1
|
Hasani F, Tarrahimofrad H, Safa ZJ, Farrokhi N, Karkhane AA, Haghbeen K, Aminzadeh S. Expression optimization and characterization of a novel amylopullulanase from the thermophilic Cohnella sp. A01. Int J Biol Macromol 2024; 279:135135. [PMID: 39208893 DOI: 10.1016/j.ijbiomac.2024.135135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Amylopullulanase (EC. 3.2.1.41/1) is an enzyme that hydrolyzes starch and pullulan, capable of breaking (4 → 1)-α and (6 → 1)-α bonds in starch. Here, the Amy1136 gene (2166 base pairs) from the thermophilic bacterium Cohnella sp. A01 was cloned into the expression vector pET-26b(+) and expressed in Escherichia coli BL21. The enzyme was purified using heat shock at 90 °C for 15 min. The expression optimization of Amy1136 was performed using Plackett-Burman and Box-Behnken design as follows: temperature of 26.7 °C, rotational speed of 180 rpm, and bacterial population of 1.25. The Amy1136 displayed the highest activity at a temperature of 50 °C (on pullulan) and a pH of 8.0 (on starch) and, also exhibited stability at high temperatures (90 °C) and over a range of pH values. Ag+ significantly increased enzyme activity, while Co2+ completely inhibited amylase activity. The enzyme was found to be calcium-independent. The kinetic parameters Km, Vmax, kcat, and kcat/Km for amylase activity were 2.4 mg/mL, 38.650 μmol min-1 mg-1, 38.1129 S-1, and 0.09269 S-1mg mL-1, respectively, and for pullulanase activity were 173.1 mg/mL, 59.337 μmol min-1 mg-1, 1.586 S-1, and 1.78338 S-1mg mL-1, respectively. The thermodynamic parameters Kin, t1/2, Ea#, ΔH#, ΔG# and ΔS# were calculated equal to 0.20 × 10-2 (m-1), 462.09 (min), 16.87 (kJ/mol), 14.18 (kJ/mol), 47.34 (kJ/mol) and 102.60 (Jmol K-1), respectively. The stability of Amy1136 under high temperature, acidic and alkaline pH, surfactants, organic solvents, and calcium independence, suggests its suitability for industrial applications.
Collapse
Affiliation(s)
- Faezeh Hasani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zohreh Javaheri Safa
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Naser Farrokhi
- Dept. of Cell & Molecular Biology, Shahid Beheshti University, Tehran, Iran
| | - Ali Asghar Karkhane
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
2
|
Hassan ME, Ibrahim GE, Abdella MAA. Enhancement of β-galactosidase catalytic activity and stability through covalent immobilization onto alginate/tea waste beads and evaluating its impact on the quality of some dairy products. Int J Biol Macromol 2024; 278:134810. [PMID: 39154676 DOI: 10.1016/j.ijbiomac.2024.134810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The current study aimed to evaluate the hydrolysis of whole fat milk (WFM) and sweet whey (SW) using β-galactosidase (β-gal) after covalent immobilization onto activated alginate/tea waste (Alg/TW) beads as a novel carrier. The optimum temperature for free and Alg/TW/β-gal was 40 °C and the ideal pH was 7.0. However, Alg/TW/β-gal displayed better stabilities at high temperatures and a wide pH range. Additionally, the value of Km and Vmax for Alg/TW/β-gal was higher than the free enzyme. The Alg/TW/β-gal showed better residual activity (78.6 %) after 90 storage days at 4 °C. The reusability of Alg/TW/β-gal was very good as it conserved its full activity after 15 consecutive cycles and conserved 93 % of its initial activity after 10 cycles with ONPG (O-nitrophenyl-β-D-galactopyranoside) and lactose as a substrate, respectively. The impact of Alg/TW/β-gal on WFM and SW using HPLC analysis revealed a remarkable decrease in lactose concentration and increase of glucose and galactose concentrations. The SW exhibited higher degree of lactose hydrolysis (97.3 %) compared to WFM (62.4 %). Besides, SW had a prominent increase in total phenolic content (96.8 mg/L) compared to WFM (54.3 mg/L). The antioxidant activity had increased after enzyme treatment in both WFM and SW. The GC-MS analysis for volatile compounds identified twenty-five flavour constituents. Finally, Alg/TW/β-gal has a potential application for obtaining healthy, acceptable, and commercial dairy products of low lactose.
Collapse
Affiliation(s)
- Mohamed E Hassan
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt; Centre of Excellence, Encapsulation Nanobiotechnology Group, National Research Centre, Dokki, Giza 12622, Egypt
| | - Gamil E Ibrahim
- Chemistry of Flavour and Aroma Department, Food Industries and Nutrition Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Mohamed A A Abdella
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt.
| |
Collapse
|
3
|
Irianto VS, Demirkan E, Cetinkaya AA. UV mutagenesis for lipase overproduction from Bacillus cereus ATA179, nutritional optimization, characterization and its usability in the detergent industry. Prep Biochem Biotechnol 2024; 54:918-931. [PMID: 38156984 DOI: 10.1080/10826068.2023.2299441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
In this study, the wild-type Bacillus cereus ATA179 was mutagenized by random UV mutagenesis to increase lipase production. The mutant with maximum lipolytic activity was named Bacillus cereus EV4. The mutant strain (10.6 U/mL at 24 h) produced 60% more enzyme than the wild strain (6.6 U/mL at 48 h). Nutritional factors on lipase production were investigated. Sucrose was the best carbon source, (NH4)2HPO4 was the best nitrogen source and CuSO4 was the best metal ion source. Mutant EV4 showed a 32% increase in lipase production in the modified medium. The optimum temperature and pH were found to be 60 °C and 7.0, respectively. CuSO4, CaCl2, LiSO4, KCl, BaCl2, and Tween 20 had an activating effect on the enzyme. Vmax and Km values were found to be 17.36 U/mL and 0.036 mM, respectively. The molecular weight was determined as 28.2 kDa. The activity of lipase was found to be stable up to 60 days at 20 °C, 75 days at 4 °C, and 90 days at -20 °C. The potential of lipase in the detergent industry was investigated. The enzyme was not affected by detergent additives but was effective in removing stains in fabrics contaminated with oily substances.
Collapse
Affiliation(s)
- Vichi Sicha Irianto
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Elif Demirkan
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| | - Aynur Aybey Cetinkaya
- Department of Biology, Faculty of Arts and Sciences, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
4
|
Abdul Aziz SFN, Salleh AB, Normi YM, Mohammad Latif MA, Alang Ahmad SA. Bioinspired mp20 mimicking uricase in ZIF-8: Metal ion dependent for controllable activity. Enzyme Microb Technol 2024; 178:110439. [PMID: 38579423 DOI: 10.1016/j.enzmictec.2024.110439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/07/2024]
Abstract
Mini protein mimicking uricase (mp20) has shown significant potential as a replacement for natural enzymes in the development of uric acid biosensors. However, the design of mp20 has resulted to an inactive form of peptide, causing of loss their catalytic activity. Herein, this paper delineates the impact of various metal cofactors on the catalytic activity of mp20. The metal ion-binding site prediction and docking (MIB) web server was employed to identify the metal ion binding sites and their affinities towards mp20 residues. Among the tested metal ions, Cu2+ displayed the highest docking score, indicating its preference for interaction with Thr16 and Asp17 residues of mp20. To assess the catalytic activity of mp20 in the presence of metal ions, uric acid assays was monitored using a colorimetric method. The presence of Cu2+ in the assays promotes the activation of mp20, resulting in a color change based on quinoid production. Furthermore, the encapsulation of the mp20 within zeolitic imidazolate framework-8 (ZIF-8) notably improved the stability of the biomolecule. In comparison to the naked mp20, the encapsulated ZIFs biocomposite (mp20@ZIF-8) demonstrates superior stability, selectivity and sensitivity. ZIF's porous shells provides excellent protection, broad detection (3-100 μM) with a low limit (4.4 μM), and optimal function across pH (3.4-11.4) and temperature (20-100°C) ranges. Cost-effective and stable mp20@ZIF-8 surpasses native uricase, marking a significant biosensor technology breakthrough. This integration of metal cofactor optimization and robust encapsulation sets new standards for biosensing applications.
Collapse
Affiliation(s)
- Siti Fatimah Nur Abdul Aziz
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; School of Chemical Sciences, Universiti Sains Malaysia (USM), Gelugor, Pulau Pinang 11800, Malaysia.
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Centre (EMTech), Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Serdang, Selangor 43400, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Muhammad Alif Mohammad Latif
- Integrated Chemical BioPhysics Research, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang, Selangor 43400, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Shahrul Ainliah Alang Ahmad
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia.
| |
Collapse
|
5
|
Tripathi A, Dubey KD. The mechanistic insights into different aspects of promiscuity in metalloenzymes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:23-66. [PMID: 38960476 DOI: 10.1016/bs.apcsb.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Enzymes are nature's ultimate machinery to catalyze complex reactions. Though enzymes are evolved to catalyze specific reactions, they also show significant promiscuity in reactions and substrate selection. Metalloenzymes contain a metal ion or metal cofactor in their active site, which is crucial in their catalytic activity. Depending on the metal and its coordination environment, the metal ion or cofactor may function as a Lewis acid or base and a redox center and thus can catalyze a plethora of natural reactions. In fact, the versatility in the oxidation state of the metal ions provides metalloenzymes with a high level of catalytic adaptability and promiscuity. In this chapter, we discuss different aspects of promiscuity in metalloenzymes by using several recent experimental and theoretical works as case studies. We start our discussion by introducing the concept of promiscuity and then we delve into the mechanistic insight into promiscuity at the molecular level.
Collapse
Affiliation(s)
- Ankita Tripathi
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
6
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Prakasha G, Revanasiddappa H, Jayalakshmi B, Borappa S, Siddaiah K, Shivamallu C, Shati AA, Alfaifi MY, Elbehairi SEI, Singh P, Setty PBS, Kollur SP. Co(III), Ni(II), Pd(II) and Pt(II) complexes derived from new benzimidazole-based imine ligands: Preparation, structure, antibacterial, HSA binding and DNA interaction studies. Inorganica Chim Acta 2024; 565:121981. [DOI: 10.1016/j.ica.2024.121981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
8
|
Omar MN, Rahman RNZRA, Noor NDM, Latip W, Knight VF, Ali MSM. Exploring the Antarctic aminopeptidase P from Pseudomonas sp. strain AMS3 through structural analysis and molecular dynamics simulation. J Biomol Struct Dyn 2024:1-13. [PMID: 38555730 DOI: 10.1080/07391102.2024.2331093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Aminopeptidase P (APPro) is a crucial metalloaminopeptidase involved in amino acid cleavage from peptide N-termini, playing essential roles as versatile biocatalysts with applications ranging from pharmaceuticals to industrial processes. Despite acknowledging its potential for catalysis in lower temperatures, detailed molecular basis and biotechnological implications in cold environments are yet to be explored. Therefore, this research aims to investigate the molecular mechanisms underlying the cold-adapted characteristics of APPro from Pseudomonas sp. strain AMS3 (AMS3-APPro) through a detailed analysis of its structure and dynamics. In this study, structure analysis and molecular dynamics (MD) simulation of a predicted model of AMS3-APPro has been performed at different temperatures to assess structural flexibility and thermostability across a temperature range of 0-60 °C over 100 ns. The MD simulation results revealed that the structure were able to remain stable at low temperatures. Increased temperatures present a potential threat to the overall stability of AMS3-APPro by disrupting the intricate hydrogen bond networks crucial for maintaining structural integrity, thereby increasing the likelihood of protein unfolding. While the metal binding site at the catalytic core exhibits resilience at higher temperatures, highlighting its local structural integrity, the overall enzyme structure undergoes fluctuations and potential denaturation. This extensive structural instability surpasses the localized stability observed at the metal binding site. Consequently, these assessments offer in-depth understanding of the cold-adapted characteristics of AMS3-APPro, highlighting its capability to uphold its native conformation and stability in low-temperature environments. In summary, this research provides valuable insights into the cold-adapted features of AMS3-APPro, suggesting its efficient operation in low thermal conditions, particularly relevant for potential biotechnological applications in cold environments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muhamad Nadzmi Omar
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Victor Feizal Knight
- Research Centre for Chemical Defence, National Defence University of Malaysia, Kem Perdana Sungai Besi, Kuala Lumpur, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
9
|
Ciardullo G, Parise A, Prejanò M, Marino T. Viral RNA Replication Suppression of SARS-CoV-2: Atomistic Insights into Inhibition Mechanisms of RdRp Machinery by ddhCTP. J Chem Inf Model 2024; 64:1593-1604. [PMID: 38412057 DOI: 10.1021/acs.jcim.3c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The nonstructural protein 12, known as RNA-dependent RNA polymerase (RdRp), is essential for both replication and repair of the viral genome. The RdRp of SARS-CoV-2 has been used as a promising candidate for drug development since the inception of the COVID-19 spread. In this work, we performed an in silico investigation on the insertion of the naturally modified pyrimidine nucleobase ddhCTP into the SARS-CoV-2 RdRp active site, in a comparative analysis with the natural one (CTP). The modification in ddhCTP involves the removal of the 3'-hydroxyl group that prevents the addition of subsequent nucleotides into the nascent strand, acting as an RNA chain terminator inhibitor. Quantum mechanical investigations helped to shed light on the mechanistic source of RdRp activity on the selected nucleobases, and comprehensive all-atom simulations provided insights about the structural rearrangements occurring in the active-site region when inorganic pyrophosphate (PPi) is formed. Subsequently, the intricate pathways for the release of PPi, the catalytic product of RdRp, were investigated using Umbrella Sampling simulations. The results are in line with the available experimental data and contribute to a more comprehensive point of view on such an important viral enzyme.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Angela Parise
- Consiglio Nazionale Delle Ricerche (CNR)-IOM C/O International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Mario Prejanò
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| |
Collapse
|
10
|
Yusof NY, Quay DHX, Kamaruddin S, Jonet MA, Md Illias R, Mahadi NM, Firdaus-Raih M, Abu Bakar FD, Abdul Murad AM. Biochemical and in silico structural characterization of a cold-active arginase from the psychrophilic yeast, Glaciozyma antarctica PI12. Extremophiles 2024; 28:15. [PMID: 38300354 DOI: 10.1007/s00792-024-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
- Nik Yusnoraini Yusof
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia.
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| | - Doris Huai Xia Quay
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia.
| | - Shazilah Kamaruddin
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Anuar Jonet
- Malaysia Genome and Vaccine Institute, Jalan Bangi Lama, 43000, Kajang, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Nor Muhammad Mahadi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences & Biotechnology, Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
11
|
Aberuagba A, Joel EB, Bello AJ, Igunnu A, Malomo SO, Olorunniji FJ. Thermophilic PHP Protein Tyrosine Phosphatases (Cap8C and Wzb) from Mesophilic Bacteria. Int J Mol Sci 2024; 25:1262. [PMID: 38279261 PMCID: PMC10816263 DOI: 10.3390/ijms25021262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) of the polymerase and histidinol phosphatase (PHP) superfamily with characteristic phosphatase activity dependent on divalent metal ions are found in many Gram-positive bacteria. Although members of this family are co-purified with metal ions, they still require the exogenous supply of metal ions for full activation. However, the specific roles these metal ions play during catalysis are yet to be well understood. Here, we report the metal ion requirement for phosphatase activities of S. aureus Cap8C and L. rhamnosus Wzb. AlphaFold-predicted structures of the two PTPs suggest that they are members of the PHP family. Like other PHP phosphatases, the two enzymes have a catalytic preference for Mn2+, Co2+ and Ni2+ ions. Cap8C and Wzb show an unusual thermophilic property with optimum activities over 75 °C. Consistent with this model, the activity-temperature profiles of the two enzymes are dependent on the divalent metal ion activating the enzyme.
Collapse
Affiliation(s)
- Adepeju Aberuagba
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; (A.A.); (E.B.J.); (A.J.B.)
| | - Enoch B. Joel
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; (A.A.); (E.B.J.); (A.J.B.)
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Jos, Jos 930003, Nigeria
| | - Adebayo J. Bello
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; (A.A.); (E.B.J.); (A.J.B.)
| | - Adedoyin Igunnu
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 234031, Nigeria; (A.I.); (S.O.M.)
| | - Sylvia O. Malomo
- Department of Biochemistry, Faculty of Life Sciences, University of Ilorin, Ilorin 234031, Nigeria; (A.I.); (S.O.M.)
| | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK; (A.A.); (E.B.J.); (A.J.B.)
| |
Collapse
|
12
|
Wang W, Zhu J, Huang Q, Zhu L, Wang D, Li W, Yu W. DFT Exploration of Metal Ion-Ligand Binding: Toward Rational Design of Chelating Agent in Semiconductor Manufacturing. Molecules 2024; 29:308. [PMID: 38257221 PMCID: PMC10819218 DOI: 10.3390/molecules29020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Chelating agents are commonly employed in microelectronic processes to prevent metal ion contamination. The ligand fragments of a chelating agent largely determine its binding strength to metal ions. Identification of ligands with suitable characteristics will facilitate the design of chelating agents to enhance the capture and removal of metal ions from the substrate in microelectronic processes. This study employed quantum chemical calculations to simulate the binding process between eleven ligands and the hydrated forms of Ni2+, Cu2+, Al3+, and Fe3+ ions. The binding strength between the metal ions and ligands was quantified using binding energy and binding enthalpy. Additionally, we explored the binding interaction mechanisms and explained the differences in binding abilities of the eleven ligands using frontier molecular orbitals, nucleophilic indexes, electrostatic potentials, and energy decomposition calculations based on molecular force fields. Based on our computational results, promising chelating agent structures are proposed, aiming to guide the design of new chelating agents to address metal ion contamination issues in integrated circuit processes.
Collapse
Affiliation(s)
- Wenyuan Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (W.W.)
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
| | - Junli Zhu
- Shanghai Institute of IC Materials Co., Ltd., Shanghai 201899, China;
| | - Qi Huang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
- Shanghai Institute of IC Materials Co., Ltd., Shanghai 201899, China;
| | - Lei Zhu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (W.W.)
| | - Weimin Li
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
| | - Wenjie Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (W.W.)
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China; (Q.H.); (W.L.)
| |
Collapse
|
13
|
Thanh Ha DT, Kim Thoa LT, Phuong Thao TT, Dung TT, Minh Ha TT, Phuong Lan TT, Khoo KS, Show PL, Huy ND. Production of extracellular agarase from Priestia megaterium AT7 and evaluation on marine algae hydrolysis. Enzyme Microb Technol 2024; 172:110339. [PMID: 37857079 DOI: 10.1016/j.enzmictec.2023.110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Agar is a common component biosynthesized from various marine algae species that is widely applied in various fields including food and pharmaceutical industries. However, the structural composition of agar is highly resisted against chemical and biological hydrolysis. Therefore, tremendous research is exploring various pretreatment strategies to break down the intrinsic chemical structural of agar linkage (i.e. neutral agarose and highly sulfated agaropectin) prior for its industrial potential usage. In this research work, a novel agar degrading bacterium was screened and isolated from agriculture soils. Molecular identification using nucleotide sequence of 16 s rRNA region comparison has indicated that the isolate belonged to Priestia genus, and was identified as Priestia megaterium AT7. The maximum enzyme activity was 52.85 ± 1.76 U/mL after 96 h of culture with 5% inoculum size and agitation speed of 180 rpm. Results indicated that the optimal condition for the production of agarose was achieved at pH 7 at 50 °C. The effects of metal ions (e.g. Ca2+, Co2+, Cu2+, Mn2+, Mg2+, Zn2+ and Fe2+) and organic solvents (e.g. acetone, ethanol, methanol, hexane and isopropanol) on enzyme activity were also evaluated. Marine algae hydrolysis evaluation at concentration of 0.1% indicated the enzyme produced reducing sugar of 683.94 ± 26.93 µg/g after 24 h of treatment. It was also found that the highest antioxidant activities obtained after 20 h of treatment was able to achieve 81.76 ± 3.90% at marine algae concentration of 0.1%. The findings obtained from this research work shows the promising application of extracellular agarase to saccharify marine algae for the recovery of value-added bioproducts.
Collapse
Affiliation(s)
| | - Le Thi Kim Thoa
- Jeonbuk National University, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | | | - Tran Trung Dung
- Tay Nguyen University, Buon Ma Thuot, Daklak 63000, Viet Nam
| | | | | | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India.
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Nguyen Duc Huy
- Institute of Biotechnology, Hue University, Hue 49000, Viet Nam.
| |
Collapse
|
14
|
Sadighara P, Abedini AH, Irshad N, Ghazi-Khansari M, Esrafili A, Yousefi M. Association Between Non-alcoholic Fatty Liver Disease and Heavy Metal Exposure: a Systematic Review. Biol Trace Elem Res 2023; 201:5607-5615. [PMID: 36929113 DOI: 10.1007/s12011-023-03629-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a debilitating disease with adverse effects including cirrhosis and hepatocellular carcinoma. Heavy metals can cause severe dysfunction in different body organs including the liver. This review offers the study regarding the positive or negative association between heavy metals exposure and non-alcoholic fatty liver disease. The method used in this study is a systematic review based on searching in the PubMed, Scopus, and Science direct databases with the keywords of fatty liver, non-alcohol fatty liver, heavy metal, mercury, cadmium, arsenic, chromium, thallium, lead, iron, zinc, and nickel. There were 2200 articles searched in databases, and after assessment, 28 articles were selected. Positive association is established between arsenic, cadmium, iron, lead, mercury, and fatty liver disease. A negative relationship is found between zinc, copper, and progressive fatty liver disease. Furthermore, laboratory methods for NAFLD diagnosis were examined according to the obtained manuscripts. Among the different diagnostic methods, magnetic resonance imaging (MRI) is a sensitive method.
Collapse
Affiliation(s)
- Parisa Sadighara
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abedini
- Department of Environmental Health Engineering, Food Safety Division, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Namra Irshad
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmoud Ghazi-Khansari
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Yousefi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Student Research Committee, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Chelyadina NS, Kapranov SV, Popov MA, Smirnova LL, Bobko NI. The mussel Mytilus galloprovincialis (Crimea, Black Sea) as a source of essential trace elements in human nutrition. Biol Trace Elem Res 2023; 201:5415-5430. [PMID: 36881258 DOI: 10.1007/s12011-023-03607-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/23/2023] [Indexed: 03/08/2023]
Abstract
Micronutrients, or essential trace elements, are important components in various metabolic processes inherent to the normal functioning of organism. To date, a substantial part of the world population suffers from a lack of micronutrients in the diet. Mussels are an important and cheap source of nutrients, which can be utilized to mitigate the micronutrient deficiency in the world. In the present work, using inductively coupled plasma mass spectrometry, the contents of the micronutrients Cr, Fe, Cu, Zn, Se, I, and Mo were studied for the first time in soft tissues, shell liquor, and byssus of females and males of the mussel Mytilus galloprovincialis as the promising sources of essential elements in the human diet. Fe, Zn, and I were the most abundant micronutrients in the three body parts. Significant sex-related differences in the body parts were detected only for Fe, which was more abundant in byssus of males, and Zn, which exhibited higher levels in shell liquor of females. Significant tissue-related differences were registered in the contents of all the elements under study. M. galloprovincialis meat was characterized as the optimal source of I and Se for covering the daily human needs. Regardless of sex, byssus turned out to be richer in Fe, I, Cu, Cr, and Mo in comparison with soft tissues, which fact allows recommending this body part for the preparation of dietary supplements to compensate for the deficiency of these micronutrients in the human body.
Collapse
Affiliation(s)
- Natalya S Chelyadina
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2 Nakhimov ave., 299011, Sevastopol, Russian Federation.
| | - Sergey V Kapranov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2 Nakhimov ave., 299011, Sevastopol, Russian Federation
| | - Mark A Popov
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2 Nakhimov ave., 299011, Sevastopol, Russian Federation
| | - Lyudmila L Smirnova
- Institute of Natural and Technical Systems of RAS, Lenin str. 28, Sevastopol, Russian Federation, 299011
| | - Nikolay I Bobko
- A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, 2 Nakhimov ave., 299011, Sevastopol, Russian Federation
| |
Collapse
|
16
|
Escamilla P, Bartella L, Sanz-Navarro S, Percoco RM, Di Donna L, Prejanò M, Marino T, Ferrando-Soria J, Armentano D, Leyva-Pérez A, Pardo E. Degradation of Penicillinic Antibiotics and β-Lactamase Enzymatic Catalysis in a Biomimetic Zn-Based Metal-Organic Framework. Chemistry 2023; 29:e202301325. [PMID: 37279057 DOI: 10.1002/chem.202301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
β-Lactam antibiotics are one of the most commonly prescribed drugs to treat bacterial infections. However, their use has been somehow limited given the emergence of bacteria with resistance mechanisms, such as β-lactamases, which inactivate them by degrading their four-membered β-lactam rings. So, a total knowledge of the mechanisms governing the catalytic activity of β-lactamases is required. Here, we report a novel Zn-based metal-organic framework (MOF, 1), possessing functional channels capable to accommodate and interact with antibiotics, which catalyze the selective hydrolysis of the penicillinic antibiotics amoxicillin and ceftriaxone. In particular, MOF 1 degrades, very efficiently, the four-membered β-lactam ring of amoxicillin, acting as a β-lactamase mimic, and expands the very limited number of MOFs capable to mimic catalytic enzymatic processes. Combined single-crystal X-ray diffraction (SCXRD) studies and density functional (DFT) calculations offer unique snapshots on the host-guest interactions established between amoxicillin and the functional channels of 1. This allows to propose a degradation mechanism based on the activation of a water molecule, promoted by a Zn-bridging hydroxyl group, concertedly to the nucleophilic attack to the carbonyl moiety and the cleaving of C-N bond of the lactam ring.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMOL), Universitat deValència Paterna, 46980, València, Spain
| | - Lucia Bartella
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
- QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Sergio Sanz-Navarro
- Instituto de Tecnología Química, Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Rita Maria Percoco
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Leonardo Di Donna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
- QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMOL), Universitat deValència Paterna, 46980, València, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMOL), Universitat deValència Paterna, 46980, València, Spain
| |
Collapse
|
17
|
Tincu (Iurciuc) CE, Bouhadiba B, Atanase LI, Stan CS, Popa M, Ochiuz L. An Accessible Method to Improve the Stability and Reusability of Porcine Pancreatic α-Amylase via Immobilization in Gellan-Based Hydrogel Particles Obtained by Ionic Cross-Linking with Mg 2+ Ions. Molecules 2023; 28:4695. [PMID: 37375250 PMCID: PMC10302431 DOI: 10.3390/molecules28124695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amylase is an enzyme used to hydrolyze starch in order to obtain different products that are mainly used in the food industry. The results reported in this article refer to the immobilization of α-amylase in gellan hydrogel particles ionically cross-linked with Mg2+ ions. The obtained hydrogel particles were characterized physicochemically and morphologically. Their enzymatic activity was tested using starch as a substrate in several hydrolytic cycles. The results showed that the properties of the particles are influenced by the degree of cross-linking and the amount of immobilized α-amylase enzyme. The temperature and pH at which the immobilized enzyme activity is maximum were T = 60 °C and pH = 5.6. The enzymatic activity and affinity of the enzyme to the substrate depend on the particle type, and this decreases for particles with a higher cross-linking degree owing to the slow diffusion of the enzyme molecules inside the polymer's network. By immobilization, α-amylase is protected from environmental factors, and the obtained particles can be quickly recovered from the hydrolysis medium, thus being able to be reused in repeated hydrolytic cycles (at least 11 cycles) without a substantial decrease in enzymatic activity. Moreover, α-amylase immobilized in gellan particles can be reactivated via treatment with a more acidic medium.
Collapse
Affiliation(s)
- Camelia Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| | - Brahim Bouhadiba
- Laboratory of Engineering of Industrial Safety and Sustainable Development LISIDD, Institute of Maintenance and Industrial Safety, University of Oran 2, Mohammed Benahmed, Oran 31000, Algeria
| | - Leonard Ionut Atanase
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iași, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Corneliu Sergiu Stan
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| |
Collapse
|
18
|
Prejanò M, Toscano M, Marino T. Periodicity of the Affinity of Lanmodulin for Trivalent Lanthanides and Actinides: Structural and Electronic Insights from Quantum Chemical Calculations. Inorg Chem 2023; 62:7461-7470. [PMID: 37128767 DOI: 10.1021/acs.inorgchem.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanmodulin (LanM) is the first identified macrochelator that has naturally evolved to sequester ions of rare earth elements (REEs) such as Y and all lanthanides, reversibly. This natural protein showed a 106 times better affinity for lanthanide cations than for Ca, which is a naturally abundant and biologically relevant element. Recent experiments have shown that its metal ion binding activity can be further extended to some actinides, like Np, Pu, and Am. For this reason, it was thought that LanM could be adopted for the separation of REE ions and actinides, thus increasing the interest in its potential use for industry-oriented applications. In this work, a systematic study of the affinity of LanM for lanthanides and actinides has been carried out, taking into account all trivalent ions belonging to the 4f (from La to Lu) and 5f (from Ac to Lr) series, starting from their chemistry in solution. On the basis of a recently published nuclear magnetic resonance structure, a model of the LanM-binding site was built and a detailed structural and electronic description of initial aquo- and LanM-metal ion complexes was provided. The obtained binding energies are in agreement with the available experimental data. A possible reason that could explain the origin of the affinity of LanM for these metal ions is also discussed.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| |
Collapse
|
19
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
20
|
Azemin WA, Alias N, Ali AM, Shamsir MS. Structural and functional characterisation of HepTH1-5 peptide as a potential hepcidin replacement. J Biomol Struct Dyn 2023; 41:681-704. [PMID: 34870559 DOI: 10.1080/07391102.2021.2011415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wan-Atirah Azemin
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia.,Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Nadiawati Alias
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Abdul Manaf Ali
- School of Agriculture Science and Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Mohd Shahir Shamsir
- Bioinformatics Research Group (BIRG), Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Pagoh Higher Education Hub, Muar, Johor, Malaysia
| |
Collapse
|
21
|
Chiyindiko E, Langner EH, Conradie J. DFT and electrochemical study on some iron(III) complexes with 2-hydroxybenzophenones. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
22
|
An alkalophilic and thermostable polygalacturonase (PGase) from Pseudomonas sp. 13159349: purification, biochemical characterization and its efficacy in olive oil extraction. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-022-01310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
23
|
Manganese Schiff Base Complexes, Crystallographic Studies, Anticancer Activities, and Molecular Docking. J CHEM-NY 2022. [DOI: 10.1155/2022/7062912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Choice of ligands is significant to successful synthesis of metal complexes (coordination compounds). This study reports the use of Schiff base as the right ligand to control the poor bioavailability and neurodegenerative toxicity challenges of manganese ion. In line with this study, document analysis was used as the methodological approach to evaluate the significance of Schiff base ligands in easing these manganese’s challenges and aligning the resultant coordination compounds (manganese Schiff base complexes) as therapeutic agents in anticancer studies. Report also involves crystallographic studies where single crystal X-ray crystallography was used as a chemical characterization technique. In addition, molecular docking studies, MOE2008, and AutoDock software were used to reveal the mode of interaction between the Schiff base and the manganese(II) and (III) ions, as well as scrutinizing the biological efficacy of the manganese(II) and manganese(III) Schiff bases coordination compounds as anticancer agents against some anticancer cell lines. Conclusion drawn was that manganese(II) and manganese(III) Schiff bases coordination compounds gave more active and potent activities than the corresponding Schiff bases. As a result, challenges of neurodegenerative toxicity and poor bioavailability of manganese ion were overcome, and the chelation therapy was fulfilled. Results from single crystal X-ray crystallography confirmed the successful synthesis of manganese(II) and manganese(III) Schiff bases coordination compounds and revealed the mechanism of reaction, while the molecular docking buttressed the biological activities of the Schiff base ligand and manganese Schiff base coordination compounds by portraying the structure activity relationship (SAR) between either Schiff base or the manganese Schiff base coordination compounds and the virtual cancer cell line (receptor protein), where hits were obtained for lead optimizations.
Collapse
|
24
|
Hendrick Q, Nnolim NE, Nontongana N, Nwodo UU. Sphingobacterium multivorum HNFx produced thermotolerant and chemostable keratinase on chicken feathers. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01126-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Anye V, Kruger RF, Schubert WD. Structural and biophysical characterization of the multidomain xylanase Xyl. PLoS One 2022; 17:e0269188. [PMID: 35657930 PMCID: PMC9165906 DOI: 10.1371/journal.pone.0269188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
The depletion of fossil fuels, associated pollution, and resulting health hazards are of concern worldwide. Woody biomass constitutes an alternative source of cleaner and renewable energy. The efficient use of woody biomass depends on xylan depolymerisation as the endo-β-1,4-xylopyranosyl homopolymer is the main component of hemicellulose, the second most abundant component of wood. Xylan depolymerisation is achieved by hemicellulolytic xylanases of glycoside hydrolase (GH) families 5, 8, 10, 11, 30 and 43 of the CAZY database. We analysed a multidomain xylanase (Xyl) from the hindgut metagenome of the snouted harvester termite Trinervitermes trinervoides that releases xylobiose and xylotriose from beech and birch xylan and wheat arabinoxylan. The four domains of Xyl include an N-terminal GH11 xylanase domain, two family 36-like carbohydrate-binding domains CBM36-1 and 2, and a C-terminal CE4 esterase domain. Previous analyses indicated that CBM36-1 deletion slightly increased GH11 catalysis at low pH whereas removal of both CBMs decreased xylanase activity at 60°C from 90 to 56%. Possible cooperativity between the domains suggested by these observations was explored. A crystal structure of the two-domain construct, GH11-CBM36-1, confirmed the structure of the GH11 domain whereas the CBM36-1 domain lacked electron density, possibly indicating a random orientation of the CBM36-1 domain around the GH11 domain. Isothermal titration calorimetry (ITC) experiments similarly did not indicate specific interactions between the individual domains of Xyl supporting a "beads-on-a-string" model for Xyl domains.
Collapse
Affiliation(s)
- Valentine Anye
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Robert F. Kruger
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Wolf-Dieter Schubert
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
26
|
Prejanò M, Romeo I, La Serra MA, Russo N, Marino T. Computational Study Reveals the Role of Water Molecules in the Inhibition Mechanism of LAT1 by 1,2,3-Dithiazoles. J Chem Inf Model 2021; 61:5883-5892. [PMID: 34788052 PMCID: PMC8715508 DOI: 10.1021/acs.jcim.1c01012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The L-type amino
acid transporter LAT1, involved in many biological
processes including the overexpression of some tumors, is considered
a potential pharmacological target. The 1,2,3-Dithiazole scaffold
was predicted to inhibit LAT1 by the formation of an intermolecular
disulfide bond with the thiolate group of cysteine(s). As a result
of the identification of these irreversible covalent inhibitors, we
decided to deeply investigate the recognition stage and the covalent
interaction, characterizing the chemical structures of the selected
ligands. With the aim to provide new insights into the access of the
ligands to the binding pocket and to reveal the residues involved
in the inhibition, we performed docking, molecular dynamics simulations,
and density functional theory-based investigation of three 1,2,3-dithiazoles
against LAT1. Our computational analysis further highlighted the crucial
role played by water molecules in the inhibition mechanism. The results
here presented are consistent with experimental observations and provide
insights that can be helpful for the rational design of new-to-come
LAT1’s inhibitors.
Collapse
Affiliation(s)
- Mario Prejanò
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Isabella Romeo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Maria Antonietta La Serra
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Nino Russo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| | - Tiziana Marino
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
27
|
Glueck DS. Intramolecular attack on coordinated nitriles: metallacycle intermediates in catalytic hydration and beyond. Dalton Trans 2021; 50:15953-15960. [PMID: 34643205 DOI: 10.1039/d1dt02795f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydration of nitriles is catalyzed by the enzyme nitrile hydratase, with iron or cobalt active sites, and by a variety of synthetic metal complexes. This Perspective focuses on parallels between the reaction mechanism of the enzyme and a class of particularly active catalysts bearing secondary phosphine oxide (SPO) ligands. In both cases, the key catalytic step was proposed to be intramolecular attack on a coordinated nitrile, with either an S-OH or S-O- (enzyme) or a P-OH (synthetic) nucleophile. Attack of water on the heteroatom (S or P) in the resulting metallacycle and proton transfer yields the amide and regenerates the catalyst. Evidence for this mechanism, its relevance to the formation of related metallacycles, and its potential for design of more active catalysts for nitrile hydration is summarized.
Collapse
Affiliation(s)
- David S Glueck
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire, 03755, USA.
| |
Collapse
|
28
|
Bhattacharyya R, Mukhopadhyay D, Nagarakshita VK, Bhattacharya S, Das A. Thermostable and organic solvent-tolerant acid pectinase from Aspergillus terreus FP6: purification, characterization and evaluation of its phytopigment extraction potential. 3 Biotech 2021; 11:487. [PMID: 34790511 DOI: 10.1007/s13205-021-03033-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/15/2021] [Indexed: 10/19/2022] Open
Abstract
The present study discusses the purification, characterization and application of pectinase from Aspergillus terreus FP6 in fruit pigment extraction. By the four-step purification involving precipitation, dialysis, ion-exchange chromatography, gel filtration chromatography, a 20.85-fold purification of the enzyme to homogeneity was achieved. The apparent molecular mass of the pectinase was 47 kDa, as found by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The optimum activity of the enzyme was recorded at pH 6.0 and 50 °C. The enzyme retained 80.3% and 79.1% residual activity, respectively at pH 6.0 and 50 °C for 90 min. The pectinase was best functional in the presence of toluene and retained its activity for 30 min. Cu2+ and Co2+ acted as enzyme activators, while Ca2+, β-mercaptoethanol, dimethyl sulfoxide and ethylenediaminetetraacetic acid proved to be the inhibitors. The K m and V max values of the pectinase with pectin as substrate were 0.002 mM and 27.39 U/mL, respectively thus indicating the high enzyme affinity towards the substrate. After 30-min treatment of the grape skin with the partially purified enzyme, microscopic observation revealed that a short time of the enzymatic treatment resulted in substantial loss of pigment and shrinkage of the grape skin cells thereby highlighting the high efficiency of the pectinase. The current study implies that the A. terreus FP6 pectinase may be applied as a bio-agent in the food and beverage industries and has the potential to replace harmful solvents by promoting a greener approach to extract plant pigments.
Collapse
|
29
|
Krivitskaya AV, Khrenova MG, Nemukhin AV. Two Sides of Quantum-Based Modeling of Enzyme-Catalyzed Reactions: Mechanistic and Electronic Structure Aspects of the Hydrolysis by Glutamate Carboxypeptidase. Molecules 2021; 26:6280. [PMID: 34684866 PMCID: PMC8538779 DOI: 10.3390/molecules26206280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
We report the results of a computational study of the hydrolysis reaction mechanism of N-acetyl-l-aspartyl-l-glutamate (NAAG) catalyzed by glutamate carboxypeptidase II. Analysis of both mechanistic and electronic structure aspects of this multistep reaction is in the focus of this work. In these simulations, model systems are constructed using the relevant crystal structure of the mutated inactive enzyme. After selection of reaction coordinates, the Gibbs energy profiles of elementary steps of the reaction are computed using molecular dynamics simulations with ab initio type QM/MM potentials (QM/MM MD). Energies and forces in the large QM subsystem are estimated in the DFT(PBE0-D3/6-31G**) approximation. The established mechanism includes four elementary steps with the activation energy barriers not exceeding 7 kcal/mol. The models explain the role of point mutations in the enzyme observed in the experimental kinetic studies; namely, the Tyr552Ile substitution disturbs the "oxyanion hole", and the Glu424Gln replacement increases the distance of the nucleophilic attack. Both issues diminish the substrate activation in the enzyme active site. To quantify the substrate activation, we apply the QTAIM-based approaches and the NBO analysis of dynamic features of the corresponding enzyme-substrate complexes. Analysis of the 2D Laplacian of electron density maps allows one to define structures with the electron density deconcentration on the substrate carbon atom, i.e., at the electrophilic site of reactants. The similar electronic structure element in the NBO approach is a lone vacancy on the carbonyl carbon atom in the reactive species. The electronic structure patterns revealed in the NBO and QTAIM-based analyses consistently clarify the reactivity issues in this system.
Collapse
Affiliation(s)
- Alexandra V. Krivitskaya
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.K.); (M.G.K.)
| | - Maria G. Khrenova
- Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 119071 Moscow, Russia; (A.V.K.); (M.G.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Alexander V. Nemukhin
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygina 4, 119334 Moscow, Russia
| |
Collapse
|