1
|
Matuszczak M, Kiljańczyk A, Marciniak W, Derkacz R, Stempa K, Baszuk P, Bryśkiewicz M, Cybulski C, Dębniak T, Gronwald J, Huzarski T, Lener M, Jakubowska A, Szwiec M, Stawicka-Niełacna M, Godlewski D, Prusaczyk A, Jasiewicz A, Kluz T, Tomiczek-Szwiec J, Kilar-Kobierzycka E, Siołek M, Wiśniowski R, Posmyk R, Jarkiewicz-Tretyn J, Scott R, Lubiński J. Antioxidant Properties of Zinc and Copper-Blood Zinc-to Copper-Ratio as a Marker of Cancer Risk BRCA1 Mutation Carriers. Antioxidants (Basel) 2024; 13:841. [PMID: 39061909 PMCID: PMC11273827 DOI: 10.3390/antiox13070841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Pathogenic mutations in BRCA1 (BReast CAncer gene 1) confer high risks of both breast (up to 70%) and ovarian (up to 40%) cancers. Zinc (Zn) and copper (Cu) are essential for various physiological functions, including antioxidant reactions. Their balance, reflected in the Zn/Cu ratio, plays a crucial role in maintaining redox homeostasis, which is vital for cancer prevention. This study examines the antioxidant properties of Zn and Cu, specifically focusing on the blood Zn/Cu ratio as a potential marker for cancer risk among BRCA1 mutation carriers. The study cohort consisted of 989 initially unaffected women, followed up for 7.5 years. Blood samples were analyzed using inductively coupled plasma mass spectrometry. Although individual Zn and Cu levels did not significantly correlate with overall cancer risk, those women with a Zn/Cu ratio above 6.38 experienced a significantly lower cancer risk than women with a ratio below this cut-off point. This suggests that the Zn/Cu ratio may be a valuable biomarker for cancer prevention in this high-risk group. Given the increased cancer risk in BRCA1 mutation carriers, optimizing Zn and Cu levels through dietary and active interventions could provide a preventive strategy.
Collapse
Affiliation(s)
- Milena Matuszczak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Adam Kiljańczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Wojciech Marciniak
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Róża Derkacz
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Klaudia Stempa
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Piotr Baszuk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Marta Bryśkiewicz
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Tadeusz Dębniak
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Jacek Gronwald
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| | - Tomasz Huzarski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | - Marcin Lener
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Marek Szwiec
- Department of Surgery and Oncology, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
| | - Małgorzata Stawicka-Niełacna
- Department of Clinical Genetics and Pathology, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Góra, Poland;
| | | | | | - Andrzej Jasiewicz
- Genetic Counseling Center, Subcarpatian Oncological Hospital, 18 Bielawskiego St, 36-200 Brzozów, Poland;
| | - Tomasz Kluz
- Department of Gynecology, Gynecology Oncology and Obstetrics, Institute of Medical Sciences, Medical College, Rzeszow University, Rejtana 16c, 35-959 Rzeszow, Poland;
| | - Joanna Tomiczek-Szwiec
- Department of Histology, Department of Biology and Genetics, Faculty of Medicine, University of Opole, 45-040 Opole, Poland;
| | - Ewa Kilar-Kobierzycka
- Department of Oncology, District Specialist Hospital, Leśna 27-29 St, 58-100 Świdnica, Poland;
| | - Monika Siołek
- Holycross Cancer Center, Artwińskiego 3 St, 25-734 Kielce, Poland;
| | - Rafał Wiśniowski
- Regional Oncology Hospital, Wyzwolenia 18 St, 43-300 Bielsko Biała, Poland;
| | - Renata Posmyk
- Department of Clinical Genetics, Medical University in Bialystok, 15-089 Bialystok, Poland;
| | | | - Rodney Scott
- Medical Genetics, Hunter Medical Research Institute, Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle; Pathology North, John Hunter Hospital, King and Auckland Streets, Newcastle, NSW 2300, Australia;
| | - Jan Lubiński
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, ul. Unii Lubelskiej 1, 71-252 Szczecin, Poland; (M.M.); (A.K.); (K.S.); (P.B.); (M.B.); (C.C.); (T.D.); (J.G.); (T.H.); (M.L.); (A.J.)
- Read-Gene, Grzepnica, ul. Alabastrowa 8, 72-003 Dobra, Poland; (W.M.); (R.D.)
| |
Collapse
|
2
|
Galli A, Bellè F, Fargnoli A, Caligo MA, Cervelli T. Functional Characterization of the Human BRCA1 ∆11 Splicing Isoforms in Yeast. Int J Mol Sci 2024; 25:7511. [PMID: 39062754 PMCID: PMC11276823 DOI: 10.3390/ijms25147511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
BRCA1, a crucial tumor suppressor gene, has several splicing isoforms, including Δ9-11, Δ11, and Δ11q, which lack exon 11, coding for significant portions of the protein. These isoforms are naturally present in both normal and cancerous cells, exhibiting altered activity compared to the full-length BRCA1. Despite this, the impact on cancer risk of the germline intronic variants promoting the exclusive expression of these Δ11 isoforms remains uncertain. Consequently, they are classified as variants of uncertain significance (VUS), posing challenges for traditional genetic classification methods due to their rarity and complexity. Our research utilizes a yeast-based functional assay, previously validated for assessing missense BRCA1 variants, to compare the activity of the Δ11 splicing isoforms with known pathogenic missense variants. This approach allows us to elucidate the functional implications of these isoforms and determine whether their exclusive expression could contribute to increased cancer risk. By doing so, we aim to provide insights into the pathogenic potential of intronic VUS-generating BRCA1 splicing isoforms and improve the classification of BRCA1 variants.
Collapse
Affiliation(s)
- Alvaro Galli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Francesca Bellè
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Arcangelo Fargnoli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| | - Maria Adelaide Caligo
- Molecular Genetics Unit, Department of Oncology, University Hospital of Pisa, 56126 Pisa, Italy;
| | - Tiziana Cervelli
- Yeast Genetics and Genomics, Laboratory of Functional Genetics and Genomics, Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy; (A.G.); (F.B.); (A.F.)
| |
Collapse
|
3
|
Xu L, Cao Y, Xu Y, Li R, Xu X. Redox-Responsive Polymeric Nanoparticle for Nucleic Acid Delivery and Cancer Therapy: Progress, Opportunities, and Challenges. Macromol Biosci 2024; 24:e2300238. [PMID: 37573033 DOI: 10.1002/mabi.202300238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/25/2023] [Indexed: 08/14/2023]
Abstract
Cancer development and progression of cancer are closely associated with the activation of oncogenes and loss of tumor suppressor genes. Nucleic acid drugs (e.g., siRNA, mRNA, and DNA) are widely used for cancer therapy due to their specific ability to regulate the expression of any cancer-associated genes. However, nucleic acid drugs are negatively charged biomacromolecules that are susceptible to serum nucleases and cannot cross cell membrane. Therefore, specific delivery tools are required to facilitate the intracellular delivery of nucleic acid drugs. In the past few decades, a variety of nanoparticles (NPs) are designed and developed for nucleic acid delivery and cancer therapy. In particular, the polymeric NPs in response to the abnormal redox status in cancer cells have garnered much more attention as their potential in redox-triggered nanostructure dissociation and rapid intracellular release of nucleic acid drugs. In this review, the important genes or signaling pathways regulating the abnormal redox status in cancer cells are briefly introduced and the recent development of redox-responsive NPs for nucleic acid delivery and cancer therapy is systemically summarized. The future development of NPs-mediated nucleic acid delivery and their challenges in clinical translation are also discussed.
Collapse
Affiliation(s)
- Lei Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Yuan Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Ya Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
| | - Rong Li
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P. R. China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, P. R. China
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| |
Collapse
|
4
|
Ahmed SF, El-Maghraby EMF, Rashad MM, Bashir DW. Iron overload induced submandibular glands toxicity in gamma irradiated rats with possible mitigation by hesperidin and rutin. BMC Pharmacol Toxicol 2024; 25:22. [PMID: 38414079 PMCID: PMC10900593 DOI: 10.1186/s40360-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Radiation triggers salivary gland damage and excess iron accumulates in tissues induces cell injury. Flavonoids are found in some fruits and are utilized as potent antioxidants and radioprotective agents. This study aimed to evaluate the antioxidant and anti-inflammatory effects of hesperidin and rutin on gamma radiation and iron overload induced submandibular gland (SMG) damage and to evaluate their possible impact on mitigating the alteration in mTOR signaling pathway and angiogenesis. METHODS Forty-eight adult male Wistar albino rats were randomly assigned to six groups: group C received a standard diet and distilled water; group H received hesperidin at a dose of 100 mg/kg; four times a week for four weeks; group U received rutin at a dose of 50 mg/kg; three times a week for three weeks; group RF received a single dose (5 Gy) of gamma radiation followed by iron at a dose of 100 mg/kg; five times a week for four weeks; group RFH received radiation and iron as group RF and hesperidin as group H; group RFU received radiation and iron as group RF and rutin as group U. SMG specimens from all groups were removed at the end of the experiment; and some were used for biochemical analysis, while others were fixed for histological and immunohistochemical examination. RESULTS In the RF group, several genes related to antioxidants (Nrf-2 and SOD) and DNA damage (BRCA1) were significantly downregulated, while several genes related to inflammation and angiogenesis (TNFα, IL-1β and VEGF) and the mTOR signaling pathway (PIK3ca, AKT and mTOR) were significantly upregulated. Acinar cytoplasmic vacuolation, nuclear pyknosis, and interacinar hemorrhage with distinct interacinar spaces were observed as histopathological changes in SMGs. The duct system suffered significant damage, eventually degenerating entirely as the cells were shed into the lumina. VEGF and NF-κB were also significantly overexpressed. Hesperidin and rutin cotreatment generated partial recovery as indicated by significant upregulation of Nrf-2, SOD and BRCA1 and considerable downregulation of TNF-α, IL-1β, VEGF, PIK3ca, AKT, and mTOR. Although some acini and ducts continued to deteriorate, most of them had a normal appearance. There was a notable decrease in the expression of VEGF and NF-κB. CONCLUSIONS In γ-irradiated rats with iron overload, the administration of hesperidin and rutin may mitigate salivary gland damage.
Collapse
Affiliation(s)
- Salwa Farid Ahmed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Eman M F El-Maghraby
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Maha M Rashad
- Biochemistry and Molecular Biology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dina W Bashir
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Iqbal MJ, Kabeer A, Abbas Z, Siddiqui HA, Calina D, Sharifi-Rad J, Cho WC. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun Signal 2024; 22:7. [PMID: 38167159 PMCID: PMC10763046 DOI: 10.1186/s12964-023-01398-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
Cancer remains a significant global public health concern, with increasing incidence and mortality rates worldwide. Oxidative stress, characterized by the production of reactive oxygen species (ROS) within cells, plays a critical role in the development of cancer by affecting genomic stability and signaling pathways within the cellular microenvironment. Elevated levels of ROS disrupt cellular homeostasis and contribute to the loss of normal cellular functions, which are associated with the initiation and progression of various types of cancer. In this review, we have focused on elucidating the downstream signaling pathways that are influenced by oxidative stress and contribute to carcinogenesis. These pathways include p53, Keap1-NRF2, RB1, p21, APC, tumor suppressor genes, and cell type transitions. Dysregulation of these pathways can lead to uncontrolled cell growth, impaired DNA repair mechanisms, and evasion of cell death, all of which are hallmark features of cancer development. Therapeutic strategies aimed at targeting oxidative stress have emerged as a critical area of investigation for molecular biologists. The objective is to limit the response time of various types of cancer, including liver, breast, prostate, ovarian, and lung cancers. By modulating the redox balance and restoring cellular homeostasis, it may be possible to mitigate the damaging effects of oxidative stress and enhance the efficacy of cancer treatments. The development of targeted therapies and interventions that specifically address the impact of oxidative stress on cancer initiation and progression holds great promise in improving patient outcomes. These approaches may include antioxidant-based treatments, redox-modulating agents, and interventions that restore normal cellular function and signaling pathways affected by oxidative stress. In summary, understanding the role of oxidative stress in carcinogenesis and targeting this process through therapeutic interventions are of utmost importance in combating various types of cancer. Further research is needed to unravel the complex mechanisms underlying oxidative stress-related pathways and to develop effective strategies that can be translated into clinical applications for the management and treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Ayesha Kabeer
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Zaighum Abbas
- Department of Biotechnology, University of Sialkot, Sialkot, Punjab, Pakistan
| | | | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
6
|
Jovanović M, Kovačević S, Brkljačić J, Djordjevic A. Oxidative Stress Linking Obesity and Cancer: Is Obesity a 'Radical Trigger' to Cancer? Int J Mol Sci 2023; 24:ijms24098452. [PMID: 37176160 PMCID: PMC10179114 DOI: 10.3390/ijms24098452] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity is on the rise worldwide, and consequently, obesity-related non-communicable diseases are as well. Nutritional overload induces metabolic adaptations in an attempt to restore the disturbed balance, and the byproducts of the mechanisms at hand include an increased generation of reactive species. Obesity-related oxidative stress causes damage to vulnerable systems and ultimately contributes to neoplastic transformation. Dysfunctional obese adipose tissue releases cytokines and induces changes in the cell microenvironment, promoting cell survival and progression of the transformed cancer cells. Other than the increased risk of cancer development, obese cancer patients experience higher mortality rates and reduced therapy efficiency as well. The fact that obesity is considered the second leading preventable cause of cancer prioritizes the research on the mechanisms connecting obesity to cancerogenesis and finding the solutions to break the link. Oxidative stress is integral at different stages of cancer development and advancement in obese patients. Hypocaloric, balanced nutrition, and structured physical activity are some tools for relieving this burden. However, the sensitivity of simultaneously treating cancer and obesity poses a challenge. Further research on the obesity-cancer liaison would offer new perspectives on prevention programs and treatment development.
Collapse
Affiliation(s)
- Mirna Jovanović
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Sanja Kovačević
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Brkljačić
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Ana Djordjevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
7
|
Ma R, Wang S, Xue M, Zhang H, He Z, Jueraitetibaike K, Ge X, Chen L, Yao B. Effects of n-3 PUFA supplementation on oocyte in vitro maturation in mice with polycystic ovary syndrome. J Ovarian Res 2023; 16:87. [PMID: 37120599 PMCID: PMC10148539 DOI: 10.1186/s13048-023-01162-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023] Open
Abstract
n-3 PUFAs are classic antioxidant that can be used to treat follicular dysplasia and hyperinsulinemia caused by excessive oxidative stress in PCOS women. To investigate the effect of n-3 PUFA supplementation on the oocyte quality of polycystic ovary syndrome (PCOS) mice during in vitro maturation, a PCOS mouse model was established by dehydroepiandrosterone (DHEA). The GV oocytes of the control and PCOS groups were collected and cultured in vitro with or without n-3 PUFAs. After 14 h, the oocytes were collected. Our data demonstrated that the oocyte maturation rate of PCOS mice significantly increased after the addition of 50 µM n-3 PUFAs. The results of immunofluorescence showed that the abnormal rates of spindles and chromosomes in the PCOS + n-3 PUFA group were lower than those in the PCOS group. The mRNA expression of an antioxidant-related gene (Sirt1) and DNA damage repair genes (Brca1/Msh2) was found to be significantly rescued after n-3 treatment. Additionally, the results of living cell staining showed that the addition of n-3 PUFAs could reduce the levels of reactive oxygen species and mitochondrial superoxide in PCOS oocytes. In conclusion, the addition of 50 µM n-3 PUFAs during the in vitro maturation of PCOS mouse oocytes can improve the maturation rate by reducing the level of oxidative stress and the rate of spindle/chromosome abnormalities, providing valuable support during the IVM process.
Collapse
Affiliation(s)
- Rujun Ma
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Shuxian Wang
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China
| | - Mengqi Xue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Hong Zhang
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Zhaowanyue He
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Kadiliya Jueraitetibaike
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Xie Ge
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Li Chen
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, China
| | - Bing Yao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Center of Reproductive Medicine, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
8
|
Elsakrmy N, Cui H. R-Loops and R-Loop-Binding Proteins in Cancer Progression and Drug Resistance. Int J Mol Sci 2023; 24:ijms24087064. [PMID: 37108225 PMCID: PMC10138518 DOI: 10.3390/ijms24087064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
R-loops are three-stranded DNA/RNA hybrids that form by the annealing of the mRNA transcript to its coding template while displacing the non-coding strand. While R-loop formation regulates physiological genomic and mitochondrial transcription and DNA damage response, imbalanced R-loop formation can be a threat to the genomic integrity of the cell. As such, R-loop formation is a double-edged sword in cancer progression, and perturbed R-loop homeostasis is observed across various malignancies. Here, we discuss the interplay between R-loops and tumor suppressors and oncogenes, with a focus on BRCA1/2 and ATR. R-loop imbalances contribute to cancer propagation and the development of chemotherapy drug resistance. We explore how R-loop formation can cause cancer cell death in response to chemotherapeutics and be used to circumvent drug resistance. As R-loop formation is tightly linked to mRNA transcription, their formation is unavoidable in cancer cells and can thus be explored in novel cancer therapeutics.
Collapse
Affiliation(s)
- Noha Elsakrmy
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
9
|
AlAshqar A, Lulseged B, Mason-Otey A, Liang J, Begum UAM, Afrin S, Borahay MA. Oxidative Stress and Antioxidants in Uterine Fibroids: Pathophysiology and Clinical Implications. Antioxidants (Basel) 2023; 12:antiox12040807. [PMID: 37107181 PMCID: PMC10135366 DOI: 10.3390/antiox12040807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In the last few decades, our understanding of the complex pathobiology of uterine fibroid development has grown. While previously believed to be a purely neoplastic entity, we now understand that uterine fibroids possess different and equally important aspects of their genesis. An increasing body of evidence suggests that oxidative stress, the imbalance between pro- and antioxidants, is an important factor in fibroid development. Oxidative stress is controlled by multiple, interconnecting cascades, including angiogenesis, hypoxia, and dietary factors. Oxidative stress in turn influences fibroid development through genetic, epigenetic, and profibrotic mechanisms. This unique aspect of fibroid pathobiology has introduced several clinical implications, both diagnostic and therapeutic, that can aid us in managing these debilitating tumors by using biomarkers as well as dietary and pharmaceutical antioxidants for diagnosis and treatment. This review strives to summarize and add to the current evidence revealing the relationship between oxidative stress and uterine fibroids by elucidating the proposed mechanisms and clinical implications.
Collapse
|
10
|
Jaiswal AS, Kim HS, Schärer OD, Sharma N, Williamson E, Srinivasan G, Phillips L, Kong K, Arya S, Misra A, Dutta A, Gupta Y, Walter C, Burma S, Narayan S, Sung P, Nickoloff J, Hromas R. EEPD1 promotes repair of oxidatively-stressed replication forks. NAR Cancer 2023; 5:zcac044. [PMID: 36683914 PMCID: PMC9846428 DOI: 10.1093/narcan/zcac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/19/2023] Open
Abstract
Unrepaired oxidatively-stressed replication forks can lead to chromosomal instability and neoplastic transformation or cell death. To meet these challenges cells have evolved a robust mechanism to repair oxidative genomic DNA damage through the base excision repair (BER) pathway, but less is known about repair of oxidative damage at replication forks. We found that depletion or genetic deletion of EEPD1 decreases clonogenic cell survival after oxidative DNA damage. We demonstrate that EEPD1 is recruited to replication forks stressed by oxidative damage induced by H2O2 and that EEPD1 promotes replication fork repair and restart and decreases chromosomal abnormalities after such damage. EEPD1 binds to abasic DNA structures and promotes resolution of genomic abasic sites after oxidative stress. We further observed that restoration of expression of EEPD1 via expression vector transfection restores cell survival and suppresses chromosomal abnormalities induced by oxidative stress in EEPD1-depleted cells. Consistent with this, we found that EEPD1 preserves replication fork integrity by preventing oxidatively-stressed unrepaired fork fusion, thereby decreasing chromosome instability and mitotic abnormalities. Our results indicate a novel role for EEPD1 in replication fork preservation and maintenance of chromosomal stability during oxidative stress.
Collapse
Affiliation(s)
- Aruna S Jaiswal
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Elizabeth A Williamson
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Gayathri Srinivasan
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Linda Phillips
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Kimi Kong
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Shailee Arya
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Anurag Misra
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Arijit Dutta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yogesh Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Christi A Walter
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Sandeep Burma
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Neurosurgery, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Jac A Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robert Hromas
- Division of Hematology and Medical Oncology, Department of Medicine and the Mays Cancer Center, University of Texas Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Shaashua L, Ben-Shmuel A, Pevsner-Fischer M, Friedman G, Levi-Galibov O, Nandakumar S, Barki D, Nevo R, Brown LE, Zhang W, Stein Y, Lior C, Kim HS, Bojmar L, Jarnagin WR, Lecomte N, Mayer S, Stok R, Bishara H, Hamodi R, Levy-Lahad E, Golan T, Porco JA, Iacobuzio-Donahue CA, Schultz N, Tuveson DA, Lyden D, Kelsen D, Scherz-Shouval R. BRCA mutational status shapes the stromal microenvironment of pancreatic cancer linking clusterin expression in cancer associated fibroblasts with HSF1 signaling. Nat Commun 2022; 13:6513. [PMID: 36316305 PMCID: PMC9622893 DOI: 10.1038/s41467-022-34081-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 10/13/2022] [Indexed: 11/12/2022] Open
Abstract
Tumors initiate by mutations in cancer cells, and progress through interactions of the cancer cells with non-malignant cells of the tumor microenvironment. Major players in the tumor microenvironment are cancer-associated fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90% of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by cancer cells. Whether this rewiring is differentially affected by different mutations in cancer cells is largely unknown. Here we address this question by dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pancreatic ductal adenocarcinoma. We comprehensively analyze pancreatic cancer samples from 42 patients, revealing different CAF subtype compositions in germline BRCA-mutated vs. BRCA Wild-type tumors. In particular, we detect an increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-mutated tumors. Using cancer organoids and mouse models we show that this process is mediated through activation of heat-shock factor 1, the transcriptional regulator of clusterin. Our findings unravel a dimension of stromal heterogeneity influenced by germline mutations in cancer cells, with direct implications for clinical research.
Collapse
Affiliation(s)
- Lee Shaashua
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Aviad Ben-Shmuel
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Meirav Pevsner-Fischer
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Gil Friedman
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Oshrat Levi-Galibov
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Subhiksha Nandakumar
- grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Debra Barki
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Lauren E. Brown
- grid.189504.10000 0004 1936 7558Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA USA
| | - Wenhan Zhang
- grid.189504.10000 0004 1936 7558Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA USA
| | - Yaniv Stein
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Chen Lior
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Han Sang Kim
- grid.5386.8000000041936877XChildren’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY USA ,grid.15444.300000 0004 0470 5454Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Graduate School of Medical Science, Brain Korea 21 Project, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Linda Bojmar
- grid.5386.8000000041936877XChildren’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY USA ,grid.5640.70000 0001 2162 9922Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - William R. Jarnagin
- grid.51462.340000 0001 2171 9952Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Nicolas Lecomte
- grid.51462.340000 0001 2171 9952David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Shimrit Mayer
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Roni Stok
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hend Bishara
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Rawand Hamodi
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ephrat Levy-Lahad
- grid.415593.f0000 0004 0470 7791The Fuld Family Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Talia Golan
- grid.12136.370000 0004 1937 0546Oncology Institute, Sheba Medical Center at Tel-Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - John A. Porco
- grid.189504.10000 0004 1936 7558Department of Chemistry and Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA USA
| | - Christine A. Iacobuzio-Donahue
- grid.51462.340000 0001 2171 9952David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Nikolaus Schultz
- grid.51462.340000 0001 2171 9952Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - David A. Tuveson
- grid.225279.90000 0004 0387 3667Cancer Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY USA
| | - David Lyden
- grid.5386.8000000041936877XChildren’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY USA
| | - David Kelsen
- grid.5386.8000000041936877XGastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY USA
| | - Ruth Scherz-Shouval
- grid.13992.300000 0004 0604 7563Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
12
|
Devanaboyina M, Kaur J, Whiteley E, Lin L, Einloth K, Morand S, Stanbery L, Hamouda D, Nemunaitis J. NF-κB Signaling in Tumor Pathways Focusing on Breast and Ovarian Cancer. Oncol Rev 2022; 16:10568. [PMID: 36531159 PMCID: PMC9756851 DOI: 10.3389/or.2022.10568] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 08/30/2023] Open
Abstract
Immune disorders and cancer share a common pathway involving NF-κb signaling. Through involvement with GM-CSF, NF-κB can contribute to proliferation and activation of T- and B- cells as well as immune cell migration to sites of inflammation. In breast cancer, this signaling pathway has been linked to resistance with endocrine and chemotherapies. Similarly, in ovarian cancer, NF-κB influences angiogenesis and inflammation pathways. Further, BRCA1 signaling common to both breast and ovarian cancer also has the capability to induce NF-κB activity. Immunotherapy involving NF-κB can also be implemented to combat chemoresistance. The complex signaling pathways of NF-κB can be harnessed for developing cancer therapeutics to promote immunotherapy for improving patient outcomes.
Collapse
Affiliation(s)
- Monika Devanaboyina
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Jasskiran Kaur
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Emma Whiteley
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Leslie Lin
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Katelyn Einloth
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Susan Morand
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | | - Danae Hamouda
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
13
|
Xi X, Wang J, Qin Y, You Y, Huang W, Zhan J. The Biphasic Effect of Flavonoids on Oxidative Stress and Cell Proliferation in Breast Cancer Cells. Antioxidants (Basel) 2022; 11:antiox11040622. [PMID: 35453307 PMCID: PMC9032920 DOI: 10.3390/antiox11040622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/21/2022] Open
Abstract
Flavonoids have been reported to play an essential role in modulating processes of cellular redox homeostasis such as scavenging ROS. Meanwhile, they also induce oxidative stress that exerts potent antitumor bioactivity. However, the contradiction between these two aspects still remains unclear. In this study, four typical flavonoids were selected and studied. The results showed that low-dose flavonoids slightly promoted the proliferation of breast cancer cells under normal growth via gradually reducing accumulated oxidative products and demonstrated a synergistic effect with reductants NAC or VC. Besides, low-dose flavonoids significantly reduced the content of ROS and MDA induced by LPS or Rosup but restored the activity of SOD. However, high-dose flavonoids markedly triggered the cell death via oxidative stress as evidenced by upregulated ROS, MDA and downregulated SOD activity that could be partly rescued by NAC pretreatment, which was also confirmed by antioxidative gene expression levels. The underlying mechanism of such induced cell death was pinpointed as apoptosis, cell cycle arrest, accumulated mitochondrial superoxide, impaired mitochondrial function and decreased ATP synthesis. Transcriptomic analysis of apigenin and quercetin uncovered that high-dose flavonoids activated TNF-α signaling, as verified through detecting inflammatory gene levels in breast cancer cells and RAW 264.7 macrophages. Moreover, we identified that BRCA1 overexpression effectively attenuated such oxidative stress, inflammation and inhibited ATP synthesis induced by LPS or high dose of flavonoids possibly through repairing DNA damage, revealing an indispensable biological function of BRCA1 in resisting oxidative damage and inflammatory stimulation caused by exogenous factors.
Collapse
|
14
|
Thai SF, Jones CP, Robinette BL, Ren H, Vallanat B, Fisher AA, Kitchin KT. Effects of Silver Nanoparticles and Silver Nitrate on mRNA and microRNA Expression in Human Hepatocellular Carcinoma Cells (HepG2). JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5414-5428. [PMID: 33980351 PMCID: PMC10563035 DOI: 10.1166/jnn.2021.19481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to understand toxicity of nano silver, human hepatocellular carcinoma (HepG2) cells were treated either with silver nitrate (AgNO₃) or with nano silver capped with glutathione (Ag-S) at various concentration. Differentially expressed genelists for mRNA and microRNA were obtained through Illumina RNA sequencing and DEseq data analyses. Both treatments showed non-linear dose response relationships for mRNA and microRNA. Gene expression analysis showed signaling pathways common to both nano Ag-S and AgNO₃, such as cell cycle regulation, DNA damage response and cancer related pathways. But, nano Ag-S caused signaling pathway changes that were not altered by AgNO₃ such as NRF2-mediated oxidative stress response inflammation, cell membrane signaling, and cell proliferation. Nano Ag-S also affected p53 signaling, survival, apoptosis, tissue repair, lipid synthesis, angiogenesis, liver fibrosis and tumor development. Several of the pathways affected by nano Ag-S are hypothesized as major contributors to nanotoxicity. MicroRNA target filter analysis revealed additional affected pathways that were not reflected in the mRNA expression response alone, including DNA damage signaling, genomic stability, ROS, cell cycle, ubiquitination, DNA methylation, cell proliferation and fibrosis for AgNO₃; and cell cycle regulation, P53 signaling, cell proliferation, survival, apoptosis, tissue repair and so on for nano Ag-S. These pathways may be mediated by microRNA repression of protein translation.Our study clearly showed that the addition of microRNA profiling increased the numbers of signaling pathways discovered that affected by the treatments on HepG2 cells and gave US a better picture of the effects of these reagents in the cells.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Carlton P Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Brian L Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TWAlexander Dr, Durham NC 27709, USA
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | | - Anna A Fisher
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Kirk T Kitchin
- US Environmental Protection Agency, Retired from EPA, Durham NC 27709, USA
| |
Collapse
|
15
|
Arakelyan A, Melkonyan A, Hakobyan S, Boyarskih U, Simonyan A, Nersisyan L, Nikoghosyan M, Filipenko M, Binder H. Transcriptome Patterns of BRCA1- and BRCA2- Mutated Breast and Ovarian Cancers. Int J Mol Sci 2021; 22:1266. [PMID: 33525353 PMCID: PMC7865215 DOI: 10.3390/ijms22031266] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the BRCA1 and BRCA2 genes are known risk factors and drivers of breast and ovarian cancers. So far, few studies have been focused on understanding the differences in transcriptome and functional landscapes associated with the disease (breast vs. ovarian cancers), gene (BRCA1 vs. BRCA2), and mutation type (germline vs. somatic). In this study, we were aimed at systemic evaluation of the association of BRCA1 and BRCA2 germline and somatic mutations with gene expression, disease clinical features, outcome, and treatment. We performed BRCA1/2 mutation centered RNA-seq data analysis of breast and ovarian cancers from the TCGA repository using transcriptome and phenotype "portrayal" with multi-layer self-organizing maps and functional annotation. The results revealed considerable differences in BRCA1- and BRCA2-dependent transcriptome landscapes in the studied cancers. Furthermore, our data indicated that somatic and germline mutations for both genes are characterized by deregulation of different biological functions and differential associations with phenotype characteristics and poly(ADP-ribose) polymerase (PARP)-inhibitor gene signatures. Overall, this study demonstrates considerable variation in transcriptomic landscapes of breast and ovarian cancers associated with the affected gene (BRCA1 vs. BRCA2), as well as the mutation type (somatic vs. germline). These results warrant further investigations with larger groups of mutation carriers aimed at refining the understanding of molecular mechanisms of breast and ovarian cancers.
Collapse
Affiliation(s)
- Arsen Arakelyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Ani Melkonyan
- Laboratory of Human Genomics and Immunomics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia;
| | - Siras Hakobyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Uljana Boyarskih
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Arman Simonyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Lilit Nersisyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
| | - Maria Nikoghosyan
- Group of Bioinformatics, Institute of Molecular Biology National Academy of Sciences of Armenia, 0014 Yerevan, Armenia; (S.H.); (A.S.); (L.N.); (M.N.)
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, 0051 Yerevan, Armenia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 630090 Novosibirsk, Russia; (U.B.); (M.F.)
| | - Hans Binder
- Interdisciplinary Centre for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
16
|
Kwon Y. Possible Beneficial Effects of N-Acetylcysteine for Treatment of Triple-Negative Breast Cancer. Antioxidants (Basel) 2021; 10:169. [PMID: 33498875 PMCID: PMC7911701 DOI: 10.3390/antiox10020169] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/24/2022] Open
Abstract
N-acetylcysteine (NAC) is a widely used antioxidant with therapeutic potential. However, the cancer-promoting effect of NAC observed in some preclinical studies has raised concerns regarding its clinical use. Reactive oxygen species (ROS) can mediate signaling that results in both cancer-promoting and cancer-suppressing effects. The beneficial effect of NAC may depend on whether the type of cancer relies on ROS signaling for its survival and metastasis. Triple-negative breast cancer (TNBC) has aggressive phenotypes and is currently treated with standard chemotherapy as the main systemic treatment option. Particularly, basal-like TNBC cells characterized by inactivated BRCA1 and mutated TP53 produce high ROS levels and rely on ROS signaling for their survival and malignant progression. In addition, the high ROS levels in TNBC cells can mediate the interplay between cancer cells and the tissue microenvironment (TME) to trigger the recruitment and conversion of stromal cells and induce hypoxic responses, thus leading to the creation of cancer-supportive TMEs and increased cancer aggressiveness. However, NAC treatment effectively reduces the ROS production and ROS-mediated signaling that contribute to cell survival, metastasis, and drug resistance in TNBC cells. Therefore, the inclusion of NAC in standard chemotherapy could probably provide additional benefits for TNBC patients.
Collapse
Affiliation(s)
- Youngjoo Kwon
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
17
|
Moscatello C, Di Nicola M, Veschi S, Di Gregorio P, Cianchetti E, Stuppia L, Battista P, Cama A, Curia MC, Aceto GM. Relationship between MUTYH, OGG1 and BRCA1 mutations and mRNA expression in breast and ovarian cancer predisposition. Mol Clin Oncol 2020; 14:15. [PMID: 33343895 PMCID: PMC7725208 DOI: 10.3892/mco.2020.2177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/29/2020] [Indexed: 12/13/2022] Open
Abstract
The aetiology of breast and ovarian cancer (BC/OC) is multi-factorial. At present, the involvement of base excision repair (BER) glycosylases (MUTYH and OGG1) in BC/OC predisposition is controversial. The present study investigated whether germline mutation status and mRNA expression of two BER genes, MUTHY and OGG1, were correlated with BRCA1 in 59 patients with BC/OC and 50 matched population controls. In addition, to evaluate the relationship between MUTYH, OGG1 and BRCA1, their possible mutual modulation and correlation among mutational spectrum, gene expression and demographic characteristics were evaluated. The results identified 18 MUTYH and OGG1 variants, of which 4 were novel (2 MUTYH and 2 OGG1) in 44 of the 59 patients. In addition, two pathogenic mutations were identified: OGG1 p.Arg46Gln, detected in a patient with BC and a family history of cancer, and MUTYH p.Val234Gly in a patient with OC, also with a family history of cancer. A significant reduced transcript expression in MUTYH was observed (P=0.033) in cases, and in association with the presence of rare variants in the same gene (P=0.030). A significant correlation in the expression of the two BER genes was observed in cases (P=0.004), whereas OGG1 and BRCA1 was significantly correlated in cases (P=0.001) compared with controls (P=0.010). The results of the present study indicated that the relationship among mutational spectrum, gene expression and demographic characteristics may improve the genetic diagnosis and primary prevention of at-risk individuals belonging to families with reduced mRNA expression, regardless of mutation presence.
Collapse
Affiliation(s)
- Carmelo Moscatello
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Marta Di Nicola
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Serena Veschi
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Patrizia Di Gregorio
- Department of Psychological, Health and Territorial Sciences, School of Medicine and Health Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Ettore Cianchetti
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Liborio Stuppia
- Immunohaematology and Transfusional Medicine Service, 'SS. Annunziata' Hospital, I-66100 Chieti, Italy
| | - Pasquale Battista
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Maria Cristina Curia
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Gitana Maria Aceto
- Department of Medical, Oral and Biotechnological Sciences, 'G. d'Annunzio' University of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
18
|
Wang J, Nan N, Shi L, Li N, Huang S, Zhang A, Liu Y, Guo P, Liu B, Xu ZY. Arabidopsis BRCA1 represses RRTF1-mediated ROS production and ROS-responsive gene expression under dehydration stress. THE NEW PHYTOLOGIST 2020; 228:1591-1610. [PMID: 32621388 DOI: 10.1111/nph.16786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Reactive oxygen species (ROS) act as important secondary messengers in abscisic acid (ABA) signaling and induce stomatal closure under dehydration stress. The breast cancer susceptibility gene 1 (BRCA1), an important tumor suppressor in animals, functions primarily in the maintenance of genome integrity in animals and plants. However, whether and how the plant BRCA1 regulates intracellular ROS homeostasis in guard cells under dehydration stress remains unknown. Here, we found that Arabidopsis atbrca1 loss-of-function mutants showed dehydration stress tolerance. This stress tolerant phenotype of atbrca1 was a result of ABA- and ROS-induced stomatal closure, which was enhanced in atbrca1 mutants compared with the wild-type. AtBRCA1 downregulated the expression of ROS-responsive and marker genes. Notably, these genes were also the targets of the AP2/ERF transcriptional activator RRTF1/ERF109. Under normal conditions, AtBRCA1 physically interacted with RRTF1 and inhibited its binding to the GCC-box-like sequence in target gene promoters. Under dehydration stress, the expression of AtBRCA1 was dramatically reduced and that of RRTF1 was activated, thus inducing the expression of ROS-responsive genes. Overall, our study reveals a novel molecular function of AtBRCA1 in the transcriptional regulation of intracellular ROS homeostasis under dehydration stress.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Lulu Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ai Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
19
|
Rajendran P, Alzahrani AM, Rengarajan T, Veeraraghavan VP, Krishna Mohan S. Consumption of reused vegetable oil intensifies BRCA1 mutations. Crit Rev Food Sci Nutr 2020; 62:1222-1229. [PMID: 33107328 DOI: 10.1080/10408398.2020.1837725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Breast cancer (BC) is a foremost type of cancer in women globally with an increased mortality rate in developing countries. Information regarding hereditary factors, lifestyle, work environment, food habits, and personal history could be useful in diagnosing breast cancer. Among such food habits, the reuse of edible oil for preparing food is a common practice in any developing country. The repeated heating of oils enhances the oxidative degradation of oil to produce polyaromatic hydrocarbons (PAH) which could disrupt the redox balance and generate reactive oxygen species. These reactive toxic intermediates can lead to BRCA1 mutations that are responsible for breast cancer. Mutations in DNA are the main cause for the conversion of proto-oncogenes into oncogenes which leads to change in expression and an increase in cell proliferation wherein a normal cell gets transformed into a malignant neoplastic cell. This review summarizes the possible mechanism involved in the induction of breast cancer due to repeated heating of edible.
Collapse
Affiliation(s)
- Peramaiyan Rajendran
- Department of Biological Sciences, College of Science, School of Biological Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abdullah M Alzahrani
- Department of Biological Sciences, College of Science, School of Biological Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Department of Biochemistry, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai, India
| |
Collapse
|
20
|
Miner GH, Renton AE, Taubenfeld E, Tadros RO, Marcora E, Lookstein RA, Faries PL, Marin ML. Whole genome sequencing identifies loci specifically associated with thoracic aortic wall defects and abdominal aortic aneurysms in patients with European ancestry. JVS Vasc Sci 2020; 1:233-245. [PMID: 34617051 PMCID: PMC8489199 DOI: 10.1016/j.jvssci.2020.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE The objective of this study was to better understand the pathophysiology and underlying genetic mechanisms behind two abdominal aortic aneurysm (AAA) subtypes using computed tomographic imaging in combination with whole genome sequencing. METHODS Patients with a known AAA and European ancestry were included in this investigation and underwent genetic and image analysis. Patients with AAAs and indications of descending thoracic aortic pathology (aortic dissection, penetrating aortic ulcers, intramural hematoma, atheromas, ulcerative plaque, and intramural ulceration, and intimal flaps/tears) were classified as having thoracic aortic disease, grouped together, and compared with patients with an AAA and a normal descending thoracic aorta. Whole genome sequencing was then performed on the 93 patients who had imaging features consistent with thoracic aortic disease and the 126 patients with a normal descending thoracic aorta. RESULTS The results of this study suggest one variant-level, four gene-level, and one gene set-level associations in patients with thoracic aortic disease who also had an AAA. The variant rs79508780 located in TSEN54 achieved study-wide significance (P = 1.71E-06). BATF3 and SMLR1 were significantly associated and EFCAB3 and TAF4 were reached suggestive assocation with a diseased descending thoracic aorta (P = 5.23E-26, P = 1.86E-25, P = 1.54E-05, and P = 8.31E-05, respectively). Gene sets were also compiled using MSigDB and trait-based index single nucleotide variation from major genome-wide association studies. GO_DNA_DOUBLE_STRAND_BREAK_PROCESSING, a gene set related to double-stranded DNA break repair, was significantly associated with thoracic aortic disease in AAA patients (P = 1.80E-06). CONCLUSIONS This pilot study provides further evidence that an AAA may be the end result of multiple degenerative pathways. Genetic variations in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair pathways were associated with European patients who had an AAA and thoracic aortic disease. Additionally, this study provides support for the application of a radiogenomic approach for the investigation of other potential pathologies that could lead to the development of an AAA or influence future management decisions. (JVS-Vascular Science.). CLINICAL RELEVANCE In this study, we provide evidence that abdominal aortic aneurysms (AAAs) may be a result of multiple pathophysiologies rather than a single disease. We have identified genetic variants involved in vitamin D signaling, cholesterol metabolism, extracellular matrix breakdown, and double-stranded DNA break repair associated with structural defects in the aortic wall in patients with AAAs who are of European descent. Patients with AAAs and structural defects in the thoracic aorta have been previously linked to differential behavior after endovascular aneurysm repair. These patients with wall defects exhibited greater sac regression, a marker of surgical success, after endovascular aneurysm repair. Our study demonstrates the usefulness of a radiogenomic approach for elucidating mechanisms behind the formation and future behavior of AAAs that could aid surgeons in making future procedural and management decisions.
Collapse
|
21
|
Motifs enable communication efficiency and fault-tolerance in transcriptional networks. Sci Rep 2020; 10:9628. [PMID: 32541819 PMCID: PMC7296022 DOI: 10.1038/s41598-020-66573-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Analysis of the topology of transcriptional regulatory networks (TRNs) is an effective way to study the regulatory interactions between the transcription factors (TFs) and the target genes. TRNs are characterized by the abundance of motifs such as feed forward loops (FFLs), which contribute to their structural and functional properties. In this paper, we focus on the role of motifs (specifically, FFLs) in signal propagation in TRNs and the organization of the TRN topology with FFLs as building blocks. To this end, we classify nodes participating in FFLs (termed motif central nodes) into three distinct roles (namely, roles A, B and C), and contrast them with TRN nodes having high connectivity on the basis of their potential for information dissemination, using metrics such as network efficiency, path enumeration, epidemic models and standard graph centrality measures. We also present the notion of a three tier architecture and how it can help study the structural properties of TRN based on connectivity and clustering tendency of motif central nodes. Finally, we motivate the potential implication of the structural properties of motif centrality in design of efficient protocols of information routing in communication networks as well as their functional properties in global regulation and stress response to study specific disease conditions and identification of drug targets.
Collapse
|
22
|
Beneficial Molecular Adaptations In BRCA-Mutation Carriers By Combined HIT/HIRT Intervention: Results From A Pilot Study. Cancers (Basel) 2020; 12:cancers12061526. [PMID: 32532068 PMCID: PMC7352264 DOI: 10.3390/cancers12061526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/30/2022] Open
Abstract
Based on growing evidence that breast cancer (BRCA) also plays a pivotal role in the regulation of skeletal muscle metabolism and the response to anti-oxidative stress, we examined the influence of regular exercise in human BRCA mutation carriers on their BRCA1 gene/protein expression and inflammatory/oxidative response. Sixteen BRCA-mutation carriers were assigned to an intervention (IG) or control group (CG). IG received a combination of high-intensity interval endurance (HIT) and strength training (HIRT) for six weeks, whereas CG received a low-intensity activity program. Before (T0) and at the end of the intervention (T1), muscle biopsy, physiological performance, blood withdrawal and anthropometry were obtained. Parameters included: Muscle BRCA1 gene/protein expression, inflammatory/oxidative stress, anti-oxidative capacity, peak oxygen capacity (VO2peak) and 1-repetition maximum (1-RM) at six different training machines. VO2peak and 1-RM of IG were increased at T1 compared to T0, whereas CG performance, physiological and molecular parameters remained unchanged. IG showed increased BRCA1 protein concentration as well as anti-oxidative capacity, whereas gene expression was unaltered. IG inflammatory and oxidative damage did not differ between time points. Combined HIT/HIRT increases aerobic and strength performance of BRCA-mutation carriers with up regulated BRCA1 protein expression and improved anti-oxidative status without showing an increased inflammatory response.
Collapse
|
23
|
Sánchez-Martín P, Sou YS, Kageyama S, Koike M, Waguri S, Komatsu M. NBR1-mediated p62-liquid droplets enhance the Keap1-Nrf2 system. EMBO Rep 2020; 21:e48902. [PMID: 31916398 DOI: 10.15252/embr.201948902] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/25/2023] Open
Abstract
p62/SQSTM1 is a multivalent protein that has the ability to cause liquid-liquid phase separation and serves as a receptor protein that participates in cargo isolation during selective autophagy. This protein is also involved in the non-canonical activation of the Keap1-Nrf2 system, a major oxidative stress response pathway. Here, we show a role of neighbor of BRCA1 gene 1 (NBR1), an autophagy receptor structurally similar to p62/SQSTM1, in p62-liquid droplet formation and Keap1-Nrf2 pathway activation. Overexpression of NBR1 blocks selective degradation of p62/SQSTM1 through autophagy and promotes the accumulation and phosphorylation of p62/SQSTM1 in liquid-like bodies, which is required for the activation of Nrf2. NBR1 is induced in response to oxidative stress, which triggers p62-mediated Nrf2 activation. Conversely, loss of Nbr1 suppresses not only the formation of p62/SQSTM1-liquid droplets, but also of p62-dependent Nrf2 activation during oxidative stress. Taken together, our results show that NBR1 mediates p62/SQSTM1-liquid droplet formation to activate the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Pablo Sánchez-Martín
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Yu-Shin Sou
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Shun Kageyama
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masaaki Komatsu
- Department of Physiology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Japan
| |
Collapse
|
24
|
Arason A, Agnarsson BA, Johannesdottir G, Johannsson OT, Hilmarsdottir B, Reynisdottir I, Barkardottir RB. The BRCA1 c.4096+3A>G Variant Displays Classical Characteristics of Pathogenic BRCA1 Mutations in Hereditary Breast and Ovarian Cancers, But Still Allows Homozygous Viability. Genes (Basel) 2019; 10:E882. [PMID: 31683985 PMCID: PMC6896150 DOI: 10.3390/genes10110882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/04/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
Mutations in BRCA1 result in predisposal to breast and ovarian cancers, but many variants exist with unknown clinical significance (VUS). One is BRCA1 c.4096+3A>G, which affects production of the full-length BRCA1 transcript, while augmenting transcripts lacking most or all of exon 11. Nonetheless, homozygosity of this variant has been reported in a healthy woman. We saw this variant cosegregate with breast and ovarian cancer in several family branches of four Icelandic pedigrees, with instances of phenocopies and a homozygous woman with lung cancer. We found eight heterozygous carriers (0.44%) in 1820 unselected breast cancer cases, and three (0.15%) in 1968 controls (p = 0.13). Seeking conclusive evidence, we studied tumors from carriers in the pedigrees for wild-type-loss of heterozygosity (wtLOH) and BRCA1-characteristic prevalence of estrogen receptor (ER) negativity. Of 15 breast and six ovarian tumors, wtLOH occurred in nine breast and all six ovarian tumours, and six of the nine breast tumors with wtLOH were ER-negative. These data accord with a pathogenic BRCA1-mutation. Our findings add to the current knowledge of BRCA1, and the role of its exon 11 in cancer pathogenicity, and will be of use in clinical genetic counselling.
Collapse
Affiliation(s)
- Adalgeir Arason
- Department of Pathology, Landspitali - The National University Hospital of Iceland, 101 Reykjavik, Iceland.
- BMC (Biomedical Center), Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.
| | - Bjarni A Agnarsson
- Department of Pathology, Landspitali - The National University Hospital of Iceland, 101 Reykjavik, Iceland.
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.
| | - Gudrun Johannesdottir
- Department of Pathology, Landspitali - The National University Hospital of Iceland, 101 Reykjavik, Iceland.
| | - Oskar Th Johannsson
- BMC (Biomedical Center), Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.
- Department of Oncology, Landspitali, The National University Hospital of Iceland, 101 Reykjavik, Iceland.
| | - Bylgja Hilmarsdottir
- Department of Pathology, Landspitali - The National University Hospital of Iceland, 101 Reykjavik, Iceland.
- BMC (Biomedical Center), Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.
| | - Inga Reynisdottir
- Department of Pathology, Landspitali - The National University Hospital of Iceland, 101 Reykjavik, Iceland.
- BMC (Biomedical Center), Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.
| | - Rosa B Barkardottir
- Department of Pathology, Landspitali - The National University Hospital of Iceland, 101 Reykjavik, Iceland.
- BMC (Biomedical Center), Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland.
| |
Collapse
|
25
|
Sawczuk B, Maciejczyk M, Sawczuk-Siemieniuk M, Posmyk R, Zalewska A, Car H. Salivary Gland Function, Antioxidant Defence and Oxidative Damage in the Saliva of Patients with Breast Cancer: Does the BRCA1 Mutation Disturb the Salivary Redox Profile? Cancers (Basel) 2019; 11:cancers11101501. [PMID: 31597313 PMCID: PMC6826655 DOI: 10.3390/cancers11101501] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress plays a key role in breast cancer progression. However, little is still known about the relationship between the BRCA1 mutation, the incidence of breast cancer and oral homeostasis. This is the first study to evaluate the secretory function of salivary glands, biomarkers of redox balance, and oxidative damage to proteins and lipids in the saliva of subjects with the BRCA1 mutation. Ninety eight women were enrolled in the study and allocated to four groups based on molecular DNA testing: generally healthy patients without the BRCA1 mutation, patients with breast cancer but without the BRCA1 mutation, generally healthy patients with the BRCA1 mutation, and patients with both breast cancer and the BRCA1 mutation. We demonstrated that saliva from breast cancer patients with the BRCA1 mutation is characterized by enhanced antioxidant capacity and a higher degree of oxidative damage to proteins and lipids. The BRCA1 mutation can cause a predisposition to early salivary gland dysfunction, both in patients with breast cancer and in healthy individuals, leading to a decrease in salivary proteins. Using cluster analysis, we showed that salivary peroxidase, advanced glycation end-products (AGE), total antioxidant status (TAS) and malondialdehyde (MDA) may have particular clinical significance in non-invasive diagnostics of breast cancer.
Collapse
Affiliation(s)
- Beata Sawczuk
- Department of Prosthodontics, Medical University of Bialystok, Sklodowskiej 24a, 15-276 Bialystok, Poland.
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland.
| | | | - Renata Posmyk
- Department of Perinatology, Medical University of Bialystok, Sklodowskiej 24a, 15-276 Bialystok, Poland.
| | - Anna Zalewska
- Department of Restorative Dentistry, Medical University of Bialystok, Sklodowskiej 24a, 15-276 Bialystok, Poland.
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15a, 15-274 Bialystok, Poland.
| |
Collapse
|
26
|
Sharma GP, Gurung SK, Inam A, Nigam L, Bist A, Mohapatra D, Senapati S, Subbarao N, Azam A, Mondal N. CID-6033590 inhibits p38MAPK pathway and induces S-phase cell cycle arrest and apoptosis in DU145 and PC-3 cells. Toxicol In Vitro 2019; 60:420-436. [PMID: 31175925 DOI: 10.1016/j.tiv.2019.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/08/2019] [Accepted: 06/04/2019] [Indexed: 01/08/2023]
Abstract
Metastatic prostate cancer, with no effective treatment, is among the leading causes of cancer-associated deaths in men. Overexpression of p38αMAPK has been observed in neuroendocrine prostate cancer patients and in both DU145 and PC-3 cell lines and represents a good drug target. Sulfonamide derivatives have shown biological activities against many human diseases, including cancer. CID-6033590, a sulfonylhydrazide compound, screened from PubChem database by molecular docking with p38αMAPK, was evaluated for anti-cancerous activities. CID-6033590 induced toxicity in both DU145 and PC-3 cells in a concentration and time-dependent manner with an IC50 value of 60 μM and 66 μM, respectively. Sub-cytotoxic concentrations of the compound significantly induced S-phase cell cycle arrest, inhibited cyclinA/CDK2 complex and blocked cell proliferation. Further, CID-6033590 downregulated phosphorylation of p38MAPK (P-p38) as well as its downstream targets, Activating transcription factor 2 (ATF-2) and Heat shock protein 27 (Hsp27). The compound increased ROS and decreased mitochondrial membrane potential (Δψm), downregulated Bcl-2 and survivin and cleaved poly ADP ribose polymerase (PARP) and caspase-3, indicating the induction of apoptosis. The evaluaion of the compound on noncancerous, human prostatic epithelial cell line RWPE-1, and healthy murine tissues yielded no significant toxicity. Taken together, we suggest CID-6033590 as a potential candidate for prostate cancer therapy.
Collapse
Affiliation(s)
| | | | - Afreen Inam
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Lokesh Nigam
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Archana Bist
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Amir Azam
- Department of Chemistry, Jamia Millia Islamia, New Delhi, India.
| | - Neelima Mondal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
27
|
Gorodetska I, Kozeretska I, Dubrovska A. BRCA Genes: The Role in Genome Stability, Cancer Stemness and Therapy Resistance. J Cancer 2019; 10:2109-2127. [PMID: 31205572 PMCID: PMC6548160 DOI: 10.7150/jca.30410] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Carcinogenesis is a multistep process, and tumors frequently harbor multiple mutations regulating genome integrity, cell division and death. The integrity of cellular genome is closely controlled by the mechanisms of DNA damage signaling and DNA repair. The association of breast cancer susceptibility genes BRCA1 and BRCA2 with breast and ovarian cancer development was first demonstrated over 20 years ago. Since then the germline mutations within these genes were linked to genomic instability and increased risk of many other cancer types. Genomic instability is an engine of the oncogenic transformation of non-tumorigenic cells into tumor-initiating cells and further tumor evolution. In this review we discuss the biological functions of BRCA1 and BRCA2 genes and the role of BRCA mutations in tumor initiation, regulation of cancer stemness, therapy resistance and tumor progression.
Collapse
Affiliation(s)
- Ielizaveta Gorodetska
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Iryna Kozeretska
- Department of General and Medical Genetics, ESC "The Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; German Cancer Consortium (DKTK), Partner site Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Xu P, Liu Q, Xie Y, Shi X, Li Y, Peng M, Guo H, Sun R, Li J, Hong Y, Liu X, Xu G. Breast cancer susceptibility protein 1 (BRCA1) rescues neurons from cerebral ischemia/reperfusion injury through NRF2-mediated antioxidant pathway. Redox Biol 2018; 18:158-172. [PMID: 30014904 PMCID: PMC6068089 DOI: 10.1016/j.redox.2018.06.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/27/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022] Open
Abstract
Cellular oxidative stress plays a vital role in the pathological process of neural damage in cerebral ischemia/reperfusion (I/R). The breast cancer susceptibility protein 1 (BRCA1), a tumor suppressor, can modulate cellular antioxidant response and DNA repair. Yet the role of BRCA1 in cerebral I/R injury has not been explored. In this study, we observed that BRCA1 was mainly expressed in neurons and was up-regulated in response to I/R insult. Overexpression of BRCA1 attenuated reactive oxygen species production and lipid peroxidation. Enhanced BRCA1 expression promoted DNA double strand break repair through non-homologous end joining pathway. These effects consequently led to neuronal cell survival and neurological recovery. Mechanically, BRCA1 can interact with the nuclear factor (erythroid-derived 2)-like 2 (NRF2) through BRCA1 C-terminal (BRCT) domain. The cross-talk between BRCT and NRF2 activated the NRF2/Antioxidant Response Element signaling pathway and thus protected injured neurons during cerebral I/R. In conclusion, enhanced BRCA1 after cerebral I/R injury may attenuate or prevent neural damage from I/R via NRF2-mediated antioxidant pathway. The finding may provide a potential therapeutic target against ischemic stroke. BRCA1 was up-regulated after cerebral ischemia/reperfusion injury. Up-regulated BRCA1 attenuated cerebral ischemia/reperfusion injury and cognitive impairment. BRCA1 binding to NRF2 via BRCT domain triggered NRF2-mediated antioxidant response. BRCA1 promoted DSBs repair via non-homologous end joining-pathway.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Qian Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Yi Xie
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xiaolei Shi
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, British Columbia, Canada; Department of Neurology, The First Affiliated Hospital, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui 241001, China
| | - Yunzi Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Mengna Peng
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Hongquan Guo
- Department of Neurology, Jinling Hospital, Southern Medical University, Nanjing, Jiangsu 210002, China
| | - Rui Sun
- Department of Neurology, Jinling Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210002, China
| | - Juanji Li
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Ye Hong
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Xinfeng Liu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| | - Gelin Xu
- Department of Neurology, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China.
| |
Collapse
|
29
|
Penkert J, Ripperger T, Schieck M, Schlegelberger B, Steinemann D, Illig T. On metabolic reprogramming and tumor biology: A comprehensive survey of metabolism in breast cancer. Oncotarget 2018; 7:67626-67649. [PMID: 27590516 PMCID: PMC5341901 DOI: 10.18632/oncotarget.11759] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/25/2016] [Indexed: 12/20/2022] Open
Abstract
Altered metabolism in tumor cells has been a focus of cancer research for as long as a century but has remained controversial and vague due to an inhomogeneous overall picture. Accumulating genomic, metabolomic, and lastly panomic data as well as bioenergetics studies of the past few years enable a more comprehensive, systems-biologic approach promoting deeper insight into tumor biology and challenging hitherto existing models of cancer bioenergetics. Presenting a compendium on breast cancer-specific metabolome analyses performed thus far, we review and compile currently known aspects of breast cancer biology into a comprehensive network, elucidating previously dissonant issues of cancer metabolism. As such, some of the aspects critically discussed in this review include the dynamic interplay or metabolic coupling between cancer (stem) cells and cancer-associated fibroblasts, the intratumoral and intertumoral heterogeneity and plasticity of cancer cell metabolism, the existence of distinct metabolic tumor compartments in need of separate yet simultaneous therapeutic targeting, the reliance of cancer cells on oxidative metabolism and mitochondrial power, and the role of pro-inflammatory, pro-tumorigenic stromal conditioning. Comprising complex breast cancer signaling networks as well as combined metabolomic and genomic data, we address metabolic consequences of mutations in tumor suppressor genes and evaluate their contribution to breast cancer predisposition in a germline setting, reasoning for distinct personalized preventive and therapeutic measures. The review closes with a discussion on central root mechanisms of tumor cell metabolism and rate-limiting steps thereof, introducing essential strategies for therapeutic targeting.
Collapse
Affiliation(s)
- Judith Penkert
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Tim Ripperger
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | - Doris Steinemann
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Thomas Illig
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| |
Collapse
|
30
|
Forcados GE, James DB, Sallau AB, Muhammad A, Mabeta P. Oxidative Stress and Carcinogenesis: Potential of Phytochemicals in Breast Cancer Therapy. Nutr Cancer 2017; 69:365-374. [PMID: 28103111 DOI: 10.1080/01635581.2017.1267777] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Breast cancer remains a burden in both developed and developing countries, with higher mortality in developing countries. Attempts to eradicate cancer have not been successful despite the progress made in the development of more novel chemotherapeutic drugs. Reactive-oxygen-species-mediated oxidative stress is known to play a role in breast cancer pathogenesis via genetic and epigenetic modifications, resulting in uncontrolled cell proliferation. Phytochemicals could provide leads for the development of alternative therapeutic agents due to their antioxidant activity, as well as their ability to induce apoptosis in cancer cells. However, most of the studies carried out using in vitro models do not continue with further studies in estrogen-receptor-positive in vivo breast cancer models, or fail to examine the possible biochemical mechanisms of phytochemical-based amelioration. This review examines oxidative-stress-mediated carcinogenesis and the potential of phytochemicals as anticancer agents.
Collapse
Affiliation(s)
- Gilead Ebiegberi Forcados
- a Division of Biochemistry , National Veterinary Research Institute , Vom , Nigeria.,b Department of Biochemistry , Faculty of Science, Ahmadu Bello University , Zaria , Nigeria.,c Department of Anatomy and Physiology , Faculty of Veterinary Sciences, University of Pretoria , Pretoria , South Africa
| | - Dorcas Bolanle James
- b Department of Biochemistry , Faculty of Science, Ahmadu Bello University , Zaria , Nigeria
| | | | - Aliyu Muhammad
- b Department of Biochemistry , Faculty of Science, Ahmadu Bello University , Zaria , Nigeria
| | - Peace Mabeta
- c Department of Anatomy and Physiology , Faculty of Veterinary Sciences, University of Pretoria , Pretoria , South Africa
| |
Collapse
|
31
|
Khalid S, Hanif R, Tareen SH, Siddiqa A, Bibi Z, Ahmad J. Formal modeling and analysis of ER- α associated Biological Regulatory Network in breast cancer. PeerJ 2016; 4:e2542. [PMID: 27781158 PMCID: PMC5075711 DOI: 10.7717/peerj.2542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/07/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the leading cause of death among females worldwide. The increasing incidence of BC is due to various genetic and environmental changes which lead to the disruption of cellular signaling network(s). It is a complex disease in which several interlinking signaling cascades play a crucial role in establishing a complex regulatory network. The logical modeling approach of René Thomas has been applied to analyze the behavior of estrogen receptor-alpha (ER-α) associated Biological Regulatory Network (BRN) for a small part of complex events that leads to BC metastasis. METHODS A discrete model was constructed using the kinetic logic formalism and its set of logical parameters were obtained using the model checking technique implemented in the SMBioNet software which is consistent with biological observations. The discrete model was further enriched with continuous dynamics by converting it into an equivalent Petri Net (PN) to analyze the logical parameters of the involved entities. RESULTS In-silico based discrete and continuous modeling of ER-α associated signaling network involved in BC provides information about behaviors and gene-gene interaction in detail. The dynamics of discrete model revealed, imperative behaviors represented as cyclic paths and trajectories leading to pathogenic states such as metastasis. Results suggest that the increased expressions of receptors ER-α, IGF-1R and EGFR slow down the activity of tumor suppressor genes (TSGs) such as BRCA1, p53 and Mdm2 which can lead to metastasis. Therefore, IGF-1R and EGFR are considered as important inhibitory targets to control the metastasis in BC. CONCLUSION The in-silico approaches allow us to increase our understanding of the functional properties of living organisms. It opens new avenues of investigations of multiple inhibitory targets (ER-α, IGF-1R and EGFR) for wet lab experiments as well as provided valuable insights in the treatment of cancers such as BC.
Collapse
Affiliation(s)
- Samra Khalid
- Atta-ur-Rahman School of Applied Biosciences (ASAB)/Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| | - Rumeza Hanif
- Atta-ur-Rahman School of Applied Biosciences (ASAB)/Healthcare Biotechnology, National University of Science and Technology, Islamabad, Pakistan
| | - Samar H.K. Tareen
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, Netherlands
| | - Amnah Siddiqa
- Research Center for Modeling & Simulation (RCMS), National University of Science and Technology, Islamabad, Pakistan
| | - Zurah Bibi
- Research Center for Modeling & Simulation (RCMS), National University of Science and Technology, Islamabad, Pakistan
| | - Jamil Ahmad
- Research Center for Modeling & Simulation (RCMS), National University of Science and Technology, Islamabad, Pakistan
| |
Collapse
|
32
|
Aberrant modulation of the BRCA1 and G1/S cell cycle pathways in alcoholic hepatitis patients with Mallory Denk Bodies revealed by RNA sequencing. Oncotarget 2016; 6:42491-503. [PMID: 26623723 PMCID: PMC4767447 DOI: 10.18632/oncotarget.6382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/15/2015] [Indexed: 01/01/2023] Open
Abstract
Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. Liver injury from alcohol administration causes balloon hepatocytes and MDB formation impeding liver regeneration. By comparing AH livers where MDBs had formed with normal liver transcriptomes obtained by RNA sequencing (RNA-Seq), there was significant upregulation of BRCA1-mediated signaling and G1/S cell cycle checkpoint pathways. The transcriptional architecture of differentially expressed genes from AH livers reflected step-wise transcriptional changes progressing to AH. Key molecules such as BRCA1, p15 and p21 were significantly upregulated both in AH livers and in the livers of the DDC re-fed mice model where MDBs had formed. The increase of G1/S cell cycle checkpoint inhibitors p15 and p21 results in cell cycle arrest and inhibition of liver regeneration, implying that p15 and p21 could be exploited for the identification of specific targets for the treatment of liver disease. Provided here for the first time is the RNA-Seq data that represents the fully annotated catalogue of the expression of mRNAs. The most prominent alterations observed were the changes in BRCA1-mediated signaling and G1/S cell cycle checkpoint pathways. These new findings expand previous and related knowledge in the search for gene changes that might be critical in the understanding of the underlying progression to the development of AH.
Collapse
|
33
|
Increased sensitivity of BRCA defective triple negative breast tumors to plumbagin through induction of DNA Double Strand Breaks (DSB). Sci Rep 2016; 6:26631. [PMID: 27220670 PMCID: PMC4879579 DOI: 10.1038/srep26631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/15/2016] [Indexed: 02/06/2023] Open
Abstract
We have earlier shown that Plumbagin (PB) can induce selective cytotoxicity to BRCA1 defective ovarian cancer cells; however, the effect of this molecule in BRCA1 mutated breast cancers has not been analyzed yet. Here, we report that reactive oxygen species (ROS) induced by PB resulted in DNA DSB and activates downstream signaling by ATR/ATM kinases and subsequent apoptosis. PB reduces DNA- dependent protein kinase (DNA-PK) expression and inhibits NHEJ (Non Homologous End Joining) activity in BRCA1 defective breast cancer cells. Also, PB induces apoptosis in two different BRCA1 conditional knock out murine models: MMTV-Cre; BRCA1Co/Co and WAP-Cre; BRCA1Co/Co, at 2 mg/kg body weight, but 32 mg/kg of carboplatin (CN) was needed to induce apoptosis in them. This is the first study where two different tissue specific promoter driven transgenic mice models with BRCA1 exon 11 deletions are used for preclinical drug testing. The apoptosis induced by PB in HR (Homologous Recombination) defective triple negative BRCA1 mutant cell lines and in mouse models occur by inducing ROS mediated DNA DSB. The toxicity profile as compared with CN in transgenic mice provides evidence for PB’s safer disposition as a therapeutic lead in breast cancer drug development.
Collapse
|
34
|
Yanni AE, Efthymiou V, Lelovas P, Agrogiannis G, Kostomitsopoulos N, Karathanos VT. Effects of dietary Corinthian currants (Vitis vinifera L., var. Apyrena) on atherosclerosis and plasma phenolic compounds during prolonged hypercholesterolemia in New Zealand White rabbits. Food Funct 2016; 6:963-71. [PMID: 25662939 DOI: 10.1039/c4fo01106f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Corinthian currants are a rich source of phenolic compounds, which are known to exert beneficial effects on cardiovascular disease. The hypothesis tested is whether dietary supplementation with currants attenuates atherosclerosis and affects plasma phenolics during prolonged hypercholesterolemia in rabbits. Thirty New Zealand White rabbits were fed one of four diets (normal and supplemented with 10% currants, with 0.5% cholesterol, and with 0.5% cholesterol plus 10% currants) for eight weeks. Plasma lipids, glucose and hepatic enzymes were determined. Individual phenolic compounds were identified and quantified in plasma during the dietary intervention. At the end of the study, histological examinations of aorta and liver were performed. The high-cholesterol diet resulted in hypercholesterolemia and oxidative stress, increased aspartate aminotransferase (AST) activity and induced aortic and hepatic lesion formation. Corinthian currant supplementation attenuated atherosclerotic lesions, maintained AST within the normal range and reduced oxidative stress without affecting glucose concentrations. The p-OH-benzoic and p-OH-phenylacetic acids predominated at high concentrations in plasma and remained almost constant during the study in the group that received the normal rabbit chow and the groups given food with added cholesterol either alone or supplemented with currants. Currant supplementation to the normal diet resulted in the reduced absorption of phenolic compounds, as revealed by the measurement of their plasma metabolites, suggesting a regulatory mechanism at the gut level under normal conditions.
Collapse
Affiliation(s)
- Amalia E Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 70 El. Venizelou Ave, 17671 Athens, Greece.
| | | | | | | | | | | |
Collapse
|
35
|
Nikitina D, Chen Z, Vallis K, Poll A, Ainsworth P, Narod SA, Kotsopoulos J. Relationship between Caffeine and Levels of DNA Repair and Oxidative Stress in Women with and without a BRCA1 Mutation. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2015; 8:174-84. [PMID: 26670362 DOI: 10.1159/000439110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Coffee consumption has been associated with a reduction in breast cancer risk among women with a BRCA1 mutation. The objective of this study was to evaluate whether major contributors of caffeine intake are associated with a reduction in DNA damage and/or oxidative stress in women with and without a BRCA1 mutation. METHODS Coffee, tea, soda and total caffeine consumption was collected by a dietary history questionnaire, and DNA repair capacity in lymphocytes was assessed by the comet assay (tail moments), micronucleus test (per 1,000 binucleated cells) and analysis of γ-H2AX staining (nuclear foci). The thiobarbituric acid-malondialdehyde and DTNB assays were used to estimate serum lipid peroxidation (µmol/l) and protein oxidation (µmol/l), respectively. RESULTS Among all women, high levels of caffeine and caffeinated coffee intake were associated with significantly lower levels of micronuclei (138.50 vs. 97.67, p = 0.04, and 138.12 vs. 97.70, p = 0.04). There was no significant relationship between caffeine, coffee, tea and soda intake and the other markers of DNA repair capacity and oxidative stress among all women and in analyses stratified by BRCA1 mutation status. CONCLUSION The chemopreventive effects of coffee and/or caffeine may be associated with improved capacity to efficiently repair DNA damage.
Collapse
Affiliation(s)
- Dina Nikitina
- Women's College Research Institute, Women's College Hospital, Toronto, Ont., Canada
| | | | | | | | | | | | | |
Collapse
|
36
|
Zhang H, Davies KJA, Forman HJ. Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 2015; 88:314-336. [PMID: 26066302 PMCID: PMC4628850 DOI: 10.1016/j.freeradbiomed.2015.05.036] [Citation(s) in RCA: 596] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 12/20/2022]
Abstract
Increasing oxidative stress, a major characteristic of aging, has been implicated in a variety of age-related pathologies. In aging, oxidant production from several sources is increased, whereas antioxidant enzymes, the primary lines of defense, are decreased. Repair systems, including the proteasomal degradation of damaged proteins, also decline. Importantly, the adaptive response to oxidative stress declines with aging. Nrf2/EpRE signaling regulates the basal and inducible expression of many antioxidant enzymes and the proteasome. Nrf2/EpRE activity is regulated at several levels, including transcription, posttranslation, and interactions with other proteins. This review summarizes current studies on age-related impairment of Nrf2/EpRE function and discusses the changes in Nrf2 regulatory mechanisms with aging.
Collapse
Affiliation(s)
- Hongqiao Zhang
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, USA
| | - Henry Jay Forman
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology; School of Natural Science, University of California at Merced, Merced, CA 95344, USA.
| |
Collapse
|
37
|
Nie J, Peng C, Pei W, Zhu W, Zhang S, Cao H, Qi X, Tong J, Jiao Y. A novel role of long non-coding RNAs in response to X-ray irradiation. Toxicol In Vitro 2015; 30:536-44. [PMID: 26363204 DOI: 10.1016/j.tiv.2015.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/05/2015] [Accepted: 09/07/2015] [Indexed: 01/30/2023]
Abstract
In the present study, the role of lncRNAs in response to radiation-induced DNA damage and oxidative stress were explored to improve our understanding of the biological pathways activated upon radiation-induced toxicity. The toxicity of X-ray radiation on human bronchial epithelial cell lines (HBE) was determined through a dose-dependent increase in ROS production and γ-H2AX formation and changes to lncRNA expression was observed and quantified using lncRNA-specific microarrays. 115 lncRNAs expression was increased in a dose-dependent manner following X-ray irradiation. Bioinformatic prediction algorithms determined that these lncRNAs significantly affect the p53 signaling pathway, and, more specifically, the BRCA 1 transcription factor and coding genes adjacent to BRCA 1. Our results highlight a previously uncharacterized role for lncRNAs to act via the p53-pathway in response to X-ray-induced DNA damage, and suggest lncRNAs may serve as novel indicators for radiation toxicity.
Collapse
Affiliation(s)
- Jihua Nie
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China; School of Public Health, Medical College of Soochow University, Suzhou 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou 215123, P. R. China
| | - Chaojun Peng
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Weiwei Pei
- School of Public Health, Medical College of Soochow University, Suzhou 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou 215123, P. R. China
| | - Wei Zhu
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Shuyu Zhang
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Han Cao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China
| | - Xiaofei Qi
- Department of Urology, the First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou 215123, P. R. China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou 215123, P. R. China.
| | - Yang Jiao
- School of Radiation Medicine and Protection and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China; Department of Radiation Genetics, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, P. R. China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou 215123,P. R. China.
| |
Collapse
|
38
|
Duru N, Gernapudi R, Zhang Y, Yao Y, Lo PK, Wolfson B, Zhou Q. NRF2/miR-140 signaling confers radioprotection to human lung fibroblasts. Cancer Lett 2015; 369:184-91. [PMID: 26300493 DOI: 10.1016/j.canlet.2015.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 12/18/2022]
Abstract
Breast and lung cancer patients who are treated with radiotherapy often have severe side effects, including radiation-induced lung damage and secondary cancers. Activation of the NRF2 pathway is a well-known mechanism that protects cells against radiation induced oxidative stress, but its role in radiation-induced lung damage is not well understood. Using human lung fibroblasts (HLFs) we found that ionizing radiation (IR) leads to BRCA1-dependent activation of NRF2 through the inhibition of KEAP1 function, promoting the nuclear accumulation of NRF2, and activating critical radioprotective mechanisms. We discovered that NRF2 directly binds to the miR-140 promoter and increases its expression in response to IR treatment. Gain and loss of function studies further showed the ability of miR-140 to regulate lung fibroblast self-renewal upon irradiation, a potential mechanism to contribute to the regulation of DNA repair. We verified our in vitro findings using primary lung fibroblast cultures from wild type and Nrf2 (KO) mice. Using these models we showed that IR induces overexpression of Brca1, Nrf2 and miR-140 in lung tissue after irradiation. These data reveal a novel radioprotective mechanism in which IR promotes NRF2 nuclear translocation and subsequent activation of miR-140 transcription in HLFs.
Collapse
Affiliation(s)
- Nadire Duru
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ramkishore Gernapudi
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yongshu Zhang
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yuan Yao
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Pang-Kuo Lo
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Benjamin Wolfson
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Qun Zhou
- Department of Biochemistry and Molecular Biology, Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
39
|
Nelson BH. New insights into tumor immunity revealed by the unique genetic and genomic aspects of ovarian cancer. Curr Opin Immunol 2015; 33:93-100. [PMID: 25710852 DOI: 10.1016/j.coi.2015.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 01/26/2015] [Accepted: 02/06/2015] [Indexed: 02/08/2023]
Abstract
Ovarian cancer is a challenging disease that nonetheless provokes brisk, prognostically favorable immune responses in many patients. The biology of ovarian cancer offers unique insights into the factors that engender protective tumor immunity. Tumor-infiltrating lymphocyte (TIL) patterns range from CD8+ TIL alone to complex aggregates that additionally include CD4+ and CD20+ TIL. Patient survival rates increase in step with TIL complexity, suggesting cooperative interactions between these lymphocyte subsets. TIL are associated with high-grade serous histology and BRCA1 disruption; the latter may promote immunity through altered cytokine signaling, oxidative stress responses, or antigen expression. The ovarian tumor genome demonstrates extensive spatial and temporal heterogeneity, yet TIL exhibit relatively homogeneous spatial distributions that may reflect core properties of the tumor. In summary, ovarian cancer attracts the attention of the immune system in ways that create unique challenges and opportunities for immunotherapy.
Collapse
Affiliation(s)
- Brad H Nelson
- Deeley Research Centre, British Columbia Cancer Agency, 2410 Lee Avenue, Victoria, British Columbia V8R 6V5, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
40
|
Fontes FL, Pinheiro DML, Oliveira AHSD, Oliveira RKDM, Lajus TBP, Agnez-Lima LF. Role of DNA repair in host immune response and inflammation. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:246-57. [PMID: 25795123 DOI: 10.1016/j.mrrev.2014.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/28/2022]
Abstract
In recent years, the understanding of how DNA repair contributes to the development of innate and acquired immunity has emerged. The DNA damage incurred during the inflammatory response triggers the activation of DNA repair pathways, which are required for host-cell survival. Here, we reviewed current understanding of the mechanism by which DNA repair contributes to protection against the oxidized DNA damage generated during infectious and inflammatory diseases and its involvement in innate and adaptive immunity. We discussed the functional role of DNA repair enzymes in the immune activation and the relevance of these processes to: transcriptional regulation of cytokines and other genes involved in the inflammatory response; V(D)J recombination; class-switch recombination (CSR); and somatic hypermutation (SHM). These three last processes of DNA damage repair are required for effective humoral adaptive immunity, creating genetic diversity in developing T and B cells. Furthermore, viral replication is also dependent on host DNA repair mechanisms. Therefore, the elucidation of the pathways of DNA damage and its repair that activate innate and adaptive immunity will be important for a better understanding of the immune and inflammatory disorders and developing new therapeutic interventions for treatment of these diseases and for improving their outcome.
Collapse
Affiliation(s)
- Fabrícia Lima Fontes
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Daniele Maria Lopes Pinheiro
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | - Ana Helena Sales de Oliveira
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil.
| | | | - Tirzah Braz Petta Lajus
- Departamento de Biologia Celular e Genética, Universidade Federal do Rio Grande do Norte, UFRN, Natal, RN, Brazil; Liga Contra o Cancer, Natal, RN, Brazil.
| | | |
Collapse
|