1
|
Mougios N, Cotroneo ER, Imse N, Setzke J, Rizzoli SO, Simeth NA, Tsukanov R, Opazo F. NanoPlex: a universal strategy for fluorescence microscopy multiplexing using nanobodies with erasable signals. Nat Commun 2024; 15:8771. [PMID: 39384781 PMCID: PMC11479620 DOI: 10.1038/s41467-024-53030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
Fluorescence microscopy has long been a transformative technique in biological sciences. Nevertheless, most implementations are limited to a few targets, which have been revealed using primary antibodies and fluorescently conjugated secondary antibodies. Super-resolution techniques such as Exchange-PAINT and, more recently, SUM-PAINT have increased multiplexing capabilities, but they require specialized equipment, software, and knowledge. To enable multiplexing for any imaging technique in any laboratory, we developed NanoPlex, a streamlined method based on conventional antibodies revealed by engineered secondary nanobodies that allow the selective removal of fluorescence signals. We develop three complementary signal removal strategies: OptoPlex (light-induced), EnzyPlex (enzymatic), and ChemiPlex (chemical). We showcase NanoPlex reaching 21 targets for 3D confocal analyses and 5-8 targets for dSTORM and STED super-resolution imaging. NanoPlex has the potential to revolutionize multi-target fluorescent imaging methods, potentially redefining the multiplexing capabilities of antibody-based assays.
Collapse
Affiliation(s)
- Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany
| | - Elena R Cotroneo
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Nils Imse
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Jonas Setzke
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany.
- NanoTag Biotechnologies GmbH, Göttingen, Germany.
| |
Collapse
|
2
|
Shaib AH, Chouaib AA, Chowdhury R, Altendorf J, Mihaylov D, Zhang C, Krah D, Imani V, Spencer RKW, Georgiev SV, Mougios N, Monga M, Reshetniak S, Mimoso T, Chen H, Fatehbasharzad P, Crzan D, Saal KA, Alawieh MM, Alawar N, Eilts J, Kang J, Soleimani A, Müller M, Pape C, Alvarez L, Trenkwalder C, Mollenhauer B, Outeiro TF, Köster S, Preobraschenski J, Becherer U, Moser T, Boyden ES, Aricescu AR, Sauer M, Opazo F, Rizzoli SO. One-step nanoscale expansion microscopy reveals individual protein shapes. Nat Biotechnol 2024:10.1038/s41587-024-02431-9. [PMID: 39385007 PMCID: PMC7616833 DOI: 10.1038/s41587-024-02431-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
The attainable resolution of fluorescence microscopy has reached the subnanometer range, but this technique still fails to image the morphology of single proteins or small molecular complexes. Here, we expand the specimens at least tenfold, label them with conventional fluorophores and image them with conventional light microscopes, acquiring videos in which we analyze fluorescence fluctuations. One-step nanoscale expansion (ONE) microscopy enables the visualization of the shapes of individual membrane and soluble proteins, achieving around 1-nm resolution. We show that conformational changes are readily observable, such as those undergone by the ~17-kDa protein calmodulin upon Ca2+ binding. ONE is also applied to clinical samples, analyzing the morphology of protein aggregates in cerebrospinal fluid from persons with Parkinson disease, potentially aiding disease diagnosis. This technology bridges the gap between high-resolution structural biology techniques and light microscopy, providing new avenues for discoveries in biology and medicine.
Collapse
Affiliation(s)
- Ali H Shaib
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
| | - Abed Alrahman Chouaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Rajdeep Chowdhury
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Chemistry, GITAM School of Science, GITAM, Hyderabad, India
| | - Jonas Altendorf
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Chi Zhang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Donatus Krah
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Vanessa Imani
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Russell K W Spencer
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Svilen Veselinov Georgiev
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Nikolaos Mougios
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Mehar Monga
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
| | - Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago Mimoso
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Han Chen
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Parisa Fatehbasharzad
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Dagmar Crzan
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Kim-Ann Saal
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Mohamad Mahdi Alawieh
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Nadia Alawar
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Janna Eilts
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Jinyoung Kang
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alireza Soleimani
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | | | - Claudia Trenkwalder
- Department of Neurosurgery, University Medical Center, Göttingen, Germany
- Paracelsus-Elena-Klinik, Kassel, Germany
| | - Brit Mollenhauer
- Paracelsus-Elena-Klinik, Kassel, Germany
- Department of Neurology, University Medical Center, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Julia Preobraschenski
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Ute Becherer
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Tobias Moser
- Biochemistry of Membrane Dynamics Group, Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Neurobiological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Steen PR, Unterauer EM, Masullo LA, Kwon J, Perovic A, Jevdokimenko K, Opazo F, Fornasiero EF, Jungmann R. The DNA-PAINT palette: a comprehensive performance analysis of fluorescent dyes. Nat Methods 2024; 21:1755-1762. [PMID: 39112798 PMCID: PMC11399092 DOI: 10.1038/s41592-024-02374-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/21/2024] [Indexed: 09/15/2024]
Abstract
DNA points accumulation for imaging in nanoscale topography (DNA-PAINT) is a super-resolution fluorescence microscopy technique that achieves single-molecule 'blinking' by transient DNA hybridization. Despite blinking kinetics being largely independent of fluorescent dye choice, the dye employed substantially affects measurement quality. Thus far, there has been no systematic overview of dye performance for DNA-PAINT. Here we defined four key parameters characterizing performance: brightness, signal-to-background ratio, DNA-PAINT docking site damage and off-target signal. We then analyzed 18 fluorescent dyes in three spectral regions and examined them both in DNA origami nanostructures, establishing a reference standard, and in a cellular environment, targeting the nuclear pore complex protein Nup96. Finally, having identified several well-performing dyes for each excitation wavelength, we conducted simultaneous three-color DNA-PAINT combined with Exchange-PAINT to image six protein targets in neurons at ~16 nm resolution in less than 2 h. We thus provide guidelines for DNA-PAINT dye selection and evaluation and an overview of performances of commonly used dyes.
Collapse
Affiliation(s)
- Philipp R Steen
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eduard M Unterauer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | - Jisoo Kwon
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Kristina Jevdokimenko
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.
- Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Stein J, Ericsson M, Nofal M, Magni L, Aufmkolk S, McMillan RB, Breimann L, Herlihy CP, Lee SD, Willemin A, Wohlmann J, Arguedas-Jimenez L, Yin P, Pombo A, Church GM, Wu CK. Cryosectioning-enabled super-resolution microscopy for studying nuclear architecture at the single protein level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.576943. [PMID: 38370628 PMCID: PMC10871237 DOI: 10.1101/2024.02.05.576943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
DNA-PAINT combined with total Internal Reflection Fluorescence (TIRF) microscopy enables the highest localization precisions, down to single nanometers in thin biological samples, due to TIRF's unique method for optical sectioning and attaining high contrast. However, most cellular targets elude the accessible TIRF range close to the cover glass and thus require alternative imaging conditions, affecting resolution and image quality. Here, we address this limitation by applying ultrathin physical cryosectioning in combination with DNA-PAINT. With "tomographic & kinetically-enhanced" DNA-PAINT (tokPAINT), we demonstrate the imaging of nuclear proteins with sub-3 nanometer localization precision, advancing the quantitative study of nuclear organization within fixed cells and mouse tissues at the level of single antibodies. We believe that ultrathin sectioning combined with the versatility and multiplexing capabilities of DNA-PAINT will be a powerful addition to the toolbox of quantitative DNA-based super-resolution microscopy in intracellular structural analyses of proteins, RNA and DNA in situ.
Collapse
Affiliation(s)
- Johannes Stein
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maria Ericsson
- Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Michel Nofal
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Lorenzo Magni
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Sarah Aufmkolk
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ryan B. McMillan
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Laura Breimann
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - S. Dean Lee
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Andréa Willemin
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, Norway
| | - Laura Arguedas-Jimenez
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Peng Yin
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
| | - Ana Pombo
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Humboldt-Universität zu Berlin, Institute for Biology, Berlin, Germany
| | - George M. Church
- Wyss Institute of Biologically Inspired Engineering, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chao-Kng Wu
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Cramer K, Reinhardt SCM, Auer A, Shin JY, Jungmann R. Comparing divisome organization between vegetative and sporulating Bacillus subtilis at the nanoscale using DNA-PAINT. SCIENCE ADVANCES 2024; 10:eadk5847. [PMID: 38198550 PMCID: PMC10780868 DOI: 10.1126/sciadv.adk5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Spore-forming bacteria have two distinct division modes: sporulation and vegetative division. The placement of the foundational division machinery component (Z-ring) within the division plane is contingent on the division mode. However, investigating if and how division is performed differently between sporulating and vegetative cells remains challenging, particularly at the nanoscale. Here, we use DNA-PAINT super-resolution microscopy to compare the 3D assembly and distribution patterns of key division proteins SepF, ZapA, DivIVA, and FtsZ. We determine that ZapA and SepF placement within the division plane mimics that of the Z-ring in vegetative and sporulating cells. We find that DivIVA assemblies differ between vegetative and sporulating cells. Furthermore, we reveal that SepF assembles into ~50-nm arcs independent of division mode. We propose a nanoscale model in which symmetric or asymmetric placement of the Z-ring and early divisome proteins is a defining characteristic of vegetative or sporulating cells, respectively, and regulation of septal thickness differs between division modes.
Collapse
Affiliation(s)
- Kimberly Cramer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Susanne C. M. Reinhardt
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Alexander Auer
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jae Yen Shin
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany
- Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
6
|
de Jong-Bolm D, Sadeghi M, Bogaciu CA, Bao G, Klaehn G, Hoff M, Mittelmeier L, Basmanav FB, Opazo F, Noé F, Rizzoli SO. Protein nanobarcodes enable single-step multiplexed fluorescence imaging. PLoS Biol 2023; 21:e3002427. [PMID: 38079451 PMCID: PMC10735187 DOI: 10.1371/journal.pbio.3002427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/21/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Multiplexed cellular imaging typically relies on the sequential application of detection probes, as antibodies or DNA barcodes, which is complex and time-consuming. To address this, we developed here protein nanobarcodes, composed of combinations of epitopes recognized by specific sets of nanobodies. The nanobarcodes are read in a single imaging step, relying on nanobodies conjugated to distinct fluorophores, which enables a precise analysis of large numbers of protein combinations. Fluorescence images from nanobarcodes were used as input images for a deep neural network, which was able to identify proteins with high precision. We thus present an efficient and straightforward protein identification method, which is applicable to relatively complex biological assays. We demonstrate this by a multicell competition assay, in which we successfully used our nanobarcoded proteins together with neurexin and neuroligin isoforms, thereby testing the preferred binding combinations of multiple isoforms, in parallel.
Collapse
Affiliation(s)
- Daniëlle de Jong-Bolm
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Mohsen Sadeghi
- Department of Mathematics and Computer Science, Free University of Berlin, Berlin, Germany
| | - Cristian A. Bogaciu
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Guobin Bao
- Institute of Pharmacology and Toxicology, University Medical Center, Georg-August-University, Göttingen, Germany
| | - Gabriele Klaehn
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Merle Hoff
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - Lucas Mittelmeier
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
| | - F. Buket Basmanav
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
- Campus Laboratory for Advanced Imaging, Microscopy and Spectroscopy, University of Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Frank Noé
- Department of Mathematics and Computer Science, Free University of Berlin, Berlin, Germany
- Department of Physics, Free University of Technology, Berlin, Germany
- Department of Chemistry, Rice University, Houston, Texas, United States of America
- Microsoft Research AI4Science, Berlin, Germany
| | - Silvio O. Rizzoli
- Department of Neuro- and Sensory physiology, University of Göttingen Medical Center, Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Göttingen, Germany
- NanoTag Biotechnologies GmbH, Göttingen, Germany
| |
Collapse
|
7
|
Frecot DI, Froehlich T, Rothbauer U. 30 years of nanobodies - an ongoing success story of small binders in biological research. J Cell Sci 2023; 136:jcs261395. [PMID: 37937477 DOI: 10.1242/jcs.261395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Abstract
A milestone in the field of recombinant binding molecules was achieved 30 years ago with the discovery of single-domain antibodies from which antigen-binding variable domains, better known as nanobodies (Nbs), can be derived. Being only one tenth the size of conventional antibodies, Nbs feature high affinity and specificity, while being highly stable and soluble. In addition, they display accessibility to cryptic sites, low off-target accumulation and deep tissue penetration. Efficient selection methods, such as (semi-)synthetic/naïve or immunized cDNA libraries and display technologies, have facilitated the isolation of Nbs against diverse targets, and their single-gene format enables easy functionalization and high-yield production. This Review highlights recent advances in Nb applications in various areas of biological research, including structural biology, proteomics and high-resolution and in vivo imaging. In addition, we provide insights into intracellular applications of Nbs, such as live-cell imaging, biosensors and targeted protein degradation.
Collapse
Affiliation(s)
- Desiree I Frecot
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Reutlingen, Germany
| | - Theresa Froehlich
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
8
|
Queiroz Zetune Villa Real K, Mougios N, Rehm R, Sograte-Idrissi S, Albert L, Rahimi AM, Maidorn M, Hentze J, Martínez-Carranza M, Hosseini H, Saal KA, Oleksiievets N, Prigge M, Tsukanov R, Stenmark P, Fornasiero EF, Opazo F. A Versatile Synaptotagmin-1 Nanobody Provides Perturbation-Free Live Synaptic Imaging And Low Linkage-Error in Super-Resolution Microscopy. SMALL METHODS 2023; 7:e2300218. [PMID: 37421204 DOI: 10.1002/smtd.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Indexed: 07/10/2023]
Abstract
Imaging of living synapses has relied for over two decades on the overexpression of synaptic proteins fused to fluorescent reporters. This strategy alters the stoichiometry of synaptic components and ultimately affects synapse physiology. To overcome these limitations, here a nanobody is presented that binds the calcium sensor synaptotagmin-1 (NbSyt1). This nanobody functions as an intrabody (iNbSyt1) in living neurons and is minimally invasive, leaving synaptic transmission almost unaffected, as suggested by the crystal structure of the NbSyt1 bound to Synaptotagmin-1 and by the physiological data. Its single-domain nature enables the generation of protein-based fluorescent reporters, as showcased here by measuring spatially localized presynaptic Ca2+ with a NbSyt1- jGCaMP8 chimera. Moreover, the small size of NbSyt1 makes it ideal for various super-resolution imaging methods. Overall, NbSyt1 is a versatile binder that will enable imaging in cellular and molecular neuroscience with unprecedented precision across multiple spatiotemporal scales.
Collapse
Affiliation(s)
- Karine Queiroz Zetune Villa Real
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ronja Rehm
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - László Albert
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Amir Mohammad Rahimi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Manuel Maidorn
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jannik Hentze
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Markel Martínez-Carranza
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Hassan Hosseini
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
| | - Kim-Ann Saal
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Nazar Oleksiievets
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Matthias Prigge
- Research Group Neuromodulatory Networks, Leibniz Institute for Neurobiology, 39118, Magdeburg, Germany
- Center for Behavioral Brain Sciences, 39118, Magdeburg, Germany
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Stockholm, SE-10691, Sweden
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| |
Collapse
|
9
|
Tholen MME, Tas RP, Wang Y, Albertazzi L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem Commun (Camb) 2023; 59:8332-8342. [PMID: 37306078 PMCID: PMC10318573 DOI: 10.1039/d3cc00757j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
In the last decade, point accumulation for imaging in nanoscale topography (PAINT) has emerged as a versatile tool for single-molecule localization microscopy (SMLM). Currently, DNA-PAINT is the most widely used, in which a transient stochastically binding DNA docking-imaging pair is used to reconstruct specific characteristics of biological or synthetic materials on a single-molecule level. Slowly, the need for PAINT probes that are not dependent on DNA has emerged. These probes can be based on (i) endogenous interactions, (ii) engineered binders, (iii) fusion proteins, or (iv) synthetic molecules and provide complementary applications for SMLM. Therefore, researchers have been expanding the PAINT toolbox with new probes. In this review, we provide an overview of the currently existing probes that go beyond DNA and their applications and challenges.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Roderick P Tas
- Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
10
|
Yang W, Hou L, Luo C. When Super-Resolution Microscopy Meets Microfluidics: Enhanced Biological Imaging and Analysis with Unprecedented Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207341. [PMID: 36895074 DOI: 10.1002/smll.202207341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Indexed: 06/08/2023]
Abstract
Super-resolution microscopy is rapidly developed in recent years, allowing biologists to extract more quantitative information on subcellular processes in live cells that is usually not accessible with conventional techniques. However, super-resolution imaging is not fully exploited because of the lack of an appropriate and multifunctional experimental platform. As an important tool in life sciences, microfluidics is capable of cell manipulation and the regulation of the cellular environment because of its superior flexibility and biocompatibility. The combination of microfluidics and super-resolution microscopy revolutionizes the study of complex cellular properties and dynamics, providing valuable insights into cellular structure and biological functions at the single-molecule level. In this perspective, an overview of the main advantages of microfluidic technology that are essential to the performance of super-resolution microscopy are offered. The main benefits of performing super-resolution imaging with microfluidic devices are highlighted and perspectives on the diverse applications that are facilitated by combining these two powerful techniques are provided.
Collapse
Affiliation(s)
- Wei Yang
- Wenzhou Institute University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, Zhejiang, 325001, China
| | - Lei Hou
- UMR5298-LP2N, Institut d'Optique and CNRS, Rue François Mitterrand, Talence, 33400, France
| | - Chunxiong Luo
- Wenzhou Institute University of Chinese Academy of Sciences, 1 Jinlian Road, Wenzhou, Zhejiang, 325001, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, 5 Summer Palace Road, Beijing, 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 5 Summer Palace Road, Beijing, 100871, China
| |
Collapse
|
11
|
Banerjee A, Anand M, Ganji M. Labeling approaches for DNA-PAINT super-resolution imaging. NANOSCALE 2023; 15:6563-6580. [PMID: 36942769 DOI: 10.1039/d2nr06541j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Super-resolution imaging is becoming a commonly employed tool to visualize biological targets in unprecedented detail. DNA-PAINT is one of the single-molecule localization microscopy-based super-resolution imaging modalities allowing the ultra-high-resolution imaging with superior multiplexing capabilities. We discuss the importance of patterned DNA nanostructures in demonstrating the capabilities of DNA-PAINT and the design of various combinations of imager-docking strand pairs for imaging. Central to the implementation of DNA-PAINT imaging in a biological context is the generation of docking strand-conjugated binders against the target molecules. Several researchers have developed a variety of labelling probes for improving resolution while also providing multiplexing capabilities for the broader application of DNA-PAINT. This review provides a comprehensive summary of the repertoire of labelling probes used for DNA-PAINT in cells and the strategies implemented to chemically modify them with a docking strand.
Collapse
Affiliation(s)
- Abhinav Banerjee
- Department of Biochemistry, Indian Institute of Science, Malleshwaram, Bengaluru 560012, India.
| | - Micky Anand
- Department of Biochemistry, Indian Institute of Science, Malleshwaram, Bengaluru 560012, India.
| | - Mahipal Ganji
- Department of Biochemistry, Indian Institute of Science, Malleshwaram, Bengaluru 560012, India.
| |
Collapse
|
12
|
Mills A, Aissaoui N, Finkel J, Elezgaray J, Bellot G. Mechanical DNA Origami to Investigate Biological Systems. Adv Biol (Weinh) 2023; 7:e2200224. [PMID: 36509679 DOI: 10.1002/adbi.202200224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/25/2022] [Indexed: 12/15/2022]
Abstract
The ability to self-assemble DNA nanodevices with programmed structural dynamics that can sense and respond to the local environment can enable transformative applications in fields including mechanobiology and nanomedicine. The responsive function of biomolecules is often driven by alterations in conformational distributions mediated by highly sensitive interactions with the local environment. In this review, the current state-of-the-art in constructing complex DNA geometries with dynamic and mechanical properties to enable a molecular scale force measurement is first summarized. Next, an overview of engineering modular DNA devices that interact with cell surfaces is highlighted detailing examples of mechanosensitive proteins and the force-induced dynamic molecular interaction on the downstream biochemical signaling. Finally, the challenges and an outlook on this promising class of DNA devices acting as nanomachines to operate at a low piconewton range suitable for a majority of biological effects or as hybrid materials to achieve higher tension exertion required for other biological investigations, are discussed.
Collapse
Affiliation(s)
- Allan Mills
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Nesrine Aissaoui
- Laboratoire CiTCoM, Faculté de Santé, Université Paris Cité, CNRS, Paris, 75006, France
| | - Julie Finkel
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| | - Juan Elezgaray
- CRPP, CNRS, UMR 5031, Université de Bordeaux, Pessac, 33600, France
| | - Gaëtan Bellot
- Centre de Biologie Structurale, INSERM, CNRS, Université de Montpellier, Montpellier, 34090, France
| |
Collapse
|
13
|
Affiliation(s)
- Sven Truckenbrodt
- Convergent Research, E11 Bio. 1600 Harbor Bay Parkway, Alameda, California94502, United States
| |
Collapse
|
14
|
Oleksiievets N, Mathew C, Thiele JC, Gallea JI, Nevskyi O, Gregor I, Weber A, Tsukanov R, Enderlein J. Single-Molecule Fluorescence Lifetime Imaging Using Wide-Field and Confocal-Laser Scanning Microscopy: A Comparative Analysis. NANO LETTERS 2022; 22:6454-6461. [PMID: 35792810 PMCID: PMC9373986 DOI: 10.1021/acs.nanolett.2c01586] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A recent addition to the toolbox of super-resolution microscopy methods is fluorescence-lifetime single-molecule localization microscopy (FL-SMLM). The synergy of SMLM and fluorescence-lifetime imaging microscopy (FLIM) combines superior image resolution with lifetime information and can be realized using two complementary experimental approaches: confocal-laser scanning microscopy (CLSM) or wide-field microscopy. Here, we systematically and comprehensively compare these two novel FL-SMLM approaches in different spectral regions. For wide-field FL-SMLM, we use a commercial lifetime camera, and for CLSM-based FL-SMLM we employ a home-built system equipped with a rapid scan unit and a single-photon detector. We characterize the performances of the two systems in localizing single emitters in 3D by combining FL-SMLM with metal-induced energy transfer (MIET) for localization along the third dimension and in the lifetime-based multiplexed bioimaging using DNA-PAINT. Finally, we discuss advantages and disadvantages of wide-field and confocal FL-SMLM and provide practical advice on rational FL-SMLM experiment design.
Collapse
Affiliation(s)
- Nazar Oleksiievets
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Christeena Mathew
- Laboratory
of Supramolecular Chemistry, EPFL SB ISIC
LCS, BCH 3307, CH-1015 Lausanne, Switzerland
| | - Jan Christoph Thiele
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - José Ignacio Gallea
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Oleksii Nevskyi
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Ingo Gregor
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - André Weber
- Combinatorial
NeuroImaging Core Facility, Leibniz Institute
for Neurobiology, Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Roman Tsukanov
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
| | - Jörg Enderlein
- III.
Institute of Physics − Biophysics, Georg August University, 37077 Göttingen, Germany
- Cluster
of Excellence “Multiscale Bioimaging: from Molecular Machines
to Networks of Excitable Cells” (MBExC), Georg August University, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Imaging Minimal Bacteria at the Nanoscale: a Reliable and Versatile Process to Perform Single-Molecule Localization Microscopy in Mycoplasmas. Microbiol Spectr 2022; 10:e0064522. [PMID: 35638916 PMCID: PMC9241803 DOI: 10.1128/spectrum.00645-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mycoplasmas are the smallest free-living organisms. These bacteria are important models for both fundamental and synthetic biology, owing to their highly reduced genomes. They are also relevant in the medical and veterinary fields, as they are pathogenic to both humans and most livestock species. Mycoplasma cells have minute sizes, often in the 300- to 800-nm range. As these dimensions are close to the diffraction limit of visible light, fluorescence imaging in mycoplasmas is often poorly informative. Recently developed superresolution imaging techniques can break this diffraction limit, improving the imaging resolution by an order of magnitude and offering a new nanoscale vision of the organization of these bacteria. These techniques have, however, not been applied to mycoplasmas before. Here, we describe an efficient and reliable protocol to perform single-molecule localization microscopy (SMLM) imaging in mycoplasmas. We provide a polyvalent transposon-based system to express the photoconvertible fluorescent protein mEos3.2, enabling photo-activated localization microscopy (PALM) in most Mycoplasma species. We also describe the application of direct stochastic optical reconstruction microscopy (dSTORM). We showcase the potential of these techniques by studying the subcellular localization of two proteins of interest. Our work highlights the benefits of state-of-the-art microscopy techniques for mycoplasmology and provides an incentive to further the development of SMLM strategies to study these organisms in the future. IMPORTANCE Mycoplasmas are important models in biology, as well as highly problematic pathogens in the medical and veterinary fields. The very small sizes of these bacteria, well below a micron, limits the usefulness of traditional fluorescence imaging methods, as their resolution limit is similar to the dimensions of the cells. Here, to bypass this issue, we established a set of state-of-the-art superresolution microscopy techniques in a wide range of Mycoplasma species. We describe two strategies: PALM, based on the expression of a specific photoconvertible fluorescent protein, and dSTORM, based on fluorophore-coupled antibody labeling. With these methods, we successfully performed single-molecule imaging of proteins of interest at the surface of the cells and in the cytoplasm, at lateral resolutions well below 50 nm. Our work paves the way toward a better understanding of mycoplasma biology through imaging of subcellular structures at the nanometer scale.
Collapse
|
16
|
Yang Q, Chang X, Lee JY, Olivera TR, Saji M, Wisniewski H, Kim S, Zhang F. Recent Advances in Self-Assembled DNA Nanostructures for Bioimaging. ACS APPLIED BIO MATERIALS 2022; 5:4652-4667. [PMID: 35559619 DOI: 10.1021/acsabm.2c00128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
DNA nanotechnology has been proven to be a powerful platform to assist the development of imaging probes for biomedical research. The attractive features of DNA nanostructures, such as nanometer precision, controllable size, programmable functions, and biocompatibility, have enabled researchers to design and customize DNA nanoprobes for bioimaging applications. However, DNA probes with low molecular weights (e.g., 10-100 nt) generally suffer from low stability in physiological buffer environments. To improve the stability of DNA nanoprobes in such environments, DNA nanostructures can be designed with relatively larger sizes and defined shapes. In addition, the established modification methods for DNA nanostructures are also essential in enhancing their properties and performances in a physiological environment. In this review, we begin with a brief recap of the development of DNA nanostructures including DNA tiles, DNA origami, and multifunctional DNA nanostructures with modifications. Then we highlight the recent advances of DNA nanostructures for bioimaging, emphasizing the latest developments in probe modifications and DNA-PAINT imaging. Multiple imaging modules for intracellular biomolecular imaging and cell membrane biomarkers recognition are also summarized. In the end, we discuss the advantages and challenges of applying DNA nanostructures in bioimaging research and speculate on its future developments.
Collapse
Affiliation(s)
- Qi Yang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Xu Chang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Jung Yeon Lee
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Tiffany R Olivera
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Minu Saji
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Henry Wisniewski
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Suchan Kim
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
17
|
Gimber N, Strauss S, Jungmann R, Schmoranzer J. Simultaneous Multicolor DNA-PAINT without Sequential Fluid Exchange Using Spectral Demixing. NANO LETTERS 2022; 22:2682-2690. [PMID: 35290738 PMCID: PMC9011399 DOI: 10.1021/acs.nanolett.1c04520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/21/2022] [Indexed: 05/19/2023]
Abstract
Several variants of multicolor single-molecule localization microscopy (SMLM) have been developed to resolve the spatial relationship of nanoscale structures in biological samples. The oligonucleotide-based SMLM approach "DNA-PAINT" robustly achieves nanometer localization precision and can be used to count binding sites within nanostructures. However, multicolor DNA-PAINT has primarily been realized by "Exchange-PAINT", which requires sequential exchange of the imaging solution and thus leads to extended acquisition times. To alleviate the need for fluid exchange and to speed up the acquisition of current multichannel DNA-PAINT, we here present a novel approach that combines DNA-PAINT with simultaneous multicolor acquisition using spectral demixing (SD). By using newly designed probes and a novel multichannel registration procedure, we achieve simultaneous multicolor SD-DNA-PAINT with minimal crosstalk. We demonstrate high localization precision (3-6 nm) and multicolor registration of dual- and triple-color SD-DNA-PAINT by resolving patterns on DNA origami nanostructures and cellular structures.
Collapse
Affiliation(s)
- Niclas Gimber
- Advanced Medical Bioimaging Core Facility, Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80799 Munich, Germany
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, 80799 Munich, Germany
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility, Charité-Universitätsmedizin, 10117 Berlin, Germany
| |
Collapse
|
18
|
Gilodi M, Lisi S, F. Dudás E, Fantini M, Puglisi R, Louka A, Marcatili P, Cattaneo A, Pastore A. Selection and Modelling of a New Single-Domain Intrabody Against TDP-43. Front Mol Biosci 2022; 8:773234. [PMID: 35237655 PMCID: PMC8884700 DOI: 10.3389/fmolb.2021.773234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/29/2021] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder associated to deteriorating motor and cognitive functions, and short survival. The disease is caused by neuronal death which results in progressive muscle wasting and weakness, ultimately leading to lethal respiratory failure. The misbehaviour of a specific protein, TDP-43, which aggregates and becomes toxic in ALS patient’s neurons, is supposed to be one of the causes. TDP-43 is a DNA/RNA-binding protein involved in several functions related to nucleic acid metabolism. Sequestration of TDP-43 aggregates is a possible therapeutic strategy that could alleviate or block pathology. Here, we describe the selection and characterization of a new intracellular antibody (intrabody) against TDP-43 from a llama nanobody library. The structure of the selected intrabody was predicted in silico and the model was used to suggest mutations that enabled to improve its expression yield, facilitating its experimental validation. We showed how coupling experimental methodologies with in silico design may allow us to obtain an antibody able to recognize the RNA binding regions of TDP-43. Our findings illustrate a strategy for the mitigation of TDP-43 proteinopathy in ALS and provide a potential new tool for diagnostics.
Collapse
Affiliation(s)
- Martina Gilodi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Simonetta Lisi
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - Erika F. Dudás
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Marco Fantini
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
| | - Rita Puglisi
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Alexandra Louka
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
| | - Paolo Marcatili
- Department of Bioinformatics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale Superiore, Piazza dei Cavalieri, Pisa, Italy
- *Correspondence: Annalisa Pastore, ; Antonino Cattaneo,
| | - Annalisa Pastore
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
- *Correspondence: Annalisa Pastore, ; Antonino Cattaneo,
| |
Collapse
|
19
|
Oleksiievets N, Sargsyan Y, Thiele JC, Mougios N, Sograte-Idrissi S, Nevskyi O, Gregor I, Opazo F, Thoms S, Enderlein J, Tsukanov R. Fluorescence lifetime DNA-PAINT for multiplexed super-resolution imaging of cells. Commun Biol 2022; 5:38. [PMID: 35017652 PMCID: PMC8752799 DOI: 10.1038/s42003-021-02976-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 12/08/2021] [Indexed: 11/08/2022] Open
Abstract
DNA point accumulation for imaging in nanoscale topography (DNA-PAINT) is a powerful super-resolution technique highly suitable for multi-target (multiplexing) bio-imaging. However, multiplexed imaging of cells is still challenging due to the dense and sticky environment inside a cell. Here, we combine fluorescence lifetime imaging microscopy (FLIM) with DNA-PAINT and use the lifetime information as a multiplexing parameter for targets identification. In contrast to Exchange-PAINT, fluorescence lifetime PAINT (FL-PAINT) can image multiple targets simultaneously and does not require any fluid exchange, thus leaving the sample undisturbed and making the use of flow chambers/microfluidic systems unnecessary. We demonstrate the potential of FL-PAINT by simultaneous imaging of up to three targets in a cell using both wide-field FLIM and 3D time-resolved confocal laser scanning microscopy (CLSM). FL-PAINT can be readily combined with other existing techniques of multiplexed imaging and is therefore a perfect candidate for high-throughput multi-target bio-imaging.
Collapse
Affiliation(s)
- Nazar Oleksiievets
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Yelena Sargsyan
- Department of Child and Adolescent Health, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Jan Christoph Thiele
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Nikolaos Mougios
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Oleksii Nevskyi
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Ingo Gregor
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration (BIN), University Medical Center Göttingen, 37075, Göttingen, Germany
- NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center Göttingen, 37073, Göttingen, Germany
- Biochemistry and Molecular Medicine, Medical School, Bielefeld University, 33615, Bielefeld, Germany
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Göttingen, Germany.
| | - Roman Tsukanov
- III. Institute of Physics - Biophysics, Georg August University, 37077, Göttingen, Germany.
| |
Collapse
|
20
|
Koenderink AF, Tsukanov R, Enderlein J, Izeddin I, Krachmalnicoff V. Super-resolution imaging: when biophysics meets nanophotonics. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:169-202. [PMID: 39633878 PMCID: PMC11501358 DOI: 10.1515/nanoph-2021-0551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/07/2024]
Abstract
Probing light-matter interaction at the nanometer scale is one of the most fascinating topics of modern optics. Its importance is underlined by the large span of fields in which such accurate knowledge of light-matter interaction is needed, namely nanophotonics, quantum electrodynamics, atomic physics, biosensing, quantum computing and many more. Increasing innovations in the field of microscopy in the last decade have pushed the ability of observing such phenomena across multiple length scales, from micrometers to nanometers. In bioimaging, the advent of super-resolution single-molecule localization microscopy (SMLM) has opened a completely new perspective for the study and understanding of molecular mechanisms, with unprecedented resolution, which take place inside the cell. Since then, the field of SMLM has been continuously improving, shifting from an initial drive for pushing technological limitations to the acquisition of new knowledge. Interestingly, such developments have become also of great interest for the study of light-matter interaction in nanostructured materials, either dielectric, metallic, or hybrid metallic-dielectric. The purpose of this review is to summarize the recent advances in the field of nanophotonics that have leveraged SMLM, and conversely to show how some concepts commonly used in nanophotonics can benefit the development of new microscopy techniques for biophysics. To this aim, we will first introduce the basic concepts of SMLM and the observables that can be measured. Then, we will link them with their corresponding physical quantities of interest in biophysics and nanophotonics and we will describe state-of-the-art experiments that apply SMLM to nanophotonics. The problem of localization artifacts due to the interaction of the fluorescent emitter with a resonant medium and possible solutions will be also discussed. Then, we will show how the interaction of fluorescent emitters with plasmonic structures can be successfully employed in biology for cell profiling and membrane organization studies. We present an outlook on emerging research directions enabled by the synergy of localization microscopy and nanophotonics.
Collapse
Affiliation(s)
- A. Femius Koenderink
- Center for Nanophotonics, AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| | - Roman Tsukanov
- III. Institute of Physics – Biophysics, Georg August University, Friedrich-Hund-Platz 1,37077Göttingen, Germany
| | - Jörg Enderlein
- III. Institute of Physics – Biophysics, Georg August University, Friedrich-Hund-Platz 1,37077Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), Georg August University, 37077Göttingen, Germany
| | - Ignacio Izeddin
- Institut Langevin - Ondes et Images, ESPCI Paris, Université PSL, CNRS, 1, rue Jussieu, 75005Paris, France
| | - Valentina Krachmalnicoff
- Institut Langevin - Ondes et Images, ESPCI Paris, Université PSL, CNRS, 1, rue Jussieu, 75005Paris, France
| |
Collapse
|
21
|
Tas RP, Albertazzi L, Voets IK. Small Peptide-Protein Interaction Pair for Genetically Encoded, Fixation Compatible Peptide-PAINT. NANO LETTERS 2021; 21:9509-9516. [PMID: 34757759 PMCID: PMC8631740 DOI: 10.1021/acs.nanolett.1c02895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/01/2021] [Indexed: 05/08/2023]
Abstract
Super-resolution microscopy via PAINT has been widely adopted in life sciences to interrogate the nanoscale architecture of many cellular structures. However, obtaining quantitative information in fixed cellular samples remains challenging because control of labeling stoichiometry is hampered in current approaches due to click-chemistry and additional targeting probes. To overcome these challenges, we have identified a small, PDZ-based, peptide-protein interaction pair that is genetically encodable and compatible with super-resolution imaging upon cellular fixation without additional labeling. Stoichiometric labeling control by genetic incorporation of this probe into the cellular vimentin network and mitochondria resulted in super-resolved 3D reconstructions with high specificity and spatial resolution. Further characterization reveals that this peptide-protein interaction is compatible with quantitative PAINT and that its binding kinetics remains unaltered upon fixation. Finally, by fusion of our probe to nanobodies against conventional expression markers, we show that this approach provides a versatile addition to the super-resolution toolbox.
Collapse
Affiliation(s)
- Roderick P. Tas
- Laboratory
of Self-Organizing Soft Matter, Institute for Complex Molecular Systems
and Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AP, The Netherlands
| | - Lorenzo Albertazzi
- Laboratory
of Nanoscopy for Nanomedicine, Institute for Complex Molecular Systems
and Department of Biomedical Engineering, Eindhoven University of Technology (TUE), Eindhoven 5612 AP, The Netherlands
| | - Ilja K. Voets
- Laboratory
of Self-Organizing Soft Matter, Institute for Complex Molecular Systems
and Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TUE), Eindhoven 5612 AP, The Netherlands
| |
Collapse
|
22
|
Raja SO, Chizhik AI, Schmidt CF, Enderlein J, Ghosh A. Mapping Activity-Dependent Quasi-stationary States of Mitochondrial Membranes with Graphene-Induced Energy Transfer Imaging. NANO LETTERS 2021; 21:8244-8249. [PMID: 34520214 DOI: 10.1021/acs.nanolett.1c02672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Graphene-induced energy transfer (GIET) was recently introduced for sub-nanometric axial localization of fluorescent molecules. GIET relies on near-field energy transfer from an optically excited fluorophore to a single sheet of graphene. Recently, we demonstrated its potential by determining the distance between two leaflets of supported lipid bilayers. Here, we use GIET imaging for mapping quasi-stationary states of the inner and outer mitochondrial membranes before and during adenosine triphosphate (ATP) synthesis. We trigger the ATP synthesis state in vitro by activating mitochondria with precursor molecules. Our results demonstrate that the inner membrane approaches the outer membrane, while the outer membrane does not show any measurable change in average axial position upon activation. The inter-membrane space is reduced by ∼2 nm. This direct experimental observation of the subtle dynamics of mitochondrial membranes and the change in intermembrane distance upon activation is relevant for our understanding of mitochondrial function.
Collapse
Affiliation(s)
- Sufi O Raja
- Department of Physics and Soft Matter Center, Duke University, Durham, North Carolina 27708, United States
| | - Alexey I Chizhik
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Christoph F Schmidt
- Department of Physics and Soft Matter Center, Duke University, Durham, North Carolina 27708, United States
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, 37077 Göttingen, Germany
| | - Arindam Ghosh
- Third Institute of Physics-Biophysics, University of Göttingen, 37077 Göttingen, Germany
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
23
|
Kellie JF, Tran JC, Jian W, Jones B, Mehl JT, Ge Y, Henion J, Bateman KP. Intact Protein Mass Spectrometry for Therapeutic Protein Quantitation, Pharmacokinetics, and Biotransformation in Preclinical and Clinical Studies: An Industry Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1886-1900. [PMID: 32869982 DOI: 10.1021/jasms.0c00270] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advancements in immunocapture methods and mass spectrometer technology have enabled intact protein mass spectrometry to be applied for the characterization of antibodies and other large biotherapeutics from in-life studies. Protein molecules have not been traditionally studied by intact mass or screened for catabolites in the same manner as small molecules, but the landscape has changed. Researchers have presented methods that can be applied to the drug discovery and development stages, and others are exploring the possibilities of the new approaches. However, a wide variety of options for assay development exists without clear recommendation on best practice, and data processing workflows may have limitations depending on the vendor. In this perspective, we share experiences and recommendations for current and future application of mass spectrometry for biotherapeutic molecule monitoring from preclinical and clinical studies.
Collapse
Affiliation(s)
- John F Kellie
- Bioanalysis, Immunogenicity & Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - John C Tran
- Biochemical & Cellular Pharmacology, Genentech Inc., South San Francisco, California 94080, United States
| | - Wenying Jian
- DMPK, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Barry Jones
- Q Squared Solutions, 19 Brown Road, Ithaca, New York 14850, United States
| | - John T Mehl
- Bioanalytical Research, Bristol-Myers Squibb, Princeton, New Jersey 08648, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jack Henion
- Advion, Inc., 61 Brown Road, Ithaca, New York 14850, United States
| | - Kevin P Bateman
- PPDM, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
24
|
Glowacki SK, Gomes de Castro MA, Yip KM, Asadpour O, Münchhalfen M, Engels N, Opazo F. A fluorescent probe for STED microscopy to study NIP-specific B cells. Analyst 2021; 146:4744-4747. [PMID: 34226908 DOI: 10.1039/d1an00601k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a series of monovalent fluorophore-conjugated affinity probes based on the hapten 3-nitro-4-hydroxy-5-iodophenylacetyl (NIP), which is widely used as a model antigen to study B lymphocytes and the functional principles of B cell antigen receptors (BCRs). We successfully used them in flow-cytometry, confocal and super-resolution microscopy techniques.
Collapse
Affiliation(s)
- Selda Kabatas Glowacki
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
van Wee R, Filius M, Joo C. Completing the canvas: advances and challenges for DNA-PAINT super-resolution imaging. Trends Biochem Sci 2021; 46:918-930. [PMID: 34247944 DOI: 10.1016/j.tibs.2021.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/16/2021] [Accepted: 05/31/2021] [Indexed: 01/02/2023]
Abstract
Single-molecule localization microscopy (SMLM) is a potent tool to examine biological systems with unprecedented resolution, enabling the investigation of increasingly smaller structures. At the forefront of these developments is DNA-based point accumulation for imaging in nanoscale topography (DNA-PAINT), which exploits the stochastic and transient binding of fluorescently labeled DNA probes. In its early stages the implementation of DNA-PAINT was burdened by low-throughput, excessive acquisition time, and difficult integration with live-cell imaging. However, recent advances are addressing these challenges and expanding the range of applications of DNA-PAINT. We review the current state of the art of DNA-PAINT in light of these advances and contemplate what further developments remain indispensable to realize live-cell imaging.
Collapse
Affiliation(s)
- Raman van Wee
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Mike Filius
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Chirlmin Joo
- Department of BioNanoScience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
26
|
Dankovich TM, Rizzoli SO. Challenges facing quantitative large-scale optical super-resolution, and some simple solutions. iScience 2021; 24:102134. [PMID: 33665555 PMCID: PMC7898072 DOI: 10.1016/j.isci.2021.102134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Optical super-resolution microscopy (SRM) has enabled biologists to visualize cellular structures with near-molecular resolution, giving unprecedented access to details about the amounts, sizes, and spatial distributions of macromolecules in the cell. Precisely quantifying these molecular details requires large datasets of high-quality, reproducible SRM images. In this review, we discuss the unique set of challenges facing quantitative SRM, giving particular attention to the shortcomings of conventional specimen preparation techniques and the necessity for optimal labeling of molecular targets. We further discuss the obstacles to scaling SRM methods, such as lengthy image acquisition and complex SRM data analysis. For each of these challenges, we review the recent advances in the field that circumvent these pitfalls and provide practical advice to biologists for optimizing SRM experiments.
Collapse
Affiliation(s)
- Tal M. Dankovich
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen 37073, Germany
- International Max Planck Research School for Neuroscience, Göttingen, Germany
| | - Silvio O. Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Göttingen 37073, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center & Multiscale Bioimaging Excellence Center, Göttingen 37075, Germany
| |
Collapse
|
27
|
Bauer NC, Yang A, Wang X, Zhou Y, Klibanski A, Soberman RJ. A cross-nearest neighbor/Monte Carlo algorithm for single-molecule localization microscopy defines interactions between p53, Mdm2, and MEG3. J Biol Chem 2021; 296:100540. [PMID: 33722609 PMCID: PMC8038948 DOI: 10.1016/j.jbc.2021.100540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/15/2021] [Accepted: 03/11/2021] [Indexed: 01/01/2023] Open
Abstract
The functions of long noncoding (lnc)RNAs, such as MEG3, are defined by their interactions with other RNAs and proteins. These interactions, in turn, are shaped by their subcellular localization and temporal context. Therefore, it is important to be able to analyze the relationships of lncRNAs while preserving cellular architecture. The ability of MEG3 to suppress cell proliferation led to its recognition as a tumor suppressor. MEG3 has been proposed to activate p53 by disrupting the interaction of p53 with mouse double minute 2 homolog (Mdm2). To test this mechanism in the native cellular context, we employed two-color direct stochastic optical reconstruction microscopy, a single-molecule localization microscopy technique, to detect and quantify the localizations of p53, Mdm2, and MEG3 in U2OS cells. We developed a new cross-nearest neighbor/Monte Carlo algorithm to quantify the association of these molecules. Proof of concept for our method was obtained by examining the association between FKBP1A and mTOR, MEG3 and p53, and Mdm2 and p53. In contrast to previous models, our data support a model in which MEG3 modulates p53 independently of the interaction with Mdm2.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States
| | - Anli Yang
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Xin Wang
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Yunli Zhou
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Anne Klibanski
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States
| | - Roy J Soberman
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United States.
| |
Collapse
|
28
|
Pushing the super-resolution limit: recent improvements in microscopy below the diffraction limit. Biochem Soc Trans 2021; 49:431-439. [PMID: 33599719 DOI: 10.1042/bst20200746] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022]
Abstract
Super-resolution microscopy has revolutionised the way we observe biological systems. These methods are now a staple of fluorescence microscopy. Researchers have used super-resolution methods in myriad systems to extract nanoscale spatial information on multiple interacting parts. These methods are continually being extended and reimagined to further push their resolving power and achieve truly single protein resolution. Here, we explore the most recent advances at the frontier of the 'super-resolution' limit and what opportunities remain for further improvements in the near future.
Collapse
|
29
|
Schneider F, Sych T, Eggeling C, Sezgin E. Influence of nanobody binding on fluorescence emission, mobility, and organization of GFP-tagged proteins. iScience 2021; 24:101891. [PMID: 33364580 PMCID: PMC7753935 DOI: 10.1016/j.isci.2020.101891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/22/2022] Open
Abstract
Advanced fluorescence microscopy studies require specific and monovalent molecular labeling with bright and photostable fluorophores. This necessity led to the widespread use of fluorescently labeled nanobodies against commonly employed fluorescent proteins (FPs). However, very little is known how these nanobodies influence their target molecules. Here, we tested commercially available nanobodies and observed clear changes of the fluorescence properties, mobility and organization of green fluorescent protein (GFP) tagged proteins after labeling with the anti-GFP nanobody. Intriguingly, we did not observe any co-diffusion of fluorescently labeled nanobodies with the GFP-labeled proteins. Our results suggest significant binding of the nanobodies to a non-emissive, likely oligomerized, form of the FPs, promoting disassembly into monomeric form after binding. Our findings have significant implications on the application of nanobodies and GFP labeling for studying dynamic and quantitative protein organization in the plasma membrane of living cells using advanced imaging techniques.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 171 65 Solna, Sweden
| | - Christian Eggeling
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Institute of Applied Optics and Biophysics, Friedrich-Schiller-University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
- Jena Center of Soft Matters, Friedrich-Schiller-University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 171 65 Solna, Sweden
| |
Collapse
|
30
|
Nanobodies as Versatile Tool for Multiscale Imaging Modalities. Biomolecules 2020; 10:biom10121695. [PMID: 33353213 PMCID: PMC7767244 DOI: 10.3390/biom10121695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging is constantly growing in different areas of preclinical biomedical research. Several imaging methods have been developed and are continuously updated for both in vivo and in vitro applications, in order to increase the information about the structure, localization and function of molecules involved in physiology and disease. Along with these progresses, there is a continuous need for improving labeling strategies. In the last decades, the single domain antigen-binding fragments nanobodies (Nbs) emerged as important molecular imaging probes. Indeed, their small size (~15 kDa), high stability, affinity and modularity represent desirable features for imaging applications, providing higher tissue penetration, rapid targeting, increased spatial resolution and fast clearance. Accordingly, several Nb-based probes have been generated and applied to a variety of imaging modalities, ranging from in vivo and in vitro preclinical imaging to super-resolution microscopy. In this review, we will provide an overview of the state-of-the-art regarding the use of Nbs in several imaging modalities, underlining their extreme versatility and their enormous potential in targeting molecules and cells of interest in both preclinical and clinical studies.
Collapse
|
31
|
de Beer MA, Giepmans BNG. Nanobody-Based Probes for Subcellular Protein Identification and Visualization. Front Cell Neurosci 2020; 14:573278. [PMID: 33240044 PMCID: PMC7667270 DOI: 10.3389/fncel.2020.573278] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding how building blocks of life contribute to physiology is greatly aided by protein identification and cellular localization. The two main labeling approaches developed over the past decades are labeling with antibodies such as immunoglobulin G (IgGs) or use of genetically encoded tags such as fluorescent proteins. However, IgGs are large proteins (150 kDa), which limits penetration depth and uncertainty of target position caused by up to ∼25 nm distance of the label created by the chosen targeting approach. Additionally, IgGs cannot be easily recombinantly modulated and engineered as part of fusion proteins because they consist of multiple independent translated chains. In the last decade single domain antigen binding proteins are being explored in bioscience as a tool in revealing molecular identity and localization to overcome limitations by IgGs. These nanobodies have several potential benefits over routine applications. Because of their small size (15 kDa), nanobodies better penetrate during labeling procedures and improve resolution. Moreover, nanobodies cDNA can easily be fused with other cDNA. Multidomain proteins can thus be easily engineered consisting of domains for targeting (nanobodies) and visualization by fluorescence microscopy (fluorescent proteins) or electron microscopy (based on certain enzymes). Additional modules for e.g., purification are also easily added. These nanobody-based probes can be applied in cells for live-cell endogenous protein detection or may be purified prior to use on molecules, cells or tissues. Here, we present the current state of nanobody-based probes and their implementation in microscopy, including pitfalls and potential future opportunities.
Collapse
Affiliation(s)
- Marit A de Beer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N G Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
32
|
Thiele JC, Helmerich DA, Oleksiievets N, Tsukanov R, Butkevich E, Sauer M, Nevskyi O, Enderlein J. Confocal Fluorescence-Lifetime Single-Molecule Localization Microscopy. ACS NANO 2020; 14:14190-14200. [PMID: 33035050 DOI: 10.1021/acsnano.0c07322] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluorescence lifetime imaging microscopy is an important technique that adds another dimension to intensity and color acquired by conventional microscopy. In particular, it allows for multiplexing fluorescent labels that have otherwise similar spectral properties. Currently, the only super-resolution technique that is capable of recording super-resolved images with lifetime information is stimulated emission depletion microscopy. In contrast, all single-molecule localization microscopy (SMLM) techniques that employ wide-field cameras completely lack the lifetime dimension. Here, we combine fluorescence-lifetime confocal laser-scanning microscopy with SMLM for realizing single-molecule localization-based fluorescence-lifetime super-resolution imaging. Besides yielding images with a spatial resolution much beyond the diffraction limit, it determines the fluorescence lifetime of all localized molecules. We validate our technique by applying it to direct stochastic optical reconstruction microscopy and points accumulation for imaging in nanoscale topography imaging of fixed cells, and we demonstrate its multiplexing capability on samples with two different labels that differ only by fluorescence lifetime but not by their spectral properties.
Collapse
Affiliation(s)
- Jan Christoph Thiele
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Dominic A Helmerich
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Nazar Oleksiievets
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Roman Tsukanov
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Eugenia Butkevich
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Oleksii Nevskyi
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
| | - Jörg Enderlein
- III. Institute of Physics-Biophysics, Georg August University, Göttingen 37077, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Georg August University, Göttingen 37077, Germany
| |
Collapse
|
33
|
Mann FA, Herrmann N, Opazo F, Kruss S. Quantum Defects as a Toolbox for the Covalent Functionalization of Carbon Nanotubes with Peptides and Proteins. Angew Chem Int Ed Engl 2020; 59:17732-17738. [PMID: 32511874 PMCID: PMC7540668 DOI: 10.1002/anie.202003825] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/24/2020] [Indexed: 12/16/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) are a 1D nanomaterial that shows fluorescence in the near-infrared (NIR, >800 nm). In the past, covalent chemistry was less explored to functionalize SWCNTs as it impairs NIR emission. However, certain sp3 defects (quantum defects) in the carbon lattice have emerged that preserve NIR fluorescence and even introduce a new, red-shifted emission peak. Here, we report on quantum defects, introduced using light-driven diazonium chemistry, that serve as anchor points for peptides and proteins. We show that maleimide anchors allow conjugation of cysteine-containing proteins such as a GFP-binding nanobody. In addition, an Fmoc-protected phenylalanine defect serves as a starting point for conjugation of visible fluorophores to create multicolor SWCNTs and in situ peptide synthesis directly on the nanotube. Therefore, these quantum defects are a versatile platform to tailor both the nanotube's photophysical properties as well as their surface chemistry.
Collapse
Affiliation(s)
- Florian A. Mann
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| | - Niklas Herrmann
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| | - Felipe Opazo
- Center for Biostructural Imaging of NeurodegenerationVon-Siebold-Straße 3a37075GöttingenGermany
| | - Sebastian Kruss
- Institute of Physical ChemistryGeorg-August UniversitätTammannstraße 637077GöttingenGermany
| |
Collapse
|
34
|
Mann FA, Herrmann N, Opazo F, Kruss S. Quantendefekte als Werkzeugkasten für die kovalente Funktionalisierung von Kohlenstoffnanoröhren mit Peptiden und Proteinen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Florian A. Mann
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| | - Niklas Herrmann
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| | - Felipe Opazo
- Center for Biostructural Imaging of Neurodegeneration Von-Siebold-Straße 3a 37075 Göttingen Deutschland
| | - Sebastian Kruss
- Institut für Physikalische Chemie Georg-August Universität Tammannstraße 6 37077 Göttingen Deutschland
| |
Collapse
|
35
|
Strauss S, Jungmann R. Up to 100-fold speed-up and multiplexing in optimized DNA-PAINT. Nat Methods 2020; 17:789-791. [PMID: 32601424 PMCID: PMC7610413 DOI: 10.1038/s41592-020-0869-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
DNA-PAINT's imaging speed has recently been significantly enhanced by optimized sequence design and buffer conditions. However, this implementation has not reached an ultimate speed limit and is only applicable to imaging of single targets. To further improve acquisition speed, we introduce concatenated, periodic DNA sequence motifs, yielding up to 100-fold-faster sampling in comparison to traditional DNA-PAINT. We extend this approach to six orthogonal sequence motifs, now enabling speed-optimized multiplexed imaging.
Collapse
Affiliation(s)
- Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany.,Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, Ludwig Maximilian University, Munich, Germany. .,Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
36
|
Carrington G, Tomlinson D, Peckham M. Exploiting nanobodies and Affimers for superresolution imaging in light microscopy. Mol Biol Cell 2020; 30:2737-2740. [PMID: 31609674 PMCID: PMC6789155 DOI: 10.1091/mbc.e18-11-0694] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibodies have long been the main approach used for localizing proteins of interest by light microscopy. In the past 5 yr or so, and with the advent of superresolution microscopy, the diversity of tools for imaging has rapidly expanded. One main area of expansion has been in the area of nanobodies, small single-chain antibodies from camelids or sharks. The other has been the use of artificial scaffold proteins, including Affimers. The small size of nanobodies and Affimers compared with the traditional antibody provides several advantages for superresolution imaging.
Collapse
Affiliation(s)
- Glenn Carrington
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Darren Tomlinson
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Michelle Peckham
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
37
|
Clowsley AH, Kaufhold WT, Lutz T, Meletiou A, Di Michele L, Soeller C. Detecting Nanoscale Distribution of Protein Pairs by Proximity-Dependent Super-resolution Microscopy. J Am Chem Soc 2020; 142:12069-12078. [DOI: 10.1021/jacs.9b03418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alexander H. Clowsley
- Living Systems Institute & Biomedical Physics, University of Exeter, Exeter EX4 4QD, U.K
| | - William T. Kaufhold
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London SW7 2AZ, U.K
| | - Tobias Lutz
- Living Systems Institute & Biomedical Physics, University of Exeter, Exeter EX4 4QD, U.K
| | - Anna Meletiou
- Living Systems Institute & Biomedical Physics, University of Exeter, Exeter EX4 4QD, U.K
| | - Lorenzo Di Michele
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London SW7 2AZ, U.K
| | - Christian Soeller
- Living Systems Institute & Biomedical Physics, University of Exeter, Exeter EX4 4QD, U.K
| |
Collapse
|
38
|
Enhanced expansion microscopy to measure nanoscale structural and biochemical remodeling in single cells. Methods Cell Biol 2020; 161:147-180. [PMID: 33478687 DOI: 10.1016/bs.mcb.2020.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Resolution is a key feature in microscopy which allows the visualization of the fine structure of cells. Much of the life processes within these cells depend on the three-dimensional (3D) complexity of these structures. Optical super-resolution microscopies are currently the preferred choice of molecular and cell biologists who seek to visualize the organization of specific protein species at the nanometer scale. Traditional super-resolution microscopy techniques have often been limited by sample thickness, axial resolution, specialist optical instrumentation and computationally-demanding software for assembling the images. In this chapter we detail the protocol, "enhanced expansion microscopy" (EExM), which combines X10 expansion microscopy with Airyscan confocal microscopy. EExM enables 15nm lateral (and 35nm axial) resolution, and is a relatively cheap, accessible option allowing single protein resolution for the non-specialist optical microscopists. We illustrate how EExM has been utilized for mapping the 3D topology of intracellular protein arrays at sample depths which are not always compatible with some of the traditional super-resolution techniques. We demonstrate that antibody markers can recognize and map post-translational modifications of individual proteins in addition to their 3D positions. Finally, we discuss the current uncertainties and validations in EExM which include the isotropy in gel expansion and assessment of the expansion factor (of resolution improvement).
Collapse
|
39
|
Sograte-Idrissi S, Schlichthaerle T, Duque-Afonso CJ, Alevra M, Strauss S, Moser T, Jungmann R, Rizzoli SO, Opazo F. Circumvention of common labelling artefacts using secondary nanobodies. NANOSCALE 2020; 12:10226-10239. [PMID: 32356544 DOI: 10.1039/d0nr00227e] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A standard procedure to study cellular elements is via immunostaining followed by optical imaging. This methodology typically requires target-specific primary antibodies (1.Abs), which are revealed by secondary antibodies (2.Abs). Unfortunately, the antibody bivalency, polyclonality, and large size can result in a series of artifacts. Alternatively, small, monovalent probes, such as single-domain antibodies (nanobodies) have been suggested to minimize these limitations. The discovery and validation of nanobodies against specific targets are challenging, thus only a minimal amount of them are currently available. Here, we used STED, DNA-PAINT, and light-sheet microscopy, to demonstrate that secondary nanobodies (1) increase localization accuracy compared to 2.Abs; (2) allow direct pre-mixing with 1.Abs before staining, reducing experimental time, and enabling the use of multiple 1.Abs from the same species; (3) penetrate thick tissues more efficiently; and (4) avoid probe-induced clustering of target molecules observed with conventional 2.Abs in living or poorly fixed samples. Altogether, we show how secondary nanobodies are a valuable alternative to 2.Abs.
Collapse
Affiliation(s)
- Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany and International Max Planck Research School for Molecular Biology, Göttingen, Germany
| | - Thomas Schlichthaerle
- Faculty of Physics and Center for Nanoscience, LMU Munich, 80539, Munich, Germany and Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Carlos J Duque-Afonso
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany and Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany and Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany and University of Göttingen, 37075, Göttingen, Germany
| | - Mihai Alevra
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany.
| | - Sebastian Strauss
- Faculty of Physics and Center for Nanoscience, LMU Munich, 80539, Munich, Germany and Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075 Göttingen, Germany and Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany and Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany and University of Göttingen, 37075, Göttingen, Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience, LMU Munich, 80539, Munich, Germany and Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Silvio O Rizzoli
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany and Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073 Göttingen, Germany. and Center for Biostructural Imaging of Neurodegeneration (BIN), University of Göttingen Medical Center, 37075 Göttingen, Germany and NanoTag Biotechnologies GmbH, 37079, Göttingen, Germany
| |
Collapse
|
40
|
Chen C, Zong S, Liu Y, Wang Z, Zhang Y, Chen B, Cui Y. Profiling of Exosomal Biomarkers for Accurate Cancer Identification: Combining DNA-PAINT with Machine- Learning-Based Classification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901014. [PMID: 31478613 DOI: 10.1002/smll.201901014] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 08/18/2019] [Indexed: 05/08/2023]
Abstract
Exosomes are endosome-derived vesicles enriched in body fluids such as urine, blood, and saliva. So far, they have been recognized as potential biomarkers for cancer diagnostics. However, the present single-variate analysis of exosomes has greatly limited the accuracy and specificity of diagnoses. Besides, most diagnostic approaches focus on bulk analysis using lots of exosomes and tend to be less accurate because they are vulnerable to impure extraction and concentration differences of exosomes. To address these challenges, a quantitative analysis platform is developed to implement a sequential quantification analysis of multiple exosomal surface biomarkers at the single-exosome level, which utilizes DNA-PAINT and a machine learning algorithm to automatically analyze the results. As a proof of concept, the profiling of four exosomal surface biomarkers (HER2, GPC-1, EpCAM, EGFR) is developed to identify exosomes from cancer-derived blood samples. Then, this technique is further applied to detect pancreatic cancer and breast cancer from unknown samples with 100% accuracy.
Collapse
Affiliation(s)
- Chen Chen
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Shenfei Zong
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Yun Liu
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Yizhi Zhang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yiping Cui
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| |
Collapse
|
41
|
The ALFA-tag is a highly versatile tool for nanobody-based bioscience applications. Nat Commun 2019; 10:4403. [PMID: 31562305 PMCID: PMC6764986 DOI: 10.1038/s41467-019-12301-7] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/28/2019] [Indexed: 11/08/2022] Open
Abstract
Specialized epitope tags are widely used for detecting, manipulating or purifying proteins, but often their versatility is limited. Here, we introduce the ALFA-tag, a rationally designed epitope tag that serves a remarkably broad spectrum of applications in life sciences while outperforming established tags like the HA-, FLAG®- or myc-tag. The ALFA-tag forms a small and stable α-helix that is functional irrespective of its position on the target protein in prokaryotic and eukaryotic hosts. We characterize a nanobody (NbALFA) binding ALFA-tagged proteins from native or fixed specimen with low picomolar affinity. It is ideally suited for super-resolution microscopy, immunoprecipitations and Western blotting, and also allows in vivo detection of proteins. We show the crystal structure of the complex that enabled us to design a nanobody mutant (NbALFAPE) that permits efficient one-step purifications of native ALFA-tagged proteins, complexes and even entire living cells using peptide elution under physiological conditions. Epitope tags are widely used in various applications, but often lack versatility. Here, the authors introduce a small, alpha helical tag, which is recognized by a high affinity nanobody and can be used in a range of different applications, from protein purification to super-resolution imaging and in vivo detection of proteins.
Collapse
|
42
|
Schlichthaerle T, Strauss MT, Schueder F, Auer A, Nijmeijer B, Kueblbeck M, Jimenez Sabinina V, Thevathasan JV, Ries J, Ellenberg J, Jungmann R. Direct Visualization of Single Nuclear Pore Complex Proteins Using Genetically-Encoded Probes for DNA-PAINT. Angew Chem Int Ed Engl 2019; 58:13004-13008. [PMID: 31314157 PMCID: PMC6771475 DOI: 10.1002/anie.201905685] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/26/2019] [Indexed: 11/07/2022]
Abstract
The nuclear pore complex (NPC) is one of the largest and most complex protein assemblies in the cell and, among other functions, serves as the gatekeeper of nucleocytoplasmic transport. Unraveling its molecular architecture and functioning has been an active research topic for decades with recent cryogenic electron microscopy and super-resolution studies advancing our understanding of the architecture of the NPC complex. However, the specific and direct visualization of single copies of NPC proteins is thus far elusive. Herein, we combine genetically-encoded self-labeling enzymes such as SNAP-tag and HaloTag with DNA-PAINT microscopy. We resolve single copies of nucleoporins in the human Y-complex in three dimensions with a precision of circa 3 nm, enabling studies of multicomponent complexes on the level of single proteins in cells using optical fluorescence microscopy.
Collapse
Affiliation(s)
- Thomas Schlichthaerle
- Faculty of Physics and Center for NanoscienceLMU MunichGeschwister-Scholl-Platz 180539MunichGermany
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Maximilian T. Strauss
- Faculty of Physics and Center for NanoscienceLMU MunichGeschwister-Scholl-Platz 180539MunichGermany
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Florian Schueder
- Faculty of Physics and Center for NanoscienceLMU MunichGeschwister-Scholl-Platz 180539MunichGermany
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Alexander Auer
- Faculty of Physics and Center for NanoscienceLMU MunichGeschwister-Scholl-Platz 180539MunichGermany
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Bianca Nijmeijer
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)Meyerhofstraße 169117HeidelbergGermany
| | - Moritz Kueblbeck
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)Meyerhofstraße 169117HeidelbergGermany
| | - Vilma Jimenez Sabinina
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)Meyerhofstraße 169117HeidelbergGermany
| | - Jervis V. Thevathasan
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)Meyerhofstraße 169117HeidelbergGermany
| | - Jonas Ries
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)Meyerhofstraße 169117HeidelbergGermany
| | - Jan Ellenberg
- Cell Biology and Biophysics UnitEuropean Molecular Biology Laboratory (EMBL)Meyerhofstraße 169117HeidelbergGermany
| | - Ralf Jungmann
- Faculty of Physics and Center for NanoscienceLMU MunichGeschwister-Scholl-Platz 180539MunichGermany
- Max Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
43
|
Schlichthaerle T, Strauss MT, Schueder F, Auer A, Nijmeijer B, Kueblbeck M, Jimenez Sabinina V, Thevathasan JV, Ries J, Ellenberg J, Jungmann R. Direct Visualization of Single Nuclear Pore Complex Proteins Using Genetically‐Encoded Probes for DNA‐PAINT. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905685] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Thomas Schlichthaerle
- Faculty of Physics and Center for Nanoscience LMU Munich Geschwister-Scholl-Platz 1 80539 Munich Germany
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Maximilian T. Strauss
- Faculty of Physics and Center for Nanoscience LMU Munich Geschwister-Scholl-Platz 1 80539 Munich Germany
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Florian Schueder
- Faculty of Physics and Center for Nanoscience LMU Munich Geschwister-Scholl-Platz 1 80539 Munich Germany
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Alexander Auer
- Faculty of Physics and Center for Nanoscience LMU Munich Geschwister-Scholl-Platz 1 80539 Munich Germany
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| | - Bianca Nijmeijer
- Cell Biology and Biophysics Unit European Molecular Biology Laboratory (EMBL) Meyerhofstraße 1 69117 Heidelberg Germany
| | - Moritz Kueblbeck
- Cell Biology and Biophysics Unit European Molecular Biology Laboratory (EMBL) Meyerhofstraße 1 69117 Heidelberg Germany
| | - Vilma Jimenez Sabinina
- Cell Biology and Biophysics Unit European Molecular Biology Laboratory (EMBL) Meyerhofstraße 1 69117 Heidelberg Germany
| | - Jervis V. Thevathasan
- Cell Biology and Biophysics Unit European Molecular Biology Laboratory (EMBL) Meyerhofstraße 1 69117 Heidelberg Germany
| | - Jonas Ries
- Cell Biology and Biophysics Unit European Molecular Biology Laboratory (EMBL) Meyerhofstraße 1 69117 Heidelberg Germany
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit European Molecular Biology Laboratory (EMBL) Meyerhofstraße 1 69117 Heidelberg Germany
| | - Ralf Jungmann
- Faculty of Physics and Center for Nanoscience LMU Munich Geschwister-Scholl-Platz 1 80539 Munich Germany
- Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
| |
Collapse
|