1
|
Karthikeyan SK, Nallasamy P, Cleveland JM, Arulmani A, Raveendran A, Karimi M, Ansari MO, Challa AK, Ponnusamy MP, Benjamin IJ, Varambally S, Rajasekaran NS. ProteotoxomiRs: Diagnostic and pathologic miRNA signatures for reductive stress induced proteotoxic heart disease. Redox Biol 2025; 81:103525. [PMID: 39986116 PMCID: PMC11893311 DOI: 10.1016/j.redox.2025.103525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/28/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
Proteotoxic stress progressively leads to irreversible cardiac abnormalities. Using a mouse model of reductive stress-induced proteotoxic cardiomyopathy, we identified novel microRNA signatures, termed "ProteotoxomiRs," which reflect stage-specific and transgene-specific responses to proteotoxic stress. Seven microRNAs were uniquely linked to the human mutant R120G-αB-Crystallin transgene, indicating their direct association with the pathogenic protein. Additionally, we uncovered two distinct microRNA profiles associated with the early (pre-onset) and late (cardiomyopathy/heart failure) stages of disease progression. Early-stage signatures primarily modulate signaling pathways essential for cardiac health, including mTOR and MAPK, while late-stage signatures reveal regulatory disruptions in calcium signaling and autophagy insufficiency, driving irreversible cardiac damage caused by reductive stress (RS) and proteotoxicity in transgenic mice. These findings reveal stage-specific miRNA biomarkers with potential diagnostic and prognostic value, offering new insights into the molecular underpinnings of proteotoxic cardiac disease. Moreover, our miRNA-mRNA interaction analysis uncovered potential targets unique to the transgene-specific, early, and late stages of the disease, including several promising druggable candidates, warranting further validation for translational applications.
Collapse
Affiliation(s)
- Santhosh Kumar Karthikeyan
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Palanisamy Nallasamy
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jarrell Matthew Cleveland
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ahila Arulmani
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashvanthi Raveendran
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariam Karimi
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohammad Owais Ansari
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anil Kumar Challa
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Moorthy P Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ivor J Benjamin
- Department of Medicine, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sooryanarayana Varambally
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Namakkal S Rajasekaran
- Department of Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Medicine, University of Utah, School of Medicine, Salt Lake City, UT, USA; Cardiac Aging & Redox Signaling Laboratory, Molecular and Cellular Pathology, Department of Pathology/Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
2
|
Cook M, Lal S, Hume RD. Transcriptional, proteomic and metabolic drivers of cardiac regeneration. Heart 2025:heartjnl-2024-325442. [PMID: 40037760 DOI: 10.1136/heartjnl-2024-325442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/11/2025] [Indexed: 03/06/2025] Open
Abstract
Following injury, many organs are capable of rapid regeneration of necrotic tissue to regain normal function. In contrast, the damaged heart typically replaces tissue with a collagen-rich scar, due to the limited regenerative capacity of its functional contractile cardiomyocytes (CMs). However, this regenerative capacity varies dramatically during development and between species. Furthermore, studies have shown that cardiac regeneration can be enhanced to return contractile function to the damaged heart following myocardial infarction (MI). In this review, we outline the proliferative capacity of CMs in utero, postnatally and in adulthood. We also describe the regenerative capacity of the heart following MI injury. Finally, we focus on the various therapeutic strategies that aim to augment cardiac regeneration in preclinical animal models. These include altering transcripts, microRNAs, extracellular matrix proteins and inducing metabolic rewiring. Together, these therapies aim to return function to the damaged heart and potentially improve the lives of the millions of heart failure patients currently suffering worldwide.
Collapse
Affiliation(s)
- Matthew Cook
- School of Biomedical Sciences, Faculty of Health & Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Sean Lal
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- School of Medical Sciences, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
| | - Robert D Hume
- School of Medical Sciences, The University of Sydney Faculty of Medicine and Health, Sydney, New South Wales, Australia
- Centre for Heart Failure and Diseases of the Aorta, The Baird Institute, Camperdown, New South Wales, Australia
| |
Collapse
|
3
|
Parichatikanond W, Duangrat R, Nuamnaichati N, Mangmool S. Role of A 1 adenosine receptor in cardiovascular diseases: Bridging molecular mechanisms with therapeutic opportunities. Exp Mol Pathol 2025; 141:104952. [PMID: 39879680 DOI: 10.1016/j.yexmp.2025.104952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Adenosine serves as a critical homeostatic regulator, exerting influence over physiological and pathological conditions in the cardiovascular system. During cellular stress, increased extracellular adenosine levels have been implicated in conferring cardioprotective effects through the activation of adenosine receptors with the A1 adenosine receptor subtype showing the highest expression in the heart. A1 adenosine receptor stimulation inhibits adenylyl cyclase activity via heterotrimeric Gi proteins, leading to the activation of distinct downstream effectors involved in cardiovascular homeostasis. While the comprehensive characterization of the pharmacological functions and intracellular signaling pathways associated with the A1 adenosine receptor subtype is still ongoing, this receptor is widely recognized as a crucial pharmacological target for the treatment of various states of cardiovascular diseases (CVDs). In this review, we focus on elucidating signal transduction of A1 adenosine receptor, particularly Gi protein-dependent and -independent pathways, and their relevance to cardiovascular protective effects as well as pathological consequences during cellular and tissue stresses in the cardiovascular system. Additionally, we provide comprehensive updates and detailed insights into a range of A1 adenosine receptor agonists and antagonists, detailing their development and evaluation through preclinical and clinical studies with a specific focus on their potential for the management of CVDs, especially heart diseases.
Collapse
Affiliation(s)
| | - Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Narawat Nuamnaichati
- Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand
| | - Supachoke Mangmool
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Yang HR, Zahan MN, Hwang DH, Prakash RLM, Ravi DA, Hong IH, Kim WH, Kim JH, Kim E, Kang C. The Therapeutic Potential of Kiwi Extract as a Source of Cysteine Protease Inhibitors on DNCB-Induced Atopic Dermatitis in Mice and Human Keratinocyte HaCaT Cells. Int J Mol Sci 2025; 26:1534. [PMID: 40004009 PMCID: PMC11855533 DOI: 10.3390/ijms26041534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
The discovery of effective cysteine protease inhibitors with crude protein kiwi extracts (CPKEs) has created novel challenges and prospects for pharmaceutical development. Despite extensive research on CPKEs, limited research has been conducted on treating atopic dermatitis (AD). Therefore, the objective of this work was to investigate the anti-inflammatory effects of CPKEs on TNF-α activation in a HaCaT cell model and in a DNCB (1-chloro-2, 4-dinitrochlorobenzene)-induced atopic dermatitis animal model. The molecular weight of the CPKE was determined using SDS-PAGE under non-reducing (17 kDa and 22 kDa) and reducing conditions (25 kDa, 22 kDa, and 15 kDa), whereas gelatin zymography was performed to examine the CPKE's inhibitory impact on cysteine protease (actinidin and papain) activity. Moreover, the CPKE remains stable at 60 °C, with pH levels varying from 4 to 11, as determined by the azocasein assay. CPKE treatment decreased the phosphorylation of mitogen-activated protein kinase (MAPK) and Akt, along with the activation of nuclear factor-kappa B (NF-κB)-p65 in tumor necrosis factor-α (TNF-α)-stimulated HaCaT cells. Five-week-old BALB/c mice were treated with DNCB to act as an AD-like animal model. The topical application of CPKE to DNCB-treated mice for three weeks substantially decreased clinical dermatitis severity and epidermal thickness and reduced eosinophil infiltration and mast cells into ear and skin tissues. These findings imply that CPKE derived from kiwifruit might be a promising therapy option for inflammatory skin diseases such as AD.
Collapse
Affiliation(s)
- Hye Ryeon Yang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
| | - Most Nusrat Zahan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
| | - Du Hyeon Hwang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
| | - Ramachandran Loganathan Mohan Prakash
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
| | - Deva Asirvatham Ravi
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
| | - Il-Hwa Hong
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Woo Hyun Kim
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jong-Hyun Kim
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Euikyung Kim
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Changkeun Kang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.R.Y.); (M.N.Z.); (D.H.H.); (R.L.M.P.); (D.A.R.); (I.-H.H.); (W.H.K.); (J.-H.K.); (E.K.)
- Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
5
|
Ashayeri Ahmadabad H, Mohammadi Panah S, Ghasemnejad-Berenji H, Ghojavand S, Ghasemnejad-Berenji M, Khezri MR. Metformin and the PI3K/AKT signaling pathway: implications for cancer, cardiovascular, and central nervous system diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1035-1055. [PMID: 39225830 DOI: 10.1007/s00210-024-03358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Recent findings have brought our understanding of diseases at the molecular level, highlighting upstream intracellular pathways as potential therapeutic targets. The PI3K/AKT pathway, a key regulator of cellular responses to environmental changes, is frequently altered in various diseases, making it a promising target for intervention. Metformin is the most known anti-diabetic agent that is known due to its effects on cancer, inflammatory-related diseases, oxidative stress, and other human diseases. It is clearly understood that metformin modulates the activity of the PI3K/AKT pathway leading to a wide variety of outcomes. This interaction has been well-studied in various diseases. Therefore, this review aims to examine PI3K/AKT-modulating properties of metformin in cancer, cardiovascular, and central nervous system diseases. Our findings indicate that metformin is effective in treating cancer and CNS diseases, and plays a role in both the prevention and treatment of cardiovascular diseases. These insights support the potential of metformin in comprehensive strategies for disease management.
Collapse
Affiliation(s)
| | | | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shabnam Ghojavand
- Faculty of Pharmacy, Islamic Azad University of Tehran, Tehran, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran.
| | - Mohammad Rafi Khezri
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
6
|
Liang X, Zhang C, Tang Y, Li Y, Zhu Z, Qiu T, Zhao J. A Meta-analysis of the Risk of Adverse Cardiovascular Events in Patients with Cancer Treated with Inhibitors of the PI3K/AKT/mTOR Signaling Pathway. Cardiovasc Toxicol 2025; 25:269-281. [PMID: 39521735 DOI: 10.1007/s12012-024-09933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
With the increasing of PI3K/AKT/mTOR (PAM) inhibitors in cancer therapy, there is a growing need to understand the incidence of cardiovascular events (CVAEs) associated with PAM inhibitors. A systematic search of all randomized clinical trials (RCTs) containing at least one PAM group in electronic databases such as PubMed, ClinicalTrials.gov registry, Embase, Medline, Cochrane Library, and major conferences was performed to extract available CVAEs. The cut-off date was January 31, 2024. Study heterogeneity was assessed using the I2 statistic. The risk of CVAEs associated with PAM inhibitors was calculated using Peto OR. The primary outcome was the incidence (95% CI) of PAM inhibitors cardiovascular adverse events in the total population and subgroups. The secondary outcome was the pooled risk of different CVAEs associated with PAM inhibitor exposure in the RCTs. 33 unique RCTs (n = 12,351) were included. The incidence of PAM inhibitors CVAEs of any grade in the intervention group was 48.2%, yielding a combined OR of 2.52 (95% CI 1.82-3.49). The incidence of severe adverse cardiovascular events (≥ grade 3) in the intervention group was estimated at 7.1%, yielding a combined Peto OR of 1.41 (95% CI 1.04-1.93). PAM inhibitors were associated with an increased risk of 5 CVAEs including peripheral edema, lymphoedema, hypercholesterolemia, hypertriglyceridaemia and hyperlipidemia, with higher risks for hypercholesterolemia (Peto OR: 3.27,95% CI 2.61-4.11, P < 0.01; I2 = 55.5%, P = 0.06) and hyperlipidemia (Peto OR: 3.53. 95% CI 1.70-7.32, P < 0.01; I2 = 19.3%, P = 0.29). This study identified an overall incidence of PAM inhibitors CVAEs and the increased risks associated with PAM inhibitor for five specific CVAEs, not confined to hypercholesterolemia and peripheral edema.
Collapse
Affiliation(s)
- Xiao Liang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| | - Chengrong Zhang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Yuyao Tang
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - YongXin Li
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Zijun Zhu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Tianlei Qiu
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center of Affiliated Hospital of Qinghai, University & Affiliated Cancer Hospital of Qinghai University, Xining, 810000, China.
| |
Collapse
|
7
|
Yang J. Emerging Insights into Sall4's Role in Cardiac Regenerative Medicine. Cells 2025; 14:154. [PMID: 39936946 PMCID: PMC11817359 DOI: 10.3390/cells14030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Sall4 as a pivotal transcription factor has been extensively studied across diverse biological processes, including stem cell biology, embryonic development, hematopoiesis, tissue stem/progenitor maintenance, and the progression of various cancers. Recent research highlights Sall4's emerging roles in modulating cardiac progenitors and cellular reprogramming, linking its functions to early heart development and regenerative medicine. These findings provide new insights into the critical functions of Sall4 in cardiobiology. This review explores Sall4's complex molecular mechanisms and their implications for advancing cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
8
|
Beetler DJ, Giresi P, Di Florio DN, Fliess JJ, McCabe EJ, Watkins MM, Xu V, Auda ME, Bruno KA, Whelan ER, Kocsis SPC, Edenfield BH, Walker S, Macomb LP, Keegan KC, Jain A, Morales-Lara AC, Chekuri I, Hill AR, Farres H, Wolfram J, Behfar A, Stalboerger PG, Terzic A, Cooper L, Fairweather D. Therapeutic effects of platelet-derived extracellular vesicles on viral myocarditis correlate with biomolecular content. Front Immunol 2025; 15:1468969. [PMID: 39835120 PMCID: PMC11743460 DOI: 10.3389/fimmu.2024.1468969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Extracellular vesicles (EVs) can potently inhibit inflammation yet there is a lack of understanding about the impact of donor characteristics on the efficacy of EVs. The goal of this study was to determine whether the sex and age of donor platelet-derived EVs (PEV) affected their ability to inhibit viral myocarditis. Methods PEV, isolated from men and women of all ages, was compared to PEV obtained from women under 50 years of age, which we termed premenopausal PEV (pmPEV). Because of the protective effect of estrogen against myocardial inflammation, we hypothesized that pmPEV would be more effective than PEV at inhibiting myocarditis. We injected PEV, pmPEV, or vehicle control in a mouse model of viral myocarditis and examined histology, gene expression, protein profiles, and performed proteome and microRNA (miR) sequencing of EVs. Results We found that both PEV and pmPEV significantly inhibited myocarditis; however, PEV was more effective, which was confirmed by a greater reduction of inflammatory cells and proinflammatory and profibrotic markers determined using gene expression and immunohistochemistry. Proteome and miR sequencing of EVs revealed that PEV miRs specifically targeted antiviral, Toll-like receptor (TLR)4, and inflammasome pathways known to contribute to myocarditis while pmPEV contained general immunoregulatory miRs. Discussion These differences in EV content corresponded to the differing anti-inflammatory effects of the two types of EVs on viral myocarditis.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Presley Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Jessica J. Fliess
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Elizabeth J. McCabe
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Molly M. Watkins
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Vivian Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Matthew E. Auda
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, University of Florida, Gainesville, FL, United States
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Stephen P. C. Kocsis
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Sierra A. Walker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Kevin C. Keegan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Angita Jain
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | | | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Houssam Farres
- Department of Vascular Surgery, Mayo Clinic, Jacksonville, FL, United States
| | - Joy Wolfram
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Paul G. Stalboerger
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
| | - Andre Terzic
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, United States
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
9
|
Nagy RN, Makkos A, Baranyai T, Giricz Z, Szabó M, Kravcsenko-Kiss B, Bereczki Z, Ágg B, Puskás LG, Faragó N, Schulz R, Gyöngyösi M, Lukovic D, Varga ZV, Görbe A, Ferdinandy P. Cardioprotective microRNAs (protectomiRs) in a pig model of acute myocardial infarction and cardioprotection by ischaemic conditioning: MiR-450a. Br J Pharmacol 2025; 182:396-416. [PMID: 39294819 DOI: 10.1111/bph.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Cardioprotective miRNAs (protectomiRs) are promising therapeutic tools. Here, we aimed to identify protectomiRs in a translational porcine model of acute myocardial infarction (AMI) and to validate their cardiocytoprotective effect. EXPERIMENTAL APPROACH ProtectomiR candidates were selected after systematic analysis of miRNA expression changes in cardiac tissue samples from a closed-chest AMI model in pigs subjected to sham operation, AMI and ischaemic preconditioning, postconditioning or remote preconditioning, respectively. Cross-species orthologue protectomiR candidates were validated in simulated ischaemia-reperfusion injury (sI/R) model of isolated rat ocardiomyocytes and in human AC16 cells as well. For miR-450a, we performed target prediction and analysed the potential mechanisms of action by GO enrichment and KEGG pathway analysis. KEY RESULTS Out of the 220 detected miRNAs, four were up-regulated and 10 were down-regulated due to all three conditionings versus AMI. MiR-450a and miR-451 mimics at 25 nM were protective in rat cardiomyocytes, and miR-450a showed protection in human cardiomyocytes as well. MiR-450a has 3987 predicted mRNA targets in pigs, 4279 in rats and 8328 in humans. Of these, 607 genes are expressed in all three species. A total of 421 common enriched GO terms were identified in all three species, whereas KEGG pathway analysis revealed 13 common pathways. CONCLUSION AND IMPLICATIONS This is the first demonstration that miR-450a is associated with cardioprotection by ischaemic conditioning in a clinically relevant porcine model and shows cardiocytoprotective effect in human cardiomyocytes, making it a promising drug candidate. The mechanism of action of miR-450a involves multiple cardioprotective pathways. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Grants
- OTKA ANN 107803 Hungarian Scientific Research Fund
- OTKA K-105555 Hungarian Scientific Research Fund
- 2018-1.3.1-VKE-2018-00024 National Research, Development and Innovation Office
- NVKP-16-1-2016-0017 National Heart Program National Research, Development and Innovation Office
- OTKA-FK 134751 National Research, Development and Innovation Office
- TKP/ITM/NFKIH National Research, Development and Innovation Office
- OTKAK21-139105 National Research, Development and Innovation Office
- RRF-2.3.1-21-2022-00003 European Union
- EU COST Action CardioRNA.eu, Cardioprotection.eu
- 88öu1 Austrian-Hungarian Action Scholarship
- 739593 European Union's Horizon 2020
- 2019-1.1.1-PIACI-KFI-2019-00367 National Research, Development and Innovation Fund
- 2020-1.1.5-GYORSÍTÓSÁV-2021-00011 National Research, Development and Innovation Fund
- ÚNKP-20-5 National Research, Development and Innovation Fund
- ÚNKP-23-4-II-SE-34 National Research, Development and Innovation Fund
- János Bolyai Research Scholarship of Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Regina N Nagy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Márta Szabó
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bernadett Kravcsenko-Kiss
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Bereczki
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Nóra Faragó
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Zoltán V Varga
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Anikó Görbe
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
10
|
Mairuae N, Noisa P, Palachai N. Phytosome-Encapsulated 6-Gingerol- and 6-Shogaol-Enriched Extracts from Zingiber officinale Roscoe Protect Against Oxidative Stress-Induced Neurotoxicity. Molecules 2024; 29:6046. [PMID: 39770133 PMCID: PMC11677370 DOI: 10.3390/molecules29246046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
The rising prevalence of neurodegenerative disorders underscores the urgent need for effective interventions to prevent neuronal cell death. This study evaluates the neuroprotective potential of phytosome-encapsulated 6-gingerol- and 6-shogaol-enriched extracts from Zingiber officinale Roscoe (6GS), bioactive compounds renowned for their antioxidant and anti-inflammatory properties. The novel phytosome encapsulation technology employed enhances the bioavailability and stability of these compounds, offering superior therapeutic potential compared to conventional formulations. Additionally, the study investigates the role of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)-signaling pathway, a key mediator of the neuroprotective effects of 6GS. Neurotoxicity was induced in SH-SY5Y cells (a human neuroblastoma cell line) using 200 μM of hydrogen peroxide (H2O2), following pretreatment with 6GS at concentrations of 15.625 and 31.25 μg/mL. Cell viability was assessed via the MTT assay alongside evaluations of reactive oxygen species (ROS), antioxidant enzyme activities (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GSH-Px]), oxidative stress markers (malondialdehyde [MDA]), and molecular mechanisms involving the PI3K/Akt pathway, apoptotic factors (B-cell lymphoma-2 [Bcl-2] and caspase-3), and inflammatory markers (tumor necrosis factor-alpha [TNF-α]). The results demonstrated that 6GS significantly improved cell viability, reduced ROS, MDA, TNF-α, and caspase-3 levels, and enhanced antioxidant enzyme activities. Furthermore, 6GS treatment upregulated PI3K, Akt, and Bcl-2 expression while suppressing caspase-3 activation. Activation of the PI3K/Akt pathway by 6GS led to phosphorylated Akt-mediated upregulation of Bcl-2, promoting neuronal survival and attenuating oxidative stress and inflammation. Moreover, Bcl-2 inhibited ROS generation, further mitigating neurotoxicity. These findings suggest that phytosome encapsulation enhances the bioavailability of 6GS, which through activation of the PI3K/Akt pathway, exhibits significant neuroprotective properties. Incorporating these compounds into functional foods or dietary supplements could offer a promising strategy for addressing oxidative stress and neuroinflammation associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Nootchanat Mairuae
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand;
| | - Parinya Noisa
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand;
| | - Nut Palachai
- Biomedical Research Unit, Faculty of Medicine, Mahasarakham University, Mahasarakham 44000, Thailand;
| |
Collapse
|
11
|
Hu G, Chen J, Chen M, Yang K, Wang Y, Ma Z, Bao H, Ding X. Silencing DOCK2 Attenuates Cardiac Fibrosis Following Myocardial Infarction in Mice Via Targeting PI3K/Akt and Wnt/β-Catenin Pathways. J Cardiovasc Transl Res 2024; 17:1442-1454. [PMID: 38990461 DOI: 10.1007/s12265-024-10533-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
Cardiac fibrosis following myocardial infarction (MI) seriously affects the prognosis and survival rate of patients. This study aimed to determine the effect and regulation mechanism of the dedicator of cytokinesis 2 (DOCK2) during this process. Experiments were carried out in mice in vivo, and in Ang II treated cardiac fibroblasts (CFs) in vitro. DOCK2 was increased in mouse myocardial tissues after MI and Ang II-treated CFs. In MI mice, DOCK2 silencing improved cardiac function, and ameliorated cardiac fibrosis. DOCK2 knockdown suppressed the activation of CFs and decreased the expression of α-SMA, collagen I, and collagen III. Suppression of DOCK2 mitigated Ang II induced migration of CFs. DOCK2 inhibition reduced the activity of the PI3K/Akt and Wnt/β-catenin pathways, while this change could be reversed by the pathway activators, SC79 and SKL2001. In summary, DOCK2 suppression improves cardiac dysfunction and attenuates cardiac fibrosis after MI via attenuating PI3K/Akt and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Guangquan Hu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Jin Chen
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, P. R. China
| | - Min Chen
- Department of Cardiology, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, P. R. China
| | - Kai Yang
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, P. R. China
| | - Yuchen Wang
- Department of Neurology, Anhui Children's Hospital, Hefei, Anhui, P. R. China
| | - Ziyang Ma
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, P. R. China
| | - Huangxin Bao
- Department of Medical Technology, Anhui Medical College, Hefei, Anhui, P. R. China
| | - Xiaojie Ding
- Department of Endocrinology, Anhui No.2 Provincial People's Hospital, Hefei, Anhui, P. R. China.
| |
Collapse
|
12
|
Rabaan AA, Alfaresi M, Alrasheed HA, Al Kaabi NA, Abduljabbar WA, Al Fares MA, Al-Subaie MF, Alissa M. Network-Based Drug Repurposing and Genomic Analysis to Unveil Potential Therapeutics for Monkeypox Virus. Chem Biodivers 2024; 21:e202400895. [PMID: 39082609 DOI: 10.1002/cbdv.202400895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/22/2024] [Indexed: 10/10/2024]
Abstract
The emergence of the human monkeypox virus (MPXV) and the lack of effective medications have necessitated the exploration of various strategies to combat its infection. This study employs a network-based approach to drug discovery, utilizing the BLASTn and phylogenetic analysis to compare the MPXV genome with those of 18 related orthopoxviruses, revealing over 75 % genomic similarity. Through a literature review, 160 human-host proteins linked to MPXV and its relatives were identified, leading to the construction of a human-host protein interactome. Analysis of this interactome highlighted 39 central hub proteins, which were then examined for potential drug targets. The process successfully revealed 15 targets already approved for use with medications. Additionally, the functional enrichment analysis provided insights into potential pathways and disorders connected with these targets. Four medications, namely Baricitinib, Infliximab, Adalimumab, and Etanercept, have been identified as potential candidates for repurposing to combat MPXV. In addition, the pharmacophore-based screening identified a molecule that is comparable to Baricitinib and has the potential to be effective against MPXV. The findings of the study suggest that ZINC22060520 is a promising medication for treating MPXV infection and proposes these medications as potential options for additional experimental and clinical assessment in the battle against MPXV.
Collapse
Affiliation(s)
- Ali A Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran, 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur, 22610, Pakistan
| | - Mubarak Alfaresi
- Department of Microbiology, National Reference laboratory, Cleveland Clinic Abu Dhabi, Abu Dhabi, 92323, United Arab Emirates
- Department of Pathology, College of Medicine, Mohammed Bin Rashid, University of Medicine and Health Sciences, Dubai, 505055, United Arab Emirates
| | - Hayam A Alrasheed
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Nawal A Al Kaabi
- College of Medicine and Health Science, Khalifa University, Abu Dhabi, 127788, United Arab Emirates
- Sheikh Khalifa Medical City, Abu Dhabi Health Services Company (SEHA), Abu Dhabi, 51900, United Arab Emirates
| | - Wesam A Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah, 21134, Saudi Arabia
| | - Mona A Al Fares
- Department of Internal Medicine, King Abdulaziz University Hospital, Jeddah, 21589, Saudi Arabia
| | - Maha F Al-Subaie
- College of Medicine, Alfaisal University, Riyadh, 11533, Saudi Arabia
- Research Center, Dr. Sulaiman Alhabib Medical Group, Riyadh, 13328, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| |
Collapse
|
13
|
Li X, Zhang H, Li W, Tuo H, He B, Jiang H. The role and mechanism of NRG1/ErbB4 in inducing the differentiation of induced pluripotent stem cells into cardiomyocytes. BMC Cardiovasc Disord 2024; 24:559. [PMID: 39407109 PMCID: PMC11481795 DOI: 10.1186/s12872-024-04224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND We aimed to investigate the effect and potential mechanism of enhancing Neuregulin1 (NRG1)/v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 4 (ErbB4) expression on the differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. METHODS We utilized CRISPR-CAS9 technology to knock in ErbB4 and obtained a single-cell clone IPSN-AAVS1-CMV-ErbB4 (iPSCs-ErbB4). Subsequently, we induced the differentiation of iPSCs into cardiomyocytes and quantified the number of beating embryoid bodies. Furthermore, quantitative real-time PCR assessed the expression of cardiomyocyte markers, including ANP (atrial natriuretic peptide), Nkx2.5 (NK2 transcription factor related locus 5), and GATA4 (GATA binding protein 4). On the 14th day of differentiation, we observed the α-MHC (α-myosin heavy chain)-positive area using immunofluorescent staining and conducted western blotting to detect the expression of cTnT (cardiac troponin) protein and PI3K/Akt signaling pathway-related proteins. Additionally, we intervened the iPSCs-ErbB4 + NRG1 group with the PI3K/Akt inhibitor LY294002 and observed alterations in the expression of cardiomyocyte differentiation-related genes. RESULTS The number of beating embryoid bodies increased after promoting the expression of NRG1/ErbB4 compared to the iPSCs control group. Cardiomyocyte markers ANP, Nkx2.5, and GATA4 significantly increased on day 14 of differentiation, and the positive area of α-MHC was three times that of the iPSCs control group. Moreover, there was a marked increase in cTnT protein expression. However, there was no significant difference in cardiomyocyte differentiation between the iPSCs-ErbB4 group and the iPSCs control group. Akt phosphorylation was significantly increased in the iPSCs-ErbB4 + NRG1 group. LY294002 significantly reversed the enhancing effect of NRG1/ErbB4 overexpression on Akt phosphorylation as well as the increase in α-MHC and cTnT expression. CONCLUSIONS In conclusion, promoting the expression of NRG1/ErbB4 induced the differentiation of iPSC into cardiomyocytes, possibly through modulation of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Heng Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Wenjing Li
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Hu Tuo
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China
| | - Bing He
- Department of Pediatrics, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, No. 99 ZhangZhiDong Street, Wuchang District, Wuhan, 430060, R.P. China.
| |
Collapse
|
14
|
Zhao M, Feng L, Li W. Network Pharmacology and Experimental Verification: SanQi-DanShen Treats Coronary Heart Disease by Inhibiting the PI3K/AKT Signaling Pathway. Drug Des Devel Ther 2024; 18:4529-4550. [PMID: 39399124 PMCID: PMC11471080 DOI: 10.2147/dddt.s480248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024] Open
Abstract
Objective To employee network pharmacology to predict the components and pathways of SanQi-DanShen (SQDS) in treating coronary heart disease, followed by in vitro experiments to validate the molecular mechanism of SQDS in treating coronary heart disease. Methods We sourced the active ingredients and targets of Panax notoginseng and Danshen from the Traditional Chinese Medicine Systems Pharmacology database. Coronary heart disease related genes were retrieved from the OMIM, Genecards, and Therapeutic Target databases. Using Cytoscape 3.7.2 software, we constructed a network diagram illustrating the components and targets of SQDS. The associated targets were then imported into the STRING database to build a protein-protein interaction network. The Metascape database and WeChat software were utilized for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Lastly, we performed molecular docking between the key components and related targets using AutoDock Vina. To validate the potential mechanism of SQDS in treating coronary heart disease, we established an acute coronary heart disease rat model via tail vein injection of pituitrin. Results Network pharmacology analysis revealed that 65 active ingredients and 167 targets of SQDS are implicated in the treatment of coronary heart disease. The key targets identified include AKT1, TNF, TP53, IL6, and VEGFA. Notably, the PI3K/AKT signaling pathway emerged as the primary pathway. Furthermore, animal experiments showed that, compared to the model group, SQDS significantly reduced levels of TNF-α, IL-6, Bax, and cardiac troponin I, while increasing Bcl-2 content. It also notably suppressed the expression of p-PI3K and p-AKT, thereby offering protection to myocardial tissue. Conclusion Through the integrated approach of network pharmacology and molecular docking, we have established that SQDS exerts a multi-component, multi-target, and multi-pathway synergistic therapeutic effect on coronary heart disease. Its mechanism may involve the inhibition of the PI3K/AKT signaling pathway and the reduction of inflammatory factor expression.
Collapse
Affiliation(s)
- Min Zhao
- School of Medicine, Lijiang University of Culture and Tourism, Lijiang, Yunnan, 674100, People’s Republic of China
| | - Liuxiang Feng
- People’s Hospital of Yulong Naxi Autonomous County of Lijiang City, Lijiang, Yunnan, 674112, People’s Republic of China
| | - Wenhua Li
- School of Medicine, Xizang Minzu University, Xianyang Shaanxi, 712082, People’s Republic of China
| |
Collapse
|
15
|
Ge T, Ning B, Wu Y, Chen X, Qi H, Wang H, Zhao M. MicroRNA-specific therapeutic targets and biomarkers of apoptosis following myocardial ischemia-reperfusion injury. Mol Cell Biochem 2024; 479:2499-2521. [PMID: 37878166 DOI: 10.1007/s11010-023-04876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023]
Abstract
MicroRNAs are single-stranded non-coding RNAs that participate in post-transcriptional regulation of gene expression, it is involved in the regulation of apoptosis after myocardial ischemia-reperfusion injury. For example, the alteration of mitochondrial structure is facilitated by MicroRNA-1 through the regulation of apoptosis-related proteins, such as Bax and Bcl-2, thereby mitigating cardiomyocyte apoptosis. MicroRNA-21 not only modulates the expression of NF-κB to suppress inflammatory signals but also activates the PI3K/AKT pathway to mitigate ischemia-reperfusion injury. Overexpression of MicroRNA-133 attenuates reactive oxygen species (ROS) production and suppressed the oxidative stress response, thereby mitigating cellular apoptosis. MicroRNA-139 modulates the extrinsic death signal of Fas, while MicroRNA-145 regulates endoplasmic reticulum calcium overload, both of which exert regulatory effects on cardiomyocyte apoptosis. Therefore, the article categorizes the molecular mechanisms based on the three classical pathways and multiple signaling pathways of apoptosis. It summarizes the targets and pathways of MicroRNA therapy for ischemia-reperfusion injury and analyzes future research directions.
Collapse
Affiliation(s)
- Teng Ge
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Bo Ning
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Yongqing Wu
- School of Graduate, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Xiaolin Chen
- School of Pharmacy, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Hongfei Qi
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Key Laboratory of Integrated Traditional and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Institute of Integrative Medicine, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Shiji Avenue, Xianyang, 712046, China
| | - Mingjun Zhao
- Department of Cardiology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Deputy 2, Weiyang West Road, Weicheng District, Xianyang, 712000, China.
| |
Collapse
|
16
|
Estepa M, Niehues MH, Vakhrusheva O, Haritonow N, Ladilov Y, Barcena ML, Regitz-Zagrosek V. Sex Differences in Expression of Pro-Inflammatory Markers and miRNAs in a Mouse Model of CVB3 Myocarditis. Int J Mol Sci 2024; 25:9666. [PMID: 39273613 PMCID: PMC11395254 DOI: 10.3390/ijms25179666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Myocarditis is an inflammatory disease that may lead to dilated cardiomyopathy. Viral infection of the myocardium triggers immune responses, which involve, among others, macrophage infiltration, oxidative stress, expression of pro-inflammatory cytokines, and microRNAs (miRNAs). The cardioprotective role of estrogen in myocarditis is well documented; however, sex differences in the miRNA expression in chronic myocarditis are still poorly understood, and studying them further was the aim of the present study. Male and female ABY/SnJ mice were infected with CVB3. Twenty-eight days later, cardiac tissue from both infected and control mice was used for real-time PCR and Western blot analysis. NFκB, IL-6, iNOS, TNF-α, IL-1β, MCP-1, c-fos, and osteopontin (OPN) were used to examine the inflammatory state in the heart. Furthermore, the expression of several inflammation- and remodeling-related miRNAs was analyzed. NFκB, IL-6, TNF-α, IL-1β, iNOS, and MCP-1 were significantly upregulated in male mice with CVB3-induced chronic myocarditis, whereas OPN mRNA expression was increased only in females. Further analysis revealed downregulation of some anti-inflammatory miRNA in male hearts (let7a), with upregulation in female hearts (let7b). In addition, dysregulation of remodeling-related miRNAs (miR27b and mir199a) in a sex-dependent manner was observed. Taken together, the results of the present study suggest a sex-specific expression of pro-inflammatory markers as well as inflammation- and remodeling-related miRNAs, with a higher pro-inflammatory response in male CVB3 myocarditis mice.
Collapse
Affiliation(s)
- Misael Estepa
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum der Charité, 13353 Berlin, Germany
| | - Maximilian H Niehues
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité University Hospital, 10115 Berlin, Germany
| | - Olesya Vakhrusheva
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Natalie Haritonow
- Department of Geriatrics and Medical Gerontology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Yury Ladilov
- Heart Center Brandenburg, Department of Cardiovascular Surgery, Brandenburg Medical School, 16321 Bernau bei Berlin, Germany
| | - Maria Luisa Barcena
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité University Hospital, 10115 Berlin, Germany
- Department of Cardiology, University Hospital Zürich, University of Zürich, 8091 Zürich, Switzerland
| |
Collapse
|
17
|
Yu W, Chen Z, Li Y, Jiang S, Zhang L, Shao XM, Xiao D. In utero chronic intermittent nicotine aerosol exposure increases ischemic heart injury in adult offspring via programming of Angiotensin II receptor-derived TGFβ/ROS/Akt signaling pathway. Reprod Toxicol 2024; 128:108650. [PMID: 38945500 DOI: 10.1016/j.reprotox.2024.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/13/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND In utero cigarette smoking/nicotine exposure during pregnancy significantly affects fetal development and increases the risk of cardiovascular disease late in life. However, the underlying molecular mechanisms remain largely unknown. We tested the hypothesis that fetal nicotine aerosol exposure reprograms ischemia-sensitive gene expressions, resulting in increased heart susceptibility to ischemic injury and cardiac dysfunction in adulthood. METHODS Pregnant rats were exposed to chronic intermittent nicotine aerosol (CINA) or saline aerosol control from gestational day 4 to day 21. Experiments were performed on 6-month-old adult offspring. RESULTS CINA exposure increased ischemia-induced cardiac injury and cardiac dysfunction compared to the control group, which was associated with over- expression of angiotensin II receptor (ATR) protein in the left ventricle (LV) of adult offspring. Meanwhile, CINA exposure up-regulated cardiac TGF-β/SMADs family proteins in the LV. In addition, CINA exposure enhanced cardiac reactive oxygen species (ROS) production and increased the DNA methylation level. The levels of phosphorylated-Akt were upregulated but LC3B-II/I protein abundances were downregulated in the hearts isolated from the CINA-treated group. CONCLUSION Fetal nicotine aerosol exposure leads to cardiac dysfunction in response to ischemic stimulation in adulthood. Two molecular pathways are implicated. First, fetal CINA exposure elevates cardiac ATR levels, affecting the TGFβ-SMADs pathway. Second, heightened Angiotensin II/ATR signaling triggers ROS production, leading to DNA hypermethylation, p-Akt activation, and autophagy deficiency. These molecular shifts in cardiomyocytes result in the development of a heart ischemia-sensitive phenotype and subsequent dysfunction in adult offspring.
Collapse
Affiliation(s)
- Wansu Yu
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zewen Chen
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, China
| | - Yong Li
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Siyi Jiang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Department of Hematology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Xuesi M Shao
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, Los Angeles, CA, USA
| | - DaLiao Xiao
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
18
|
Zare A, Khosropanah S, Daryabor G, Doroudchi M. mTOR gene variant rs2295080 might be a risk factor for atherosclerosis in Iranian women with type 2 diabetes mellitus. BMC Endocr Disord 2024; 24:162. [PMID: 39198757 PMCID: PMC11361055 DOI: 10.1186/s12902-024-01703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Type 2 diabetes mellitus, one of the most prevalent metabolic disorders worldwide, is closely linked with an enhanced risk of atherosclerosis. However, the molecular mechanism of this linkage is not still clear. Genetic variations in the mTOR gene may increase the susceptibility of individuals to these diseases. METHODS One hundred nine diabetic patients and 375 healthy subjects participated in this study. mTOR Single Nucleotide Polymorphism (SNP) rs2295080 was determined using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). RESULTS Comparison of genotypic, allelic, and genotypic combination frequencies between cases and controls revealed no significant result. Nevertheless, the frequency of rs2295080 GT + TT genotype was significantly more in diabetic women with atherosclerosis compared with those without atherosclerosis (p = 0.047). Besides, the rs2295080 G allele was more frequently detected in diabetic women without atherosclerosis compared to those with atherosclerosis (p = 0.046). CONCLUSION The rs2295080 GT + TT genotype predisposes Iranian diabetic women to atherosclerosis, while the rs2295080 G allele protects them against atherosclerosis. However, additional experiments using larger sample sizes are needed to verify this result.
Collapse
Affiliation(s)
- Afsaneh Zare
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahdad Khosropanah
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamreza Daryabor
- Autoimmune Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, PO Box: 71345-1583, Shiraz, Iran.
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Hu YJ, Liu MD, Mu YT, Li CC, Zhao MH, Guo DL, Huang LJ, Gu YC, Xue QC, Deng Y. Two Undescribed Coumarins from Notopterygium Incisum with Anti-Inflammatory Activity. Chem Biodivers 2024; 21:e202401093. [PMID: 38867371 DOI: 10.1002/cbdv.202401093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Two previously undescribed coumarins (1-2) were isolated from the root of Notopterygium incisum. The structures of new findings were elucidated by analyses of spectral evidences in HRESIMS, NMR, as well as ICD. The absolute configurations were further confirmed by chemical calculations. 1-2 exhibits obviously anti-inflammatory activity by inhibiting the expression of inflammatory mediators (COX-2, iNOS), as well as reducing the release of NO and the accumulation of ROS in cells. Western blotting analysis revealed that 2 could inhibit the PI3K/AKT pathway by reducing the expression of p-PI3K and p-AKT.
Collapse
Affiliation(s)
- Yun-Jie Hu
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Dan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Ting Mu
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cong-Cong Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min-Hong Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Da-Le Guo
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jun Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Qing-Cai Xue
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
20
|
Wu Z, Li W, Jiang K, Lin Z, Qian C, Wu M, Xia Y, Li N, Zhang H, Xiao H, Bai J, Geng D. Regulation of bone homeostasis: signaling pathways and therapeutic targets. MedComm (Beijing) 2024; 5:e657. [PMID: 39049966 PMCID: PMC11266958 DOI: 10.1002/mco2.657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
As a highly dynamic tissue, bone is continuously rebuilt throughout life. Both bone formation by osteoblasts and bone resorption by osteoclasts constitute bone reconstruction homeostasis. The equilibrium of bone homeostasis is governed by many complicated signaling pathways that weave together to form an intricate network. These pathways coordinate the meticulous processes of bone formation and resorption, ensuring the structural integrity and dynamic vitality of the skeletal system. Dysregulation of the bone homeostatic regulatory signaling network contributes to the development and progression of many skeletal diseases. Significantly, imbalanced bone homeostasis further disrupts the signaling network and triggers a cascade reaction that exacerbates disease progression and engenders a deleterious cycle. Here, we summarize the influence of signaling pathways on bone homeostasis, elucidating the interplay and crosstalk among them. Additionally, we review the mechanisms underpinning bone homeostatic imbalances across diverse disease landscapes, highlighting current and prospective therapeutic targets and clinical drugs. We hope that this review will contribute to a holistic understanding of the signaling pathways and molecular mechanisms sustaining bone homeostasis, which are promising to contribute to further research on bone homeostasis and shed light on the development of targeted drugs.
Collapse
Affiliation(s)
- Zebin Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Wenming Li
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Kunlong Jiang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Zhixiang Lin
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Chen Qian
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Mingzhou Wu
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Yu Xia
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Ning Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Hongtao Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Haixiang Xiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
- Department of OrthopedicsJingjiang People's HospitalSeventh Clinical Medical School of Yangzhou UniversityJingjiangJiangsu ProvinceChina
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMDivision of Life Sciences and MedicineThe First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Dechun Geng
- Department of OrthopedicsThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| |
Collapse
|
21
|
Jiang Q, Xiao J, Hsieh YC, Kumar NL, Han L, Zou Y, Li H. The Role of the PI3K/Akt/mTOR Axis in Head and Neck Squamous Cell Carcinoma. Biomedicines 2024; 12:1610. [PMID: 39062182 PMCID: PMC11274428 DOI: 10.3390/biomedicines12071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies globally, representing a significant public health problem with a poor prognosis. The development of efficient therapeutic strategies for HNSCC prevention and treatment is urgently needed. The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved transduction network in eukaryotic cells that promotes cell survival, growth, and cycle progression. Dysfunction in components of this pathway, such as hyperactivity of PI3K, loss of PTEN function, and gain-of-function mutations in AKT, are well-known drivers of treatment resistance and disease progression in cancer. In this review, we discuss the major mutations and dysregulations in the PAM signaling pathway in HNSCC. We highlight the results of clinical trials involving inhibitors targeting the PAM signaling pathway as a strategy for treating HNSCC. Additionally, we examine the primary mechanisms of resistance to drugs targeting the PAM pathway and potential therapeutic strategies.
Collapse
Affiliation(s)
- Qian Jiang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Jingyi Xiao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yao-Ching Hsieh
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Neha Love Kumar
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Lei Han
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yuntao Zou
- Division of Hospital Medicine, University of California, San Francisco, CA 94158, USA
| | - Huang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| |
Collapse
|
22
|
Farazi MM, Rostamzadeh F, Jafarinejad-Farsangi S, Moazam Jazi M, Jafari E, Gharbi S. CircPAN3/miR-221/PTEN axis and apoptosis in myocardial Infarction: Quercetin's regulatory effects. Gene 2024; 909:148316. [PMID: 38401834 DOI: 10.1016/j.gene.2024.148316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The circular RNA/microRNA/mRNA axis is a new layer of non-coding RNA(ncRNA)-based regulatory gene expression networks upstream of numerous cell signaling pathways. Circular RNAPAN3 (circPAN3) is involved in autophagy, fibrosis and apoptosis which are responsible for the reduction incardiac functional capacityfollowingmyocardial infarction(MI). However, the molecular mechanism of circPAN3 association with apoptosis is unknown. In addition, the relationship between quercetin as a cardioprotective factor in MI and circular RNA-dependent regulatory pathways has not yet been elucidated. MI was induced in Wistar rats using the left anterior descending artery (LAD) ligation method. One day after surgery, quercetin (30 mg/kg) was injected intraperitoneal (IP) every other day for two weeks. The expression of circPAN3 was increased in the MI group (P < 0.05). The increase in circPAN3 was accompanied by a decrease in miR-221 (P < 0.0001), an increase in PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001). Quercetin effectively reduced the expression of circPAN3 (P < 0.05), PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001), and increased the expression of miR-221 (P < 0.0001) and the ratio of p-AKT to p-PI3K (P < 0.001). The circPAN3/miR-221/PTEN pathway is an ncRNA-dependent apoptotic pathway in MI cardiac tissue. Quercetin effectively modulated this pathway, resulting in a reduction of cardiac tissue death and improvement in cardiac function after MI. This suggests that the circPAN3/miR-221 axis plays a role in apoptosis in MI, and quercetin can act as a protective candidate by modulating this pathway.
Collapse
Affiliation(s)
- Mohammad Mojtaba Farazi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Moazam Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sedigheh Gharbi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
23
|
Yaqubi S, Karimian M. Stem cell therapy as a promising approach for ischemic stroke treatment. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 6:100183. [PMID: 38831867 PMCID: PMC11144755 DOI: 10.1016/j.crphar.2024.100183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
Ischemia as the most common type of stroke is the main cause of death and disability in the world. However, there are few therapeutic approaches to treat ischemic stroke. The common approach to the treatment of ischemia includes surgery-cum-chemical drugs. Surgery and chemical drugs are used to remove blood clots to prevent the deterioration of the nervous system. Given the surgical hazards and the challenges associated with chemical drugs, these cannot be considered safe approaches to the treatment of brain ischemia. Besides surgery-cum-chemical drugs, different types of stem cells including mesenchymal stem cells and neurological stem cells have been considered to treat ischemic stroke. Therapeutic approaches utilizing stem cells to treat strokes are promising because of their neuroprotective and regenerative benefits. However, the mechanisms by which the transplanted stem cells perform their precisely actions are unknown. The purpose of this study is to critically review stem cell-based therapeutic approaches for ischemia along with related challenges.
Collapse
Affiliation(s)
- Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
24
|
Wang J, Hussain SA, Maddu N, Li H. Protective Effects of Trans-Chalcone on Myocardial Ischemia and Reperfusion Challenge through Targeting Phosphoinositide 3-kinase/Akt-inflammosome Interaction. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:129-138. [PMID: 38902960 DOI: 10.4103/ejpi.ejpi-d-24-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/03/2024] [Indexed: 06/22/2024]
Abstract
Ischemia-reperfusion (IR) injury remains a pivotal contributor to myocardial damage following acute coronary events and revascularization procedures. Phosphoinositide 3-kinase (PI3K), a key mediator of cell survival signaling, plays a central role in regulating inflammatory responses and cell death mechanisms. Trans-chalcone (Tch), a natural compound known for its anti-inflammatory activities, has shown promise in various disease models. The aim of the current study was to investigate the potential protective effects of Tch against myocardial injury induced by ischemia and reperfusion challenges by targeting the PI3K-inflammasome interaction. Experimental models utilizing male rats subjected to an in vivo model of IR injury and myocardial infarction were employed. Administration of Tch (100 μg/kg, intraperitoneally) significantly reduced myocardial injury, as indicated by limited infarct size and decreased levels of the myocardial enzyme troponin. Mechanistically, Tch upregulated PI3K expression, thereby inhibiting the activity of the NOD-like receptor protein 3 inflammasome followed by the activation of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. Moreover, it mitigated oxidative stress and suppressed vascular-intercellular adhesion molecules, contributing to its cardioprotective effects. The PI3K/Akt pathway inhibitor LY294002 considerably attenuated the beneficial effects of Tch. These findings highlight the therapeutic potential of Tch in ameliorating myocardial injury associated with IR insults through its modulation of the PI3K/Akt-inflammasome axis. The multifaceted mechanisms underlying its protective effects signify Tch as a promising candidate for further exploration in developing targeted therapies aimed at mitigating ischemic heart injury and improving clinical outcomes in cardiovascular diseases characterized by IR injury.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Xianyang Central Hospital, Xianyang, China
| | - Shaik Althaf Hussain
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Narendra Maddu
- Department of Biochemistry, Sri Krishnadevaraya University, Anantapur, Andhra Pradesh, India
| | - Haijun Li
- Department of Gerontology, Xianyang Central Hospital, Xianyang, China
| |
Collapse
|
25
|
Ovchinnikov A, Potekhina A, Arefieva T, Filatova A, Ageev F, Belyavskiy E. Use of Statins in Heart Failure with Preserved Ejection Fraction: Current Evidence and Perspectives. Int J Mol Sci 2024; 25:4958. [PMID: 38732177 PMCID: PMC11084261 DOI: 10.3390/ijms25094958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic inflammation and coronary microvascular endothelial dysfunction are essential pathophysiological factors in heart failure (HF) with preserved ejection fraction (HFpEF) that support the use of statins. The pleiotropic properties of statins, such as anti-inflammatory, antihypertrophic, antifibrotic, and antioxidant effects, are generally accepted and may be beneficial in HF, especially in HFpEF. Numerous observational clinical trials have consistently shown a beneficial prognostic effect of statins in patients with HFpEF, while the results of two larger trials in patients with HFrEF have been controversial. Such differences may be related to a more pronounced impact of the pleiotropic properties of statins on the pathophysiology of HFpEF and pro-inflammatory comorbidities (arterial hypertension, diabetes mellitus, obesity, chronic kidney disease) that are more common in HFpEF. This review discusses the potential mechanisms of statin action that may be beneficial for patients with HFpEF, as well as clinical trials that have evaluated the statin effects on left ventricular diastolic function and clinical outcomes in patients with HFpEF.
Collapse
Affiliation(s)
- Artem Ovchinnikov
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Department of Clinical Functional Diagnostics, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Delegatskaya St., 20, p. 1, 127473 Moscow, Russia
| | - Alexandra Potekhina
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
| | - Tatiana Arefieva
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
- Faculty of Basic Medicine, Lomonosov Moscow State University, Leninskie Gory, 1, 119991 Moscow, Russia
| | - Anastasiia Filatova
- Laboratory of Myocardial Fibrosis and Heart Failure with Preserved Ejection Fraction, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia; (A.P.); (A.F.)
- Laboratory of Cell Immunology, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Fail Ageev
- Out-Patient Department, National Medical Research Center of Cardiology Named after Academician E.I. Chazov, Academician Chazov St., 15a, 121552 Moscow, Russia;
| | - Evgeny Belyavskiy
- Medizinisches Versorgungszentrum des Deutsches Herzzentrum der Charite, Augustenburger Platz 1, 13353 Berlin, Germany;
| |
Collapse
|
26
|
Song M, Choi DB, Im JS, Song YN, Kim JH, Lee H, An J, Kim A, Choi H, Kim JC, Han C, Jeon YK, Kim SJ, Woo DH. Modeling acute myocardial infarction and cardiac fibrosis using human induced pluripotent stem cell-derived multi-cellular heart organoids. Cell Death Dis 2024; 15:308. [PMID: 38693114 PMCID: PMC11063052 DOI: 10.1038/s41419-024-06703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Heart disease involves irreversible myocardial injury that leads to high morbidity and mortality rates. Numerous cell-based cardiac in vitro models have been proposed as complementary approaches to non-clinical animal research. However, most of these approaches struggle to accurately replicate adult human heart conditions, such as myocardial infarction and ventricular remodeling pathology. The intricate interplay between various cell types within the adult heart, including cardiomyocytes, fibroblasts, and endothelial cells, contributes to the complexity of most heart diseases. Consequently, the mechanisms behind heart disease induction cannot be attributed to a single-cell type. Thus, the use of multi-cellular models becomes essential for creating clinically relevant in vitro cell models. This study focuses on generating self-organizing heart organoids (HOs) using human-induced pluripotent stem cells (hiPSCs). These organoids consist of cardiomyocytes, fibroblasts, and endothelial cells, mimicking the cellular composition of the human heart. The multi-cellular composition of HOs was confirmed through various techniques, including immunohistochemistry, flow cytometry, q-PCR, and single-cell RNA sequencing. Subsequently, HOs were subjected to hypoxia-induced ischemia and ischemia-reperfusion (IR) injuries within controlled culture conditions. The resulting phenotypes resembled those of acute myocardial infarction (AMI), characterized by cardiac cell death, biomarker secretion, functional deficits, alterations in calcium ion handling, and changes in beating properties. Additionally, the HOs subjected to IR efficiently exhibited cardiac fibrosis, displaying collagen deposition, disrupted calcium ion handling, and electrophysiological anomalies that emulate heart disease. These findings hold significant implications for the advancement of in vivo-like 3D heart and disease modeling. These disease models present a promising alternative to animal experimentation for studying cardiac diseases, and they also serve as a platform for drug screening to identify potential therapeutic targets.
Collapse
Affiliation(s)
- Myeongjin Song
- Department of Commercializing Organoid Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Da Bin Choi
- Department of Commercializing Organoid Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Jeong Suk Im
- Department of Commercializing Organoid Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Ye Na Song
- Department of Commercializing Organoid Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Ji Hyun Kim
- Department of Commercializing Organoid Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Hanbyeol Lee
- Centre for Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC, 3168, Australia
| | - Jieun An
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Ami Kim
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Hwan Choi
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Joon-Chul Kim
- Department of Commercializing Organoid Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Choongseong Han
- Department of Commercializing Organoid Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul, 07802, Korea
| | - Young Keul Jeon
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, Seoul, 03080, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, College of Medicine, Seoul, 03080, Korea
| | - Dong-Hun Woo
- Department of Commercializing Organoid Technology, NEXEL Co., Ltd., Seoul, 07802, Korea.
- Department of Commercializing iPSC Technology, NEXEL Co., Ltd., Seoul, 07802, Korea.
| |
Collapse
|
27
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Jung SE, Kim SW, Choi JW. Exploring Cardiac Exosomal RNAs of Acute Myocardial Infarction. Biomedicines 2024; 12:430. [PMID: 38398032 PMCID: PMC10886708 DOI: 10.3390/biomedicines12020430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI), often a frequent symptom of coronary artery disease (CAD), is a leading cause of death and disability worldwide. Acute myocardial infarction (AMI), a major form of cardiovascular disease, necessitates a deep understanding of its complex pathophysiology to develop innovative therapeutic strategies. Exosomal RNAs (exoRNA), particularly microRNAs (miRNAs) within cardiac tissues, play a critical role in intercellular communication and pathophysiological processes of AMI. METHODS This study aimed to delineate the exoRNA landscape, focusing especially on miRNAs in animal models using high-throughput sequencing. The approach included sequencing analysis to identify significant miRNAs in AMI, followed by validation of the functions of selected miRNAs through in vitro studies involving primary cardiomyocytes and fibroblasts. RESULTS Numerous differentially expressed miRNAs in AMI were identified using five mice per group. The functions of 20 selected miRNAs were validated through in vitro studies with primary cardiomyocytes and fibroblasts. CONCLUSIONS This research enhances understanding of post-AMI molecular changes in cardiac tissues and investigates the potential of exoRNAs as biomarkers or therapeutic targets. These findings offer new insights into the molecular mechanisms of AMIs, paving the way for RNA-based diagnostics and therapeutics and therapies and contributing to the advancement of cardiovascular medicine.
Collapse
Affiliation(s)
- Seung Eun Jung
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| | - Sang Woo Kim
- International St. Mary's Hospital, Incheon 22711, Republic of Korea
- Department of Convergence Science, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| | - Jung-Won Choi
- Medical Science Research Institute, College of Medicine, Catholic Kwandong University, Gangneung-si 25601, Republic of Korea
| |
Collapse
|
29
|
Lai W, Wang B, Huang R, Zhang C, Fu P, Ma L. Ferroptosis in organ fibrosis: From mechanisms to therapeutic medicines. J Transl Int Med 2024; 12:22-34. [PMID: 38525436 PMCID: PMC10956731 DOI: 10.2478/jtim-2023-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Fibrosis occurs in many organs, and its sustained progress can lead to organ destruction and malfunction. Although numerous studies on organ fibrosis have been carried out, its underlying mechanism is largely unknown, and no ideal treatment is currently available. Ferroptosis is an iron-dependent process of programmed cell death that is characterized by lipid peroxidation. In the past decade, a growing body of evidence demonstrated the association between ferroptosis and fibrotic diseases, while targeting ferroptosis may serve as a potential therapeutic strategy. This review highlights recent advances in the crosstalk between ferroptosis and organ fibrosis, and discusses ferroptosis-targeted therapeutic approaches against fibrosis that are currently being explored.
Collapse
Affiliation(s)
- Weijing Lai
- Department of Nephrology, Clinical Medical College and The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan Province, China
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Bo Wang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Rongshuang Huang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Chuyue Zhang
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Ping Fu
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Liang Ma
- Department of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
30
|
Lin X, Liu W, Chu Y, Zhang H, Zeng L, Lin Y, Kang K, Peng F, Lin J, Huang C, Chai D. Activation of AHR by ITE improves cardiac remodelling and function in rats after myocardial infarction. ESC Heart Fail 2023; 10:3622-3636. [PMID: 37798907 PMCID: PMC10682871 DOI: 10.1002/ehf2.14532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023] Open
Abstract
AIMS Left ventricular remodelling subsequent to myocardial infarction (MI) constitutes a pivotal underlying cause of heart failure. Intervention with the nontoxic endogenous aryl hydrocarbon receptor (AHR) agonist 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) in the acute phase of MI has been shown to ameliorate cardiac function, but its role in the chronic phase remains obscured. This study explores the beneficial role of ITE in delaying the progression of heart failure in the chronic phase of MI. METHODS AND RESULTS MI rats established by ligating the left anterior descending coronary artery were treated with the indicated concentration of the AHR agonist ITE or vehicle alone. Echocardiography was performed to determine cardiac structure and function; myocardial morphology and fibrosis were observed by haematoxylin and eosin and Masson's trichrome staining; serum biochemical indices, BNP, and inflammatory cytokine levels were detected by enzyme-linked immunosorbent assay; F4/80+ iNOS+ M1 macrophages and F4/80+ CD206+ M2 macrophages were detected by immunofluorescence; the terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling assay was used to detect the apoptosis of cardiomyocytes; ultrastructural changes in myocardial tissue were observed by transmission electron microscopy; and Cyp1a1, Akt, P-Akt, p70S6K, P-p70S6K, Bcl-2, Bax, caspase-3, and cleaved caspase-3 protein levels were determined via Western blotting. We found that therapy with the AHR agonist ITE rescued cardiac remodelling and dysfunction in rats with MI and attenuated myocardial fibrosis, inflammation, and mitochondrial damage. Further studies confirmed that ITE dose-dependently improved myocardial cell apoptosis after MI, as demonstrated by reduced levels of the apoptosis-related proteins cleaved caspase-3 and Bax but increased expression levels of Bcl-2. These effects were attributed to ITE-induced activation of AHR receptors, leading to the down-regulation of Akt and p70S6K phosphorylation. CONCLUSIONS The AHR agonist ITE alleviates cardiomyocyte apoptosis through the Akt/p70S6K signalling pathway, thereby rescuing left ventricular adverse remodelling and cardiac dysfunction after MI.
Collapse
Affiliation(s)
- Xiaoyan Lin
- Department of Echocardiology, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Department of Echocardiology, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Weiqiang Liu
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Yong Chu
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Hailin Zhang
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Lishan Zeng
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Yifei Lin
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Kai Kang
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Feng Peng
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Jinxiu Lin
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Chunkai Huang
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| | - Dajun Chai
- Cardiovascular Department, Fujian Institute of Hypertension, The First Affiliated HospitalFujian Medical UniversityFuzhouChina
- Cardiovascular Department, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouChina
| |
Collapse
|
31
|
Ouwerkerk W, Belo Pereira JP, Maasland T, Emmens JE, Figarska SM, Tromp J, Koekemoer AL, Nelson CP, Nath M, Romaine SPR, Cleland JGF, Zannad F, van Veldhuisen DJ, Lang CC, Ponikowski P, Filippatos G, Anker S, Metra M, Dickstein K, Ng LL, de Boer RA, van Riel N, Nieuwdorp M, Groen AK, Stroes E, Zwinderman AH, Samani NJ, Lam CSP, Levin E, Voors AA. Multiomics Analysis Provides Novel Pathways Related to Progression of Heart Failure. J Am Coll Cardiol 2023; 82:1921-1931. [PMID: 37940229 DOI: 10.1016/j.jacc.2023.08.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Despite major advances in pharmacological treatment for patients with heart failure, residual mortality remains high. This suggests that important pathways are not yet targeted by current heart failure therapies. OBJECTIVES We sought integration of genetic, transcriptomic, and proteomic data in a large cohort of patients with heart failure to detect major pathways related to progression of heart failure leading to death. METHODS We used machine learning methodology based on stacked generalization framework and gradient boosting algorithms, using 54 clinical phenotypes, 403 circulating plasma proteins, 36,046 transcript expression levels in whole blood, and 6 million genomic markers to model all-cause mortality in 2,516 patients with heart failure from the BIOSTAT-CHF (Systems BIOlogy Study to TAilored Treatment in Chronic Heart Failure) study. Results were validated in an independent cohort of 1,738 patients. RESULTS The mean age of the patients was 70 years (Q1-Q3: 61-78 years), 27% were female, median N-terminal pro-B-type natriuretic peptide was 4,275 ng/L (Q1-Q3: 2,360-8,486 ng/L), and 7% had heart failure with preserved ejection fraction. During a median follow-up of 21 months, 657 (26%) of patients died. The 4 major pathways with a significant association to all-cause mortality were: 1) the PI3K/Akt pathway; 2) the MAPK pathway; 3) the Ras signaling pathway; and 4) epidermal growth factor receptor tyrosine kinase inhibitor resistance. Results were validated in an independent cohort of 1,738 patients. CONCLUSIONS A systems biology approach integrating genomic, transcriptomic, and proteomic data identified 4 major pathways related to mortality. These pathways are related to decreased activation of the cardioprotective ERBB2 receptor, which can be modified by neuregulin.
Collapse
Affiliation(s)
- Wouter Ouwerkerk
- Department of Dermatology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; National Heart Centre Singapore, Singapore.
| | - Joao P Belo Pereira
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; HORAIZON BV, Delft, the Netherlands
| | - Troy Maasland
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; HORAIZON BV, Delft, the Netherlands; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Johanna E Emmens
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sylwia M Figarska
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jasper Tromp
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; National Heart Centre Singapore and Duke-National University of Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Andrea L Koekemoer
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Mintu Nath
- Institute of Applied Health Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Simon P R Romaine
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - John G F Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, United Kingdom; National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Faiez Zannad
- Clinical Investigation Center 1433, Université de Lorraine, Nancy, France; Clinical investigation Center 1433, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre-lès-Nancy, Nancy, France; French Clinical Research Infrastructure Network-Investigation Network Initiative-Cardiovascular and Renal Clinical Trialists, French Institute of Health and Medical Research, Vandoeuvre-lès-Nancy, France
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Chim C Lang
- Cardiology, Ninewells Hospital and Medical School, Dundee, United Kingdom
| | - Piotr Ponikowski
- Institute for Heart Diseases, Medical University, Wroclaw, Poland
| | - Gerasimos Filippatos
- Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stefan Anker
- Department of Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Berlin, Germany; German Centre for Cardiovascular Research, partner site Berlin, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, Institute of Cardiology, University of Brescia, Brescia, Italy
| | - Kenneth Dickstein
- Stavanger University Hospital, University of Bergen, Stavanger, Norway
| | - Leong L Ng
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Natal van Riel
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands; Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Albert K Groen
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Erik Stroes
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | | | - Evgeni Levin
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, the Netherlands; HORAIZON BV, Delft, the Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Singh G, Varshney V, Goyal A, Ali N, Iqbal M, Kaur I, Vargas-De-La-Cruz C, Behl T. Chrysin restores the cardioprotective effect of ischemic preconditioning in diabetes-challenged rat heart. Heliyon 2023; 9:e22052. [PMID: 38027733 PMCID: PMC10663930 DOI: 10.1016/j.heliyon.2023.e22052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background Ischemic preconditioning (IPC) is the utmost capable design to achieve protection over ischemia-reperfusion injury (I/R), but this phenomenon gets attenuated during various pathological conditions like diabetes. Chrysin exhibits cardioprotection in various experiments however, its therapeutic potential on IPC-mediated cardioprotection via PI3K-Akt-eNOS pathway in streptozotocin (STZ) triggered diabetes-challenged rat heart is yet to be assessed. For that reason, the experiment has been planned to investigate chrysin's effect on the cardioprotective action of IPC involving the PI3K-Akt-eNOS cascade in rat hearts challenged to diabetes. Methods The project was accomplished through means of absorbance studies for biochemical parameters, infarct size measurement (TTC stain) and coronary flow. Results The findings of the present study revealed that STZ drastically augmented the serum glucose level and the chrysin significantly reversed the IPC-stimulated increased coronary flow, nitrite release, and reduced LDH (lactate dehydrogenase), CK-MB (creatine kinase) activities as well as infarct size in diabetes-induced rat heart. Furthermore, chrysin also reversed the IPC-induced reduction in oxidative stress in an isolated Langendorff's perfused diabetic rat heart. Moreover, four episodes of preconditioning by either PI3K or eNOS inhibitor in chrysin-pretreated diabetic rat hearts significantly abolished the protective effect of chrysin. Conclusion Consequently, these observations suggested that chrysin increases the therapeutic efficiency of IPC in mitigating I/R injury via PI3K-Akt-eNOS signalling in diabetes-challenged rat hearts. Hence, chrysin could be a potential alternative option to IPC in diabetic rat hearts.
Collapse
Affiliation(s)
- Geetanjali Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Vibhav Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Ahsas Goyal
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ishnoor Kaur
- College of Medical, Veterinary and Life Sciences, University of Glassgow, Scotland, United Kingdom
| | - Celia Vargas-De-La-Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima, Peru
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Punjab, India
| |
Collapse
|
33
|
Jong CB, Lu TS, Chen TY, Chen CK, Liao MT, Lin IC, Chen JW. Subclinical myocardial injury increases the risk of heart failure in patients with and without type 2 diabetes post-acute coronary syndrome. Int J Cardiol 2023; 390:131195. [PMID: 37473816 DOI: 10.1016/j.ijcard.2023.131195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/29/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Little is known about the effect of subclinical myocardial injury (sMi) on heart failure (HF) risk after acute coronary syndrome (ACS). We examined the frequency patterns of sMi after ACS among patients with and without diabetes mellitus (DM), and the influence of sMis on HF risk at 1 year. METHODS Fifty patients with ACS who underwent revascularization were prospectively enrolled. After discharge, serial study visits were conducted and high-sensitivity cardiac troponin T (hs-TnT) levels were checked at 3-month intervals for 1 year. sMi was defined as hs-TnT ≥14 ng/L without clinical symptoms. The primary endpoint was a composite of post-ACS chronic HF or significant left ventricular (LV) dysfunction without HF symptoms. A multivariable logistic regression model was used for risk evaluation. RESULTS The mean patient age was 58 years, and 90% were men. Overall, 44% of patients had DM, and the median LV ejection fraction at discharge was 56%. Patients with DM had a higher incidence of sMi than those without DM (63.6% vs. 32.1%, P < 0.05). sMi occurred at least twice in most patients, and the prevalence declined over time in DM, but not in non-DM. Fourteen patients (28%) met the primary endpoint at 1 year, and the risk was higher in patients with DM (odds ratio: 4.99) and patients with sMi (odds ratio: 6.26). However, sMi was not a mediator of the association between DM and HF risk. CONCLUSIONS Patients with DM had a higher incidence of sMi. Nonetheless, sMi increased the risk of HF after ACS, irrespective of diabetes status.
Collapse
Affiliation(s)
- Chien-Boon Jong
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsui-Shan Lu
- Department of Mathematics, National Taiwan Normal University, Taipei, Taiwan
| | - Tsung-Yan Chen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Kai Chen
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Min-Tsun Liao
- Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan; College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Chuan Lin
- Department of Nursing, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Jeng-Wei Chen
- College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
34
|
Zhao X, Gao Z, Wen W, Zheng S. Impacts of delta 9-tetrahydrocannabinol against myocardial ischemia/reperfusion injury in diabetic rats: Role of PTEN/PI3K/Akt signaling pathway. CHINESE J PHYSIOL 2023; 66:446-455. [PMID: 38149557 DOI: 10.4103/cjop.cjop-d-23-00103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Despite the current optimal therapy, patients with myocardial ischemia/reperfusion (IR) injury still experience a high mortality rate, especially when diabetes mellitus is present as a comorbidity. Investigating potential treatments aimed at improving the outcomes of myocardial IR injury in diabetic patients is necessary. Our objective was to ascertain the cardioprotective effect of delta 9-tetrahydrocannabinol (THC) against myocardial IR injury in diabetic rats and examine the role of phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in mediating this effect. Diabetes was induced in male Wistar rats (8-10 weeks old, 200-250 g; n = 60) by a single injection of streptozotocin. The duration of the diabetic period was 10 weeks. During the last 4 weeks of diabetic period, rats were treated with THC (1.5 mg/kg/day; intraperitoneally), either alone or in combination with LY294002, and then underwent IR intervention. After 24 h of reperfusion, infarct size, cardiac function, lactate dehydrogenase (LDH) and cardiac-specific isoform of troponin-I (cTn-I) levels, myocardial apoptosis, oxidative stress markers, and expression of PTEN, PI3K, and Akt proteins were evaluated. THC pretreatment resulted in significant improvements in infarct size and cardiac function and decreases in LDH and cTn-I levels (P < 0.05). It also reduced myocardial apoptosis and oxidative stress, accompanied by the downregulation of PTEN expression and activation of the PI3K/Akt signaling pathway (P < 0.05). LY294002 pretreatment abolished the cardioprotective action of THC. This study revealed the cardioprotective effects of THC against IR-induced myocardial injury in diabetic rats and also suggested that the mechanism may be associated with enhanced activity of the PI3K/Akt signaling pathway through the reduction of PTEN phosphorylation.
Collapse
Affiliation(s)
- Xiaohua Zhao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Zhao Gao
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi'an, China
| | - Wenbin Wen
- Department of Nephrology, Heji Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Shikang Zheng
- Department of Cardiology, Ankang Central Hospital, Ankang, China
| |
Collapse
|
35
|
Fang Z, Yushanjiang F, Wang G, Zheng X, Jiang X. Germacrone mitigates cardiac remodeling by regulating PI3K/AKT-mediated oxidative stress, inflammation, and apoptosis. Int Immunopharmacol 2023; 124:110876. [PMID: 37683399 DOI: 10.1016/j.intimp.2023.110876] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/14/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Cardiac remodeling is a common consequence of cardiovascular diseases and is closely associated with oxidative stress, inflammation, and apoptosis. Germacrone, a bioactive compound present in Rhizoma curcuma, has been shown to possess anti-oxidative, anti-inflammatory, and anti-apoptotic properties. The aim of this study was to investigate the protective effect of germacrone against cardiac remodeling. Here, C57BL/6 mice were subcutaneous injection with isoproterenol (ISO) once daily for two weeks and were concurrent intragastric injection of germacrone. In vitro, neonatal rat cardiomyocytes (NRCMs) were used to verify the protective effect of germacrone on ISO-induced cardiac injury. Our findings indicated that ISO induce oxidative stress, inflammation, and apoptosis in vivo and in vitro, while germacrone treatment significantly attenuates these effects, thereby attenuating myocardium remodeling and cardiac dysfunction. Mechanistically, germacrone reduced cardiac remodeling-induced activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, and the cardioprotective effects of germacrone were abrogated by a PI3K agonist. In conclusion, our results suggest that germacrone attenuates oxidative stress, inflammation, and apoptosis in cardiac remodeling by inhibiting the PI3K/AKT pathway, and may therefore represent a promising therapeutic approach for the treatment of cardiac remodeling.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Feierkaiti Yushanjiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxin Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| | - Xuejun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
36
|
Atzemian N, Dovrolis N, Ragia G, Portokallidou K, Kolios G, Manolopoulos VG. Beyond the Rhythm: In Silico Identification of Key Genes and Therapeutic Targets in Atrial Fibrillation. Biomedicines 2023; 11:2632. [PMID: 37893006 PMCID: PMC10604372 DOI: 10.3390/biomedicines11102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent cardiac arrhythmia worldwide and is characterized by a high risk of thromboembolism, ischemic stroke, and fatality. The precise molecular mechanisms of AF pathogenesis remain unclear. The purpose of this study was to use bioinformatics tools to identify novel key genes in AF, provide deeper insights into the molecular pathogenesis of AF, and uncover potential therapeutic targets. Four publicly available raw RNA-Seq datasets obtained through the ENA Browser, as well as proteomic analysis results, both derived from atrial tissues, were used in this analysis. Differential gene expression analysis was performed and cross-validated with proteomics results to identify common genes/proteins between them. A functional enrichment pathway analysis was performed. Cross-validation analysis revealed five differentially expressed genes, namely FGL2, IGFBP5, NNMT, PLA2G2A, and TNC, in patients with AF compared with those with sinus rhythm (SR). These genes play crucial roles in various cardiovascular functions and may be part of the molecular signature of AF. Furthermore, functional enrichment analysis revealed several pathways related to the extracellular matrix, inflammation, and structural remodeling. This study highlighted five key genes that constitute promising candidates for further experimental exploration as biomarkers as well as therapeutic targets for AF.
Collapse
Affiliation(s)
- Natalia Atzemian
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Georgia Ragia
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Konstantina Portokallidou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - George Kolios
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
| | - Vangelis G. Manolopoulos
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (N.A.); (G.R.); (K.P.); (G.K.)
- Individualised Medicine & Pharmacological Research Solutions Center (IMPReS), 68100 Alexandroupolis, Greece
- Clinical Pharmacology Unit, Academic General Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| |
Collapse
|
37
|
Tejera-Muñoz A, Guerra-Menéndez L, Amor S, González-Hedström D, García-Villalón ÁL, Granado M. Postnatal Overfeeding during Lactation Induces Endothelial Dysfunction and Cardiac Insulin Resistance in Adult Rats. Int J Mol Sci 2023; 24:14443. [PMID: 37833890 PMCID: PMC10572650 DOI: 10.3390/ijms241914443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
Early overnutrition is associated with cardiometabolic alterations in adulthood, likely attributed to reduced insulin sensitivity due to its crucial role in the cardiovascular system. This study aimed to assess the long-term effects of early overnutrition on the development of cardiovascular insulin resistance. An experimental childhood obesity model was established using male Sprague Dawley rats. Rats were organized into litters of 12 pups/mother (L12-Controls) or 3 pups/mother (L3-Overfed) at birth. After weaning, animals from L12 and L3 were housed three per cage and provided ad libitum access to food for 6 months. L3 rats exhibited elevated body weight, along with increased visceral, subcutaneous, and perivascular fat accumulation. However, heart weight at sacrifice was reduced in L3 rats. Furthermore, L3 rats displayed elevated serum levels of glucose, leptin, adiponectin, total lipids, and triglycerides compared to control rats. In the myocardium, overfed rats showed decreased IL-10 mRNA levels and alterations in contractility and heart rate in response to insulin. Similarly, aortic tissue exhibited modified gene expression of TNFα, iNOS, and IL-6. Additionally, L3 aortas exhibited endothelial dysfunction in response to acetylcholine, although insulin-induced relaxation remained unchanged compared to controls. At the molecular level, L3 rats displayed reduced Akt phosphorylation in response to insulin, both in myocardial and aortic tissues, whereas MAPK phosphorylation was elevated solely in the myocardium. Overfeeding during lactation in rats induces endothelial dysfunction and cardiac insulin resistance in adulthood, potentially contributing to the cardiovascular alterations observed in this experimental model.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Research Support Unit, Hospital General La Mancha Centro, 13600 Alcázar de San Juan, Spain;
- Instituto de Investigación de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Lucía Guerra-Menéndez
- Departamento de Ciencias Médicas Básicas, Instituto de Medicina Molecular Aplicada (IMMA) Nemesio Díez, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Spain;
| | - Sara Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.A.); (D.G.-H.); (Á.L.G.-V.)
| | - Daniel González-Hedström
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.A.); (D.G.-H.); (Á.L.G.-V.)
| | - Ángel Luis García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.A.); (D.G.-H.); (Á.L.G.-V.)
| | - Miriam Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.A.); (D.G.-H.); (Á.L.G.-V.)
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
38
|
Wan F, Ma X, Wang J, An Z, Xue J, Wang Q. Evaluation of left ventricular dysfunction by three-dimensional speckle-tracking echocardiography and bioinformatics analysis of circulating exosomal miRNA in obese patients. BMC Cardiovasc Disord 2023; 23:450. [PMID: 37697228 PMCID: PMC10496196 DOI: 10.1186/s12872-023-03502-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Obesity is an independent risk factor for cardiovascular disease and affects the human population. This study aimed to evaluate left ventricular (LV) dysfunction in obese patients with three-dimensional speckle-tracking echocardiography (3D-STE) and investigate the possible related mechanisms at the exosomal miRNA level. METHODS In total, 43 participants (16 obese patients and 27 healthy volunteers) were enrolled. All subjects underwent full conventional echocardiography as well as 3D-STE. Characterization and high-throughput sequencing for the isolated circulating exosomes and the differentially expressed miRNAs (DEMs) were screened for target gene prediction and enrichment analysis. RESULTS Obese patients had significantly lower global longitudinal strain (GLS) (-20.80%±3.10% vs. -14.77%±2.05%, P < 0.001), global circumferential strain (GCS) (-31.63%±3.89% vs. -25.35%±5.66%, P = 0.001), global radial strain (GRS) (43.21%±4.89% vs. 33.38%±3.47%, P < 0.001), and indexed LV end-diastolic volume (LVEDV) [38.07mL/m2 (27.82mL/m2-9.57mL/m2) vs. 24.79mL/m2 (21.97mL/m2-30.73mL/m2), P = 0.002] than healthy controls. GLS (ρ = 0.610, P < 0.001), GCS (ρ = 0.424, P = 0.005), and GRS (ρ = -0.656, P < 0.001) indicated a moderate relationship with body mass index (BMI). In obese patients, 33 exosomal miRNAs were up-regulated and 26 exosomal miRNAs were down-regulated when compared to healthy controls (P < 0.05). These DEMs possibly contribute to obesity-associated LV dysfunction through the PI3K-Akt signaling pathway. Important miRNAs, including miR-101-3p, miR-140-3p, and miR-99a-5p, have clinical utility in predicting early obesity-related myocardial injury. CONCLUSIONS The global strain obtained from 3D-STE can sensitively detect the decrease in LV myocardial function in obese patients. Key miRNAs and pathways provide a new theoretical basis and targets of action for studying obesity-induced LV dysfunction. TRIAL REGISTRATION In accordance with the World Health Organization (WHO) definition of a clinical trial, this study does not include human health-related interventions. This study was carried out at the General Hospital of Ningxia Medical University after obtaining institutional ethical approval (KYLL-2022-0556) and written informed consent from all participants.
Collapse
Affiliation(s)
- Fuxin Wan
- Clinical Medicine School, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xin Ma
- Department of Cardiac Function Examination of Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jiana Wang
- Clinical Medicine School, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhaohui An
- Department of Cardiac Function Examination of Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jiewen Xue
- Clinical Medicine School, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Qin Wang
- Department of Cardiac Function Examination of Heart Centre, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
39
|
Clavellina D, Balkan W, Hare JM. Stem cell therapy for acute myocardial infarction: Mesenchymal Stem Cells and induced Pluripotent Stem Cells. Expert Opin Biol Ther 2023; 23:951-967. [PMID: 37542462 PMCID: PMC10837765 DOI: 10.1080/14712598.2023.2245329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) remains a leading cause of death in the United States. The limited capacity of cardiomyocytes to regenerate and the restricted contractility of scar tissue after AMI are not addressed by current pharmacologic interventions. Mesenchymal stem/stromal cells (MSCs) have emerged as a promising therapeutic approach due to their low antigenicity, ease of harvesting, and efficacy and safety in preclinical and clinical studies, despite their low survival and engraftment rates. Other stem cell types, such as induced pluripotent stem cells (iPSCs) also show promise, and optimizing cardiac repair requires integrating emerging technologies and strategies. AREAS COVERED This review offers insights into advancing cell-based therapies for AMI, emphasizing meticulously planned trials with a standardized definition of AMI, for a bench-to-bedside approach. We critically evaluate fundamental studies and clinical trials to provide a comprehensive overview of the advances, limitations and prospects for cell-based therapy in AMI. EXPERT OPINION MSCs continue to show potential promise for treating AMI and its sequelae, but addressing their low survival and engraftment rates is crucial for clinical success. Integrating emerging technologies such as pluripotent stem cells and conducting well-designed trials will harness the full potential of cell-based therapy in AMI management. Collaborative efforts are vital to developing effective stem cell therapies for AMI patients.
Collapse
Affiliation(s)
- Diana Clavellina
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
40
|
Blitsman Y, Benafsha C, Yarza N, Zorea J, Goldbart R, Traitel T, Elkabets M, Kost J. Cargo-Dependent Targeted Cellular Uptake Using Quaternized Starch as a Carrier. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1988. [PMID: 37446506 DOI: 10.3390/nano13131988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023]
Abstract
The tailored design of drug delivery systems for specific therapeutic agents is a prevailing approach in the field. In this paper, we present a study that highlights the potential of our modified starch, Q-starch, as a universal and adaptable drug delivery carrier for diverse therapeutic agents. We investigate the ability of Q-starch/cargo complexes to target different organelles within the cellular landscape, based on the specific activation sites of therapeutic agents. Plasmid DNA (pDNA), small interfering RNA (siRNA), and phosphatidylinositol (3,4,5)-trisphosphate (PIP3) were chosen as representative therapeutic molecules, acting in the nucleus, cytoplasm, and membrane, respectively. By carrying out comprehensive characterizations, employing dynamic light scattering (DLS), determining the zeta potential, and using cryo-transmitting electron microscopy (cryo-TEM), we reveal the formation of nano-sized, positively charged, and spherical Q-starch complexes. Our results demonstrate that these complexes exhibit efficient cellular uptake, targeting their intended organelles while preserving their physical integrity and functionality. Notably, the intracellular path of the Q-starch/cargo complex is guided by the cargo itself, aligning with its unique biological activity site. This study elucidates the versatility and potency of Q-starch as a versatile drug delivery carrier, paving the way for novel applications offering targeted delivery strategies for potential therapeutic molecules.
Collapse
Affiliation(s)
- Yossi Blitsman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Chen Benafsha
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nir Yarza
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Jonathan Zorea
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Riki Goldbart
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Tamar Traitel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
41
|
Bai B, Ji Z, Wang F, Qin C, Zhou H, Li D, Wu Y. CTRP12 ameliorates post-myocardial infarction heart failure through down-regulation of cardiac apoptosis, oxidative stress and inflammation by influencing the TAK1-p38 MAPK/JNK pathway. Inflamm Res 2023:10.1007/s00011-023-01758-4. [PMID: 37382682 DOI: 10.1007/s00011-023-01758-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE C1q/tumour necrosis factor-related protein 12 (CTRP12) is closely related to coronary artery disease and has an outstanding cardioprotective effect. However, whether CTRP12 participates in heart failure (HF) has not been well studied. This work aimed to explore the role and mechanism of CTRP12 in post-myocardial infarction (MI) HF. METHODS Rats were subjected to left anterior descending artery ligation and then raised for six weeks to establish post-MI HF. Recombinant adeno-associated virus-mediated gene transfer was applied to overexpress or silence CTRP12 in rat hearts. RT-qPCR, Immunoblot, Echocardiography, Haematoxylin-eosin (HE) staining, Masson's trichrome staining, TUNEL staining and ELISA were carried out. RESULTS CTRP12 levels were decreased in the hearts of rats with post-MI HF. The overexpression of CTRP12 improved cardiac function and attenuated cardiac hypertrophy and fibrosis in rats with post-MI HF. CTRP12 silencing exacerbated cardiac dysfunction, hypertrophy and fibrosis in rats with post-MI HF. The cardiac apoptosis, oxidative stress and inflammatory response induced by post-MI HF were weakened by CTRP12 overexpression or aggravated by CTRP12 silencing. CTRP12 inhibited the activation of the transforming growth factor-β activated kinase 1 (TAK1)-p38 mitogen-activated protein kinase (MAPK)/c-Jun N-terminal kinase (JNK) pathway in the hearts of rats with post-MI HF. Treatment with the TAK1 inhibitor reversed the adverse effects of CTRP12 silencing on post-MI HF. CONCLUSIONS CTRP12 protects against post-MI HF by modulating the TAK1-p38 MAPK/JNK pathway. CTRP12 may be a therapeutic target for the treatment of post-MI HF.
Collapse
Affiliation(s)
- Baobao Bai
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710048, China
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Zhaole Ji
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Fangfang Wang
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Chaoshi Qin
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Haijia Zhou
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Dongdong Li
- Department of Cardiology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Yue Wu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Xi'an, 710048, China.
| |
Collapse
|
42
|
Masenga SK, Kirabo A. Hypertensive heart disease: risk factors, complications and mechanisms. Front Cardiovasc Med 2023; 10:1205475. [PMID: 37342440 PMCID: PMC10277698 DOI: 10.3389/fcvm.2023.1205475] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Hypertensive heart disease constitutes functional and structural dysfunction and pathogenesis occurring primarily in the left ventricle, the left atrium and the coronary arteries due to chronic uncontrolled hypertension. Hypertensive heart disease is underreported and the mechanisms underlying its correlates and complications are not well elaborated. In this review, we summarize the current understanding of hypertensive heart disease, we discuss in detail the mechanisms associated with development and complications of hypertensive heart disease especially left ventricular hypertrophy, atrial fibrillation, heart failure and coronary artery disease. We also briefly highlight the role of dietary salt, immunity and genetic predisposition in hypertensive heart disease pathogenesis.
Collapse
Affiliation(s)
- Sepiso K. Masenga
- HAND Research Group, School of Medicine and Health Sciences, Mulungushi University, Livingstone Cam-Pus, Livingstone, Zambia
- School of Medicine, University of Zambia, Lusaka, Zambia
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Centre, Nashville, TN, United States
| |
Collapse
|
43
|
Keefe JA, Hulsurkar MM, Reilly S, Wehrens XHT. Mouse models of spontaneous atrial fibrillation. Mamm Genome 2023; 34:298-311. [PMID: 36173465 PMCID: PMC10898345 DOI: 10.1007/s00335-022-09964-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia in adults, with a prevalence increasing with age. Current clinical management of AF is focused on tertiary prevention (i.e., treating the symptoms and sequelae) rather than addressing the underlying molecular pathophysiology. Robust animal models of AF, particularly those that do not require supraphysiologic stimuli to induce AF (i.e., showing spontaneous AF), enable studies that can uncover the underlying mechanisms of AF. Several mouse models of AF have been described to exhibit spontaneous AF, but pathophysiologic drivers of AF differ among models. Here, we describe relevant AF mechanisms and provide an overview of large and small animal models of AF. We then provide an in-depth review of the spontaneous mouse models of AF, highlighting the relevant AF mechanisms for each model.
Collapse
Affiliation(s)
- Joshua A Keefe
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mohit M Hulsurkar
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, One Baylor Plaza, BCM335, Houston, TX, 77030, USA.
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Wang W, Zhang TN, Yang N, Wen R, Wang YJ, Zhang BL, Yang YH, Liu CF. Transcriptome-wide identification of altered RNA m 6A profiles in cardiac tissue of rats with LPS-induced myocardial injury. Front Immunol 2023; 14:1122317. [PMID: 37275860 PMCID: PMC10237353 DOI: 10.3389/fimmu.2023.1122317] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/05/2023] [Indexed: 06/07/2023] Open
Abstract
Purpose Myocardial injury is a common complication in patients with endotoxaemia/sepsis, especially in children. Moreover, it develops through an unclear pathophysiological mechanism, and effective therapies are lacking. Recently, RNA modification, particularly N 6-methyladenosine (m6A) modification, has been found to be involved in various physiological processes and to play important roles in many diseases. However, the role of m6A modification in endotoxaemia/sepsis-induced myocardial injury is still in its infancy. Therefore, we attempted to construct the m6A modification map of myocardial injury in a rat model treated by lipopolysaccharide (LPS) and explore the role of m6A modification in LPS-induced myocardial injury. Method Myocardial injury adolescent rat model was constructed by intraperitoneal injection of LPS. m6A RNA Methylation Quantification Kit was used to detect overall level of m6A modification in rat cardiac tissue. m6A-specific methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were conducted to identify the altered m6A-modified genes and differentially expressed genes in cardiac tissue of rats treated by LPS and control rats (6 versus. 6). Bioinformatics was used to analyze the functions of differentially m6A modified genes, differentially expressed genes, and genes with both differential m6A modification and differential expression. qPCR was used to detect expression of m6A modification related enzymes. Result We found that the overall level of m6A modification in cardiac tissue of the LPS group was up-regulated compared with that of the control group. MeRIP-seq and RNA-seq results showed that genes with differential m6A modification, genes with differential expression and genes with both differential m6A modification and differential expression were closely associated with inflammatory responses and apoptosis. In addition, we found that m6A-related enzymes (Mettl16, Rbm15, Fto, Ythdc2 and Hnrnpg) were differentially expressed in the LPS group versus. the control group. Conclusion m6A modification is involved in the pathogenesis process of LPS-induced myocardial injury, possibly through the regulation of inflammatory response and apoptosis-related pathways. These results provide valuable information regarding the potential pathogenic mechanisms underlying LPS-induced myocardial injury.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu-Jing Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bing-Lun Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
45
|
Dantas-Komatsu RCS, Cruz MS, Freire PP, Diniz RVZ, Bortolin RH, Cabral-Marques O, Souza KBDS, Hirata MH, Hirata RDC, Reis BZ, Jurisica I, Silbiger VN, Luchessi AD. The let-7b-5p, miR-326, and miR-125a-3p are associated with left ventricular systolic dysfunction in post-myocardial infarction. Front Cardiovasc Med 2023; 10:1151855. [PMID: 37252118 PMCID: PMC10218134 DOI: 10.3389/fcvm.2023.1151855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Background Acute ST-elevation myocardial infarction (STEMI) can lead to adverse cardiac remodeling, resulting in left ventricular systolic dysfunction (LVSd) and heart failure. Epigenetic regulators, such as microRNAs, may be involved in the physiopathology of LVSd. Objective This study explored microRNAs in peripheral blood mononuclear cells (PBMC) of post-myocardial infarction patients with LVSd. Methods Post-STEMI patients were grouped as having (LVSd, n = 9) or not LVSd (non-LVSd, n = 16). The expression of 61 microRNAs was analyzed in PBMC by RT-qPCR and the differentially expressed microRNAs were identified. Principal Component Analysis stratified the microRNAs based on the development of dysfunction. Predictive variables of LVSd were investigated through logistic regression analysis. A system biology approach was used to explore the regulatory molecular network of the disease and an enrichment analysis was performed. Results The let-7b-5p (AUC: 0.807; 95% CI: 0.63-0.98; p = 0.013), miR-125a-3p (AUC: 0.800; 95% CI: 0.61-0.99; p = 0.036) and miR-326 (AUC: 0.783; 95% CI: 0.54-1.00; p = 0.028) were upregulated in LVSd (p < 0.05) and discriminated LVSd from non-LVSd. Multivariate logistic regression analysis showed let-7b-5p (OR: 16.00; 95% CI: 1.54-166.05; p = 0.020) and miR-326 (OR: 28.00; 95% CI: 2.42-323.70; p = 0.008) as predictors of LVSd. The enrichment analysis revealed association of the targets of these three microRNAs with immunological response, cell-cell adhesion, and cardiac changes. Conclusion LVSd alters the expression of let-7b-5p, miR-326, and miR-125a-3p in PBMC from post-STEMI, indicating their potential involvement in the cardiac dysfunction physiopathology and highlighting these miRNAs as possible LVSd biomarkers.
Collapse
Affiliation(s)
| | - Marina Sampaio Cruz
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Division of Cardiology, Department of Medicine, UC San Diego, San Diego, CA, United States
| | - Paula Paccielli Freire
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rosiane Viana Zuza Diniz
- Department of Clinical Medicine, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
- Department of Cardiology, Boston Children’s Hospital/Harvard Medical School, Boston, MA, United States
| | - Otávio Cabral-Marques
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
- Division of Molecular Medicine, Departmentof Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation, University of São Paulo School of Medicine, São Paulo, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Bruna Zavarize Reis
- Department of Nutrition, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Igor Jurisica
- Division of Orthopedic Surgery, Schroeder Arthritis Institute and Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Departments of Medical Biophysics and Computer Science, and Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
- Slovak Academy of Sciences, Institute of Neuroimmunology, Bratislava, Slovakia
| | - Vivian Nogueira Silbiger
- Department of Clinical and Toxicology Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
- Translational Medicine, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| | - Andre Ducati Luchessi
- Postgraduate Program in Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
- Translational Medicine, The Hospital for Sick Children (SickKids), Toronto, ON, Canada
| |
Collapse
|
46
|
Ejike CECC, Ezeorba TPC, Ajah O, Udenigwe CC. Big Things, Small Packages: An Update on Microalgae as Sustainable Sources of Nutraceutical Peptides for Promoting Cardiovascular Health. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2200162. [PMID: 37205928 PMCID: PMC10190598 DOI: 10.1002/gch2.202200162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/09/2023] [Indexed: 05/21/2023]
Abstract
In 2017, a review of microalgae protein-derived bioactive peptides relevant in cardiovascular disease (CVD) management was published. Given the rapid evolution of the field, an update is needed to illumininate recent developments and proffer future suggestions. In this review, the scientific literature (2018-2022) is mined for that purpose and the relevant properties of the identified peptides related to CVD are discussed. The challenges and prospects for microalgae peptides are similarly discussed. Since 2018, several publications have independently confirmed the potential to produce microalgae protein-derived nutraceutical peptides. Peptides that reduce hypertension (by inhibiting angiotensin converting enzyme and endothelial nitric oxide synthase), modulate dyslipidemia and have antioxidant and anti-inflammatory properties have been reported, and characterized. Taken together, future research and development investments in nutraceutical peptides from microalgae proteins need to focus on the challenges of large-scale biomass production, improvement in techniques for protein extraction, peptide release and processing, and the need for clinical trials to validate the claimed health benefits as well as formulation of various consumer products with the novel bioactive ingredients.
Collapse
Affiliation(s)
- Chukwunonso E. C. C. Ejike
- Department of Medical BiochemistryFaculty of Basic Medical SciencesAlex Ekwueme Federal UniversityNdufu‐AlikeEbonyi State482131Nigeria
| | - Timothy P. C. Ezeorba
- Department of BiochemistryFaculty of Biological SciencesUniversity of NigeriaNsukkaEnugu State410001Nigeria
| | - Obinna Ajah
- Department of BiochemistryCollege of Natural SciencesMichael Okpara University of AgricultureUmudikeAbia State440101Nigeria
| | - Chibuike C. Udenigwe
- School of Nutrition SciencesFaculty of Health SciencesUniversity of OttawaOttawaOntarioK1H 8M5Canada
- Department of Chemistry and Biomolecular SciencesFaculty of ScienceUniversity of OttawaOttawaOntarioK1N 6N5Canada
| |
Collapse
|
47
|
Zhang Z, Qin S, Wang Y, Liang H, Wang R, Li F. L-ascorbic acid could ameliorate the damage of myocardial microvascular endothelial cell caused by hypoxia-reoxygenation via targeting HMGB1. J Bioenerg Biomembr 2023; 55:115-122. [PMID: 37036607 DOI: 10.1007/s10863-023-09962-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023]
Abstract
In this study, we intend to explore the potential function of l-ascorbic acid in hypoxia-reoxygenation (H/R)-induced damage of CMECs and its related molecular mechanism. With different concentrations of l-ascorbic acid treatment, the proliferation, migration, inflammation and autophagy of cardiac microvascular endothelial cells (CMECs) were determined by several biological experiments. Si-HMGB1 transfection was used to reduce HMGB1 expression and to detect the function of HMGB1 in H/R-induced damage of CMECs. Under H/R condition, the proliferation and migration abilities of CMECs were reduced, and the inflammation and autophagy of CMECs were increased. Whereas, after l-ascorbic acid treatment, the reduction in the proliferation and migration of CMECs, as well as the increase in the inflammation and autophagy of CMECs induced by H/R were reversely altered. HMGB1 was confirmed as a specific target of l-ascorbic acid, and si-HMGB1 treatment strengthened the beneficial effect of l-ascorbic acid on H/R-induced damage of CMECs, followed by further reduction in the proliferation and migration abilities of CMECs, as well as the increase in the inflammation and autophagy of CMECs. Few studies have reported the function of l-ascorbic acid in myocardial ischemia on CMECs, but our experimental data showed that l-ascorbic acid treatment could ameliorate the H/R-induced damage of CMECs by regulating HMGB1 expression.
Collapse
Affiliation(s)
- Zhanshuai Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China.
| | - Shaoqiang Qin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| | - Yaling Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| | - Huiqing Liang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| | - Rui Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| | - Fangjiang Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Hebei North University, No. 12 Changqing Road, Zhangjiakou, 075000, P. R. China
| |
Collapse
|
48
|
Ajzashokouhi AH, Rezaee R, Omidkhoda N, Karimi G. Natural compounds regulate the PI3K/Akt/GSK3β pathway in myocardial ischemia-reperfusion injury. Cell Cycle 2023; 22:741-757. [PMID: 36593695 PMCID: PMC10026916 DOI: 10.1080/15384101.2022.2161959] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The PI3K/Akt/GSK3β pathway is crucial in regulating cardiomyocyte growth and survival. It has been shown that activation of this pathway alleviates the negative impact of ischemia-reperfusion. Glycogen synthase kinase-3 (GSK3β) induces apoptosis through stimulation of transcription factors, and its phosphorylation has been suggested as a new therapeutic target for myocardial ischemia-reperfusion injury (MIRI). GSK3β regulatory role is mediated by the reperfusion injury salvage kinase (RISK) pathway, and its inhibition by Akt activation blocks mitochondrial permeability transition pore (mPTP) opening and enhances myocardial survival. The present article discusses the involvement of the PI3K/Akt/GSK3β pathway in cardioprotective effects of natural products against MIRI.Abbreviations: Akt: protein kinase B; AMPK: AMP-activated protein kinase; ATP: adenosine triphosphate; Bad: bcl2-associated agonist of cell death; Bax: bcl2-associated x protein; Bcl-2: B-cell lymphoma 2; CK-MB: Creatine kinase-MB; CRP: C-reactive-protein; cTnI: cardiac troponin I; EGCG: Epigallocatechin-3-gallate; Enos: endothelial nitric oxide synthase; ER: endoplasmic reticulum; ERK ½: extracellular signal‑regulated protein kinase ½; GSK3β: glycogen synthase kinase-3; GSRd: Ginsenoside Rd; GSH: glutathione; GSSG: glutathione disulfide; HO-1: heme oxygenase-1; HR: hypoxia/reoxygenation; HSYA: Hydroxysafflor Yellow A; ICAM-1: Intercellular Adhesion Molecule 1; IKK-b: IκB kinase; IL: interleukin; IPoC: Ischemic postconditioning; IRI: ischemia-reperfusion injury; JNK: c-Jun N-terminal kinase; Keap1: kelch-like ECH-associated protein- 1; LDH: lactate dehydrogenase; LVEDP: left ventricular end diastolic pressure; LVP: left ventricle pressure; LVSP: left ventricular systolic pressure; MAPK: mitogen-activated protein kinase; MDA: malondialdehyde; MIRI: myocardial ischemia-reperfusion injury; MnSOD: manganese superoxide dismutase; mPTP: mitochondrial permeability transition pore; mtHKII: mitochondria-bound hexokinase II; Nrf-1: nuclear respiratory factor 1; Nrf2: nuclear factor erythroid 2-related factor; NO: nitric oxide; PGC-1α: peroxisome proliferator‑activated receptor γ coactivator‑1α; PI3K: phosphoinositide 3-kinases; RISK: reperfusion injury salvage kinase; ROS: reactive oxygen species; RSV: Resveratrol; SOD: superoxide dismutase; TFAM: transcription factor A mitochondrial; TNF-α: tumor necrosis factor-alpha; VEGF-B: vascular endothelial growth factor B.
Collapse
Affiliation(s)
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Cannavo A, Jun S, Rengo G, Marzano F, Agrimi J, Liccardo D, Elia A, Keceli G, Altobelli GG, Marcucci L, Megighian A, Gao E, Feng N, Kammers K, Ferrara N, Finos L, Koch WJ, Paolocci N. β3AR-Dependent Brain-Derived Neurotrophic Factor (BDNF) Generation Limits Chronic Postischemic Heart Failure. Circ Res 2023; 132:867-881. [PMID: 36884028 PMCID: PMC10281793 DOI: 10.1161/circresaha.122.321583] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, β-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the β-adrenergic receptor-desensitized postischemic myocardium. Nor is it fully understood whether and how TrkB agonists counter chronic postischemic left ventricle (LV) decompensation, a significant unmet clinical milestone. METHODS We conducted in vitro studies using neonatal rat and adult murine cardiomyocytes, SH-SY5Y neuronal cells, and umbilical vein endothelial cells. We assessed myocardial ischemia (MI) impact in wild type, β3AR knockout, or myocyte-selective BDNF knockout (myoBDNF KO) mice in vivo (via coronary ligation [MI]) or in isolated hearts with global ischemia-reperfusion (I/R). RESULTS In wild type hearts, BDNF levels rose early after MI (<24 hours), plummeting at 4 weeks when LV dysfunction, adrenergic denervation, and impaired angiogenesis ensued. The TrkB agonist, LM22A-4, countered all these adverse effects. Compared with wild type, isolated myoBDNF KO hearts displayed worse infarct size/LV dysfunction after I/R injury and modest benefits from LM22A-4. In vitro, LM22A-4 promoted neurite outgrowth and neovascularization, boosting myocyte function, effects reproduced by 7,8-dihydroxyflavone, a chemically unrelated TrkB agonist. Superfusing myocytes with the β3AR-agonist, BRL-37344, increased myocyte BDNF content, while β3AR signaling underscored BDNF generation/protection in post-MI hearts. Accordingly, the β1AR blocker, metoprolol, via upregulated β3ARs, improved chronic post-MI LV dysfunction, enriching the myocardium with BDNF. Last, BRL-37344-imparted benefits were nearly abolished in isolated I/R injured myoBDNF KO hearts. CONCLUSIONS BDNF loss underscores chronic postischemic heart failure. TrkB agonists can improve ischemic LV dysfunction via replenished myocardial BDNF content. Direct cardiac β3AR stimulation, or β-blockers (via upregulated β3AR), is another BDNF-based means to fend off chronic postischemic heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Seungho Jun
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, MD, U.S.A
| | - Giuseppe Rengo
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Istituti Clinici Scientifici Maugeri - Scientific Institute of Telese Terme (BN), Italy
| | - Federica Marzano
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Jacopo Agrimi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Daniela Liccardo
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Andrea Elia
- Department of Translational Medical Science, University of Naples Federico II, Italy
| | - Gizem Keceli
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, MD, U.S.A
| | - Giovanna G. Altobelli
- Istituti Clinici Scientifici Maugeri - Scientific Institute of Telese Terme (BN), Italy
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Aram Megighian
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Erhe Gao
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Ning Feng
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, U.S.A
| | - Kai Kammers
- Quantitative Sciences Division – Department of Oncology, Johns Hopkins University School of Medicine, Padova, Italy
| | - Nicola Ferrara
- Department of Translational Medical Science, University of Naples Federico II, Italy
- Istituti Clinici Scientifici Maugeri - Scientific Institute of Telese Terme (BN), Italy
| | - Livio Finos
- Department of Statistical Science, University of Padova, Padova, Italy
| | - Walter J. Koch
- Center For Translational Medicine LKSOM Temple University, Philadelphia, PA, U.S.A
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, Baltimore, MD, U.S.A
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
50
|
Xiong P, Zhang F, Liu F, Zhao J, Huang X, Luo D, Guo J. Metaflammation in glucolipid metabolic disorders: Pathogenesis and treatment. Biomed Pharmacother 2023; 161:114545. [PMID: 36948135 DOI: 10.1016/j.biopha.2023.114545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
The public health issue of glucolipid metabolic disorders (GLMD) has grown significantly, posing a grave threat to human wellness. Its prevalence is rising yearly and tends to affect younger people. Metaflammation is an important mechanism regulating body metabolism. Through a complicated multi-organ crosstalk network involving numerous signaling pathways such as NLRP3/caspase-1/IL-1, NF-B, p38 MAPK, IL-6/STAT3, and PI3K/AKT, it influences systemic metabolic regulation. Numerous inflammatory mediators are essential for preserving metabolic balance, but more research is needed to determine how they contribute to the co-morbidities of numerous metabolic diseases. Whether controlling the inflammatory response can influence the progression of GLMD determines the therapeutic strategy for such diseases. This review thoroughly examines the role of metaflammation in GLMD and combs the research progress of related therapeutic approaches, including inflammatory factor-targeting drugs, traditional Chinese medicine (TCM), and exercise therapy. Multiple metabolic diseases, including diabetes, non-alcoholic fatty liver disease (NAFLD), cardiovascular disease, and others, respond therapeutically to anti-inflammatory therapy on the whole. Moreover, we emphasize the value and open question of anti-inflammatory-based means for treating GLMD.
Collapse
Affiliation(s)
- Pingjie Xiong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Fan Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Fang Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Jiayu Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Xiaoqiang Huang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China.
| | - Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, China; Institute of Chinese Medicine, Guangdong Pharmaceutical University; Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China.
| |
Collapse
|