from a total of 36 human embryonic kidney (HEK) 293 cells using GC-TOF MS and LC-Orbitrap MS. The un-targeted metabolomic analysis identified the radical reprogramming of a range of central carbon/nitrogen metabolism pathways, including glycolysis, TCA cycle, and glutaminolysis, and fatty acid pathways. The investigation, combined with targeted mRNA profiles, elucidated an explicit understanding of activated fatty acid metabolism (β-oxidation and biosynthesis). The findings proposed detailed mechanistic biochemical dynamics in response to Wnt-driven metabolic changes, which may help design precise therapeutic targets for Wnt-related diseases.
Collapse
Affiliation(s)
- Soo Jin Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Joo-Hyun Kim
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Sangtaek Oh
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea,Department of Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul 02707, Republic of Korea,Corresponding authors S. Oh Phone: +82-2-910-5732 E-mail:
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea,Interdisciplinary Program in Agricultural Genomics, Seoul National University, Seoul 08826, Republic of Korea,Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea,D.Y. Lee Phone: + 82-2-880-5644 E-mail:
| |
Collapse
|
40
|
GPER-mediated stabilization of HIF-1α contributes to upregulated aerobic glycolysis in tamoxifen-resistant cells. Oncogene 2023; 42:184-197. [PMID: 36400971 DOI: 10.1038/s41388-022-02506-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022]
Abstract
Tamoxifen is a first-line therapeutic drug for oestrogen-receptor positive breast cancer; however, like other therapeutics, its clinical use is limited by acquired resistance. Tamoxifen-resistant cells have demonstrated enhanced aerobic glycolysis; however, the mechanisms underlying this upregulation remain unclear. Here, we demonstrated that G-protein coupled oestrogen receptor (GPER) was involved in the upregulation of aerobic glycolysis via induction of hypoxia-inducible factor-1α (HIF-1α) expression and transcriptional activity in tamoxifen-resistant cells. Additionally, GPER stabilized HIF-1α through inhibiting its hydroxylation and ubiquitin-mediated degradation, which were associated with upregulation of C-terminal hydrolase-L1 (UCH-L1), downregulation of prolyl hydroxylase 2 (PHD2) and von Hippel-Lindau tumour suppressor protein (pVHL), induction of HIF-1α/UCH-L1 interaction, and suppression of HIF-1α/PHD2-pVHL association. The GPER/HIF-1α axis was functionally responsible for regulating tamoxifen sensitivity both in vitro and in vivo. Moreover, there was a positive correlation between GPER and HIF-1α expression in clinical breast cancer tissues, and high levels of GPER combined with nuclear HIF-1α indicated poor overall survival. High levels of the GPER/HIF-1α axis were also correlated with shorter relapse-free survival in patients receiving tamoxifen. Hence, our findings support a critical role of GPER/HIF-1α axis in the regulation of aerobic glycolysis in tamoxifen-resistant cells, offering a potential therapeutic target for tamoxifen-resistant breast cancer.
Collapse
|
41
|
Kim W, Yeo DY, Choi SK, Kim HY, Lee SW, Ashim J, Han JE, Yu W, Jeong H, Park JK, Park S. NOLC1 knockdown suppresses prostate cancer progressions by reducing AKT phosphorylation and β-catenin accumulation. Biochem Biophys Res Commun 2022; 635:99-107. [DOI: 10.1016/j.bbrc.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
42
|
Lin Y, Zhou X, Ni Y, Zhao X, Liang X. Metabolic reprogramming of the tumor immune microenvironment in ovarian cancer: A novel orientation for immunotherapy. Front Immunol 2022; 13:1030831. [PMID: 36311734 PMCID: PMC9613923 DOI: 10.3389/fimmu.2022.1030831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic tumor, with the highest mortality rate. Numerous studies have been conducted on the treatment of ovarian cancer in the hopes of improving therapeutic outcomes. Immune cells have been revealed to play a dual function in the development of ovarian cancer, acting as both tumor promoters and tumor suppressors. Increasingly, the tumor immune microenvironment (TIME) has been proposed and confirmed to play a unique role in tumor development and treatment by altering immunosuppressive and cytotoxic responses in the vicinity of tumor cells through metabolic reprogramming. Furthermore, studies of immunometabolism have provided new insights into the understanding of the TIME. Targeting or activating metabolic processes of the TIME has the potential to be an antitumor therapy modality. In this review, we summarize the composition of the TIME of ovarian cancer and its metabolic reprogramming, its relationship with drug resistance in ovarian cancer, and recent research advances in immunotherapy.
Collapse
|
43
|
Zhou J, Lei N, Tian W, Guo R, Chen M, Qiu L, Wu F, Li Y, Chang L. Recent progress of the tumor microenvironmental metabolism in cervical cancer radioresistance. Front Oncol 2022; 12:999643. [PMID: 36313645 PMCID: PMC9597614 DOI: 10.3389/fonc.2022.999643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 08/01/2023] Open
Abstract
Radiotherapy is widely used as an indispensable treatment option for cervical cancer patients. However, radioresistance always occurs and has become a big obstacle to treatment efficacy. The reason for radioresistance is mainly attributed to the high repair ability of tumor cells that overcome the DNA damage caused by radiotherapy, and the increased self-healing ability of cancer stem cells (CSCs). Accumulating findings have demonstrated that the tumor microenvironment (TME) is closely related to cervical cancer radioresistance in many aspects, especially in the metabolic processes. In this review, we discuss radiotherapy in cervical cancer radioresistance, and focus on recent research progress of the TME metabolism that affects radioresistance in cervical cancer. Understanding the mechanism of metabolism in cervical cancer radioresistance may help identify useful therapeutic targets for developing novel therapy, overcome radioresistance and improve the efficacy of radiotherapy in clinics and quality of life of patients.
Collapse
Affiliation(s)
- Junying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ningjing Lei
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wanjia Tian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixia Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luojie Qiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fengling Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Li
- Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia
- St George and Sutherland Clinical Campuses, School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Lei Chang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
44
|
Firnau MB, Brieger A. CK2 and the Hallmarks of Cancer. Biomedicines 2022; 10:1987. [PMID: 36009534 PMCID: PMC9405757 DOI: 10.3390/biomedicines10081987] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a leading cause of death worldwide. Casein kinase 2 (CK2) is commonly dysregulated in cancer, impacting diverse molecular pathways. CK2 is a highly conserved serine/threonine kinase, constitutively active and ubiquitously expressed in eukaryotes. With over 500 known substrates and being estimated to be responsible for up to 10% of the human phosphoproteome, it is of significant importance. A broad spectrum of diverse types of cancer cells has been already shown to rely on disturbed CK2 levels for their survival. The hallmarks of cancer provide a rationale for understanding cancer's common traits. They constitute the maintenance of proliferative signaling, evasion of growth suppressors, resisting cell death, enabling of replicative immortality, induction of angiogenesis, the activation of invasion and metastasis, as well as avoidance of immune destruction and dysregulation of cellular energetics. In this work, we have compiled evidence from the literature suggesting that CK2 modulates all hallmarks of cancer, thereby promoting oncogenesis and operating as a cancer driver by creating a cellular environment favorable to neoplasia.
Collapse
Affiliation(s)
| | - Angela Brieger
- Department of Internal Medicine I, Biomedical Research Laboratory, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
45
|
Mo L, Zhang F, Chen F, Xia L, Huang Y, Mo Y, Zhang L, Huang D, He S, Deng J, Hao E, Du Z. Progress on structural modification of Tetrandrine with wide range of pharmacological activities. Front Pharmacol 2022; 13:978600. [PMID: 36052124 PMCID: PMC9424556 DOI: 10.3389/fphar.2022.978600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Tetrandrine (Tet), derived from the traditional Chinese herb Fangji, is a class of natural alkaloids with the structure of bisbenzylisoquinoline, which has a wide range of physiological activities and significant pharmacfological effects. However, studies and clinical applications have revealed a series of drawbacks such as its poor water solubility, low bioavailability, and the fact that it can be toxic to humans. The results of many researchers have confirmed that chemical structural modifications and nanocarrier delivery can address the limited application of Tet and improve its efficacy. In this paper, we summarize the anti-tumor efficacy and mechanism of action, anti-inflammatory efficacy and mechanism of action, and clinical applications of Tet, and describe the progress of Tet based on chemical structure modification and nanocarrier delivery, aiming to explore more diverse structures to improve the pharmacological activity of Tet and provide ideas to meet clinical needs.
Collapse
Affiliation(s)
- Liuying Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Fan Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- Guangxi International Zhuang Medicine Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Chen
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lei Xia
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Yi Huang
- Office of the President, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuemi Mo
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Lingqiu Zhang
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
| | - Daquan Huang
- Guangxi Dahai Sunshine Pharmaceutical, Nanning, China
| | - Shunli He
- Guangxi Heli Pharmaceutical, Nanning, China
| | - Jiagang Deng
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Erwei Hao
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| | - Zhengcai Du
- Guangxi Scientific Experimental Center of Traditional Chinese Medicine, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Nanning, China
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, China
- *Correspondence: Jiagang Deng, ; Erwei Hao, ; Zhengcai Du,
| |
Collapse
|
46
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
47
|
Simula L, Alifano M, Icard P. How Phosphofructokinase-1 Promotes PI3K and YAP/TAZ in Cancer: Therapeutic Perspectives. Cancers (Basel) 2022; 14:cancers14102478. [PMID: 35626081 PMCID: PMC9139230 DOI: 10.3390/cancers14102478] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary We propose that PFK1 promotes a positive feedback loop with PI3K/AKT and YAP/TAZ signaling pathways in cancer cells. Therefore, targeting PFK1 (or its product F-1,6-BP) could improve the efficacy of PI3K and YAP/TAZ inhibitors currently tested in clinical trials. To this aim, we suggest the use of citrate, which is a physiologic and potent inhibitor of PFK1. Abstract PI3K/AKT is one of the most frequently altered signaling pathways in human cancers, supporting the activation of many proteins sustaining cell metabolism, proliferation, and aggressiveness. Another important pathway frequently altered in cancer cells is the one regulating the YAP/TAZ transcriptional coactivators, which promote the expression of genes sustaining aerobic glycolysis (such as WNT, MYC, HIF-1), EMT, and drug resistance. Of note, the PI3K/AKT pathway can also regulate the YAP/TAZ one. Unfortunately, although PI3K and YAP inhibitors are currently tested in highly resistant cancers (both solid and hematologic ones), several resistance mechanisms may arise. Resistance mechanisms to PI3K inhibitors may involve the stimulation of alternative pathways (such as RAS, HER, IGFR/AKT), the inactivation of PTEN (the physiologic inhibitor of PI3K), and the expression of anti-apoptotic Bcl-xL and MCL1 proteins. Therefore, it is important to improve current therapeutic strategies to overcome these limitations. Here, we want to highlight how the glycolytic enzyme PFK1 (and its product F-1,6-BP) promotes the activation of both PI3K/AKT and YAP/TAZ pathways by several direct and indirect mechanisms. In turn, PI3K/AKT and YAP/TAZ can promote PFK1 activity and F-1,6-BP production in a positive feedback loop, thus sustaining the Warburg effect and drug resistance. Thus, we propose that the inhibition of PFK1 (and of its key activator PFK2/PFKFB3) could potentiate the sensitivity to PI3K and YAP inhibitors currently tested. Awaiting the development of non-toxic inhibitors of these enzymes, we propose to test the administration of citrate at a high dosage, because citrate is a physiologic inhibitor of both PFK1 and PFK2/PFKFB3. Consistently, in various cultured cancer cells (including melanoma, sarcoma, hematologic, and epithelial cancer cells), this “citrate strategy” efficiently inhibits the IGFR1/AKT pathway, promotes PTEN activity, reduces Bcl-xL and MCL1 expression, and increases sensitivity to standard chemotherapy. It also inhibits the development of sarcoma, pancreatic, mammary HER+ and lung RAS-driven tumors in mice without apparent toxicities.
Collapse
Affiliation(s)
- Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris, 75014 Paris, France;
| | - Marco Alifano
- INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France;
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France
| | - Philippe Icard
- Service de Chirurgie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, APHP, Paris-Descartes University, 75014 Paris, France
- UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Normandie Université, 14000 Caen, France
- Correspondence:
| |
Collapse
|
48
|
The Hallmarks of Glioblastoma: Heterogeneity, Intercellular Crosstalk and Molecular Signature of Invasiveness and Progression. Biomedicines 2022; 10:biomedicines10040806. [PMID: 35453557 PMCID: PMC9031586 DOI: 10.3390/biomedicines10040806] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023] Open
Abstract
In 2021 the World Health Organization published the fifth and latest version of the Central Nervous System tumors classification, which incorporates and summarizes a long list of updates from the Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy work. Among the adult-type diffuse gliomas, glioblastoma represents most primary brain tumors in the neuro-oncology practice of adults. Despite massive efforts in the field of neuro-oncology diagnostics to ensure a proper taxonomy, the identification of glioblastoma-tumor subtypes is not accompanied by personalized therapies, and no improvements in terms of overall survival have been achieved so far, confirming the existence of open and unresolved issues. The aim of this review is to illustrate and elucidate the state of art regarding the foremost biological and molecular mechanisms that guide the beginning and the progression of this cancer, showing the salient features of tumor hallmarks in glioblastoma. Pathophysiology processes are discussed on molecular and cellular levels, highlighting the critical overlaps that are involved into the creation of a complex tumor microenvironment. The description of glioblastoma hallmarks shows how tumoral processes can be linked together, finding their involvement within distinct areas that are engaged for cancer-malignancy establishment and maintenance. The evidence presented provides the promising view that glioblastoma represents interconnected hallmarks that may led to a better understanding of tumor pathophysiology, therefore driving the development of new therapeutic strategies and approaches.
Collapse
|
49
|
Shah K, Kazi JU. Phosphorylation-Dependent Regulation of WNT/Beta-Catenin Signaling. Front Oncol 2022; 12:858782. [PMID: 35359365 PMCID: PMC8964056 DOI: 10.3389/fonc.2022.858782] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/16/2022] [Indexed: 01/11/2023] Open
Abstract
WNT/β-catenin signaling is a highly complex pathway that plays diverse roles in various cellular processes. While WNT ligands usually signal through their dedicated Frizzled receptors, the decision to signal in a β-catenin-dependent or -independent manner rests upon the type of co-receptors used. Canonical WNT signaling is β-catenin-dependent, whereas non-canonical WNT signaling is β-catenin-independent according to the classical definition. This still holds true, albeit with some added complexity, as both the pathways seem to cross-talk with intertwined networks that involve the use of different ligands, receptors, and co-receptors. β-catenin can be directly phosphorylated by various kinases governing its participation in either canonical or non-canonical pathways. Moreover, the co-activators that associate with β-catenin determine the output of the pathway in terms of induction of genes promoting proliferation or differentiation. In this review, we provide an overview of how protein phosphorylation controls WNT/β-catenin signaling, particularly in human cancer.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Julhash U. Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- *Correspondence: Julhash U. Kazi,
| |
Collapse
|
50
|
The Wnt Signaling Pathway Inhibitors Improve the Therapeutic Activity of Glycolysis Modulators against Tongue Cancer Cells. Int J Mol Sci 2022; 23:ijms23031248. [PMID: 35163171 PMCID: PMC8835497 DOI: 10.3390/ijms23031248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/27/2022] Open
Abstract
Excessive glucose metabolism and disruptions in Wnt signaling are important molecular changes present in oral cancer cells. The aim of this study was to evaluate the effects of the combinatorial use of glycolysis and Wnt signaling inhibitors on viability, cytotoxicity, apoptosis induction, cell cycle distribution and the glycolytic activity of tongue carcinoma cells. CAL 27, SCC-25 and BICR 22 tongue cancer cell lines were used. Cells were treated with inhibitors of glycolysis (2-deoxyglucose and lonidamine) and of Wnt signaling (PRI-724 and IWP-O1). The effects of the compounds on cell viability and cytotoxicity were evaluated with MTS and CellTox Green tests, respectively. Apoptosis was evaluated by MitoPotential Dye staining and cell cycle distribution by staining with propidium iodide, followed by flow cytometric cell analysis. Glucose and lactate concentrations in a culture medium were evaluated luminometrically. Combinations of 2-deoxyglucose and lonidamine with Wnt pathway inhibitors were similarly effective in the impairment of oral cancer cells’ survival. However, the inhibition of the canonical Wnt pathway by PRI-724 was more beneficial, based on the glycolytic activity of the cells. The results point to the therapeutic potential of the combination of low concentrations of glycolytic modulators with Wnt pathway inhibitors in oral cancer cells.
Collapse
|