1
|
Hu FF, Pan SY, Chu JY, Liu JJ, Duan TT, Luo Y, Zhou W, Wang ZM, Liu W, Zeng Y. Xanthohumol Protects Against Neuronal Excitotoxicity and Mitochondrial Dysfunction in APP/PS1 Mice: An Omics-Based Study. Nutrients 2024; 16:3754. [PMID: 39519590 PMCID: PMC11548031 DOI: 10.3390/nu16213754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Neuronal excitotoxicity and metabolic decline, which begin in the early stages of Alzheimer's disease (AD), pose challenges for effective amelioration. Our previous work suggested that the natural compound xanthohumol, the most abundant prenylated flavonoid in hops, prevents memory deficits in APP/PS1 mice; however, the underlying mechanisms remain unclear. Methods: This study utilized APP/PS1 mice and cutting-edge omics techniques to investigate the effects of xanthohumol on hippocampal proteome, serum metabolome, and microbiome. Results: Our findings revealed that xanthohumol reduces the postsynaptic overexpression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, N-methyl-D-aspartate, and metabotropic glutamate receptors, but enhances ATP synthesis and mitophagy in the young AD hippocampus. Further mechanistic analyses suggested systemic regulatory effects, particularly on the decreasing glutamate synthesis in the blood and intestines of AD mice following xanthohumol administration. Conclusions: These results underscore the potential of xanthohumol in mitigating AD pathology through multifaceted mechanisms, sparking interest and curiosity in its preventive and therapeutic potential in AD.
Collapse
Affiliation(s)
- Fei-Fei Hu
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shi-Yao Pan
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jin-Yu Chu
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jian-Jun Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Ting-Ting Duan
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yu Luo
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wen Zhou
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhi-Ming Wang
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China;
| | - Yan Zeng
- Hubei Provincial Clinical Research Center for Alzheimer’s Disease, Wuhan University of Science and Technology, Wuhan 430065, China; (F.-F.H.); (S.-Y.P.); (J.-Y.C.); (T.-T.D.); (Y.L.); (W.Z.); (Z.-M.W.)
- Brain Science and Advanced Technology Institute, Medical School, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
2
|
Jiang P, Di Z, Huang W, Xie L. Modulating the Gut Microbiota and Metabolites with Traditional Chinese Medicines: An Emerging Therapy for Type 2 Diabetes Mellitus and Its Complications. Molecules 2024; 29:2747. [PMID: 38930814 PMCID: PMC11206945 DOI: 10.3390/molecules29122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, an estimated 537 million individuals are affected by type 2 diabetes mellitus (T2DM), the occurrence of which is invariably associated with complications. Glucose-lowering therapy remains the main treatment for alleviating T2DM. However, conventional antidiabetic agents are fraught with numerous adverse effects, notably elevations in blood pressure and lipid levels. Recently, the use of traditional Chinese medicines (TCMs) and their constituents has emerged as a preferred management strategy aimed at curtailing the progression of diabetes and its associated complications with fewer adverse effects. Increasing evidence indicates that gut microbiome disturbances are involved in the development of T2DM and its complications. This regulation depends on various metabolites produced by gut microbes and their interactions with host organs. TCMs' interventions have demonstrated the ability to modulate the intestinal bacterial microbiota, thereby restoring host homeostasis and ameliorating metabolic disorders. This review delves into the alterations in the gut microbiota and metabolites in T2DM patients and how TCMs treatment regulates the gut microbiota, facilitating the management of T2DM and its complications. Additionally, we also discuss prospective avenues for research on natural products to advance diabetes therapy.
Collapse
Affiliation(s)
- Peiyan Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhenghan Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
| | - Wenting Huang
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lan Xie
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Fu Y, Wang Y, Ren H, Guo X, Han L. Branched-chain amino acids and the risks of dementia, Alzheimer's disease, and Parkinson's disease. Front Aging Neurosci 2024; 16:1369493. [PMID: 38659706 PMCID: PMC11040674 DOI: 10.3389/fnagi.2024.1369493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background We aimed to examine the association between blood levels of Branched-chain amino acids (BCAAs) - specifically isoleucine, leucine, and valine - and the susceptibility to three neurodegenerative disorders: dementia, Alzheimer's disease (AD), and Parkinson's disease (PD). Methods Based on data from the UK Biobank, a Cox proportional hazard regression model and a dose-response relationship were used to analyze the association between BCAAs and the risks of dementia, AD, and PD. We also generated a healthy lifestyle score and a polygenic risk score. Besides, we conducted a sensitivity analysis to ensure the robustness of our findings. Results After adjusting for multiple covariates, blood concentrations of isoleucine, leucine, and valine were significantly associated with a reduced risk of dementia and AD. This association remained robust even in sensitivity analyses. Similarly, higher levels of isoleucine and leucine in the blood were found to be associated with an increased risk of PD, but this positive correlation could potentially be explained by the presence of covariates. Further analysis using a dose-response approach revealed that a blood leucine concentration of 2.14 mmol/L was associated with the lowest risk of dementia. Conclusion BCAAs have the potential to serve as a biomarker for dementia and AD. However, the specific mechanism through which BCAAs are linked to the development of dementia, AD, and PD remains unclear and necessitates additional investigation.
Collapse
Affiliation(s)
- Yidong Fu
- Department of Rehabilitation Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Yue Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Huiming Ren
- Department of Rehabilitation Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Xu Guo
- Department of Rehabilitation Medicine, Ningbo No. 2 Hospital, Ningbo, China
| | - Liyuan Han
- Department of Clinical Epidemiology, Ningbo No. 2 Hospital, Ningbo, China
- Center for Cardiovascular and Cerebrovascular Epidemiology and Translational Medicine, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
4
|
Youn C, Caillaud ML, Li Y, Gallagher IA, Strasser B, Fuchs D, Tanaka H, Haley AP. Large Neutral Amino Acids Moderate the Effects of Metabolic Syndrome on Cognitive Performance in Middle-Aged Adults. ANNALS OF NUTRITION & METABOLISM 2024; 80:226-234. [PMID: 38531323 PMCID: PMC11305933 DOI: 10.1159/000538273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Two large neutral amino acids (LNAA), tryptophan and tyrosine, are precursors to cerebral neurotransmitters and are involved in cognitive function. Higher levels of LNAA in young adults are associated with improved cognition, although these associations appear to reverse over time. Given that exposure to metabolic syndrome (MetS) may induce premature cognitive aging, the current project aims to fill the gap in the literature by examining the effect of LNAA on cognitive performance in midlife adults with metabolic risks. METHODS Eighty-eight adults, ages 40-61 years, participated in this cross-sectional study. LNAA metabolites were quantified, MetS components were measured using high-performance liquid chromatography, and MetS components were assessed in the laboratory. Composite verbal memory and executive functioning scores were computed using principal component analysis. We used linear regression models to test the interaction between LNAA and MetS while covarying for sex, age, and education. RESULTS The kynurenine/tryptophan ratio moderated the relation between MetS and verbal memory, even after adjusting for relevant covariates. Tyrosine metabolites were not significant moderators of the association between MetS and executive functioning. CONCLUSION Our findings suggest that the detected weaker memory performance in adults with a high number of MetS components may be related to relative tryptophan depletion and possible decreases in serotonin production. Further investigation is warranted to examine the potential role of LNAA in associations between cognitive performance and metabolic risks over time.
Collapse
Affiliation(s)
- Cherry Youn
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Marie L. Caillaud
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | - Yanrong Li
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| | | | - Barbara Strasser
- Department of Medicine, Sigmund Freud University Vienna, Vienna, Austria
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocentre, Medical University of Innsbruck, Innsbruck, Austria
| | - Hirofumi Tanaka
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, Texas, USA
| | - Andreana P. Haley
- Department of Psychology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
5
|
Flores AC, Zhang X, Kris-Etherton PM, Sliwinski MJ, Shearer GC, Gao X, Na M. Metabolomics and Risk of Dementia: A Systematic Review of Prospective Studies. J Nutr 2024; 154:826-845. [PMID: 38219861 DOI: 10.1016/j.tjnut.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND The projected increase in the prevalence of dementia has sparked interest in understanding the pathophysiology and underlying causal factors in its development and progression. Identifying novel biomarkers in the preclinical or prodromal phase of dementia may be important for predicting early disease risk. Applying metabolomic techniques to prediagnostic samples in prospective studies provides the opportunity to identify potential disease biomarkers. OBJECTIVE The objective of this systematic review was to summarize the evidence on the associations between metabolite markers and risk of dementia and related dementia subtypes in human studies with a prospective design. DESIGN We searched PubMed, PsycINFO, and Web of Science databases from inception through December 8, 2023. Thirteen studies (mean/median follow-up years: 2.1-21.0 y) were included in the review. RESULTS Several metabolites detected in biological samples, including amino acids, fatty acids, acylcarnitines, lipid and lipoprotein variations, hormones, and other related metabolites, were associated with risk of developing dementia. Our systematic review summarized the adjusted associations between metabolites and dementia risk; however, our findings should be interpreted with caution because of the heterogeneity across the included studies and potential sources of bias. Further studies are warranted with well-designed prospective cohort studies that have defined study populations, longer follow-up durations, the inclusion of additional diverse biological samples, standardization of techniques in metabolomics and ascertainment methods for diagnosing dementia, and inclusion of other related dementia subtypes. CONCLUSIONS This study contributes to the limited systematic reviews on metabolomics and dementia by summarizing the prospective associations between metabolites in prediagnostic biological samples with dementia risk. Our review discovered additional metabolite markers associated with the onset of developing dementia and may help aid in the understanding of dementia etiology. The protocol is registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (https://www.crd.york.ac.uk/prospero/; registration ID: CRD42022357521).
Collapse
Affiliation(s)
- Ashley C Flores
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Xinyuan Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Martin J Sliwinski
- Center for Healthy Aging, The Pennsylvania State University, University Park, PA, United States; Department of Human Development and Family Studies, The Pennsylvania State University, University Park, PA, United States
| | - Greg C Shearer
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Xiang Gao
- School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China.
| | - Muzi Na
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
6
|
Kourti M, Metaxas A. A systematic review and meta-analysis of tau phosphorylation in mouse models of familial Alzheimer's disease. Neurobiol Dis 2024; 192:106427. [PMID: 38307366 DOI: 10.1016/j.nbd.2024.106427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024] Open
Abstract
Transgenic models of familial Alzheimer's disease (AD) serve as valuable tools for probing the molecular mechanisms associated with amyloid-beta (Aβ)-induced pathology. In this meta-analysis, we sought to evaluate levels of phosphorylated tau (p-tau) and explore potential age-related variations in tau hyperphosphorylation, within mouse models of AD. The PubMed and Scopus databases were searched for studies measuring soluble p-tau in 5xFAD, APPswe/PSEN1de9, J20 and APP23 mice. Data were extracted and analyzed using standardized procedures. For the 5xFAD model, the search yielded 36 studies eligible for meta-analysis. Levels of p-tau were higher in 5xFAD mice relative to control, a difference that was evident in both the carboxy-terminal (CT) and proline-rich (PR) domains of tau. Age negatively moderated the relationship between genotype and CT phosphorylated tau in studies using hybrid mice, female mice, and preparations from the neocortex. For the APPswe/PSEN1de9 model, the search yielded 27 studies. Analysis showed tau hyperphosphorylation in transgenic vs. control animals, evident in both the CT and PR regions of tau. Age positively moderated the relationship between genotype and PR domain phosphorylated tau in the neocortex of APPswe/PSEN1de9 mice. A meta-analysis was not performed for the J20 and APP23 models, due to the limited number of studies measuring p-tau levels in these mice (<10 studies). Although tau is hyperphosphorylated in both 5xFAD and APPswe/PSEN1de9 mice, the effects of ageing on p-tau are contingent upon the model being examined. These observations emphasize the importance of tailoring model selection to the appropriate disease stage when considering the relationship between Aβ and tau, and suggest that there are optimal intervention points for the administration of both anti-amyloid and anti-tau therapies.
Collapse
Affiliation(s)
- Malamati Kourti
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Angiogenesis and Cancer Drug Discovery Group, Basic and Translational Cancer Research Centre, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus.
| | - Athanasios Metaxas
- School of Sciences, Department of Life Sciences, European University Cyprus, 2404 Egkomi, Nicosia, Cyprus; Department of Neurobiology, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
7
|
Hu Z, Han Y, Hu M, Zhang H, Yuan X, Yu H. A comparative study of cognitive function in young patients with bipolar disorder with and without non-suicidal self-injury. Acta Psychol (Amst) 2024; 243:104137. [PMID: 38228072 DOI: 10.1016/j.actpsy.2024.104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
OBJECTIVE Bipolar disorder (BD) is a chronic mental disorder characterized by alternating or mixed episodes of mania or hypomania and depression. Cognitive function impairment is a frequent associated feature of the disease. While many BD patients also engage in non-suicidal self-injury (NSSI), there is a lack of studies on the cognitive function of BD patients with NSSI. This study aimed to evaluate cognitive functioning of BD patients with NSSI and provide a clinical basis for the differential diagnosis and treatment of BD and NSSI. METHODS A total of 60 BD patients with NSSI, 60 BD patients without NSSI, and 60 healthy controls (HC) were selected for the study. All participants met the inclusion criteria and were not taking any medications, excluding the potential effects of medication on cognitive functions. The following neurocognitive tests were used to measure the cognitive functions in areas such as speed of processing, reasoning and problem solving, attention/vigilance, working memory, visual learning, and verbal learning: The Trail Making Test (TMT), Category Fluency, Digit Symbol Coding Test (DSCT), Brief Visuospatial Memory Test-Revised (BVMT-R), The Neuropsychological Assessment Battery Mazes (NABM), Wechsler Memory Scale Third Edition Spatial Span Test (WMS III-SST), Hopkins Verbal Learning Test-Revised (HVLTR) and Continuous Performance Test and Identical Prs (CPT-IP). RESULTS The findings indicated that BD patients with NSSI exhibited cognitive impairment in all measured cognitive domains. On the other hand, BD patients without NSSI showed less pronounced impairment in terms of speed of processing, but exhibited significant cognitive impairment in the remaining five areas compared to the HC group. CONCLUSION The study underscores the presence of cognitive impairment in BD, and the cognitive impairment is more severe in BD patients with NSSI compared to those without NSSI. In conclusion, both individuals with NSSI and those without NSSI in BD exhibit cognitive impairment, which provides ideas and strategies for using cognitive-behavioral therapy to treat BD and NSSI.
Collapse
Affiliation(s)
- Zhizhong Hu
- School of Marxism, Nanchang University, Nanchang, Jiangxi Province 330031, China.
| | - Yingchun Han
- School of Marxism, Nanchang University, Nanchang, Jiangxi Province 330031, China
| | - Maorong Hu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Honglin Zhang
- School of Marxism, University of Electronic Science and Technology of China, Sichuan Province 611730, China
| | - Xin Yuan
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| | - Huijuan Yu
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330006, China
| |
Collapse
|
8
|
Valdés A, Sánchez-Martínez JD, Gallego R, Ibáñez E, Herrero M, Cifuentes A. In vivo neuroprotective capacity of a Dunaliella salina extract - comprehensive transcriptomics and metabolomics study. NPJ Sci Food 2024; 8:4. [PMID: 38200022 PMCID: PMC10782027 DOI: 10.1038/s41538-023-00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, an exhaustive chemical characterization of a Dunaliella salina (DS) microalga extract obtained using supercritical fluids has been performed, and its neuroprotective capacity has been evaluated in vivo using an Alzheimer's disease (AD) transgenic model of Caenorhabditis elegans (strain CL4176). More than 350 compounds were annotated in the studied DS extract, with triacylglycerols, free fatty acids (FAs), carotenoids, apocarotenoids and glycerol being the most abundant. DS extract significantly protects C. elegans in a dose-dependent manner against Aβ-peptide paralysis toxicity, after 32 h, 53% of treated worms at 50 µg/mL were not paralyzed. This concentration was selected to further evaluate the transcriptomics and metabolomics changes after 26 h by using advanced analytical methodologies. The RNA-Seq data showed an alteration of 150 genes, mainly related to the stress and detoxification responses, and the retinol and lipid metabolism. The comprehensive metabolomics and lipidomics analyses allowed the identification of 793 intracellular metabolites, of which 69 were significantly altered compared to non-treated control animals. Among them, different unsaturated FAs, lysophosphatidylethanolamines, nucleosides, dipeptides and modified amino acids that have been previously reported as beneficial during AD progression, were assigned. These compounds could explain the neuroprotective capacity observed, thus, providing with new evidences of the protection mechanisms of this promising extract.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain.
| | - José David Sánchez-Martínez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Rocío Gallego
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research (CIAL, CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain
| |
Collapse
|
9
|
Milos T, Rojo D, Nedic Erjavec G, Konjevod M, Tudor L, Vuic B, Svob Strac D, Uzun S, Mimica N, Kozumplik O, Barbas C, Zarkovic N, Pivac N, Nikolac Perkovic M. Metabolic profiling of Alzheimer's disease: Untargeted metabolomics analysis of plasma samples. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110830. [PMID: 37454721 DOI: 10.1016/j.pnpbp.2023.110830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is often not recognized or is diagnosed very late, which significantly reduces the effectiveness of available pharmacological treatments. Metabolomic analyzes have great potential for improving existing knowledge about the pathogenesis and etiology of AD and represent a novel approach towards discovering biomarkers that could be used for diagnosis, prognosis, and therapy monitoring. In this study, we applied the untargeted metabolomic approach to investigate the changes in biochemical pathways related to AD pathology. We used gas chromatography and liquid chromatography coupled to mass spectrometry (GC-MS and LC-MS, respectively) to identify metabolites whose levels have changed in subjects with AD diagnosis (N = 40) compared to healthy controls (N = 40) and individuals with mild cognitive impairment (MCI, N = 40). The GC-MS identified significant differences between groups in levels of metabolites belonging to the classes of benzene and substituted derivatives, carboxylic acids and derivatives, fatty acyls, hydroxy acids and derivatives, keto acids and derivatives, and organooxygen compounds. Most of the compounds identified by the LC-MS were various fatty acyls, glycerolipids and glycerophospholipids. All of these compounds were decreased in AD patients and in subjects with MCI compared to healthy controls. The results of the study indicate disturbed metabolism of lipids and amino acids and an imbalance of metabolites involved in energy metabolism in individuals diagnosed with AD, compared to healthy controls and MCI subjects.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities Madrid, Spain.
| | | | - Marcela Konjevod
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - Lucija Tudor
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | | | - Suzana Uzun
- School of Medicine, University of Zagreb, Zagreb, Croatia; Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia.
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia.
| | - Oliver Kozumplik
- Department for Biological Psychiatry and Psychogeriatrics, University Psychiatric Hospital Vrapče, Zagreb, Croatia.
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities Madrid, Spain.
| | - Neven Zarkovic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia.
| | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia; University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia.
| | | |
Collapse
|
10
|
Hu X, Peng J, Tang W, Xia Y, Song P. A circadian rhythm-restricted diet regulates autophagy to improve cognitive function and prolong lifespan. Biosci Trends 2023; 17:356-368. [PMID: 37722875 DOI: 10.5582/bst.2023.01221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Diet and circadian rhythms have been found to have a profound impact on health, disease, and aging. Skipping breakfast, eating late, and overeating have adverse effects on the body's metabolism and increase the risk of cardiovascular and metabolic diseases. Disturbance of circadian rhythms has been associated with increased risk of atherosclerosis, Alzheimer's disease, Parkinson's disease, and other diseases. Abnormal deposition of amyloid β (Aβ) and tau proteins in the brain and impaired synaptic function are linked to cognitive dysfunction. A restrictive diet following the circadian rhythm can affect the metabolism of lipids, glucose, and amino acids such as branched chain amino acids and cysteine. These metabolic changes contribute to autophagy through molecular mechanisms such as adenosine monophosphate-activated protein kinase (AMPK), rapamycin (mTOR), D-β-hydroxybutyrate (D-BHB), and neuropeptide Y (NPY). Autophagy, in turn, promotes the removal of abnormally deposited proteins and damaged organelles and improves cognitive function, ultimately prolonging lifespan. In addition, a diet restricted to the circadian rhythm induces increased expression of brain-derived neurotrophic factor (BDNF) in the forebrain region, regulating autophagy and increasing synaptic plasticity, thus enhancing cognitive function. Consequently, circadian rhythm-restricted diets could serve as a promising non-pharmacological treatment for preventing and improving cognitive dysfunction and prolonging lifespan.
Collapse
Affiliation(s)
- Xiqi Hu
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jun Peng
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Wei Tang
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Ying Xia
- Department of Neurosurgery, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Peipei Song
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Judd JM, Jasbi P, Winslow W, Serrano GE, Beach TG, Klein-Seetharaman J, Velazquez R. Inflammation and the pathological progression of Alzheimer's disease are associated with low circulating choline levels. Acta Neuropathol 2023; 146:565-583. [PMID: 37548694 PMCID: PMC10499952 DOI: 10.1007/s00401-023-02616-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Deficiency of dietary choline, an essential nutrient, is observed worldwide, with ~ 90% of Americans being deficient. Previous work highlights a relationship between decreased choline intake and an increased risk for cognitive decline and Alzheimer's disease (AD). The associations between blood circulating choline and the pathological progression in both mild cognitive impairment (MCI) and AD remain unknown. Here, we examined these associations in a cohort of patients with MCI with presence of either sparse or high neuritic plaque density and Braak stage and a second cohort with either moderate AD (moderate to frequent neuritic plaques, Braak stage = IV) or severe AD (frequent neuritic plaques, Braak stage = VI), compared to age-matched controls. Metabolomic analysis was performed on serum from the AD cohort. We then assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice, two rodent models of AD. The levels of circulating choline were reduced while pro-inflammatory cytokine TNFα was elevated in serum of both MCI sparse and high pathology cases. Reduced choline and elevated TNFα correlated with higher neuritic plaque density and Braak stage. In AD patients, we found reductions in choline, its derivative acetylcholine (ACh), and elevated TNFα. Choline and ACh levels were negatively correlated with neuritic plaque load, Braak stage, and TNFα, but positively correlated with MMSE, and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were significantly associated with circuiting choline levels. In 3xTg-AD mice, the Ch- diet increased amyloid-β levels and tau phosphorylation in cortical tissue, and TNFα in both blood and cortical tissue, paralleling the severe human-AD profile. Conversely, the Ch+ diet increased choline and ACh while reducing amyloid-β and TNFα levels in brains of APP/PS1 mice. Collectively, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of adequate dietary choline intake to offset disease.
Collapse
Affiliation(s)
- Jessica M Judd
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, 85287, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
| | - Geidy E Serrano
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | | | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA.
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA.
- School of Life Sciences, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA.
| |
Collapse
|
12
|
Berezhnoy G, Laske C, Trautwein C. Metabolomic profiling of CSF and blood serum elucidates general and sex-specific patterns for mild cognitive impairment and Alzheimer's disease patients. Front Aging Neurosci 2023; 15:1219718. [PMID: 37693649 PMCID: PMC10483152 DOI: 10.3389/fnagi.2023.1219718] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/26/2023] [Indexed: 09/12/2023] Open
Abstract
Background Beta-amyloid (Abeta) and tau protein in cerebrospinal fluid (CSF) are established diagnostic biomarkers for Alzheimer's disease (AD). However, these biomarkers may not the only ones existing parameters that reflect Alzheimer's disease neuropathological change. The use of quantitative metabolomics approach could provide novel insights into dementia progression and identify key metabolic alterations in CSF and serum. Methods In the present study, we quantified a set of 45 metabolites in CSF (71 patients) and 27 in serum (76 patients) in patients with mild cognitive impairment (MCI), AD, and controls using nuclear magnetic resonance (NMR)-based metabolomics. Results We found significantly reduced CSF (1.32-fold, p = 0.0195) and serum (1.47-fold, p = 0.0484) levels of the ketone body acetoacetate in AD and MCI patients. Additionally, we found decreased levels (1.20-fold, p = 0.0438) of the branched-chain amino acid (BCAA) valine in the CSF of AD patients with increased valine degradation pathway metabolites (such as 3-hydroxyisobutyrate and α-ketoisovalerate). Moreover, we discovered that CSF 2-hydroxybutyrate is dramatically reduced in the MCI patient group (1.23-fold, p = 0.039). On the other hand, vitamin C (ascorbate) was significantly raised in CSF of these patients (p = 0.008). We also identified altered CSF protein content, 1,5-anhydrosorbitol and fructose as further metabolic shifts distinguishing AD from MCI. Significantly decreased serum levels of the amino acid ornithine were seen in the AD dementia group when compared to healthy controls (1.36-fold, p = 0.011). When investigating the effect of sex, we found for AD males the sign of decreased 2-hydroxybutyrate and acetoacetate in CSF while for AD females increased serum creatinine was identified. Conclusion Quantitative NMR metabolomics of CSF and serum was able to efficiently identify metabolic changes associated with dementia groups of MCI and AD patients. Further, we showed strong correlations between these changes and well-established metabolomic and clinical indicators like Abeta.
Collapse
Affiliation(s)
- Georgy Berezhnoy
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| | - Christoph Laske
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Christoph Trautwein
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Lista S, González-Domínguez R, López-Ortiz S, González-Domínguez Á, Menéndez H, Martín-Hernández J, Lucia A, Emanuele E, Centonze D, Imbimbo BP, Triaca V, Lionetto L, Simmaco M, Cuperlovic-Culf M, Mill J, Li L, Mapstone M, Santos-Lozano A, Nisticò R. Integrative metabolomics science in Alzheimer's disease: Relevance and future perspectives. Ageing Res Rev 2023; 89:101987. [PMID: 37343679 DOI: 10.1016/j.arr.2023.101987] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Alzheimer's disease (AD) is determined by various pathophysiological mechanisms starting 10-25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics - coupled with existing accessible biomarkers used for AD screening and diagnosis - can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain.
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Madrid, Spain
| | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Luana Lionetto
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Maurizio Simmaco
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Miroslava Cuperlovic-Culf
- Digital Technologies Research Center, National Research Council, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jericha Mill
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| |
Collapse
|
14
|
Rusch JA, Layden BT, Dugas LR. Signalling cognition: the gut microbiota and hypothalamic-pituitary-adrenal axis. Front Endocrinol (Lausanne) 2023; 14:1130689. [PMID: 37404311 PMCID: PMC10316519 DOI: 10.3389/fendo.2023.1130689] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Cognitive function in humans depends on the complex and interplay between multiple body systems, including the hypothalamic-pituitary-adrenal (HPA) axis. The gut microbiota, which vastly outnumbers human cells and has a genetic potential that exceeds that of the human genome, plays a crucial role in this interplay. The microbiota-gut-brain (MGB) axis is a bidirectional signalling pathway that operates through neural, endocrine, immune, and metabolic pathways. One of the major neuroendocrine systems responding to stress is the HPA axis which produces glucocorticoids such as cortisol in humans and corticosterone in rodents. Appropriate concentrations of cortisol are essential for normal neurodevelopment and function, as well as cognitive processes such as learning and memory, and studies have shown that microbes modulate the HPA axis throughout life. Stress can significantly impact the MGB axis via the HPA axis and other pathways. Animal research has advanced our understanding of these mechanisms and pathways, leading to a paradigm shift in conceptual thinking about the influence of the microbiota on human health and disease. Preclinical and human trials are currently underway to determine how these animal models translate to humans. In this review article, we summarize the current knowledge of the relationship between the gut microbiota, HPA axis, and cognition, and provide an overview of the main findings and conclusions in this broad field.
Collapse
Affiliation(s)
- Jody A. Rusch
- Division of Chemical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- C17 Chemical Pathology Laboratory, Groote Schuur Hospital, National Health Laboratory Service, Cape Town, South Africa
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| | - Lara R. Dugas
- Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, Cape Town, South Africa
- Public Health Sciences, Parkinson School of Health Sciences and Public Health, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
15
|
Judd JM, Jasbi P, Winslow W, Serrano GE, Beach TG, Klein-Seetharaman J, Velazquez R. Low circulating choline, a modifiable dietary factor, is associated with the pathological progression and metabolome dysfunction in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539713. [PMID: 37214864 PMCID: PMC10197582 DOI: 10.1101/2023.05.06.539713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most Americans (∼90%) are deficient in dietary choline, an essential nutrient. Associations between circulating choline and pathological progression in Alzheimer's disease (AD) remain unknown. Here, we examined these associations and performed a metabolomic analysis in blood serum from severe AD, moderate AD, and healthy controls. Additionally, to gain mechanistic insight, we assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice. In humans, we found AD-associated reductions in choline, it's derivative acetylcholine (ACh), and elevated pro-inflammatory cytokine TNFα. Choline and ACh were negatively correlated with Plaque density, Braak stage, and TNFα, but positively correlated with MMSE and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were associated with choline levels. In mice, Ch-paralleled AD severe, but Ch+ was protective. In conclusion, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of dietary choline consumption to offset disease.
Collapse
|
16
|
Liu R, Zhang L, You H. Insulin Resistance and Impaired Branched-Chain Amino Acid Metabolism in Alzheimer's Disease. J Alzheimers Dis 2023:JAD221147. [PMID: 37125547 DOI: 10.3233/jad-221147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is complicated and involves multiple contributing factors. Mounting evidence supports the concept that AD is an age-related metabolic neurodegenerative disease mediated in part by brain insulin resistance, and sharing similar metabolic dysfunctions and brain pathological characteristics that occur in type 2 diabetes mellitus (T2DM) and other insulin resistance disorders. Brain insulin signal pathway is a major regulator of branched-chain amino acid (BCAA) metabolism. In the past several years, impaired BCAA metabolism has been described in several insulin resistant states such as obesity, T2DM and cardiovascular disease. Disrupted BCAA metabolism leading to elevation in circulating BCAAs and related metabolites is an early metabolic phenotype of insulin resistance and correlated with future onset of T2DM. Brain is a major site for BCAA metabolism. BCAAs play pivotal roles in normal brain function, especially in signal transduction, nitrogen homeostasis, and neurotransmitter cycling. Evidence from animal models and patients support the involvement of BCAA dysmetabolism in neurodegenerative diseases including Huntington's disease, Parkinson's disease, and maple syrup urine disease. More recently, growing studies have revealed altered BCAA metabolism in AD, but the relationship between them is poorly understood. This review is focused on the recent findings regarding BCAA metabolism and its role in AD. Moreover, we will explore how impaired BCAA metabolism influences brain function and participates in the pathogenesis of AD.
Collapse
Affiliation(s)
- Rui Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Lei Zhang
- Department of Chinese Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Hao You
- Department of Public Health and Preventive Medicine, School of Medicine, Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Maszka P, Kwasniak-Butowska M, Cysewski D, Slawek J, Smolenski RT, Tomczyk M. Metabolomic Footprint of Disrupted Energetics and Amino Acid Metabolism in Neurodegenerative Diseases: Perspectives for Early Diagnosis and Monitoring of Therapy. Metabolites 2023; 13:metabo13030369. [PMID: 36984809 PMCID: PMC10057046 DOI: 10.3390/metabo13030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurodegenerative diseases (NDs) is increasing due to the aging population and improved longevity. They are characterized by a range of pathological hallmarks, including protein aggregation, mitochondrial dysfunction, and oxidative stress. The aim of this review is to summarize the alterations in brain energy and amino acid metabolism in Alzheimer’s disease (AD), Parkinson’s disease (PD), and Huntington’s disease (HD). Based on our findings, we proposed a group of selected metabolites related to disturbed energy or mitochondrial metabolism as potential indicators or predictors of disease. We also discussed the hidden challenges of metabolomics studies in NDs and proposed future directions in this field. We concluded that biochemical parameters of brain energy metabolism disruption (obtained with metabolomics) may have potential application as a diagnostic tool for the diagnosis, prediction, and monitoring of the effectiveness of therapies for NDs. However, more studies are needed to determine the sensitivity of the proposed candidates. We suggested that the most valuable biomarkers for NDs studies could be groups of metabolites combined with other neuroimaging or molecular techniques. To attain clinically applicable results, the integration of metabolomics with other “omic” techniques might be required.
Collapse
Affiliation(s)
- Patrycja Maszka
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Magdalena Kwasniak-Butowska
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, 15-276 Bialystok, Poland
| | - Jaroslaw Slawek
- Division of Neurological and Psychiatric Nursing, Medical University of Gdansk, 80-211 Gdansk, Poland
- Department of Neurology, St. Adalbert Hospital, 80-462 Gdansk, Poland
| | - Ryszard T. Smolenski
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| | - Marta Tomczyk
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence: (R.T.S.); (M.T.)
| |
Collapse
|