1
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The rat bladder umbrella cell keratin network: Organization, dependence on the plectin cytolinker, and responses to bladder filling. Mol Biol Cell 2024; 35:ar139. [PMID: 39356795 PMCID: PMC11617100 DOI: 10.1091/mbc.e24-06-0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in native bladder umbrella cells and their responses to bladder filling are poorly understood. Using whole rat bladders in conjunction with confocal microscopy, super-resolution image processing, three-dimensional image reconstruction, and platinum replica electron microscopy, we identified a cortical cytoskeleton network in umbrella cells that was organized as a dense tile-like mesh comprised of tesserae bordered by cortical actin filaments, filled with keratin filaments, and cross-linked by plectin. Below these tesserae, keratin formed a subapical meshwork and at the cell periphery a band of keratin was linked via plectin to the junction-associated actin ring. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated keratin, and defects in cell-cell adhesion. During bladder filling, a junction-localized necklace of desmosomes expanded, and a subjacent girded layer formed linking the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Our studies reveal a novel tile- and mesh-like organization of the umbrella cell keratin network that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Dennis R. Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Marianela G. Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15213
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O'Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh 15213
| |
Collapse
|
2
|
Ruiz WG, Clayton DR, Parakala-Jain T, Dalghi MG, Franks J, Apodaca G. The umbrella cell keratin network: organization as a tile-like mesh, formation of a girded layer in response to bladder filling, and dependence on the plectin cytolinker. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598498. [PMID: 38915686 PMCID: PMC11195278 DOI: 10.1101/2024.06.11.598498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The keratin cytoskeleton and associated desmosomes contribute to the mechanical stability of epithelial tissues, but their organization in bladder umbrella cells and their responses to bladder filling are poorly understood. Using super-resolution confocal microscopy, along with 3D image reconstruction and platinum replica electron microscopy, we observed that the apical keratin network of umbrella cells was organized as a dense tile-like mesh comprised of tesserae bordered on their edges by cortical actin filaments, filled with woven keratin filaments, and crosslinked by plectin. A band of keratin was also observed at the cell periphery that was linked to the junction-associated actin ring by plectin. During bladder filling, the junction-localized desmosomal necklace expanded, and a subjacent girded layer was formed that linked the keratin network to desmosomes, including those at the umbrella cell-intermediate cell interface. Disruption of plectin led to focal keratin network dissolution, loss of the junction-associated band of keratin, perturbation of tight junction continuity, and loss of cell-cell cohesion. Our studies reveal a novel tile-like organization of the umbrella cell keratin cytoskeleton that is dependent on plectin, that reorganizes in response to bladder filling, and that likely serves to maintain umbrella cell continuity in the face of mechanical distension.
Collapse
Affiliation(s)
- Wily G. Ruiz
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis R. Clayton
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tanmay Parakala-Jain
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marianela G. Dalghi
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jonathan Franks
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gerard Apodaca
- Department of Medicine Renal-Electrolyte Division and George M. O’Brien Pittsburgh Center for Kidney Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Pees B, Peters L, Treitz C, Hamerich IK, Kissoyan KAB, Tholey A, Dierking K. The Caenorhabditis elegans proteome response to two protective Pseudomonas symbionts. mBio 2024; 15:e0346323. [PMID: 38411078 PMCID: PMC11005407 DOI: 10.1128/mbio.03463-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The Caenorhabditis elegans natural microbiota isolates Pseudomonas lurida MYb11 and Pseudomonas fluorescens MYb115 protect the host against pathogens through distinct mechanisms. While P. lurida produces an antimicrobial compound and directly inhibits pathogen growth, P. fluorescens MYb115 protects the host without affecting pathogen growth. It is unknown how these two protective microbes affect host biological processes. We used a proteomics approach to elucidate the C. elegans response to MYb11 and MYb115. We found that both Pseudomonas isolates increase vitellogenin protein production in young adults, which confirms previous findings on the effect of microbiota on C. elegans reproductive timing. Moreover, the C. elegans responses to MYb11 and MYb115 exhibit common signatures with the response to other vitamin B12-producing bacteria, emphasizing the importance of vitamin B12 in C. elegans-microbe metabolic interactions. We further analyzed signatures in the C. elegans response specific to MYb11 or MYb115. We provide evidence for distinct modifications in lipid metabolism by both symbiotic microbes. We could identify the activation of host-pathogen defense responses as an MYb11-specific proteome signature and provide evidence that the intermediate filament protein IFB-2 is required for MYb115-mediated protection. These results indicate that MYb11 not only produces an antimicrobial compound but also activates host antimicrobial defenses, which together might increase resistance to infection. In contrast, MYb115 affects host processes such as lipid metabolism and cytoskeleton dynamics, which might increase host tolerance to infection. Overall, this study pinpoints proteins of interest that form the basis for additional exploration into the mechanisms underlying C. elegans microbiota-mediated protection from pathogen infection and other microbiota-mediated traits.IMPORTANCESymbiotic bacteria can defend their host against pathogen infection. While some protective symbionts directly interact with pathogenic bacteria, other protective symbionts elicit a response in the host that improves its own pathogen defenses. To better understand how a host responds to protective symbionts, we examined which host proteins are affected by two protective Pseudomonas bacteria in the model nematode Caenorhabditis elegans. We found that the C. elegans response to its protective symbionts is manifold, which was reflected in changes in proteins that are involved in metabolism, the immune system, and cell structure. This study provides a foundation for exploring the contribution of the host response to symbiont-mediated protection from pathogen infection.
Collapse
Affiliation(s)
- Barbara Pees
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Lena Peters
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Christian Treitz
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrecht University, Kiel, Germany
| | - Inga K. Hamerich
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Kohar A. B. Kissoyan
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research and Bioanalytics, Institute for Experimental Medicine, Christian-Albrecht University, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrecht University, Kiel, Germany
| |
Collapse
|
4
|
Parfenov AI. The value of increased intestinal permeability in the pathogenesis of internal diseases. TERAPEVT ARKH 2024; 96:85-90. [DOI: 10.26442/00403660.2024.02.202587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In the process of evolution in the gastrointestinal tract, a system of protection against bacterial and food antigens from getting into the blood was formed. The causes of increased intestinal permeability (IIP) can be microbiota imbalance, use of antibiotics, non-steroidal anti-inflammatory drugs, stress, diet rich in fructose, glucose, sucrose and long-chain fatty acids. The appearance of IIP may be of paramount importance in the pathogenesis of autoimmune diseases. A diet low in fermentable oligodimonosaccharides and polyols, pre- and probiotics, polyphenols, vitamins, short-chain fatty acids, dietary fiber, glutamine contributes to the reduction of IIP. It has been established that the cytoprotector rebamipide strengthens the barrier function throughout the gastrointestinal tract, which is reflected in practical recommendations for its use in diseases accompanied by IIP. The study of this direction will contribute to the emergence of a new strategy for the treatment of internal diseases.
Collapse
|
5
|
Kumar LK, Verma SK, Chandel R, Thumar M, Singh D, Onteru SK. Aflatoxin M1 decreases the expression of genes encoding tight junction proteins and influences the intestinal epithelial integrity. Mycotoxin Res 2023; 39:453-467. [PMID: 37794205 DOI: 10.1007/s12550-023-00505-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Aflatoxin M1 (AFM1) is a mycotoxin that is commonly found as a milk contaminant, and its presence in milk has been linked to cytotoxicity. The present study aimed to evaluate the acute cytotoxic effects of AFM1 on intestinal Caco-2 cells. Initially, we checked the morphology and viability of Caco-2 cells after treatment with different concentrations of AFM1 (5 ng/L, 50 ng/L, 250 ng/L, 500 ng/L, 1000 ng/L, and 2000 ng/L) for different time intervals (6 h, 12 h, and 24 h). It was found that AFM1 did not show any effect on cell morphology, but 10% decrease in viability above 1000 ng/L after 12 h. Furthermore, DCFDA assay showed increased ROS production after 6 h treatments. qPCR analysis showed an increased expression of epithelial-specific cytoskeleton marker genes, Cytokeratin, Villin, Vimentin, and JAM-1, and a decreased expression of tight junction protein genes, Claudin-1, Occludin, and ZO-1. Similarly, we found an increased expression of Cyp1a1 transcript with an increasing AFM1 concentration and incubation time. This gene expression analysis showed AFM1 can cause disruption of tight junctions between intestinal cells, which was further confirmed by a transwell experiment. In conclusion, consumption of AFM1-contaminated milk does not show any effect on cells morphology and viability but decreases the expression of intestinal barrier transcripts that may lead to the disruption of intestinal barrier function and leaky gut.
Collapse
Affiliation(s)
- Lal Krishan Kumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Surya Kant Verma
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Rajeev Chandel
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Meet Thumar
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal (Haryana), India, 132001.
| |
Collapse
|
6
|
Perrin L, Matic Vignjevic D. The emerging roles of the cytoskeleton in intestinal epithelium homeostasis. Semin Cell Dev Biol 2023:S1084-9521(23)00071-X. [PMID: 36948998 DOI: 10.1016/j.semcdb.2023.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023]
Abstract
The intestinal epithelium must absorb many nutrients and water while forming a barrier that is impermeable to pathogens present in the external environment. Concurrently to fulfill this dual role, the intestinal epithelium is challenged by a rapid renewal of cells and forces resulting from digestion. Hence, intestinal homeostasis requires precise control of tissue integrity, tissue renewal, cell polarity, and force generation/transmission. In this review, we highlight the contribution of the cell cytoskeleton- actin, microtubules, and intermediate filaments- to intestinal epithelium homeostasis. With a focus on enterocytes, we first discuss the role of these networks in the formation and maintenance of cell-cell and cell-matrix junctions. Then, we cover their role in intracellular trafficking related to the apicobasal polarity of enterocytes. Finally, we report on the cytoskeletal changes that occur during tissue renewal. In conclusion, the importance of the cytoskeleton in maintaining intestinal homeostasis is emerging, and we think this field will keep evolving.
Collapse
Affiliation(s)
- Louisiane Perrin
- Institut Curie, PSL Research University, CNRS UMR 144, F-75005 Paris, France.
| | | |
Collapse
|
7
|
Naturale VF, Pickett MA, Feldman JL. Context matters: Lessons in epithelial polarity from the Caenorhabditis elegans intestine and other tissues. Curr Top Dev Biol 2023; 154:37-71. [PMID: 37100523 DOI: 10.1016/bs.ctdb.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Epithelia are tissues with diverse morphologies and functions across metazoans, ranging from vast cell sheets encasing internal organs to internal tubes facilitating nutrient uptake, all of which require establishment of apical-basolateral polarity axes. While all epithelia tend to polarize the same components, how these components are deployed to drive polarization is largely context-dependent and likely shaped by tissue-specific differences in development and ultimate functions of polarizing primordia. The nematode Caenorhabditis elegans (C. elegans) offers exceptional imaging and genetic tools and possesses unique epithelia with well-described origins and roles, making it an excellent model to investigate polarity mechanisms. In this review, we highlight the interplay between epithelial polarization, development, and function by describing symmetry breaking and polarity establishment in a particularly well-characterized epithelium, the C. elegans intestine. We compare intestinal polarization to polarity programs in two other C. elegans epithelia, the pharynx and epidermis, correlating divergent mechanisms with tissue-specific differences in geometry, embryonic environment, and function. Together, we emphasize the importance of investigating polarization mechanisms against the backdrop of tissue-specific contexts, while also underscoring the benefits of cross-tissue comparisons of polarity.
Collapse
Affiliation(s)
- Victor F Naturale
- Department of Biology, Stanford University, Stanford, CA, United States
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA, United States; Department of Biological Sciences, San José State University, San José, CA, United States
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA, United States.
| |
Collapse
|
8
|
Parekh P, Mu Q, Badachhape A, Bhavane R, Srivastava M, Devkota L, Sun X, Bhandari P, Eriksen JL, Tanifum E, Ghaghada K, Annapragada A. A surrogate marker for very early-stage tau pathology is detectable by molecular magnetic resonance imaging. Theranostics 2022; 12:5504-5521. [PMID: 35910789 PMCID: PMC9330526 DOI: 10.7150/thno.72258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/02/2022] [Indexed: 01/30/2023] Open
Abstract
The abnormal phosphorylation of tau is a necessary precursor to the formation of tau fibrils, a marker of Alzheimer's disease. We hypothesize that hyperphosphorylative conditions may result in unique cell surface markers. We identify and demonstrate the utility of such surrogate markers to identify the hyperphosphorylative state. Methods: Cell SELEX was used to identify novel thioaptamers specifically binding hyperphosphorylative cells. Cell surface vimentin was identified as a potential binding target of the aptamer. Novel molecular magnetic resonance imaging (M-MRI) probes using these aptamers and a small molecule ligand to vimentin were used for in vivo detection of this pre-pathological state. Results: In a mouse model of pathological tau, we demonstrated in vivo visualization of the hyperphosphorylative state by M-MRI, enabling the identification at a pre-pathological stage of mice that develop frank tau pathology several months later. In vivo visualization of the hyperphosphorylative state by M-MRI was further validated in a second mouse model (APP/PS1) of Alzheimer's disease again identifying the mutants at a pre-pathological stage. Conclusions: M-MRI of the hyperphosphorylative state identifies future tau pathology and could enable extremely early-stage diagnosis of Alzheimer's disease, at a pre-patholgical stage.
Collapse
Affiliation(s)
| | - Qingshan Mu
- Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | - Xianwei Sun
- Baylor College of Medicine, Houston, TX, USA
| | | | | | - Eric Tanifum
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Ketan Ghaghada
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA
| | - Ananth Annapragada
- Texas Children's Hospital/Baylor College of Medicine, Houston, TX, USA,✉ Corresponding author:
| |
Collapse
|
9
|
Windoffer R, Schwarz N, Yoon S, Piskova T, Scholkemper M, Stegmaier J, Bönsch A, Di Russo J, Leube R. Quantitative mapping of keratin networks in 3D. eLife 2022; 11:75894. [PMID: 35179484 PMCID: PMC8979588 DOI: 10.7554/elife.75894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Mechanobiology requires precise quantitative information on processes taking place in specific 3D microenvironments. Connecting the abundance of microscopical, molecular, biochemical, and cell mechanical data with defined topologies has turned out to be extremely difficult. Establishing such structural and functional 3D maps needed for biophysical modeling is a particular challenge for the cytoskeleton, which consists of long and interwoven filamentous polymers coordinating subcellular processes and interactions of cells with their environment. To date, useful tools are available for the segmentation and modeling of actin filaments and microtubules but comprehensive tools for the mapping of intermediate filament organization are still lacking. In this work, we describe a workflow to model and examine the complete 3D arrangement of the keratin intermediate filament cytoskeleton in canine, murine, and human epithelial cells both, in vitro and in vivo. Numerical models are derived from confocal airyscan high-resolution 3D imaging of fluorescence-tagged keratin filaments. They are interrogated and annotated at different length scales using different modes of visualization including immersive virtual reality. In this way, information is provided on network organization at the subcellular level including mesh arrangement, density and isotropic configuration as well as details on filament morphology such as bundling, curvature, and orientation. We show that the comparison of these parameters helps to identify, in quantitative terms, similarities and differences of keratin network organization in epithelial cell types defining subcellular domains, notably basal, apical, lateral, and perinuclear systems. The described approach and the presented data are pivotal for generating mechanobiological models that can be experimentally tested.
Collapse
Affiliation(s)
- Reinhard Windoffer
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Sungjun Yoon
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Teodora Piskova
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | | | - Johannes Stegmaier
- Institute of Imaging and Computer Vision, RWTH Aachen University, Aachen, Germany
| | - Andrea Bönsch
- Visual Computing Institute, RWTH Aachen University, Aachen, Germany
| | - Jacopo Di Russo
- Interdisciplinary Centre for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Rudolf Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Sternberg AK, Buck VU, Classen-Linke I, Leube RE. How Mechanical Forces Change the Human Endometrium during the Menstrual Cycle in Preparation for Embryo Implantation. Cells 2021; 10:2008. [PMID: 34440776 PMCID: PMC8391722 DOI: 10.3390/cells10082008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
The human endometrium is characterized by exceptional plasticity, as evidenced by rapid growth and differentiation during the menstrual cycle and fast tissue remodeling during early pregnancy. Past work has rarely addressed the role of cellular mechanics in these processes. It is becoming increasingly clear that sensing and responding to mechanical forces are as significant for cell behavior as biochemical signaling. Here, we provide an overview of experimental evidence and concepts that illustrate how mechanical forces influence endometrial cell behavior during the hormone-driven menstrual cycle and prepare the endometrium for embryo implantation. Given the fundamental species differences during implantation, we restrict the review to the human situation. Novel technologies and devices such as 3D multifrequency magnetic resonance elastography, atomic force microscopy, organ-on-a-chip microfluidic systems, stem-cell-derived organoid formation, and complex 3D co-culture systems have propelled the understanding how endometrial receptivity and blastocyst implantation are regulated in the human uterus. Accumulating evidence has shown that junctional adhesion, cytoskeletal rearrangement, and extracellular matrix stiffness affect the local force balance that regulates endometrial differentiation and blastocyst invasion. A focus of this review is on the hormonal regulation of endometrial epithelial cell mechanics. We discuss potential implications for embryo implantation.
Collapse
Affiliation(s)
| | | | | | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Wendlingweg 2, 52074 Aachen, Germany; (A.K.S.); (V.U.B.); (I.C.-L.)
| |
Collapse
|
11
|
Remmelzwaal S, Geisler F, Stucchi R, van der Horst S, Pasolli M, Kroll JR, Jarosinska OD, Akhmanova A, Richardson CA, Altelaar M, Leube RE, Ramalho JJ, Boxem M. BBLN-1 is essential for intermediate filament organization and apical membrane morphology. Curr Biol 2021; 31:2334-2346.e9. [PMID: 33857431 DOI: 10.1016/j.cub.2021.03.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/25/2021] [Accepted: 03/19/2021] [Indexed: 01/07/2023]
Abstract
Epithelial tubes are essential components of metazoan organ systems that control the flow of fluids and the exchange of materials between body compartments and the outside environment. The size and shape of the central lumen confer important characteristics to tubular organs and need to be carefully controlled. Here, we identify the small coiled-coil protein BBLN-1 as a regulator of lumen morphology in the C. elegans intestine. Loss of BBLN-1 causes the formation of bubble-shaped invaginations of the apical membrane into the cytoplasm of intestinal cells and abnormal aggregation of the subapical intermediate filament (IF) network. BBLN-1 interacts with IF proteins and localizes to the IF network in an IF-dependent manner. The appearance of invaginations is a result of the abnormal IF aggregation, indicating a direct role for the IF network in maintaining lumen homeostasis. Finally, we identify bublin (BBLN) as the mammalian ortholog of BBLN-1. When expressed in the C. elegans intestine, BBLN recapitulates the localization pattern of BBLN-1 and can compensate for the loss of BBLN-1 in early larvae. In mouse intestinal organoids, BBLN localizes subapically, together with the IF protein keratin 8. Our results therefore may have implications for understanding the role of IFs in regulating epithelial tube morphology in mammals.
Collapse
Affiliation(s)
- Sanne Remmelzwaal
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Suzanne van der Horst
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Milena Pasolli
- Cell Biology, Neurobiology and Biophysics, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Jason R Kroll
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Olga D Jarosinska
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | | | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - João J Ramalho
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Mike Boxem
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
12
|
Huang W, Cho KY, Meng D, Walker WA. The impact of indole-3-lactic acid on immature intestinal innate immunity and development: a transcriptomic analysis. Sci Rep 2021; 11:8088. [PMID: 33850185 PMCID: PMC8044159 DOI: 10.1038/s41598-021-87353-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/23/2021] [Indexed: 02/02/2023] Open
Abstract
An excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA's effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.
Collapse
Affiliation(s)
- Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114-3503), Charlestown, MA, 02129, USA
| | - Ky Young Cho
- Department of Pediatrics, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114-3503), Charlestown, MA, 02129, USA
| | - Di Meng
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114-3503), Charlestown, MA, 02129, USA
| | - W Allan Walker
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital for Children, Harvard Medical School, 16th Street Building (114-3503), Charlestown, MA, 02129, USA.
| |
Collapse
|
13
|
Yang Z, Mattingly BC, Hall DH, Ackley BD, Buechner M. Terminal web and vesicle trafficking proteins mediate nematode single-cell tubulogenesis. J Cell Biol 2020; 219:e202003152. [PMID: 32860501 PMCID: PMC7594493 DOI: 10.1083/jcb.202003152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/15/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022] Open
Abstract
Single-celled tubules represent a complicated structure that forms during development, requiring extension of a narrow cytoplasm surrounding a lumen exerting osmotic pressure that can burst the luminal membrane. Genetic studies on the excretory canal cell of Caenorhabditis elegans have revealed many proteins that regulate the cytoskeleton, vesicular transport, and physiology of the narrow canals. Here, we show that βH-spectrin regulates the placement of intermediate filament proteins forming a terminal web around the lumen, and that the terminal web in turn retains a highly conserved protein (EXC-9/CRIP1) that regulates apical endosomal trafficking. EXC-1/IRG, the binding partner of EXC-9, is also localized to the apical membrane and affects apical actin placement and RAB-8-mediated vesicular transport. The results suggest that an intermediate filament protein acts in a novel pathway to direct the traffic of vesicles to locations of lengthening apical surface during single-celled tubule development.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | | | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY
| | - Brian D. Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| |
Collapse
|
14
|
Keratin intermediate filaments in the colon: guardians of epithelial homeostasis. Int J Biochem Cell Biol 2020; 129:105878. [PMID: 33152513 DOI: 10.1016/j.biocel.2020.105878] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Keratin intermediate filament proteins are major cytoskeletal components of the mammalian simple layered columnar epithelium in the gastrointestinal tract. Human colon crypt epithelial cells express keratins 18, 19 and 20 as the major type I keratins, and keratin 8 as the type II keratin. Keratin expression patterns vary between species, and mouse colonocytes express keratin 7 as a second type II keratin. Colonic keratin patterns change during cell differentiation, such that K20 increases in the more differentiated crypt cells closer to the central lumen. Keratins provide a structural and mechanical scaffold to support cellular stability, integrity and stress protection in this rapidly regenerating tissue. They participate in central colonocyte processes including barrier function, ion transport, differentiation, proliferation and inflammatory signaling. The cell-specific keratin compositions in different epithelial tissues has allowed for the utilization of keratin-based diagnostic methods. Since the keratin expression pattern in tumors often resembles that in the primary tissue, it can be used to recognize metastases of colonic origin. This review focuses on recent findings on the biological functions of mammalian colon epithelial keratins obtained from pivotal in vivo models. We also discuss the diagnostic value of keratins in chronic colonic disease and known keratin alterations in colon pathologies. This review describes the biochemical properties of keratins and their molecular actions in colonic epithelial cells and highlights diagnostic data in colorectal cancer and inflammatory bowel disease patients, which may facilitate the recognition of disease subtypes and the establishment of personal therapies in the future.
Collapse
|
15
|
Buechner M, Yang Z, Al-Hashimi H. A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development. J Dev Biol 2020; 8:jdb8030017. [PMID: 32906663 PMCID: PMC7557474 DOI: 10.3390/jdb8030017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Formation and regulation of properly sized epithelial tubes is essential for multicellular life. The excretory canal cell of C. elegans provides a powerful model for investigating the integration of the cytoskeleton, intracellular transport, and organismal physiology to regulate the developmental processes of tube extension, lumen formation, and lumen diameter regulation in a narrow single cell. Multiple studies have provided new understanding of actin and intermediate filament cytoskeletal elements, vesicle transport, and the role of vacuolar ATPase in determining tube size. Most of the genes discovered have clear homologues in humans, with implications for understanding these processes in mammalian tissues such as Schwann cells, renal tubules, and brain vasculature. The results of several new genetic screens are described that provide a host of new targets for future studies in this informative structure.
Collapse
Affiliation(s)
- Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
- Correspondence:
| | - Zhe Yang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
| | | |
Collapse
|
16
|
Geisler F, Coch RA, Richardson C, Goldberg M, Bevilacqua C, Prevedel R, Leube RE. Intestinal intermediate filament polypeptides in C. elegans: Common and isotype-specific contributions to intestinal ultrastructure and function. Sci Rep 2020; 10:3142. [PMID: 32081918 PMCID: PMC7035338 DOI: 10.1038/s41598-020-59791-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022] Open
Abstract
The abundance and diversity of intermediate filaments (IFs) in the C. elegans intestine indicate important contributions to intestinal function and organismal wellbeing. Fluorescent IF reporters localize below the actin-rich brush border and are highly enriched in the lumen-enveloping endotube, which is attached to the C. elegans apical junction. Mapping intestinal viscoelasticity by contact-free Brillouin microscopy reveals that the IF-rich endotube is positioned at the interface between the stiff brush border and soft cytoplasm suggesting a mechanical buffering function to deal with the frequent luminal distortions occurring during food intake and movement. In accordance, depletion of IFB-2, IFC-2 and IFD-2 leads to intestinal lumen dilation although depletion of IFC-1, IFD-1 and IFP-1 do not. Ultrastructural analyses of loss of function mutants further show that IFC-2 mutants have a rarefied endotube and IFB-2 mutants lack an endotube altogether. Remarkably, almost all IFB-2- and IFC-2-deficient animals develop to fertile adults. But developmental retardation, reduced brood size, altered survival and increased sensitivity to microbial toxin, osmotic and oxidative stress are seen in both mutants albeit to different degrees. Taken together, we propose that individual intestinal IF polypeptides contribute in different ways to endotube morphogenesis and cooperate to cope with changing environments.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Martin Goldberg
- School of Biological and Biomedical Sciences, Durham University, Durham, United Kingdom
| | - Carlo Bevilacqua
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Robert Prevedel
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
17
|
Karabinos A, Schulze E, Baumeister R. Analysis of the novel excretory cell expressed ECP-1 protein and its proposed ECP-1/IFC-2 fusion protein EXC-2 in the nematode Caenorhabditis elegans. Gene Expr Patterns 2019; 34:119061. [DOI: 10.1016/j.gep.2019.119061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
|
18
|
Karabinos A, Schünemann J, Parry DAD. Promiscuous Dimerization Between the Caenorhabditis elegans IF Proteins and a Hypothesis to Explain How Multiple IFs Persist Over Evolutionary Time. J Mol Evol 2019; 87:221-230. [PMID: 31407015 DOI: 10.1007/s00239-019-09904-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/01/2019] [Indexed: 11/28/2022]
Abstract
Our previous calculations of ionic interactions indicated that the Caenorhabditis elegans intermediate filament (IF) IFA proteins, in addition to IFA/IFB-1 heterodimers, may also form homodimers. In order to prove the significance of these calculations, we analysed the dimerization potential of the IFA chains in blot overlays. Unexpectedly, we found here that the dimerization of the IFA-1 protein was of both homotypic and heterotypic nature, and involved all proteins immobilized on the membrane (IFA-1, IFA-2, IFA-4, IFB-1, IFB-2, IFC-1, IFC-2, IFD-1, IFD-2 and IFP-1). A similar interaction profile, though less complex, was observed for two biotinylated proteins (IFA-2 and IFA-4). These and previous results indicate that the IFA proteins are able to form many different heteropolymeric and homopolymeric complexes in the C. elegans tissue, but that only those triggered by the IFA-specific IFB-1 protein result in mature IFs. Moreover, the calculations of the possible ionic interactions between the individual rod sequences as well as their various deletion variants indicated a special role in this process for the middle part of the C. elegans IF coil 1B segment that is deleted in all vertebrate cytoplasmic IFs. We hypothesized here, therefore, that the striking promiscuity of the C. elegans IFs originally involved a nuclear lamin which, due to a two-heptad-long rod deletion, prevented formation of a functional lamin/cIF dimer. This, in concert with an efficient dimerization and a strict tissue-specific co-expression, may allow expansion and maintenance of the multiple Caenorhabditis IFs. A possible implication for evolution of chordate IFs proteins is also discussed.
Collapse
Affiliation(s)
- Anton Karabinos
- SEMBID,s.r.o.-Research Centre of Applied Biomedical Diagnostics, Magnezitarska 2/C, 04013, Kosice, Slovakia.
| | - Jürgen Schünemann
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Goettingen, Germany
| | - David A D Parry
- School of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| |
Collapse
|
19
|
Khan LA, Jafari G, Zhang N, Membreno E, Yan S, Zhang H, Gobel V. A tensile trilayered cytoskeletal endotube drives capillary-like lumenogenesis. J Cell Biol 2019; 218:2403-2424. [PMID: 31239283 PMCID: PMC6605810 DOI: 10.1083/jcb.201811175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/09/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Unicellular tubes are components of internal organs and capillaries. It is unclear how they meet the architectural challenge to extend a centered intracellular lumen of uniform diameter. In an RNAi-based Caenorhabditis elegans screen, we identified three intermediate filaments (IFs)-IFA-4, IFB-1, and IFC-2-as interactors of the lumenal membrane-actin linker ERM-1 in excretory-canal tubulogenesis. We find that IFs, generally thought to affect morphogenesis indirectly by maintaining tissue integrity, directly promote lumenogenesis in this capillary-like single-cell tube. We show that ERM-1, ACT-5/actin, and TBB-2/tubulin recruit membrane-forming endosomal and flux-promoting canalicular vesicles to the lumen, whereas IFs, themselves recruited to the lumen by ERM-1 and TBB-2, restrain lateral vesicle access. IFs thereby prevent cystogenesis, equilibrate the lumen diameter, and promote lumen forward extension. Genetic and imaging analyses suggest that IFB-1/IFA-4 and IFB-1/IFC-2 polymers form a perilumenal triple IF lattice, sandwiched between actin and helical tubulin. Our findings characterize a novel mechanism of capillary-like lumenogenesis, where a tensile trilayered cytoskeletal endotube transforms concentric into directional growth.
Collapse
Affiliation(s)
- Liakot A Khan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
| | - Gholamali Jafari
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
| | - Nan Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
- Key Laboratory of Zoonosis Research, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Edward Membreno
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
| | - Siyang Yan
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
| | - Hongjie Zhang
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Verena Gobel
- Mucosal Immunology and Biology Research Center, Developmental Biology and Genetics Core, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA
| |
Collapse
|
20
|
Schuhmacher D, Sontag JM, Sontag E. Protein Phosphatase 2A: More Than a Passenger in the Regulation of Epithelial Cell-Cell Junctions. Front Cell Dev Biol 2019; 7:30. [PMID: 30895176 PMCID: PMC6414416 DOI: 10.3389/fcell.2019.00030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/22/2019] [Indexed: 12/17/2022] Open
Abstract
Cell–cell adhesion plays a key role in the maintenance of the epithelial barrier and apicobasal cell polarity, which is crucial for homeostasis. Disruption of cell–cell adhesion is a hallmark of numerous pathological conditions, including invasive carcinomas. Adhesion between apposing cells is primarily regulated by three types of junctional structures: desmosomes, adherens junctions, and tight junctions. Cell junctional structures are highly regulated multiprotein complexes that also serve as signaling platforms to control epithelial cell function. The biogenesis, integrity, and stability of cell junctions is controlled by complex regulatory interactions with cytoskeletal and polarity proteins, as well as modulation of key component proteins by phosphorylation/dephosphorylation processes. Not surprisingly, many essential signaling molecules, including protein Ser/Thr phosphatase 2A (PP2A) are associated with intercellular junctions. Here, we examine how major PP2A enzymes regulate epithelial cell–cell junctions, either directly by associating with and dephosphorylating component proteins, or indirectly by affecting signaling pathways that control junctional integrity and cytoskeletal dynamics. PP2A deregulation has severe consequences on the stability and functionality of these structures, and disruption of cell–cell adhesion and cell polarity likely contribute to the link between PP2A dysfunction and human carcinomas.
Collapse
Affiliation(s)
- Diana Schuhmacher
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Jean-Marie Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
21
|
Geisler F, Coch RA, Richardson C, Goldberg M, Denecke B, Bossinger O, Leube RE. The intestinal intermediate filament network responds to and protects against microbial insults and toxins. Development 2019; 146:dev.169482. [PMID: 30630824 DOI: 10.1242/dev.169482] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022]
Abstract
The enrichment of intermediate filaments in the apical cytoplasm of intestinal cells is evolutionarily conserved, forming a sheath that is anchored to apical junctions and positioned below the microvillar brush border, which suggests a protective intracellular barrier function. To test this, we used Caenorhabditis elegans, the intestinal cells of which are endowed with a particularly dense intermediate filament-rich layer that is referred to as the endotube. We found alterations in endotube structure and intermediate filament expression upon infection with nematicidal B. thuringiensis or treatment with its major pore-forming toxin crystal protein Cry5B. Endotube impairment due to defined genetic mutations of intermediate filaments and their regulators results in increased Cry5B sensitivity as evidenced by elevated larval arrest, prolonged time of larval development and reduced survival. Phenotype severity reflects the extent of endotube alterations and correlates with reduced rescue upon toxin removal. The results provide in vivo evidence for a major protective role of a properly configured intermediate filament network as an intracellular barrier in intestinal cells. This notion is further supported by increased sensitivity of endotube mutants to oxidative and osmotic stress.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Richard A Coch
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Martin Goldberg
- School of Biological and Biomedical Sciences, Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Bernd Denecke
- Genomics Facility, IZKF Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
22
|
Karabinos A. Intermediate filament (IF) proteins IFA-1 and IFB-1 represent a basic heteropolymeric IF cytoskeleton of nematodes: A molecular phylogeny of nematode IFs. Gene 2019; 692:44-53. [PMID: 30641223 DOI: 10.1016/j.gene.2018.12.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/17/2018] [Accepted: 12/31/2018] [Indexed: 11/30/2022]
Abstract
Intermediate filaments (IF) belong to major cytoskeletal components of metazoan cells. We have previously determined a tissue specific expression and assembly properties of all eleven cytoplasmic IFs (IFA-1 - IFA-4, IFB-1, IFB-2, IFC-1, IFC-2, IFD-1, IFD-2, IFP-1) in C. elegans and reported an essential function for four (IFA-1, IFA-2, IFA-3 and IFB-1) of them. In this study we continued the characterisation of the IF proteins in C. elegans by searching for in vivo polymerisation partners of the IFA proteins. Using the murine IFA-1 to IFA-3-specific monoclonal Ab MH4 and the immunoprecipitation assay as a tool, we identified the heteropolymeric IFA-1/IFB-1 complexes in the whole nematode protein extract, confirming their existence also in vivo. Moreover, in the present study we also analysed evolutionary aspects of the IF proteins in C. elegans and in nematodes. We found 106 C. elegans IF homologs in different nematode clades. Phylogenetic analyses suggest that all nematode IFs (including the three newly identified IF sequences IFA-5, IFCDP-1 and IFCDP-2) might arose from a AB-type IF ancestor through repeated gene duplications and sequence divergence. Interestingly, the C. elegans IF proteins IFA-1 and IFB-1 represent a heteropolymeric IF cytoskeleton in all investigated nematode clades, in contrast to other sequences restricted to the clade III-V (IFA-2, IFA-4), III (IFA-5) and V (IFB-2, IFCDP) taxa, or even to the Caenorhabditis genus (IFA-3, IFC-1 to IFP-1). These analyses provide an insight into the origin of the multiple IFs in nematodes and also represent a basis for further studies of these sequences in nematodes.
Collapse
Affiliation(s)
- Anton Karabinos
- SEMBID, s.r.o.-Research Centre of Applied Biomedical Diagnostics, Magnezitarska 2/C, 04013 Kosice, Slovakia.
| |
Collapse
|
23
|
NISHIMURA Y, KASAHARA K, INAGAKI M. Intermediate filaments and IF-associated proteins: from cell architecture to cell proliferation. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:479-493. [PMID: 31611503 PMCID: PMC6819152 DOI: 10.2183/pjab.95.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 05/05/2023]
Abstract
Intermediate filaments (IFs), in coordination with microfilaments and microtubules, form the structural framework of the cytoskeleton and nucleus, thereby providing mechanical support against cellular stresses and anchoring intracellular organelles in place. The assembly and disassembly of IFs are mainly regulated by the phosphorylation of IF proteins. These phosphorylation states can be tracked using antibodies raised against phosphopeptides in the target proteins. IFs exert their functions through interactions with not only structural proteins, but also non-structural proteins involved in cell signaling, such as stress responses, apoptosis, and cell proliferation. This review highlights findings related to how IFs regulate cell division through phosphorylation cascades and how trichoplein, a centriolar protein originally identified as a keratin-associated protein, regulates the cell cycle through primary cilium formation.
Collapse
Affiliation(s)
- Yuhei NISHIMURA
- Departments of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kousuke KASAHARA
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki INAGAKI
- Department of Physiology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
24
|
Song H, Wang Y, Li L, Sui H, Wang P, Wang F. Cucurbitacin E Inhibits Proliferation and Migration of Intestinal Epithelial Cells via Activating Cofilin. Front Physiol 2018; 9:1090. [PMID: 30131725 PMCID: PMC6090878 DOI: 10.3389/fphys.2018.01090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/23/2018] [Indexed: 01/07/2023] Open
Abstract
The proliferation and migration of intestinal epithelial cell is important to the barrier integrity of intestinal epithelium. Cucurbitacin E (CuE) is one of the tetracyclic triterpenoids extracted from the cucurbitaceae that has been shown to inhibit cancer cell growth, tumor angiogenesis and inflammatory response. Nevertheless, the role of Cucurbitacin E in regulating the proliferation and migration of intestinal epithelial cells remain unclear. In this study, the human intestinal epithelial cell line Caco-2 was treated with CuE and the effects of CuE on cell cycle, proliferation, migration and actin dynamics in Caco-2 cells were investigated successively. We found that CuE significantly inhibited the cell proliferation and migration, inducing the cell cycle arrest in G2/M phase and disrupting the actin dynamic balance in Caco-2 cells. Finally, we showed that CuE inhibited cofilin phosphorylation by suppressing the phosphorylation of both LIM kinase (LIMK)1 and LIMK2 in vitro, resulting in the activation of cofilin, which is closely associated with cell proliferation and migration. Therefore, our studies provided the first evidence that CuE inhibited the proliferation and migration of intestinal epithelial cells via activating cofilin, and CuE is a potential candidate in intestinal disease therapy.
Collapse
Affiliation(s)
- Huapei Song
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yu Wang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Li
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hehuan Sui
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pei Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengjun Wang
- State Key Laboratory of Trauma, Burns, and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
25
|
Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in Caenorhabditis elegans. Genetics 2018; 210:637-652. [PMID: 29945901 DOI: 10.1534/genetics.118.301078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/23/2018] [Indexed: 12/28/2022] Open
Abstract
The excretory canals of Caenorhabditis elegans are a model for understanding the maintenance of apical morphology in narrow single-celled tubes. Light and electron microscopy shows that mutants in exc-2 start to form canals normally, but these swell to develop large fluid-filled cysts that lack a complete terminal web at the apical surface, and accumulate filamentous material in the canal lumen. Here, whole-genome sequencing and gene rescue show that exc-2 encodes intermediate filament protein IFC-2 EXC-2/IFC-2 protein, fluorescently tagged via clustered regularly interspaced short palindromic repeats/Cas9, is located at the apical surface of the canals independently of other intermediate filament proteins. EXC-2 is also located in several other tissues, though the tagged isoforms are not seen in the larger intestinal tube. Tagged EXC-2 binds via pulldown to intermediate filament protein IFA-4, which is also shown to line the canal apical surface. Overexpression of either protein results in narrow but shortened canals. These results are consistent with a model whereby three intermediate filaments in the canals-EXC-2, IFA-4, and IFB-1-restrain swelling of narrow tubules in concert with actin filaments that guide the extension and direction of tubule outgrowth, while allowing the tube to bend as the animal moves.
Collapse
|
26
|
Quinlan RA, Schwarz N, Windoffer R, Richardson C, Hawkins T, Broussard JA, Green KJ, Leube RE. A rim-and-spoke hypothesis to explain the biomechanical roles for cytoplasmic intermediate filament networks. J Cell Sci 2018; 130:3437-3445. [PMID: 29032358 DOI: 10.1242/jcs.202168] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Textbook images of keratin intermediate filament (IF) networks in epithelial cells and the functional compromization of the epidermis by keratin mutations promulgate a mechanical role for this important cytoskeletal component. In stratified epithelia, keratin filaments form prominent radial spokes that are focused onto cell-cell contact sites, i.e. the desmosomes. In this Hypothesis, we draw attention to a subset of keratin filaments that are apposed to the plasma membrane. They form a rim of filaments interconnecting the desmosomes in a circumferential network. We hypothesize that they are part of a rim-and-spoke arrangement of IFs in epithelia. From our review of the literature, we extend this functional role for the subplasmalemmal rim of IFs to any cell, in which plasma membrane support is required, provided these filaments connect directly or indirectly to the plasma membrane. Furthermore, cytoplasmic IF networks physically link the outer nuclear and plasma membranes, but their participation in mechanotransduction processes remain largely unconsidered. Therefore, we also discuss the potential biomechanical and mechanosensory role(s) of the cytoplasmic IF network in terms of such a rim (i.e. subplasmalemmal)-and-spoke arrangement for cytoplasmic IF networks.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK .,Biophysical Sciences Institute, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Nicole Schwarz
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Reinhard Windoffer
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| | - Christine Richardson
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Tim Hawkins
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, UK
| | - Joshua A Broussard
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Kathleen J Green
- Dept. of Pathology W127, Tarry Bldg, Room 3-735, Northwestern University, Feinberg School of Medicine, 303 E. Chicago Ave., Chicago, IL 60611, USA
| | - Rudolf E Leube
- RWTH Aachen University, Institute of Molecular and Cellular Anatomy, Wendlingweg 2, 52074 Aachen, Germany
| |
Collapse
|
27
|
Sukhotnik I, Shahar YB, Pollak Y, Dorfman T, Shefer HK, Assi ZE, Mor-Vaknin N, Coran AG. The role of intermediate filaments in maintaining integrity and function of intestinal epithelial cells after massive bowel resection in a rat. Pediatr Surg Int 2018; 34:217-225. [PMID: 29043445 DOI: 10.1007/s00383-017-4192-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 01/22/2023]
Abstract
PURPOSE Intermediate filaments (IFs) are a part of the cytoskeleton that extend throughout the cytoplasm of all cells and function in the maintenance of cell-shape by bearing tension and serving as structural components of the nuclear lamina. In normal intestine, IFs provide a tissue-specific three-dimensional scaffolding with unique context-dependent organizational features. The purpose of this study was to evaluate the role of IFs during intestinal adaptation in a rat model of short bowel syndrome (SBS). MATERIALS AND METHODS Male rats were divided into two groups: Sham rats underwent bowel transection and SBS rats underwent a 75% bowel resection. Parameters of intestinal adaptation, enterocyte proliferation and apoptosis were determined 2 weeks after operation. Illumina's Digital Gene Expression (DGE) analysis was used to determine the cytoskeleton-related gene expression profiling. IF-related genes and protein expression were determined using real-time PCR, Western blotting and immunohistochemistry. RESULTS Massive small bowel resection resulted in a significant increase in enterocyte proliferation and concomitant increase in cell apoptosis. From the total number of 20,000 probes, 16 cytoskeleton-related genes were investigated. Between these genes, only myosin and tubulin levels were upregulated in SBS compared to sham animals. Between IF-related genes, desmin, vimentin and lamin levels were down-regulated and keratin and neurofilament remain unchanged. The levels of TGF-β, vimentin and desmin gene and protein were down-regulated in resected rats (vs sham animals). CONCLUSIONS Two weeks following massive bowel resection in rats, the accelerated cell turnover was accompanied by a stimulated microfilaments and microtubules, and by inhibited intermediate filaments. Resistance to cell compression rather that maintenance of cell-shape by bearing tension are responsible for contraction, motility and postmitotic cell separation in a late stage of intestinal adaptation.
Collapse
Affiliation(s)
- I Sukhotnik
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- Department of Pediatric Surgery, Bnai Zion Medical Center, Golomb St., P.O.B. 4940, 31048, Haifa, Israel.
| | - Y Ben Shahar
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pediatric Surgery, Bnai Zion Medical Center, Golomb St., P.O.B. 4940, 31048, Haifa, Israel
| | - Y Pollak
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - T Dorfman
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - H Kreizman Shefer
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Z E Assi
- Laboratory of Intestinal Adaptation and Recovery, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pediatric Surgery, Bnai Zion Medical Center, Golomb St., P.O.B. 4940, 31048, Haifa, Israel
| | - N Mor-Vaknin
- Department of Internal Medicine, C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - A G Coran
- Section of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Exploring the villus. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2018; 11:181-190. [PMID: 30013740 PMCID: PMC6040026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The small intestinal villus and its associated epithelium includes enterocytes as the main cell type and differentiated goblet and argentaffin cells, while the invaginated crypt epithelium is the site of cell division and hence the origin of all epithelial components. Enterocytes form a cohesive monolayer which acts both as a permeability barrier between lumen and the interior, and an important gateway for nutrient digestion, absorption and transport. Differentiation and polarisation of enterocytes depends on cytoskeletal proteins that control cell shape and maintain functionally specialised membrane domains; extracellular matrix (ECM) receptors; channels and transporters regulating ion/solute transfer across the cell. The mesenchymally-derived basement membrane dynamically controls morphogenesis, cell differentiation and polarity, while also providing the structural basis for villi, crypts and the microvasculature of the lamina propria so that tissue morphology, crucially, is preserved in the absence of epithelium. Mucosal re-organisation requires immense cooperation between all elements within the lamina, including marked revisions of the microvasculature and extensive alterations to all basement membranes providing support for endodermal and mesenchymal components. In this context, subepithelial myofibroblasts fulfil important regulatory activities in terms of tissue morphogenesis; remodelling; control of epithelial cell development, polarity and functional attributes; and an intimate involvement in repair, inflammation and fibrosis. This paper reviews the main structural and functional aspects of the villus, including the epithelium and its outer glycocalyx and microvillous border; and subjacent to the epithelium, the basement membrane with its attached web of myo-fibroblasts together with the lamina propria core of the villi, and its microvasculature and lacteals. Finally, some comments on the rapidity with which the overall structure of the villi changes in their response to both external, and internal, influences.
Collapse
|
29
|
López-Posadas R, Stürzl M, Atreya I, Neurath MF, Britzen-Laurent N. Interplay of GTPases and Cytoskeleton in Cellular Barrier Defects during Gut Inflammation. Front Immunol 2017; 8:1240. [PMID: 29051760 PMCID: PMC5633683 DOI: 10.3389/fimmu.2017.01240] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/19/2017] [Indexed: 12/24/2022] Open
Abstract
An essential role of the intestine is to build and maintain a barrier preventing the luminal gut microbiota from invading the host. This involves two coordinated physical and immunological barriers formed by single layers of intestinal epithelial and endothelial cells, which avoid the activation of local immune responses or the systemic dissemination of microbial agents, and preserve tissue homeostasis. Accordingly, alterations of epithelial and endothelial barrier functions have been associated with gut inflammation, for example during inflammatory bowel disease (IBD). The discriminative control of nutriment uptake and sealing toward potentially pathological microorganisms requires a profound regulation of para- and transcellular permeability. On the subcellular level, the cytoskeleton exerts key regulatory functions in the maintenance of cellular barriers. Increased epithelial/endothelial permeability occurs primarily as a result of a reorganization of cytoskeletal–junctional complexes. Pro-inflammatory mediators such as cytokines can induce cytoskeletal rearrangements, causing inflammation-dependent defects in gut barrier function. In this context, small GTPases of the Rho family and large GTPases from the Dynamin superfamily appear as major cellular switches regulating the interaction between intercellular junctions and actomyosin complexes, and in turn cytoskeleton plasticity. Strikingly, some of these proteins, such as RhoA or guanylate-binding protein-1 (GBP-1) have been associated with gut inflammation and IBD. In this review, we will summarize the role of small and large GTPases for cytoskeleton plasticity and epithelial/endothelial barrier in the context of gut inflammation.
Collapse
Affiliation(s)
| | | | - Imke Atreya
- Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
30
|
Zhang K, Griffiths G, Repnik U, Hornef M. Seeing is understanding: Salmonella's way to penetrate the intestinal epithelium. Int J Med Microbiol 2017; 308:97-106. [PMID: 28939439 DOI: 10.1016/j.ijmm.2017.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
The molecular processes that govern host-microbial interaction illustrate not only the sophisticated and multifaceted mechanisms that protect the host from infection, but also the elaborated features of microbial pathogens that have evolved to overcome or evade the host's immune system. Here we focus on Salmonella that like other enteric pathogens must overcome the intestinal mucosal immune system, a surface constantly on alert and evolved to restrict the enteric microbiota. We discuss the initial step of Salmonella infection, the penetration of the intestinal epithelial barrier and the models used to study this fascinating aspect of microbial pathogenesis.
Collapse
Affiliation(s)
- Kaiyi Zhang
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany
| | | | - Urska Repnik
- Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Mathias Hornef
- Institute of Medical Microbiology, RWTH University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
31
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
32
|
Karabinos A, Schünemann J, Parry DAD. Assembly studies of six intestinal intermediate filament (IF) proteins B2, C1, C2, D1, D2, and E1 in the nematode C. elegans. Cytoskeleton (Hoboken) 2017; 74:107-113. [PMID: 28063204 DOI: 10.1002/cm.21354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/25/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
The dimerisation properties of six intestine-expressed intermediate filament (IF) proteins (B2, C1, C2, D1, D2, E1) were analysed in blot overlay assay on membranes containing all of the eleven recombinant C. elegans IF proteins (A1, A2, A3, A4, B1, B2, C1, C2, D1, D2, and E1). The interactions detected in the blot assays exclusively comprise intestine-expressed IF proteins and the protein A4, which is found in the dauer larva intestine. About 86% of these interactions are heterotypic, while the remaining interactions relate to C1, C2, and D2 homodimers. These multiple modes of interaction were also supported by calculations of the numbers of possible interchain ionic interactions derived from the individual rod sequences. The results predict that the six B2, C1, C2, D1, D2, and E1 IF proteins are able to form as many as eleven different heteropolymeric and three homopolymeric IFs in the C. elegans intestine. This simple model of the intestinal IF meshwork enables us to speculate that our previously reported triple RNAi worms arrested or decreased their growth because of feeding reduction due to morphological defects of the mechanically compromised intestine.
Collapse
Affiliation(s)
- Anton Karabinos
- SEMBID, s.r.o.-Research Centre of Applied Biomedical Diagnostics, Magnezitarska 2/C, Kosice, 04013, Slovakia
| | - Jürgen Schünemann
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen, 37077, Germany
| | - David A D Parry
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| |
Collapse
|
33
|
Geisler F, Gerhardus H, Carberry K, Davis W, Jorgensen E, Richardson C, Bossinger O, Leube RE. A novel function for the MAP kinase SMA-5 in intestinal tube stability. Mol Biol Cell 2016; 27:3855-3868. [PMID: 27733627 PMCID: PMC5170608 DOI: 10.1091/mbc.e16-02-0099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/19/2023] Open
Abstract
In vivo evidence links SMA-5 to the maintenance of the apical domain in the Caenorhabditis elegans intestine. sma-5 mutations induce morphological and biochemical changes of the intermediate filament system, demonstrating the close relationship between posttranslational modification and structural integrity of the evolutionarily conserved intestinal cytoskeleton. Intermediate filaments are major cytoskeletal components whose assembly into complex networks and isotype-specific functions are still largely unknown. Caenorhabditis elegans provides an excellent model system to study intermediate filament organization and function in vivo. Its intestinal intermediate filaments localize exclusively to the endotube, a circumferential sheet just below the actin-based terminal web. A genetic screen for defects in the organization of intermediate filaments identified a mutation in the catalytic domain of the MAP kinase 7 orthologue sma-5(kc1). In sma-5(kc1) mutants, pockets of lumen penetrate the cytoplasm of the intestinal cells. These membrane hernias increase over time without affecting epithelial integrity and polarity. A more pronounced phenotype was observed in the deletion allele sma-5(n678) and in intestine-specific sma-5(RNAi). Besides reduced body length, an increased time of development, reduced brood size, and reduced life span were observed in the mutants, indicating compromised food uptake. Ultrastructural analyses revealed that the luminal pockets include the subapical cytoskeleton and coincide with local thinning and gaps in the endotube that are often enlarged in other regions. Increased intermediate filament phosphorylation was detected by two-dimensional immunoblotting, suggesting that loss of SMA-5 function leads to reduced intestinal tube stability due to altered intermediate filament network phosphorylation.
Collapse
Affiliation(s)
- Florian Geisler
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Harald Gerhardus
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Katrin Carberry
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Wayne Davis
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840
| | - Erik Jorgensen
- Department of Biology and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112-0840
| | - Christine Richardson
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, United Kingdom
| | - Olaf Bossinger
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| | - Rudolf E Leube
- Institute of Molecular and Cellular Anatomy, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
34
|
Keratins Are Altered in Intestinal Disease-Related Stress Responses. Cells 2016; 5:cells5030035. [PMID: 27626448 PMCID: PMC5040977 DOI: 10.3390/cells5030035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022] Open
Abstract
Keratin (K) intermediate filaments can be divided into type I/type II proteins, which form obligate heteropolymers. Epithelial cells express type I-type II keratin pairs, and K7, K8 (type II) and K18, K19 and K20 (type I) are the primary keratins found in the single-layered intestinal epithelium. Keratins are upregulated during stress in liver, pancreas, lung, kidney and skin, however, little is known about their dynamics in the intestinal stress response. Here, keratin mRNA, protein and phosphorylation levels were studied in response to murine colonic stresses modeling human conditions, and in colorectal cancer HT29 cells. Dextran sulphate sodium (DSS)-colitis was used as a model for intestinal inflammatory stress, which elicited a strong upregulation and widened crypt distribution of K7 and K20. K8 levels were slightly downregulated in acute DSS, while stress-responsive K8 serine-74 phosphorylation (K8 pS74) was increased. By eliminating colonic microflora using antibiotics, K8 pS74 in proliferating cells was significantly increased, together with an upregulation of K8 and K19. In the aging mouse colon, most colonic keratins were upregulated. In vitro, K8, K19 and K8 pS74 levels were increased in response to lipopolysaccharide (LPS)-induced inflammation in HT29 cells. In conclusion, intestinal keratins are differentially and dynamically upregulated and post-translationally modified during stress and recovery.
Collapse
|