1
|
Al-Khazraji Y, Muzammil MA, Javid S, Tangella AV, Gohil NV, Saifullah H, Kanagala SG, Fariha F, Muneer A, Ahmed S, Shariq A. Novel regimens and treatment strategies in neoadjuvant therapy for colorectal cancer: A systematic review. Int J Health Sci (Qassim) 2024; 18:43-58. [PMID: 39282125 PMCID: PMC11393386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Objective The objective of this systematic review was to describe novel regimens and treatment strategies in neoadjuvant therapy for colorectal cancer (CRC). The aim was to summarize the current advancements in neoadjuvant chemotherapy (NACT) for CRC, including the use of cytotoxic drugs, targeted treatments, and immunotherapy. The analysis aimed to provide insights into the potential benefits and drawbacks of these novel approaches and highlight the need for further research to optimize NACT use in CRC and improve patient outcomes. Methods From October 20, 2023, to December 10, 2023, a comprehensive literature search was conducted across multiple databases, including PubMed, Ovid, Web of Science, the Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Embase, and Scopus. Studies addressing the use of and treatment strategies for CRC and neoadjuvant therapies were included. Screening was conducted in two steps, initially by title and abstract and then by full-text articles. English-language articles were considered, while preprints, non-English publications, and articles published as grey literature were excluded from the study. A total of 85 studies were selected for further analysis after screening and filtering. Results After filtering out duplicates and items that were irrelevant to our research query from the initial database search's 510 results, 397 unique articles were found. Eighty-five studies were chosen for additional analysis after the articles underwent two rounds of screening. Conclusion The review concluded that neoadjuvant therapy for CRC has evolved beyond conventional approaches and holds promise for improving patient outcomes. Future prospects for advancing neoadjuvant approaches are promising, with ongoing clinical trials investigating the refinement of strategies, identification of predictive biomarkers, and optimization of patient selection. The adoption of novel regimens, precision medicine, and immunotherapy offers opportunities to redefine treatment paradigms and enhance patient care in CRC.
Collapse
Affiliation(s)
| | | | - Saman Javid
- Department of Medicine, CMH Kharian Medical College, Kharian, Pakistan
| | | | - Namra Vinay Gohil
- Department of Medicine, Medical College Baroda, Vadodara, Gujarat, India
| | - Hanya Saifullah
- Department of Medicine, Medical College Baroda, CMH Lahore Medical College, Lahore, Pakistan
| | | | - Fnu Fariha
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Asim Muneer
- Department of Adult Hematology Oncology, Prince Faisal Ca ncer Centre Buraidah, Al qaseem, Saudi Arabia
| | - Sumaira Ahmed
- Department of Gastroenterology, King Fahad Hospital, Burydah, KSA
| | - Ali Shariq
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
2
|
Cheng OJ, Lebish EJ, Jensen O, Jacenik D, Trivedi S, Cacioppo JG, Aubé J, Beswick EJ, Leung DT. Mucosal-associated invariant T cells modulate innate immune cells and inhibit colon cancer growth. Scand J Immunol 2024; 100:e13391. [PMID: 38773691 PMCID: PMC11315626 DOI: 10.1111/sji.13391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/24/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we showed that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumours inhibits tumour growth compared to control. Multiplex cytokine analyses showed that tumours from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting a potential association between eosinophil recruitment and tumour inhibition. In a human peripheral leukocyte co-culture model, we showed that leukocytes stimulated with MAIT ligand showed an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we showed that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.
Collapse
Affiliation(s)
- Olivia J. Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Eric J. Lebish
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Owen Jensen
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Damian Jacenik
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Shubhanshi Trivedi
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Jackson G. Cacioppo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jeffrey Aubé
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ellen J. Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Daniel T. Leung
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
3
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
4
|
Shakerian N, Darzi-Eslam E, Afsharnoori F, Bana N, Noorabad Ghahroodi F, Tarin M, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Therapeutic and diagnostic applications of exosomes in colorectal cancer. Med Oncol 2024; 41:203. [PMID: 39031221 DOI: 10.1007/s12032-024-02440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/26/2024] [Indexed: 07/22/2024]
Abstract
Exosomes play a key role in colorectal cancer (CRC) related processes. This review explores the various functions of exosomes in CRC and their potential as diagnostic markers, therapeutic targets, and drug delivery vehicles. Exosomal long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) significantly influence CRC progression. Specific exosomal lncRNAs are linked to drug resistance and tumor growth, respectively, highlighting their therapeutic potential. Similarly, miRNAs like miR-21, miR-10b, and miR-92a-3p, carried by exosomes, contribute to chemotherapy resistance by altering signaling pathways and gene expression in CRC cells. The review also discusses exosomes' utility in CRC diagnosis. Exosomes from cancer cells have distinct molecular signatures compared to healthy cells, making them reliable biomarkers. Specific exosomal lncRNAs (e.g., CRNDE-h) and miRNAs (e.g., miR-17-92a) have shown effectiveness in early CRC detection and monitoring of treatment responses. Furthermore, exosomes show promise as vehicles for targeted drug delivery. The potential of mesenchymal stem cell (MSC)-derived exosomes in CRC treatment is also noted, with their role varying from promoting to inhibiting tumor progression. The application of multi-omics approaches to exosome research is highlighted, emphasizing the potential for discovering novel CRC biomarkers through comprehensive genomic, transcriptomic, proteomic, and metabolomic analyses. The review also explores the emerging field of exosome-based vaccines, which utilize exosomes' natural properties to elicit strong immune responses. In conclusion, exosomes represent a promising frontier in CRC research, offering new avenues for diagnosis, treatment, and prevention. Their unique properties and versatile functions underscore the need for continued investigation into their clinical applications and underlying mechanisms.
Collapse
Affiliation(s)
- Neda Shakerian
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Elham Darzi-Eslam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Afsharnoori
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nikoo Bana
- Kish International Campus, University of Teheran, Tehran, Iran
| | - Faezeh Noorabad Ghahroodi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maysam Mard-Soltani
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Education and Extension Organization, Razi Vaccine and Serum Research Institute, Agricultural Research, Karaj, 3197619751, Iran
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| |
Collapse
|
5
|
Chen A, Wang K, Qi L, Hu W, Zhou B. Development of a novel prognostic signature for colorectal cancer based on angiogenesis-related genes. Heliyon 2024; 10:e33662. [PMID: 39040272 PMCID: PMC11261139 DOI: 10.1016/j.heliyon.2024.e33662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Background Colorectal cancer (CRC) is the third most common malignant tumor worldwide. Angiogenesis is closely related to tumor metastasis, which is the main cause of cancer death. Although several angiogenesis signatures have been proposed in some cancer types, no angiogenic signature has been developed to predict the prognosis and efficacy of antiangiogenic bevacizumab in CRC patients. Methods We developed a novel CRC angiogenic signature by refining seven publicly available angiogenic gene sets using least absolute shrinkage and selection operator (LASSO). Immune and stromal cells within the tumor microenvironment were compared between the high- and low-risk groups in more than 1000 CRC samples classified by calculating the risk score based on the customized angiogenic signature. The correlation of this new gene set with the efficacy of bevacizumab was also compared. Results A new prognostic-associated angiogenesis signature gene set was constructed that can divide CRC patients into two high- and low-risk groups. The high-risk angiogenic group was significantly associated with extracellular matrix organization, epithelial-mesenchymal transition (EMT), and myogenesis. In addition, the high-risk group had higher infiltration of stromal and immune cells and was more resistant to bevacizumab than the low-risk group. Conclusion Briefly, we constructed a novel angiogenic signature that can predict the prognosis of CRC patients and the efficacy of bevacizumab in treating CRC. Our results provide new insights into the relationships among angiogenesis, metastasis, and medication for CRC.
Collapse
Affiliation(s)
- Aiqin Chen
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| | - Kailai Wang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lina Qi
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wangxiong Hu
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Biting Zhou
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Medical Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310009, China
| |
Collapse
|
6
|
Xu K, Zhang Q, Zhu D, Jiang Z. Hydrogels in Gene Delivery Techniques for Regenerative Medicine and Tissue Engineering. Macromol Biosci 2024; 24:e2300577. [PMID: 38265144 DOI: 10.1002/mabi.202300577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Hydrogels are 3D networks swollen with water. They are biocompatible, strong, and moldable and are emerging as a promising biomedical material for regenerative medicine and tissue engineering to deliver therapeutic genes. The excellent natural extracellular matrix simulation properties of hydrogels enable them to be co-cultured with cells or enhance the expression of viral or non-viral vectors. Its biocompatibility, high strength, and degradation performance also make the action process of carriers in tissues more ideal, making it an ideal biomedical material. It has been shown that hydrogel-based gene delivery technologies have the potential to play therapy-relevant roles in organs such as bone, cartilage, nerve, skin, reproductive organs, and liver in animal experiments and preclinical trials. This paper reviews recent articles on hydrogels in gene delivery and explains the manufacture, applications, developmental timeline, limitations, and future directions of hydrogel-based gene delivery techniques.
Collapse
Affiliation(s)
- Kexing Xu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Qinmeng Zhang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Danji Zhu
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhiwei Jiang
- Zhejiang University School of Medicine, Hangzhou, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| |
Collapse
|
7
|
Petrova L, Bunz F. Interferons in Colorectal Cancer Pathogenesis and Therapy. DISEASES & RESEARCH 2024; 4:31-39. [PMID: 38962090 PMCID: PMC11220628 DOI: 10.54457/dr.202401005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
As key modulators of the immune response, interferons play critical roles following infection and during the pathogenesis of cancer. The idea that these cytokines might be developed as new therapies emerged soon after their discovery. While enthusiasm for this approach to cancer therapy has waxed and waned over the ensuing decades, recent advances in cancer immunotherapy and our improved understanding of the tumor immune environment have led to a resurgence of interest in this unique class of biologic drug. Here, we review how interferons influence the growth of colorectal cancers (CRCs) and highlight new insights into how interferons and drugs that modulate interferon expression might be most effectively deployed in the clinic.
Collapse
Affiliation(s)
- Lucy Petrova
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore Maryland 21287, USA
| | - Fred Bunz
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore Maryland 21287, USA
| |
Collapse
|
8
|
Cheng OJ, Lebish EJ, Jensen O, Jacenik D, Trivedi S, Cacioppo J, Aubé J, Beswick EJ, Leung DT. MAIT Cells Modulate Innate Immune Cells and Inhibit Colon Cancer Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575894. [PMID: 38293128 PMCID: PMC10827136 DOI: 10.1101/2024.01.16.575894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are innate-like T cells that can be activated by microbial antigens and cytokines and are abundant in mucosal tissues including the colon. MAIT cells have cytotoxic and pro-inflammatory functions and have potentials for use as adoptive cell therapy. However, studies into their anti-cancer activity, including their role in colon cancer, are limited. Using an animal model of colon cancer, we show that peritumoral injection of in vivo-expanded MAIT cells into RAG1-/- mice with MC38-derived tumors inhibits tumor growth compared to control. Multiplex cytokine analyses show that tumors from the MAIT cell-treated group have higher expression of markers for eosinophil-activating cytokines, suggesting an association between eosinophil recruitment and tumor inhibition. In a human peripheral leukocyte co-culture model, we show that leukocytes stimulated with MAIT ligand show an increase in eotaxin-1 production and activation of eosinophils, associated with increased cancer cell killing. In conclusion, we show that MAIT cells have a protective role in a murine colon cancer model, associated with modulation of the immune response to cancer, potentially involving eosinophil-associated mechanisms. Our results highlight the potential of MAIT cells for non-donor restricted colon cancer immunotherapy.
Collapse
Affiliation(s)
- Olivia J. Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Eric J. Lebish
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Owen Jensen
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Damian Jacenik
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Shubhanshi Trivedi
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Jackson Cacioppo
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jeffrey Aubé
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Ellen J. Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- Division of Digestive Diseases and Nutrition, Department of Internal Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Daniel T. Leung
- Division of Microbiology & Immunology, Department of Pathology, University of Utah, Salt Lake City, Utah, United States
- Division of Infectious Disease, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Chakraborty B, Agarwal S, Kori S, Das R, Kashaw V, Iyer AK, Kashaw SK. Multiple Protein Biomarkers and Different Treatment Strategies for Colorectal Carcinoma: A Comprehensive Prospective. Curr Med Chem 2024; 31:3286-3326. [PMID: 37151060 DOI: 10.2174/0929867330666230505165031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 05/09/2023]
Abstract
In this review, we emphasized important biomarkers, pathogenesis, and newly developed therapeutic approaches in the treatment of colorectal cancer (CRC). This includes a complete description of small-molecule inhibitors, phytopharmaceuticals with antiproliferative potential, monoclonal antibodies for targeted therapy, vaccinations as immunotherapeutic agents, and many innovative strategies to intervene in the interaction of oncogenic proteins. Many factors combine to determine the clinical behavior of colorectal cancer and it is still difficult to comprehend the molecular causes of a person's vulnerability to CRC. It is also challenging to identify the causes of the tumor's onset, progression, and responsiveness or resistance to antitumor treatment. Current recommendations for targeted medications are being updated by guidelines throughout the world in light of the growing number of high-quality clinical studies. So, being concerned about the aforementioned aspects, we have tried to present a summarized pathogenic view, including a brief description of biomarkers and an update of compounds with their underlying mechanisms that are currently under various stages of clinical testing. This will help to identify gaps or shortfalls that can be addressed in upcoming colorectal cancer research.
Collapse
Affiliation(s)
- Biswadip Chakraborty
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivangi Agarwal
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam Kori
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Ratnesh Das
- Department of Chemistry, ISF College of Pharmacy, Moga-Punjab, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar (M.P.), India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Sushil Kumar Kashaw
- Integrated Drug Discovery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
10
|
Chen Y, Ma J, Zhang M. TRIM29 promotes the progression of colorectal cancer by suppressing EZH2 degradation. Exp Biol Med (Maywood) 2023; 248:1527-1536. [PMID: 37837384 PMCID: PMC10676129 DOI: 10.1177/15353702231199070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/08/2023] [Indexed: 10/16/2023] Open
Abstract
Colorectal cancer (CRC) is commonly diagnosed at the advanced stage and has a high mortality rate. Tripartite Motif Containing 29 (TRIM29) is an oncogene in numerous malignancies including CRC. However, the molecular mechanism of TRIM29 is largely unknown. In this study, we investigated the biological functions of TRIM29 and the underlying mechanisms. The expression of TRIM29 and Enhancer of Zeste Homolog 2 (EZH2) was predicted using the bioinformatic analysis and measured using a quantitative real-time polymerase chain reaction (PCR) and immunohistochemical assay. The biological functions of TRIM29 were analyzed using a cell counting kit-8, EdU and transwell assays, scratch test, and flow cytometry. The interaction between TRIM29 and EZH2 was assessed using protein immunoprecipitation. The stability of EZH2 was evaluated by treating it with cycloheximide. Our results indicated that TRIM29 levels were upregulated in CRC. Overexpression of TRIM29 promoted CRC cell proliferation and migration and suppressed apoptosis. The opposite result was obtained when TRIM29 was silenced. TRIM29 interacted with EZH2 mechanically and enhanced the protein stability of EZH2. Depletion of EZH2 reversed the effects of TRIM29, regarding its biological behaviors. Moreover, downregulation of TRIM29 inhibited tumor growth and improved the histopathological prognosis. In conclusion, EZH2 interacted with silenced TRIM29 to suppress its stability, thereby inhibiting cell proliferation, migration, and tumor growth, and promoting apoptosis in CRC. Our findings suggested that TRIM29 is a promising target for CRC therapy.
Collapse
Affiliation(s)
| | | | - Mingming Zhang
- Department of Gastrointestinal Surgery, Liuzhou People’s Hospital, Liuzhou 545006, Guangxi, China
| |
Collapse
|
11
|
Guo XW, Lei RE, Zhou QN, Zhang G, Hu BL, Liang YX. Tumor microenvironment characterization in colorectal cancer to identify prognostic and immunotherapy genes signature. BMC Cancer 2023; 23:773. [PMID: 37596528 PMCID: PMC10436413 DOI: 10.1186/s12885-023-11277-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/08/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a crucial role in tumorigenesis, progression, and therapeutic response in many cancers. This study aimed to comprehensively investigate the role of TME in colorectal cancer (CRC) by generating a TMEscore based on gene expression. METHODS The TME patterns of CRC datasets were investigated, and the TMEscores were calculated. An unsupervised clustering method was used to divide samples into clusters. The associations between TMEscores and clinical features, prognosis, immune score, gene mutations, and immune checkpoint inhibitors were analyzed. A TME signature was constructed using the TMEscore-related genes. The results were validated using external and clinical cohorts. RESULTS The TME pattern landscape was for CRC was examined using 960 samples, and then the TMEscore pattern of CRC datasets was evaluated. Two TMEscore clusters were identified, and the high TMEscore cluster was associated with early-stage CRC and better prognosis in patients with CRC when compared with the low TMEscore clusters. The high TMEscore cluster indicated elevated tumor cell scores and tumor gene mutation burden, and decreased tumor purity, when compared with the low TMEscore cluster. Patients with high TMEscore were more likely to respond to immune checkpoint therapy than those with low TMEscore. A TME signature was constructed using the TMEscore-related genes superimposing the results of two machine learning methods (LASSO and XGBoost algorithms), and a TMEscore-related four-gene signature was established, which had a high predictive value for discriminating patients from different TMEscore clusters. The prognostic value of the TMEscore was validated in two independent cohorts, and the expression of TME signature genes was verified in four external cohorts and clinical samples. CONCLUSION Our study provides a comprehensive description of TME characteristics in CRC and demonstrates that the TMEscore is a reliable prognostic biomarker and predictive indicator for patients with CRC undergoing immunotherapy.
Collapse
Affiliation(s)
- Xian-Wen Guo
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, No.6 Tao-Yuan Road, Nanning, 530021, Guangxi, China
| | - Rong-E Lei
- Department of Gastroenterology, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Qing-Nan Zhou
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, No.6 Tao-Yuan Road, Nanning, 530021, Guangxi, China
| | - Guo Zhang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, No.6 Tao-Yuan Road, Nanning, 530021, Guangxi, China
| | - Bang-Li Hu
- Department of Research, Guangxi Medical University Cancer Hospital, No.71 Hedi Road, Nanning, 530021, Guangxi, China.
| | - Yun-Xiao Liang
- Department of Gastroenterology, The People's Hospital of Guangxi Zhuang Autonomous Region, No.6 Tao-Yuan Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
12
|
Ukkola I, Nummela P, Heiskanen A, Holm M, Zafar S, Kero M, Haglund C, Satomaa T, Kytölä S, Ristimäki A. N-Glycomic Profiling of Microsatellite Unstable Colorectal Cancer. Cancers (Basel) 2023; 15:3571. [PMID: 37509233 PMCID: PMC10376987 DOI: 10.3390/cancers15143571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Aberrant glycosylation affects cancer progression and immune evasion. Approximately 15% of colorectal cancers (CRCs) demonstrate microsatellite instability (MSI) and display major differences in outcomes and therapeutic responses, as compared to corresponding microsatellite stable (MSS) tumors. We compared the N-glycan profiles of stage II and IV MSI CRC tumors, further subdivided into BRAFV600E wild-type and mutated subgroups (n = 10 in each subgroup), with each other and with those of paired non-neoplastic mucosal samples using mass spectrometry. Further, the N-glycans of BRAFV600E wild-type stage II MSI tumors were compared to corresponding MSS tumors (n = 9). Multiple differences in N-glycan profiles were identified between the MSI CRCs and control tissues, as well as between the stage II MSI and MSS samples. The MSI CRC tumors showed a lower relative abundance of high-mannose N-glycans than did the control tissues or the MSS CRCs. Among MSI CRC subgroups, acidic N-glycans showed tumor stage and BRAF mutation status-dependent variation. Specifically, the large, sulfated/phosphorylated, and putative terminal N-acetylhexosamine-containing acidic N-glycans differed between the MSI CRC subgroups, showing opposite changes in stages II and IV, when comparing BRAF mutated and wild-type tumors. Our results show that molecular subgroups of CRC exhibit characteristic glycan profiles that may explain certain carcinogenic properties of MSI tumors.
Collapse
Affiliation(s)
- Iiris Ukkola
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | - Pirjo Nummela
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | | | - Matilda Holm
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Sadia Zafar
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| | - Mia Kero
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Caj Haglund
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
- Department of Surgery, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Tero Satomaa
- Glykos Finland Co., Ltd., 00790 Helsinki, Finland
| | - Soili Kytölä
- HUSLAB, Department of Genetics, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
| | - Ari Ristimäki
- HUSLAB, Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, 00029 Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, Helsinki University Hospital and University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
13
|
Massimino M, Martorana F, Stella S, Vitale SR, Tomarchio C, Manzella L, Vigneri P. Single-Cell Analysis in the Omics Era: Technologies and Applications in Cancer. Genes (Basel) 2023; 14:1330. [PMID: 37510235 PMCID: PMC10380065 DOI: 10.3390/genes14071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer molecular profiling obtained with conventional bulk sequencing describes average alterations obtained from the entire cellular population analyzed. In the era of precision medicine, this approach is unable to track tumor heterogeneity and cannot be exploited to unravel the biological processes behind clonal evolution. In the last few years, functional single-cell omics has improved our understanding of cancer heterogeneity. This approach requires isolation and identification of single cells starting from an entire population. A cell suspension obtained by tumor tissue dissociation or hematological material can be manipulated using different techniques to separate individual cells, employed for single-cell downstream analysis. Single-cell data can then be used to analyze cell-cell diversity, thus mapping evolving cancer biological processes. Despite its unquestionable advantages, single-cell analysis produces massive amounts of data with several potential biases, stemming from cell manipulation and pre-amplification steps. To overcome these limitations, several bioinformatic approaches have been developed and explored. In this work, we provide an overview of this entire process while discussing the most recent advances in the field of functional omics at single-cell resolution.
Collapse
Affiliation(s)
- Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Cristina Tomarchio
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
- Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico-S. Marco", 95123 Catania, Italy
- Humanitas Istituto Clinico Catanese, University Oncology Department, 95045 Catania, Italy
| |
Collapse
|
14
|
Lin R, Chen R, Ye L, Huang Z, Lin X, Chen T. The Role of RNA Methylation Modification Related Genes in Prognosis and Immunotherapy of Colorectal Cancer. Int J Gen Med 2023; 16:2133-2147. [PMID: 37284034 PMCID: PMC10239628 DOI: 10.2147/ijgm.s405419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Background Researches showed RNA methylation genes can affect the prognosis of tumors. Thus, the study aimed to comprehensively analyze the effects of RNA methylation regulatory genes in prognosis and treatment of colorectal cancer (CRC). Methods Prognostic signature associated with CRCs were constructed by differential expression analysis, Cox and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. Receiver operating characteristic (ROC) and Kaplan-Meier survival analyses were used to validate the reliability of the developed model. Gene Ontology (GO), Gene set variation analysis (GSVA), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed for functional annotation. Finally, normal and cancerous tissue were collected to validate gene by quantitative real-time PCR (qRT-PCR). Results A prognostic risk model based on leucine rich pentatricopeptide repeat containing (LRPPRC) and ubiquitin-like with PHD and ring finger domains 2 (UHRF2) was constructed and relevant to the overall survival (OS) of CRC. Functional enrichment analysis revealed that collagen fibrous tissue, ion channel complex and other pathways were significantly enriched, which might help explain the underlying molecular mechanisms. There were significant differences in ImmuneScore, StromalScore, ESTIMATEScore between high- and low-risk groups (p < 0.05). Ultimately, qRT-PCR validation showed that a significant upregulation in the expression of LRPPRC and UHRF2 in cancerous tissue, which verified the effectiveness of our signature. Conclusion In conclusion, 2 prognostic genes (LRPPRC and UHRF2) related to RNA methylation were identified by bioinformatics analysis, which might supply a new insight into the treatment and evaluation of CRC.
Collapse
Affiliation(s)
- Ruoyang Lin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, People’s Republic of China
| | - Renpin Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, People’s Republic of China
| | - Lechi Ye
- Department of Colorectal and Anal Surgery, the First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, People’s Republic of China
| | - Zhiming Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, People’s Republic of China
| | - Xianfan Lin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, People’s Republic of China
| | - Tanzhou Chen
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou, Medical University, Wenzhou, People’s Republic of China
| |
Collapse
|
15
|
Sun S, Zhang Y, Li Y, Wei L. Crosstalk between colorectal cancer cells and cancer-associated fibroblasts in the tumor microenvironment mediated by exosomal noncoding RNAs. Front Immunol 2023; 14:1161628. [PMID: 37234178 PMCID: PMC10206140 DOI: 10.3389/fimmu.2023.1161628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and its morbidity rates are increasing worldwide. Cancer-associated fibroblasts (CAFs), as part of the tumor microenvironment (TME), are not only closely linked to normal fibroblasts, but also can secrete a variety of substances (including exosomes) to participate in the regulation of the TME. Exosomes can play a key role in intercellular communication by delivering intracellular signaling substances (e.g., proteins, nucleic acids, non-coding RNAs), and an increasing number of studies have shown that non-coding RNAs of exosomal origin from CAFs are not only closely associated with the formation of the CRC microenvironment, but also increase the ability of CRC to grow in metastasis, mediate tumor immunosuppression, and are involved in the mechanism of drug resistance in CRC patients receiving. It is also involved in the mechanism of drug resistance after radiotherapy in CRC patients. In this paper, we review the current status and progress of research on CAFs-derived exosomal non-coding RNAs in CRC.
Collapse
Affiliation(s)
| | | | | | - Linlin Wei
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Baker KJ, Brint E, Houston A. Transcriptomic and functional analyses reveal a tumour-promoting role for the IL-36 receptor in colon cancer and crosstalk between IL-36 signalling and the IL-17/ IL-23 axis. Br J Cancer 2023; 128:735-747. [PMID: 36482185 PMCID: PMC9977920 DOI: 10.1038/s41416-022-02083-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The interleukin (IL)-36 cytokines are a sub-family of the IL-1 family which are becoming increasingly implicated in the pathogenesis of inflammatory diseases and malignancies. Initial studies of IL-36 signalling in tumorigenesis identified an immune-mediated anti-tumorigenic function for these cytokines. However, more recent studies have shown IL-36 cytokines also contribute to the pathogenesis of lung and colorectal cancer (CRC). METHODS The aim of this study was to investigate IL-36 expression in CRC using transcriptomic datasets and software such as several R packages, Cytoscape, GEO2R and AnalyzeR. Validation of results was completed by qRT-PCR on both cell lines and a patient cohort. Cellular proliferation was assessed by flow cytometry and resazurin reduction. RESULTS We demonstrate that IL-36 gene expression increases with CRC development. Decreased tumoral IL-36 receptor expression was shown to be associated with improved patient outcome. Our differential gene expression analysis revealed a novel role for the IL-36/IL-17/IL-23 axis, with these findings validated using patient-derived samples and cell lines. IL-36γ, together with either IL-17a or IL-22, was able to synergistically induce different genes involved in the IL-17/IL-23 axis in CRC cells and additively induce colon cancer cell proliferation. CONCLUSIONS Collectively, this data support a pro-tumorigenic role for IL-36 signalling in colon cancer, with the IL-17/IL-23 axis influential in IL-36-mediated colon tumorigenesis.
Collapse
Affiliation(s)
- Kevin James Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Gong X, Chi H, Strohmer DF, Teichmann AT, Xia Z, Wang Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front Immunol 2023; 13:1089410. [PMID: 36741380 PMCID: PMC9889675 DOI: 10.3389/fimmu.2022.1089410] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is a malignant tumor of the female reproductive system, with a very poor prognosis and high mortality rates. Chemotherapy and radiotherapy are the most common treatments for ovarian cancer, with unsatisfactory results. Exosomes are a subpopulation of extracellular vesicles, which have a diameter of approximately 30-100 nm and are secreted by many different types of cells in various body fluids. Exosomes are highly stable and are effective carriers of immunotherapeutic drugs. Recent studies have shown that exosomes are involved in various cellular responses in the tumor microenvironment, influencing the development and therapeutic efficacy of ovarian cancer, and exhibiting dual roles in inhibiting and promoting tumor development. Exosomes also contain a variety of genes related to ovarian cancer immunotherapy that could be potential biomarkers for ovarian cancer diagnosis and prognosis. Undoubtedly, exosomes have great therapeutic potential in the field of ovarian cancer immunotherapy. However, translation of this idea to the clinic has not occurred. Therefore, it is important to understand how exosomes could be used in ovarian cancer immunotherapy to regulate tumor progression. In this review, we summarize the biomarkers of exosomes in different body fluids related to immunotherapy in ovarian cancer and the potential mechanisms by which exosomes influence immunotherapeutic response. We also discuss the prospects for clinical application of exosome-based immunotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Dorothee Franziska Strohmer
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Alexander Tobias Teichmann
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany,*Correspondence: Zhijia Xia, ; Qin Wang,
| | - Qin Wang
- Sichuan Provincial Center for Gynecology and Breast Diseases (Gynecology), Affiliated Hospital of Southwest Medical University, Luzhou, China,*Correspondence: Zhijia Xia, ; Qin Wang,
| |
Collapse
|
18
|
Seyhan AA, Carini C. Insights and Strategies of Melanoma Immunotherapy: Predictive Biomarkers of Response and Resistance and Strategies to Improve Response Rates. Int J Mol Sci 2022; 24:ijms24010041. [PMID: 36613491 PMCID: PMC9820306 DOI: 10.3390/ijms24010041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Despite the recent successes and durable responses with immune checkpoint inhibitors (ICI), many cancer patients, including those with melanoma, do not derive long-term benefits from ICI therapies. The lack of predictive biomarkers to stratify patients to targeted treatments has been the driver of primary treatment failure and represents an unmet medical need in melanoma and other cancers. Understanding genomic correlations with response and resistance to ICI will enhance cancer patients' benefits. Building on insights into interplay with the complex tumor microenvironment (TME), the ultimate goal should be assessing how the tumor 'instructs' the local immune system to create its privileged niche with a focus on genomic reprogramming within the TME. It is hypothesized that this genomic reprogramming determines the response to ICI. Furthermore, emerging genomic signatures of ICI response, including those related to neoantigens, antigen presentation, DNA repair, and oncogenic pathways, are gaining momentum. In addition, emerging data suggest a role for checkpoint regulators, T cell functionality, chromatin modifiers, and copy-number alterations in mediating the selective response to ICI. As such, efforts to contextualize genomic correlations with response into a more insightful understanding of tumor immune biology will help the development of novel biomarkers and therapeutic strategies to overcome ICI resistance.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Correspondence:
| | - Claudio Carini
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, New Hunt’s House, Guy’s Campus, King’s College London, London SE1 1UL, UK
- Biomarkers Consortium, Foundation of the National Institute of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Garzoli S, Alarcón-Zapata P, Seitimova G, Alarcón-Zapata B, Martorell M, Sharopov F, Fokou PVT, Dize D, Yamthe LRT, Les F, Cásedas G, López V, Iriti M, Rad JS, Gürer ES, Calina D, Pezzani R, Vitalini S. Natural essential oils as a new therapeutic tool in colorectal cancer. Cancer Cell Int 2022; 22:407. [PMID: 36514100 PMCID: PMC9749237 DOI: 10.1186/s12935-022-02806-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most revalent type of cancer in the world and the second most common cause of cancer death (about 1 million per year). Historically, natural compounds and their structural analogues have contributed to the development of new drugs useful in the treatment of various diseases, including cancer. Essential oils are natural odorous products made up of a complex mixture of low molecular weight compounds with recognized biological and pharmacological properties investigated also for the prevention and treatment of cancer. The aim of this paper is to highlight the possible role of essential oils in CRC, their composition and the preclinical studies involving them. It has been reviewed the preclinical pharmacological studies to determine the experimental models used and the anticancer potential mechanisms of action of natural essential oils in CRC. Searches were performed in the following databases PubMed/Medline, Web of science, TRIP database, Scopus, Google Scholar using appropriate MeSH terms. The results of analyzed studies showed that EOs exhibited a wide range of bioactive effects like cytotoxicity, antiproliferative, and antimetastatic effects on cancer cells through various mechanisms of action. This updated review provides a better quality of scientific evidence for the efficacy of EOs as chemotherapeutic/chemopreventive agents in CRC. Future translational clinical studies are needed to establish the effective dose in humans as well as the most suitable route of administration for maximum bioavailability and efficacy. Given the positive anticancer results obtained from preclinical pharmacological studies, EOs can be considered efficient complementary therapies in chemotherapy in CRC.
Collapse
Affiliation(s)
- Stefania Garzoli
- Department of Drug Chemistry and Technologies, University “Sapienza” of Rome, P.Le Aldo Moro 5, 00185 Rome, Italy
| | - Pedro Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
- Facultad de Ciencias de La Salud, Universidad San Sebastián, Lientur 1457, 4080871 Concepción, Chile
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Barbara Alarcón-Zapata
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción, VIII – Bio Bio Region Chile
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, National Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe, 734063 Tajikistan
| | | | - Darline Dize
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Ngoa Ekelle, Yaounde, 812 Cameroon
| | | | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50830 Villanueva de Gállego (Saragossa), Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50059 Saragossa, Spain
| | - Marcello Iriti
- Department of Biomedical, Surgical and Dental Sciences, Università Degli Studi di Milano, Via G. Pascal 36, 20133 Milan, Italy
| | | | - Eda Sönmez Gürer
- Faculty of Pharmacy, Department of Pharmacognosy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Raffaele Pezzani
- Phytotherapy Lab (PhT-Lab), Endocrinology Unit, Department of Medicine (DIMED), University of Padova, Via Ospedale 105, 35128 Padua, Italy
- AIROB, Associazione Italiana Per la Ricerca Oncologica Di Base, Padua, Italy
| | - Sara Vitalini
- Department of Agricultural and Environmental Sciences, Università Degli Studi di Milano, Via G. Celoria 2, 20133 Milan, Italy
| |
Collapse
|
20
|
Galoș D, Gorzo A, Balacescu O, Sur D. Clinical Applications of Liquid Biopsy in Colorectal Cancer Screening: Current Challenges and Future Perspectives. Cells 2022; 11:3493. [PMID: 36359889 PMCID: PMC9657568 DOI: 10.3390/cells11213493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) represents the third most prevalent cancer worldwide and a leading cause of mortality among the population of western countries. However, CRC is frequently a preventable malignancy due to various screening tests being available. While failing to obtain real-time data, current screening methods (either endoscopic or stool-based tests) also require disagreeable preparation protocols and tissue sampling through invasive procedures, rendering adherence to CRC screening programs suboptimal. In this context, the necessity for novel, less invasive biomarkers able to identify and assess cancer at an early stage is evident. Liquid biopsy comes as a promising minimally invasive diagnostic tool, able to provide comprehensive information on tumor heterogeneity and dynamics during carcinogenesis. This review focuses on the potential use of circulating tumor cells (CTCs), circulating nucleic acids (CNAs) and extracellular vesicles as emerging liquid biopsy markers with clinical application in the setting of CRC screening. The review also examines the opportunity to implement liquid biopsy analysis during everyday practice and provides highlights on clinical trials researching blood tests designed for early cancer diagnosis. Additionally, the review explores potential applications of liquid biopsies in the era of immunotherapy.
Collapse
Affiliation(s)
- Diana Galoș
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Alecsandra Gorzo
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Ovidiu Balacescu
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
| | - Daniel Sur
- Department of Medical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuţă”, 400015 Cluj-Napoca, Romania
- Department of Medical Oncology, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania
| |
Collapse
|
21
|
Saoudi Gonzalez N, López D, Gómez D, Ros J, Baraibar I, Salva F, Tabernero J, Élez E. Pharmacokinetics and pharmacodynamics of approved monoclonal antibody therapy for colorectal cancer. Expert Opin Drug Metab Toxicol 2022; 18:755-767. [PMID: 36582117 DOI: 10.1080/17425255.2022.2160316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The introduction of monoclonal antibodies to the chemotherapy backbone treatment has challenged the paradigm of metastatic colorectal cancer (mCRC) treatment. Their mechanism of action and pharmacokinetics are complex but important to understand in order to improve patient selection and treatment outcomes for mCRC population. AREAS COVERED This review examines the scientific data, pharmacodynamics, and pharmacokinetics of approved monoclonal antibodies used to treat mCRC patients, including agents targeting signaling via VEGFR (bevacizumab and ramucirumab), EGFR (cetuximab and panitumumab), HER2/3 target therapy, and immunotherapy agents such as pembrolizumab or nivolumab. Efficacy and mechanism of action of bispecific antibodies are also covered. EXPERT OPINION mCRC is a heterogeneous disease and the optimal selection and sequence of treatments is challenging. Monoclonal antibodies have complex pharmacokinetics and pharmacodynamics, with important interactions between them. The arrival of bioequivalent molecules to the market increases the need for the characterization of pharmacokinetics and pharmacodynamics of classic monoclonal antibodies to reach bioequivalent novel molecules.
Collapse
Affiliation(s)
- Nadia Saoudi Gonzalez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Daniel López
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Diego Gómez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Javier Ros
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Iosune Baraibar
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Francesc Salva
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| | - Elena Élez
- Medical Oncology Department, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Medical Oncology Department, Vall d'Hebron Institute of Oncology, Vhio Barcelona, Spain
| |
Collapse
|
22
|
Heumos S, Dehn S, Bräutigam K, Codrea MC, Schürch CM, Lauer UM, Nahnsen S, Schindler M. Multiomics surface receptor profiling of the NCI-60 tumor cell panel uncovers novel theranostics for cancer immunotherapy. Cancer Cell Int 2022; 22:311. [PMID: 36221114 PMCID: PMC9555072 DOI: 10.1186/s12935-022-02710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy with immune checkpoint inhibitors (ICI) has revolutionized cancer therapy. However, therapeutic targeting of inhibitory T cell receptors such as PD-1 not only initiates a broad immune response against tumors, but also causes severe adverse effects. An ideal future stratified immunotherapy would interfere with cancer-specific cell surface receptors only. METHODS To identify such candidates, we profiled the surface receptors of the NCI-60 tumor cell panel via flow cytometry. The resulting surface receptor expression data were integrated into proteomic and transcriptomic NCI-60 datasets applying a sophisticated multiomics multiple co-inertia analysis (MCIA). This allowed us to identify surface profiles for skin, brain, colon, kidney, and bone marrow derived cell lines and cancer entity-specific cell surface receptor biomarkers for colon and renal cancer. RESULTS For colon cancer, identified biomarkers are CD15, CD104, CD324, CD326, CD49f, and for renal cancer, CD24, CD26, CD106 (VCAM1), EGFR, SSEA-3 (B3GALT5), SSEA-4 (TMCC1), TIM1 (HAVCR1), and TRA-1-60R (PODXL). Further data mining revealed that CD106 (VCAM1) in particular is a promising novel immunotherapeutic target for the treatment of renal cancer. CONCLUSION Altogether, our innovative multiomics analysis of the NCI-60 panel represents a highly valuable resource for uncovering surface receptors that could be further exploited for diagnostic and therapeutic purposes in the context of cancer immunotherapy.
Collapse
Affiliation(s)
- Simon Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Sandra Dehn
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | | | - Marius C Codrea
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany
| | - Christian M Schürch
- Department of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, Virotherapy Center Tübingen (VCT), Medical University Hospital Tübingen, 72076, Tübingen, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), University of Tübingen, 72076, Tübingen, Germany.,Biomedical Data Science, Dept. of Computer Science, University of Tübingen, 72076, Tübingen, Germany
| | - Michael Schindler
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
23
|
Nguyen HP, Pham DAD, Dinh Nguyen D, Nguyen PV, Bui VA, Hoang MNT, Nguyen LT. Evaluating the Safety and Quality of Life of Colorectal Cancer Patients Treated by Autologous Immune Enhancement Therapy (AIET) in Vinmec International Hospitals. Int J Mol Sci 2022; 23:ijms231911362. [PMID: 36232666 PMCID: PMC9569750 DOI: 10.3390/ijms231911362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Colorectal cancer (CRC) is an increasingly prevalent disease with a high mortality rate in recent years. Immune cell-based therapies have received massive attention among scientists, as they have been proven effective as low-toxicity treatments. This study evaluated the safety and effectiveness of autologous immune enhancement therapy (AIET) for CRC. (2) An open-label, single-group study, including twelve patients diagnosed with stages III and IV CRC, was conducted from January 2016 to December 2021. Twelve CRC patients received one to seven infusions of natural killer (NK)-cell and cytotoxic T-lymphocyte (CTL). Multivariate modelling was used to identify factors associated with health-related quality-of-life (HRQoL) scores. (3) After 20−21 days of culture, the NK cells increased 3535-fold, accounting for 85% of the cultured cell population. Likewise, CTLs accounted for 62.4% of the cultured cell population, which was a 1220-fold increase. Furthermore, the QoL improved with increased EORTC QLQ-C30 scores, decreased symptom severity, and reduced impairment in daily living caused by these symptoms (MDASI-GI report). Finally, a 14.3 ± 14.1-month increase in mean survival time was observed at study completion. (4) AIET demonstrated safety and improved survival time and HRQoL for CRC patients in Vietnam.
Collapse
Affiliation(s)
- Hoang-Phuong Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
| | - Duc-Anh Dao Pham
- Faculty of Biology, VNU University of Science, Vietnam National University-Hanoi, 334 Nguyen Trai, Hanoi 100000, Vietnam
| | - Duy Dinh Nguyen
- Vinmec Times City International Hospital, Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 100000, Vietnam
| | - Phong Van Nguyen
- Center of Applied Science, Regenerative Medicine, and Advanced Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - Viet-Anh Bui
- Center of Applied Science, Regenerative Medicine, and Advanced Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai, Hanoi 100000, Vietnam
| | - My-Nhung Thi Hoang
- Faculty of Biology, VNU University of Science, Vietnam National University-Hanoi, 334 Nguyen Trai, Hanoi 100000, Vietnam
| | - Liem Thanh Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi 100000, Vietnam
- College of Health Sciences, Vin University, Hanoi 100000, Vietnam
- Correspondence:
| |
Collapse
|
24
|
Jia W, Zhang T, Huang H, Feng H, Wang S, Guo Z, Luo Z, Ji X, Cheng X, Zhao R. Colorectal cancer vaccines: The current scenario and future prospects. Front Immunol 2022; 13:942235. [PMID: 35990683 PMCID: PMC9384853 DOI: 10.3389/fimmu.2022.942235] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Current therapies such as surgery, chemotherapy, and radiotherapy encounter obstacles in preventing metastasis of CRC even when applied in combination. Immune checkpoint inhibitors depict limited effects due to the limited cases of CRC patients with high microsatellite instability (MSI-H). Cancer vaccines are designed to trigger the elevation of tumor-infiltrated lymphocytes, resulting in the intense response of the immune system to tumor antigens. This review briefly summarizes different categories of CRC vaccines, demonstrates the current outcomes of relevant clinical trials, and provides particular focus on recent advances on nanovaccines and neoantigen vaccines, representing the trend and emphasis of CRC vaccine development.
Collapse
Affiliation(s)
- Wenqing Jia
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Huang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoran Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaodong Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zichao Guo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiping Luo
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaopin Ji
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaopin Ji, ; Xi Cheng, ; Ren Zhao,
| | - Xi Cheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaopin Ji, ; Xi Cheng, ; Ren Zhao,
| | - Ren Zhao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Digestive surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Xiaopin Ji, ; Xi Cheng, ; Ren Zhao,
| |
Collapse
|
25
|
Della Chiesa M, Setti C, Giordano C, Obino V, Greppi M, Pesce S, Marcenaro E, Rutigliani M, Provinciali N, Paleari L, DeCensi A, Sivori S, Carlomagno S. NK Cell-Based Immunotherapy in Colorectal Cancer. Vaccines (Basel) 2022; 10:1033. [PMID: 35891197 PMCID: PMC9323201 DOI: 10.3390/vaccines10071033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Human Natural Killer (NK) cells are all round players in immunity thanks to their powerful and immediate response against transformed cells and the ability to modulate the subsequent adaptive immune response. The potential of immunotherapies based on NK cell involvement has been initially revealed in the hematological setting but has inspired the design of different immune tools to also be applied against solid tumors, including colorectal cancer (CRC). Indeed, despite cancer prevention screening plans, surgery, and chemotherapy strategies, CRC is one of the most widespread cancers and with the highest mortality rate. Therefore, further efficient and complementary immune-based therapies are in urgent need. In this review, we gathered the most recent advances in NK cell-based immunotherapies aimed at fighting CRC, in particular, the use of monoclonal antibodies targeting tumor-associated antigens (TAAs), immune checkpoint blockade, and adoptive NK cell therapy, including NK cells modified with chimeric antigen receptor (CAR-NK).
Collapse
Affiliation(s)
- Mariella Della Chiesa
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Setti
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Chiara Giordano
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Valentina Obino
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Marco Greppi
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Silvia Pesce
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Emanuela Marcenaro
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | | | | | - Laura Paleari
- A.Li.Sa., Liguria Region Health Authority, 16121 Genoa, Italy;
| | - Andrea DeCensi
- Medical Oncology, Galliera Hospital, 16128 Genoa, Italy; (N.P.); (A.D.)
| | - Simona Sivori
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| | - Simona Carlomagno
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genoa, Italy; (C.S.); (C.G.); (V.O.); (M.G.); (S.P.); (E.M.); (S.S.)
| |
Collapse
|
26
|
Buchler T. Microsatellite Instability and Metastatic Colorectal Cancer - A Clinical Perspective. Front Oncol 2022; 12:888181. [PMID: 35574322 PMCID: PMC9097548 DOI: 10.3389/fonc.2022.888181] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022] Open
Abstract
Approximately 4-5% of patients with metastatic colorectal cancer (mCRC) have mismatch repair deficient (dMMR)/microsatellite instability-high (MSI-H) tumours. These tumours present challenges in the clinical practice due to variant response to fluoropyrimidine-based chemotherapy and, perhaps, also non-immunologic targeted therapies. Recently, a breakthrough in the treatment of dMMR/MSI-H mCRC has been achieved with several clinical trials showing dramatic long-term benefit of immunotherapy using checkpoint inhibitors. Nevertheless, several questions remain regarding the optimisation of immunotherapy regimens and the use of biomarkers to identify populations set to derive the greatest benefit from immunotherapy. Combination regimens and/or the use of immunotherapy as a maintenance after induction non-immunologic systemic therapy may be the way forward to improve outcomes.
Collapse
Affiliation(s)
- Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| |
Collapse
|
27
|
Qin Y, Li M, Lin Q, Pan X, Liang Y, Huang Z, Liu Z, Huang L, Fang M. Colorectal Cancer Cell Differentiation Trajectory Predicts Patient Immunotherapy Response and Prognosis. Cancer Control 2022; 29:10732748221121382. [PMID: 36036380 PMCID: PMC9421035 DOI: 10.1177/10732748221121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Objectives This study aimed to investigate the differentiation state and clinical significance of colorectal cancer cells, as well as to predict the immune response and prognosis of patients based on differentiation-related genes of colorectal cancer. Introduction Colorectal cancer cells exhibit different differentiation states under the influence of the tumor microenvironment, which determines the cell fates. Methods We combined single-cell sequencing (scRNA-seq) data from The Cancer Genome Atlas source with extensive transcriptome data from the Gene Expression Omnibus database. We obtained colorectal cancer differentiation-related genes using cell trajectory analysis and developed a colorectal cancer differentiation-related gene based molecular typing and prognostic model to predict the immune response and prognosis of patients with colorectal cancer. Results We identified 5 distinct cell differentiation subsets and 620 colorectal cancer differentiation-related genes. Colorectal cancer differentiation-related genes were significantly associated with metabolism, angiogenesis, and immunity. We separated patients into 3 subtypes based on colorectal cancer differentiation-related gene expression in the tumor and found differences among the different subtypes in immune infiltration status, immune checkpoint gene expression, clinicopathological features, and overall survival. Immunotherapeutic interventions involving a highly expressed immune checkpoint blockade may be selectively effective in the corresponding cancer subtypes. We built a risk score prediction model (5-year AUC: .729) consisting of the 4 most important predictors of survival (TIMP1, MMP1, LGALS4, and ITLN1). Finally, we generated and validated a nomogram consisting of the risk score and clinicopathological variables. Conclusion This study highlights the significance of genes involved in cell differentiation for clinical prognosis and immunotherapy in patients and provides prospective therapeutic targets for colorectal cancer.
Collapse
Affiliation(s)
- Yuling Qin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, China.,Guangxi Clinical Research Center for Anesthesiology, China.,Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, China.,Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, China
| | - Meiqin Li
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, China
| | - Qiumei Lin
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, China
| | - Xiaolan Pan
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, China
| | - Yihua Liang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, China
| | - Zhaodong Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, China
| | - Zhimin Liu
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, China
| | - Lingsha Huang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, China
| | - Min Fang
- Department of Clinical Laboratory, Guangxi Medical University Cancer Hospital, China.,Guangxi Clinical Research Center for Anesthesiology, China.,Guangxi Engineering Research Center for Tissue & Organ Injury and Repair Medicine, China.,Guangxi Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, China
| |
Collapse
|
28
|
Yoshikawa S, Taniguchi K, Sawamura H, Ikeda Y, Tsuji A, Matsuda S. Encouraging probiotics for the prevention and treatment of immune-related adverse events in novel immunotherapies against malignant glioma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:817-827. [PMID: 36654824 PMCID: PMC9834274 DOI: 10.37349/etat.2022.00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/31/2022] [Indexed: 12/28/2022] Open
Abstract
Among the malignant tumors in the central nervous system (CNS), glioma is the most challenging tumor to the public society, which accounts for the majority of intracranial malignant tumors with impaired brain function. In general, conventional therapies are still unable to provide an effective cure. However, novel immunotherapies have changed the treatment scene giving patients a greater potential to attain long term survival, improved quality of life. Having shown favorable results in solid tumors, those therapies are now at a cancer research hotspot, which could even shrink the growth of glioma cells without causing severe complications. However, it is important to recognize that the therapy may be occasionally associated with noteworthy adverse action called immune-related adverse events (IRAEs) which have emerged as a potential limitation of the therapy. Multiple classes of mediators have been developed to enhance the ability of immune system to target malignant tumors including glioma but may also be associated with the IRAEs. In addition, it is probable that it would take long time after the therapy to exhibit severe immune-related disorders. Gut microbiota could play an integral role in optimal immune development and/or appropriate function for the cancer therapy, which is a vital component of the multidirectional communication between immune system, brain, and gut, also known as gut-brain-immune axis. Here, we show the potential effects of the gut-brain-immune axis based on an "engram theory" for the innovative treatment of IRAEs.
Collapse
Affiliation(s)
- Sayuri Yoshikawa
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Kurumi Taniguchi
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Haruka Sawamura
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Yuka Ikeda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan,Correspondence: Satoru Matsuda, Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| |
Collapse
|