1
|
Wei C, Zhang M, Cheng J, Tian J, Yang G, Jin Y. Plant-derived exosome-like nanoparticles - from Laboratory to factory, a landscape of application, challenges and prospects. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 39127967 DOI: 10.1080/10408398.2024.2388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Recent decades have witnessed substantial interest in extracellular vesicles (EVs) due to their crucial role in intercellular communication across various biological processes. Among these, plant-derived exosome-like Nanoparticles (ELNs) have rapidly gained recognition as highly promising candidates. ELNs, characterized by diverse sources, cost-effective production, and straightforward isolation, present a viable option for preventing and treating numerous diseases. Furthermore, ELNs hold significant potential as carriers for natural or engineered drugs, enhancing their attractiveness and drawing considerable attention in science and medicine. However, translating ELNs into clinical applications poses several challenges. This study explores these challenges and offers critical insights into potential research directions. Additionally, it provides a forward-looking analysis of the industrial prospects for ELNs. With their broad applications and remarkable potential, ELNs stand at the forefront of biomedical innovation, poised to revolutionize disease management and drug delivery paradigms in the coming years.
Collapse
Affiliation(s)
- Chaozhi Wei
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Mengyu Zhang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jintao Cheng
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Jinzhong Tian
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
| | - Guiling Yang
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuanxiang Jin
- Biomanufacturing Research Institute of Xianghu Laboratory, Hangzhou, China
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Chen Y, Hou S. Targeted treatment of rat AKI induced by rhabdomyolysis using BMSC derived magnetic exosomes and its mechanism. NANOSCALE ADVANCES 2024; 6:4180-4195. [PMID: 39114150 PMCID: PMC11304081 DOI: 10.1039/d4na00334a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
Introduction: rhabdomyolysis (RM) is a serious syndrome. A large area of muscle injury and dissolution induces acute kidney injury (AKI), which results in a high incidence and mortality rate. Exosomes released by mesenchymal stem cells (MSCs) have been used to treat AKI induced by rhabdomyolysis and have shown regenerative effects. However, the most serious drawbacks of these methods are poor targeting and a low enrichment rate after systemic administration. Methods: in this study, we demonstrated that magnetic exosomes derived from bone marrow mesenchymal stem cells (BMSCs) can directly target damaged muscles rather than kidneys using an external magnetic field. Results: magnetic navigation exosomes reduced the dissolution of damaged muscles, greatly reduced the release of cellular contents, slowed the development of AKI. Discussion: in summary, our proposed method can overcome the shortcomings of poor targeting in traditional exosome therapy. Moreover, in the rhabdomyolysis-induced AKI model, we propose for the first time an exosome therapy mode that directly targets damaged muscles through magnetic navigation.
Collapse
Affiliation(s)
- Yuling Chen
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University Tianjin China
- Tianjin Key Laboratory of Disaster Medicine Technology Tianjin China
| |
Collapse
|
3
|
Shi L, Hu Y, Zeng H, Shi H, Xu W, Sun Y, Chu H, Ji C, Qian H. Mesenchymal stem cell-derived extracellular vesicles ameliorate renal interstitial fibrosis via the miR-13474/ADAM17 axis. Sci Rep 2024; 14:17703. [PMID: 39085289 PMCID: PMC11291924 DOI: 10.1038/s41598-024-67339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/10/2024] [Indexed: 08/02/2024] Open
Abstract
Renal interstitial fibrosis (RIF) is a prevalent consequence of chronic renal diseases, characterized by excessive extracellular matrix (ECM) deposition. A Disintegrin and Metalloprotease 17 (ADAM17), a transmembrane metalloproteinase, plays a central role in driving renal fibrosis progression by activating Notch 1 protein and the downstream TGF-β signaling pathway. Our study investigated potential therapeutic interventions for renal fibrosis, focusing on human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs). We found that hucMSC-EVs inhibit ADAM17, thereby impeding renal fibrosis progression. Analysis of hucMSC-EVs miRNA profiles revealed significant enrichment of miR-13474, which effectively targeted and inhibited ADAM17 mRNA expression, subsequently suppressing Notch1 activation, TGF-β signaling, and collagen deposition. Overexpression of miR-13474 enhanced hucMSC-EVs' inhibitory effect on renal fibrosis, while its downregulation abolished this protective effect. Our findings highlight the efficacy of hucMSC-EVs overexpressing miR-13474 in mitigating renal fibrosis via ADAM17 targeting. These insights offer potential therapeutic strategies for managing renal fibrosis.
Collapse
Affiliation(s)
- Linru Shi
- Center for Molecular & Imageology of Jiangsu University, Division of Nephrology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yuyan Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
- Shaoxing Central Hospital Medical Alliance General Hospital, The Department of Laboratory, Shaoxing, 312030, Zhejiang, China
| | - Houcheng Zeng
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yaoxiang Sun
- Center for Molecular & Imageology of Jiangsu University, Division of Nephrology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China
| | - Hong Chu
- Center for Molecular & Imageology of Jiangsu University, Division of Nephrology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China.
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| | - Hui Qian
- Center for Molecular & Imageology of Jiangsu University, Division of Nephrology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, 214200, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
4
|
Elshoff D, Mehta P, Ziouzenkova O. Chronic Kidney Disease Diets for Kidney Failure Prevention: Insights from the IL-11 Paradigm. Nutrients 2024; 16:1342. [PMID: 38732588 PMCID: PMC11085624 DOI: 10.3390/nu16091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Nearly every fifth adult in the United States and many older adults worldwide are affected by chronic kidney disease (CKD), which can progress to kidney failure requiring invasive kidney replacement therapy. In this review, we briefly examine the pathophysiology of CKD and discuss emerging mechanisms involving the physiological resolution of kidney injury by transforming growth factor beta 1 (TGFβ1) and interleukin-11 (IL-11), as well as the pathological consequences of IL-11 overproduction, which misguides repair processes, ultimately culminating in CKD. Taking these mechanisms into account, we offer an overview of the efficacy of plant-dominant dietary patterns in preventing and managing CKD, while also addressing their limitations in terms of restoring kidney function or preventing kidney failure. In conclusion, this paper outlines novel regeneration strategies aimed at developing a reno-regenerative diet to inhibit IL-11 and promote repair mechanisms in kidneys affected by CKD.
Collapse
Affiliation(s)
- Denise Elshoff
- School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA;
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Priyanka Mehta
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| | - Ouliana Ziouzenkova
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
5
|
Shahi S, Kang T, Fonseka P. Extracellular Vesicles in Pathophysiology: A Prudent Target That Requires Careful Consideration. Cells 2024; 13:754. [PMID: 38727289 PMCID: PMC11083420 DOI: 10.3390/cells13090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released by cells to perform multitudes of biological functions. Owing to their significant implications in diseases, the pathophysiological role of EVs continues to be extensively studied, leading research to neglect the need to explore their role in normal physiology. Despite this, many identified physiological functions of EVs, including, but not limited to, tissue repair, early development and aging, are attributed to their modulatory role in various signaling pathways via intercellular communication. EVs are widely perceived as a potential therapeutic strategy for better prognosis, primarily through utilization as a mode of delivery vehicle. Moreover, disease-associated EVs serve as candidates for the targeted inhibition by pharmacological or genetic means. However, these attempts are often accompanied by major challenges, such as off-target effects, which may result in adverse phenotypes. This renders the clinical efficacy of EVs elusive, indicating that further understanding of the specific role of EVs in physiology may enhance their utility. This review highlights the essential role of EVs in maintaining cellular homeostasis under different physiological settings, and also discusses the various aspects that may potentially hinder the robust utility of EV-based therapeutics.
Collapse
Affiliation(s)
| | | | - Pamali Fonseka
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia; (S.S.); (T.K.)
| |
Collapse
|
6
|
Chen G, Li X, Zhou X, Li Y, Yu H, Peng X, Bai X, Zhang C, Feng Z, Mei Y, Li L, Liu Y, Gou X, Jiang Y. Extracellular vesicles secreted from mesenchymal stem cells ameliorate renal ischemia reperfusion injury by delivering miR-100-5p targeting FKBP5/AKT axis. Sci Rep 2024; 14:6720. [PMID: 38509215 PMCID: PMC10954733 DOI: 10.1038/s41598-024-56950-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
The incidence of acute kidney injury (AKI) due to ischemia-reperfusion (IR) injury is increasing. There is no effective treatment for AKI, and because of this clinical challenge, AKI often progresses to chronic kidney disease, which is closely associated with poor patient outcomes and high mortality rates. Small extracellular vesicles from human umbilical cord mesenchymal stem cells (hUCMSC-sEVs) play increasingly vital roles in protecting tissue function from the effects of various harmful stimuli owing to their specific biological features. In this study, we found that miR-100-5p was enriched in hUCMSC-sEVs, and miR-100-5p targeted FKBP5 and inhibited HK-2 cell apoptosis by activating the AKT pathway. HK-2 cells that were exposed to IR injury were cocultured with hUCMSC-sEVs, leading to an increase in miR-100-5p levels, a decrease in FKBP5 levels, and an increase in AKT phosphorylation at Ser 473 (AKT-473 phosphorylation). Notably, these effects were significantly reversed by transfecting hUCMSCs with an miR-100-5p inhibitor. Moreover, miR-100-5p targeted FKBP5, as confirmed by a dual luciferase reporter assay. In vivo, intravenous infusion of hUCMSC-sEVs into mice suffering from IR injury resulted in significant apoptosis inhibition, functional maintenance and renal histological protection, which in turn decreased FKBP5 expression levels. Overall, this study revealed an effect of hUCMSC-sEVs on inhibiting apoptosis; hUCMSC-sEVs reduced renal IR injury by delivering miR-100-5p to HK-2 cells, targeting FKBP5 and thereby promoting AKT-473 phosphorylation to activate the AKT pathway. This study provides novel insights into the role of hUCMSC-sEVs in the treatment of AKI.
Collapse
Affiliation(s)
- Guo Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xinyuan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xiang Zhou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Haitao Yu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xiang Peng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xuesong Bai
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Chunlin Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Zhenwei Feng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yuhua Mei
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Li Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yu Liu
- Department of Urology, Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi Road(Branch7), Jiangbei, Chongqing, 400021, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Xin Gou
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, China
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China
| | - Yuanbin Jiang
- Department of Urology, Chongqing Traditional Chinese Medicine Hospital, No.6, Panxi Road(Branch7), Jiangbei, Chongqing, 400021, China.
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, Chongqing, 400000, China.
| |
Collapse
|
7
|
Ba X, Ye T, Shang H, Tong Y, Huang Q, He Y, Wu J, Deng W, Zhong Z, Yang X, Wang K, Xie Y, Zhang Y, Guo X, Tang K. Recent Advances in Nanomaterials for the Treatment of Acute Kidney Injury. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12117-12148. [PMID: 38421602 DOI: 10.1021/acsami.3c19308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Acute kidney injury (AKI) is a serious clinical syndrome with high morbidity, elevated mortality, and poor prognosis, commonly considered a "sword of Damocles" for hospitalized patients, especially those in intensive care units. Oxidative stress, inflammation, and apoptosis, caused by the excessive production of reactive oxygen species (ROS), play a key role in AKI progression. Hence, the investigation of effective and safe antioxidants and inflammatory regulators to scavenge overexpressed ROS and regulate excessive inflammation has become a promising therapeutic option. However, the unique physiological structure and complex pathological alterations in the kidneys render traditional therapies ineffective, impeding the residence and efficacy of most antioxidant and anti-inflammatory small molecule drugs within the renal milieu. Recently, nanotherapeutic interventions have emerged as a promising and prospective strategy for AKI, overcoming traditional treatment dilemmas through alterations in size, shape, charge, and surface modifications. This Review succinctly summarizes the latest advancements in nanotherapeutic approaches for AKI, encompassing nanozymes, ROS scavenger nanomaterials, MSC-EVs, and nanomaterials loaded with antioxidants and inflammatory regulator. Following this, strategies aimed at enhancing biocompatibility and kidney targeting are introduced. Furthermore, a brief discussion on the current challenges and future prospects in this research field is presented, providing a comprehensive overview of the evolving landscape of nanotherapeutic interventions for AKI.
Collapse
Affiliation(s)
- Xiaozhuo Ba
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Ye
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Haojie Shang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yonghua Tong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu Huang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yu He
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jian Wu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wen Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zichen Zhong
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoqi Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kangyang Wang
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yabin Xie
- Department of Urology, Wenchang People's Hospital, Wenchang 571300, Hainan Province, China
| | - Yanlong Zhang
- GuiZhou University Medical College, Guiyang 550025, Guizhou Province, China
| | - Xiaolin Guo
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Tang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
8
|
Xue K, Mi B. Engineered Extracellular Vesicles in Chronic Kidney Diseases: A Comprehensive Review. Int J Nanomedicine 2024; 19:2377-2393. [PMID: 38469058 PMCID: PMC10926925 DOI: 10.2147/ijn.s452393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Chronic kidney diseases (CKD) present a formidable global health challenge, characterized by a deficiency of effective treatment options. Extracellular vesicles (EVs), recognized as multifunctional drug delivery systems in biomedicine, have gained accumulative interest. Specifically, engineered EVs have emerged as a promising therapeutic approach for targeted drug delivery, potentially addressing the complexities of CKD management. In this review, we systematically dissect EVs, elucidating their classification, biogenesis, composition, and cargo molecules. Furthermore, we explore techniques for EV engineering and strategies for their precise renal delivery, focusing on cargo loading and transportation, providing a comprehensive perspective. Moreover, this review also discusses and summarizes the diverse therapeutic applications of engineered EVs in CKD, emphasizing their anti-inflammatory, immunomodulatory, renoprotective, and tissue-regenerating effects. It critically evaluates the challenges and limitations in translating EV therapies from laboratory settings to clinical applications, while outlining future prospects and emerging trends.
Collapse
Affiliation(s)
- Kaming Xue
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
9
|
Gao X, Wu Y. Perioperative acute kidney injury: The renoprotective effect and mechanism of dexmedetomidine. Biochem Biophys Res Commun 2024; 695:149402. [PMID: 38159412 DOI: 10.1016/j.bbrc.2023.149402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dexmedetomidine (DEX) is a highly selective and potent α2-adrenoceptor (α2-AR) agonist that is widely used as a clinical anesthetic to induce anxiolytic, sedative, and analgesic effects. In recent years, a growing body of evidence has demonstrated that DEX protects against acute kidney injury (AKI) caused by sepsis, drugs, surgery, and ischemia-reperfusion (I/R) in organs or tissues, indicating its potential role in the prevention and treatment of AKI. In this review, we summarized the evidence of the renoprotective effects of DEX on different models of AKI and explored the mechanism. We found that the renoprotective effects of DEX mainly involved antisympathetic effects, reducing inflammatory reactions and oxidative stress, reducing apoptosis, increasing autophagy, reducing ferroptosis, protecting renal tubular epithelial cells (RTECs), and inhibiting renal fibrosis. Thus, the use of DEX is a promising strategy for the management and treatment of perioperative AKI. The aim of this review is to further clarify the renoprotective mechanism of DEX to provide a theoretical basis for its use in basic research in various AKI models, clinical management, and the treatment of perioperative AKI.
Collapse
Affiliation(s)
- Xiong Gao
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Yaohua Wu
- Department of Anesthesiology, Huanggang Central Hospital, Huanggang, Hube, China.
| |
Collapse
|
10
|
Yu X, Dong M, Wang L, Yang Q, Wang L, Han W, Dong J, Liu T, Kong Y, Niu W. Nanotherapy for bone repair: milk-derived small extracellular vesicles delivery of icariin. Drug Deliv 2023; 30:2169414. [PMID: 36714914 PMCID: PMC9888478 DOI: 10.1080/10717544.2023.2169414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Icariin (ICA) played an important role in the treatment of inflammatory bone defects. However, pharmacokinetic studies have shown that its poor bioavailability limited its application. In this context, we isolated bovine milk-derived sEV and prepared sEV-ICA to improve the osteogenic effect of ICA. In this study, we successfully constructed sEV-ICA. sEV-ICA was found to have significantly higher osteogenic efficiency than ICA in cell culture and cranial bone defect models. Mechanistically, bioinformatics analysis predicted that signal transducers and activators of transcription 5 (STAT5a) may bind to the GJA1 promoter, while luciferase activity assays and chromatin immunoprecipitation (ChIP) experiments confirmed that STAT5a directly binded to the GJA1 promoter to promote osteogenesis. We proved that compared with ICA, sEV-ICA showed a better effect of promoting bone repair in vivo and in vitro. In addition, sEV-ICA could promote osteogenesis by promoting the combination of STAT5a and GJA1 promoter. In summary, as a complex drug delivery system, sEV-ICA constituted a rapid and effective method for the treatment of bone defects and could improve the osteogenic activity of ICA.
Collapse
Affiliation(s)
- Xinxin Yu
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Ming Dong
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Lina Wang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Qian Yang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Long Wang
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Wenqing Han
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Juhong Dong
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China
| | - Tingjiao Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China,Tingjiao Liu Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai200003, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai200003, China
| | - Ying Kong
- Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China,Ying Kong Department Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian116044, Liaoning, China;
| | - Weidong Niu
- School of Stomatology, Dalian Medical University, Dalian, Liaoning, China,CONTACT Weidong Niu School of Stomatology, Dalian Medical University, Dalian116044, Liaoning, China;
| |
Collapse
|
11
|
Min K, Sahu A, Jeon SH, Tae G. Emerging drug delivery systems with traditional routes - A roadmap to chronic inflammatory diseases. Adv Drug Deliv Rev 2023; 203:115119. [PMID: 37898338 DOI: 10.1016/j.addr.2023.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Inflammation is prevalent and inevitable in daily life but can generally be accommodated by the immune systems. However, incapable self-healing and persistent inflammation can progress to chronic inflammation, leading to prevalent or fatal chronic diseases. This review comprehensively covers the topic of emerging drug delivery systems (DDSs) for the treatment of chronic inflammatory diseases (CIDs). First, we introduce the basic biology of the chronic inflammatory process and provide an overview of the main CIDs of the major organs. Next, up-to-date information on various DDSs and the associated strategies for ensuring targeted delivery and stimuli-responsiveness applied to CIDs are discussed extensively. The implementation of traditional routes of drug administration to maximize their therapeutic effects against CIDs is then summarized. Finally, perspectives on future DDSs against CIDs are presented.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Abhishek Sahu
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Hajipur, 844102, India
| | - Sae Hyun Jeon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
12
|
Abdolalian M, Zarif MN, Javan M. The role of extracellular vesicles on the occurrence of clinical complications in β-thalassemia. Exp Hematol 2023; 127:28-39. [PMID: 37652128 DOI: 10.1016/j.exphem.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Thalassemia is the most common monogenic disorder of red blood cells (RBCs) caused by defects in the synthesis of globin chains. Thalassemia phenotypes have a wide spectrum of clinical manifestations and vary from severe anemia requiring regular blood transfusions to clinically asymptomatic states. Ineffective erythropoiesis and toxicity caused by iron overload are major factors responsible for various complications in thalassemia patients, especially patients with β-thalassemia major (β-TM). Common complications in patients with thalassemia include iron overload, thrombosis, cardiac morbidity, vascular dysfunction, inflammation, and organ dysfunction. Extracellular vesicles (EVs) are small membrane vesicles released from various cells' plasma membranes due to activation and apoptosis. Based on studies, EVs play a role in various processes, including clot formation, vascular damage, and proinflammatory processes. In recent years, they have also been studied as biomarkers in the diagnosis and prognosis of diseases. Considering the high concentration of EVs in thalassemia and their role in cellular processes, this study reviews the role of EVs in the common complications of patients with β-thalassemia for the first time.
Collapse
Affiliation(s)
- Mehrnaz Abdolalian
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran; Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Mahin Nikogouftar Zarif
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Mohammadreza Javan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran; Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
13
|
Ebrahimi F, Pirouzmand F, Cosme Pecho RD, Alwan M, Yassen Mohamed M, Ali MS, Hormozi A, Hasanzadeh S, Daei N, Hajimortezayi Z, Zamani M. Application of mesenchymal stem cells in regenerative medicine: A new approach in modern medical science. Biotechnol Prog 2023; 39:e3374. [PMID: 37454344 DOI: 10.1002/btpr.3374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are non-hematopoietic and multipotent stem cells, which have been considered in regenerative medicine. These cells are easily separated from different sources, such as bone marrow (BM), umbilical cord (UC), adipose tissue (AT), and etc. MSCs have the differentiation capability into chondrocytes, osteocytes, and adipocytes; This differentiation potential along with the paracrine properties have made them a key choice for tissue repair. MSCs also have various advantages over other stem cells, which is why they have been extensively studied in recent years. The effectiveness of MSCs-based therapies depend on several factors, including differentiation status at the time of use, concentration per injection, delivery method, the used vehicle, and the nature and extent of the damage. Although, MSCs have emerged promising sources for regenerative medicine, there are potential risks regarding their safety in their clinical use, including tumorigenesis, lack of availability, aging, and sensitivity to toxic environments. In this study, we aimed to discuss how MSCs may be useful in treating defects and diseases. To this aim, we will review recent advances of MSCs action mechanisms in regenerative medicine, as well as the most recent clinical trials. We will also have a brief overview of MSCs resources, differences between their sources, culture conditions, extraction methods, and clinical application of MSCs in various fields of regenerative medicine.
Collapse
Affiliation(s)
- Faezeh Ebrahimi
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Farzaneh Pirouzmand
- Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | | | - Mariam Alwan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Arezoo Hormozi
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Sajedeh Hasanzadeh
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Narges Daei
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Zahra Hajimortezayi
- Medical Laboratory, Student Research Committee, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Majid Zamani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Mohammadipoor A, Hershfield MR, Linsenbardt HR, Smith J, Mack J, Natesan S, Averitt DL, Stark TR, Sosanya NM. Biological function of Extracellular Vesicles (EVs): a review of the field. Mol Biol Rep 2023; 50:8639-8651. [PMID: 37535245 DOI: 10.1007/s11033-023-08624-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/22/2023] [Indexed: 08/04/2023]
Abstract
Extracellular vesicles (EVs) theranostic potential is under intense investigation. There is a wealth of information highlighting the role that EVs and the secretome play in disease and how these are being utilized for clinical trials and novel therapeutic possibilities. However, understanding of the physiological and pathological roles of EVs remain incomplete. The challenge lies in reaching a consensus concerning standardized quality-controlled isolation, storage, and sample preparation parameters. Interest in circulating EV cargo as diagnostic and prognostic biomarkers is steadily growing. Though promising, various limitations need to be addressed before there can be successful, full-scale therapeutic use of approved EVs. These limitations include obtaining or manufacturing from the appropriate medium (e.g., from bodily fluid or cell culture), loading and isolating EVs, stability, and storage, standardization of processing, and determining potency. This review highlights specific topics, including circulation of abnormal EVs contribute to human disease and the theranostic potential of EVs. Theranostics is defined as a combination of the word's therapeutics and diagnostics and describes how a specific medicine or technique can function as both. Key findings include, (1) EVs and the secretome are future theranostics which will be utilized as both biomarkers for diagnosis and as therapeutics, (2) basic and translational research supports clinical trials utilizing EVs/secretome, and (3) additional investigation is required to fully unmask the theranostic potential of EVs/secretome in specific diseases and injuries.
Collapse
Affiliation(s)
- Arezoo Mohammadipoor
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Megan R Hershfield
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | | | - James Smith
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - James Mack
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Shanmugasundaram Natesan
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | | | - Thomas R Stark
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA
| | - Natasha M Sosanya
- Pain and Sensory Trauma Care, Combat Research Team 5 (CRT5), US Army Institute of Surgical Research (USAISR), 3698 Chambers Pass, JBSA Fort Sam Houston, San Antonio, TX, 78234-4504, USA.
| |
Collapse
|
15
|
Sall IM, Flaviu TA. Plant and mammalian-derived extracellular vesicles: a new therapeutic approach for the future. Front Bioeng Biotechnol 2023; 11:1215650. [PMID: 37781539 PMCID: PMC10534050 DOI: 10.3389/fbioe.2023.1215650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/16/2023] [Indexed: 10/03/2023] Open
Abstract
Background: In recent years, extracellular vesicles have been recognized as important mediators of intercellular communication through the transfer of active biomolecules (proteins, lipids, and nucleic acids) across the plant and animal kingdoms and have considerable roles in several physiological and pathological mechanisms, showing great promise as new therapeutic strategies for a variety of pathologies. Methods: In this study, we carefully reviewed the numerous articles published over the last few decades on the general knowledge of extracellular vesicles, their application in the therapy of various pathologies, and their prospects as an approach for the future. Results: The recent discovery and characterization of extracellular vesicles (EVs) of diverse origins and biogenesis have altered the current paradigm of intercellular communication, opening up new diagnostic and therapeutic perspectives. Research into these EVs released by plant and mammalian cells has revealed their involvement in a number of physiological and pathological mechanisms, such as embryonic development, immune response, tissue regeneration, and cancer. They are also being studied as potential biomarkers for disease diagnosis and vectors for drug delivery. Conclusion: Nanovesicles represent powerful tools for intercellular communication and the transfer of bioactive molecules. Their molecular composition and functions can vary according to their origin (plant and mammalian), so their formation, composition, and biological roles open the way to therapeutic applications in a variety of pathologies, which is arousing growing interest in the scientific community. Clinical Trial Registration: ClinicalTrials.gov identifier: NCT03608631.
Collapse
Affiliation(s)
| | - Tabaran Alexandru Flaviu
- Department of Anatomic Pathology, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|
16
|
Khamis T, Alsemeh AE, Alanazi A, Eltaweel AM, Abdel-Ghany HM, Hendawy DM, Abdelkhalek A, Said MA, Awad HH, Ibrahim BH, Mekawy DM, Pascu C, Florin C, Arisha AH. Breast Milk Mesenchymal Stem Cells and/or Derived Exosomes Mitigated Adenine-Induced Nephropathy via Modulating Renal Autophagy and Fibrotic Signaling Pathways and Their Epigenetic Regulations. Pharmaceutics 2023; 15:2149. [PMID: 37631363 PMCID: PMC10458733 DOI: 10.3390/pharmaceutics15082149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic kidney disease (CKD), a global health concern, is highly prevalent among adults. Presently, there are limited therapeutic options to restore kidney function. This study aimed to investigate the therapeutic potential of breast milk mesenchymal stem cells (Br-MSCs) and their derived exosomes in CKD. Eighty adult male Sprague Dawley rats were randomly assigned to one of six groups, including control, nephropathy, nephropathy + conditioned media (CM), nephropathy + Br-MSCs, nephropathy + Br-MSCs derived exosomes (Br-MSCs-EXOs), and nephropathy + Br-MSCs + Br-MSCs-EXOs. Before administration, Br-MSCs and Br-MSCs-EXOs were isolated, identified, and labeled with PKH-26. SOX2, Nanog, and OCT3/4 expression levels in Br-MSCs and miR-29b, miR-181, and Let-7b in both Br-MSCs and Br-MSCs-EXOs were assayed. Twelve weeks after transplantation, renal function tests, oxidative stress, expression of the long non-coding RNA SNHG-7, autophagy, fibrosis, and expression of profibrotic miR-34a and antifibrotic miR-29b, miR-181, and Let-7b were measured in renal tissues. Immunohistochemical analysis for renal Beclin-1, LC3-II, and P62, Masson trichome staining, and histopathological examination of kidney tissues were also performed. The results showed that Br-MSCs expressed SOX2, Nanog, and OCT3/4, while both Br-MSCs and Br-MSCs-EXOs expressed antifibrotic miR-181, miR-29b, and Let-7b, with higher expression levels in exosomes than in Br-MSCs. Interestingly, the administration of Br-MSCs + EXOs, EXOs, and Br-MSCs improved renal function tests, reduced renal oxidative stress, upregulated the renal expression of SNHG-7, AMPK, ULK-1, Beclin-1, LC3, miR-29b, miR-181, Let-7b, and Smad-7, downregulated the renal expression of miR-34a, AKT, mTOR, P62, TGF-β, Smad-3, and Coli-1, and ameliorated renal pathology. Thus, Br-MSCs and/or their derived exosomes appear to reduce adenine-induced renal damage by secreting antifibrotic microRNAs and potentiate renal autophagy by modulating SNHG-7 expression.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Asma Alanazi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Asmaa Monir Eltaweel
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh 11481, Saudi Arabia
| | - Heba M. Abdel-Ghany
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Doaa M. Hendawy
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Adel Abdelkhalek
- Department of Food Hygiene, Safety and Technology, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
| | - Mahmoud A. Said
- Zagazig University Hospital, Zagazig University, Zagazig 44511, Egypt
| | - Heba H. Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Basma Hamed Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Dina Mohamed Mekawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt;
| | - Corina Pascu
- Faculty of Veterinary Medicine, University of Life Sciences, King Mihai I from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania;
| | - Crista Florin
- Department of Soil Science, Faculty of Agriculture, University of Life Sciences, King Mihai I from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
17
|
Zahran F, Nabil A, Nassr A, Barakat N. Amelioration of exosome and mesenchymal stem cells in rats infected with diabetic nephropathy by attenuating early markers and aquaporin-1 expression. BRAZ J BIOL 2023; 83:e271731. [PMID: 37466513 DOI: 10.1590/1519-6984.271731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/21/2023] [Indexed: 07/20/2023] Open
Abstract
Diabetic nephropathy (DN) is a prevalent diabetic microvascular condition. It is the leading cause of kidney disease in the advanced stages. There is no currently effective treatment available. This research aimed to investigate the curative potentials of exosomes isolated from mesenchymal stem cells affecting DN. This study was performed on 70 male adult albino rats. Adult rats were randomized into seven groups: Group I: Negative control group, Group II: DN group, Group III: Balanites treated group, Group IV: MSCs treated group, Group V: Exosome treated group, Group VI: Balanites + MSCs treated group and Group VII: Balanites + exosome treated group. Following the trial period, blood and renal tissues were subjected to biochemical, gene expression analyses, and histopathological examinations. Results showed that MDA was substantially increased, whereas TAC was significantly decreased in the kidney in the DN group compared to normal health rats. Undesired elevated values of MDA levels and a decrease in TAC were substantially ameliorated in groups co-administered Balanites aegyptiacae with MSCs or exosomes compared to the DN group. A substantial elevation in TNF-α and substantially diminished concentration of IGF-1 were noticed in DN rats compared to normal health rats. Compared to the DN group, the co-administration of Balanites aegyptiacae with MSCs or exosomes substantially improved the undesirable elevated values of TNF-α and IGF-1. Furthermore, in the DN group, the mRNA expression of Vanin-1, Nephrin, and collagen IV was significantly higher than in normal healthy rats. Compared with DN rats, Vanin-1, Nephrin, and collagen IV Upregulation were substantially reduced in groups co-administered Balanites aegyptiacae with MSCs or exosomes. In DN rats, AQP1 expression was significantly lower than in normal healthy rats. Furthermore, the groups co-administered Balanites aegyptiacae with MSCs or exosomes demonstrated a substantial increase in AQP1 mRNA expression compared to DN rats.
Collapse
Affiliation(s)
- F Zahran
- Zagazig University, Faculty of Science, Chemistry Department, Biochemistry Division, Zagazig, Egypt
| | - A Nabil
- Beni-Suef University, Faculty of Postgraduate Studies for Advanced Sciences - PSAS, Biotechnology and Life Sciences Department, Beni-Suef, Egypt
| | - A Nassr
- Zagazig University, Faculty of Science, Chemistry Department, Biochemistry Division, Zagazig, Egypt
| | - N Barakat
- Mansoura University, Urology and Nephrology Center, Mansoura, Egypt
| |
Collapse
|
18
|
Oh S, Lee CM, Kwon SH. Extracellular Vesicle MicroRNA in the Kidney. Compr Physiol 2023; 13:4833-4850. [PMID: 37358511 PMCID: PMC11514415 DOI: 10.1002/cphy.c220023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Most cells in our body release membrane-bound, nano-sized particles into the extracellular milieu through cellular metabolic processes. Various types of macromolecules, reflecting the physiological and pathological status of the producing cells, are packaged into such so-called extracellular vesicles (EVs), which can travel over a distance to target cells, thereby transmitting donor cell information. The short, noncoding ribonucleic acid (RNA) called microRNA (miRNA) takes a crucial part in EV-resident macromolecules. Notably, EVs transferring miRNAs can induce alterations in the gene expression profiles of the recipient cells, through genetically instructed, base-pairing interaction between the miRNAs and their target cell messenger RNAs (mRNAs), resulting in either nucleolytic decay or translational halt of the engaged mRNAs. As in other body fluids, EVs released in urine, termed urinary EVs (uEVs), carry specific sets of miRNA molecules, which indicate either normal or diseased states of the kidney, the principal source of uEVs. Studies have therefore been directed to elucidate the contents and biological roles of miRNAs in uEVs and moreover to utilize the gene regulatory properties of miRNA cargos in ameliorating kidney diseases through their delivery via engineered EVs. We here review the fundamental principles of the biology of EVs and miRNA as well as our current understanding of the biological roles and applications of EV-loaded miRNAs in the kidney. We further discuss the limitations of contemporary research approaches, suggesting future directions to overcome the difficulties to advance both the basic biological understanding of miRNAs in EVs and their clinical applications in treating kidney diseases. © 2023 American Physiological Society. Compr Physiol 13:4833-4850, 2023.
Collapse
Affiliation(s)
- Sekyung Oh
- Department of Medical Science, Catholic Kwandong University College of Medicine, Incheon 22711, South Korea
| | - Chang Min Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, U.S.A
| |
Collapse
|
19
|
Hu QD, Tan RZ, Zou YX, Li JC, Fan JM, Kantawong F, Wang L. Synergism of calycosin and bone marrow-derived mesenchymal stem cells to combat podocyte apoptosis to alleviate adriamycin-induced focal segmental glomerulosclerosis. World J Stem Cells 2023; 15:617-631. [PMID: 37424951 PMCID: PMC10324505 DOI: 10.4252/wjsc.v15.i6.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Bone marrow-derived mesenchymal stem cells (MSCs) show podocyte-protective effects in chronic kidney disease. Calycosin (CA), a phytoestrogen, is isolated from Astragalus membranaceus with a kidney-tonifying effect. CA preconditioning enhances the protective effect of MSCs against renal fibrosis in mice with unilateral ureteral occlusion. However, the protective effect and underlying mechanism of CA-pretreated MSCs (MSCsCA) on podocytes in adriamycin (ADR)-induced focal segmental glomerulosclerosis (FSGS) mice remain unclear. AIM To investigate whether CA enhances the role of MSCs in protecting against podocyte injury induced by ADR and the possible mechanism involved. METHODS ADR was used to induce FSGS in mice, and MSCs, CA, or MSCsCA were administered to mice. Their protective effect and possible mechanism of action on podocytes were observed by Western blot, immunohistochemistry, immunofluorescence, and real-time polymerase chain reaction. In vitro, ADR was used to stimulate mouse podocytes (MPC5) to induce injury, and the supernatants from MSC-, CA-, or MSCsCA-treated cells were collected to observe their protective effects on podocytes. Subsequently, the apoptosis of podocytes was detected in vivo and in vitro by Western blot, TUNEL assay, and immunofluorescence. Overexpression of Smad3, which is involved in apoptosis, was then induced to evaluate whether the MSCsCA-mediated podocyte protective effect is associated with Smad3 inhibition in MPC5 cells. RESULTS CA-pretreated MSCs enhanced the protective effect of MSCs against podocyte injury and the ability to inhibit podocyte apoptosis in ADR-induced FSGS mice and MPC5 cells. Expression of p-Smad3 was upregulated in mice with ADR-induced FSGS and MPC5 cells, which was reversed by MSCCA treatment more significantly than by MSCs or CA alone. When Smad3 was overexpressed in MPC5 cells, MSCsCA could not fulfill their potential to inhibit podocyte apoptosis. CONCLUSION MSCsCA enhance the protection of MSCs against ADR-induced podocyte apoptosis. The underlying mechanism may be related to MSCsCA-targeted inhibition of p-Smad3 in podocytes.
Collapse
Affiliation(s)
- Qiong-Dan Hu
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Rui-Zhi Tan
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Yuan-Xia Zou
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jian-Chun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Molecular Imaging and Therapy Research Unit, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jun-Ming Fan
- Department of Nephrology, The Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan Province, China
| | - Fahsai Kantawong
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China.
| |
Collapse
|
20
|
Ceccotti E, Saccu G, Herrera Sanchez MB, Bruno S. Naïve or Engineered Extracellular Vesicles from Different Cell Sources: Therapeutic Tools for Kidney Diseases. Pharmaceutics 2023; 15:1715. [PMID: 37376163 DOI: 10.3390/pharmaceutics15061715] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Renal pathophysiology is a multifactorial process involving different kidney structures. Acute kidney injury (AKI) is a clinical condition characterized by tubular necrosis and glomerular hyperfiltration. The maladaptive repair after AKI predisposes to the onset of chronic kidney diseases (CKD). CKD is a progressive and irreversible loss of kidney function, characterized by fibrosis that could lead to end stage renal disease. In this review we provide a comprehensive overview of the most recent scientific publications analyzing the therapeutic potential of Extracellular Vesicles (EV)-based treatments in different animal models of AKI and CKD. EVs from multiple sources act as paracrine effectors involved in cell-cell communication with pro-generative and low immunogenic properties. They represent innovative and promising natural drug delivery vehicles used to treat experimental acute and chronic kidney diseases. Differently from synthetic systems, EVs can cross biological barriers and deliver biomolecules to the recipient cells inducing a physiological response. Moreover, new methods for improving the EVs as carriers have been introduced, such as the engineering of the cargo, the modification of the proteins on the external membrane, or the pre-conditioning of the cell of origin. The new nano-medicine approaches based on bioengineered EVs are an attempt to enhance their drug delivery capacity for potential clinical applications.
Collapse
Affiliation(s)
- Elena Ceccotti
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Gabriele Saccu
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Maria Beatriz Herrera Sanchez
- Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
- 2i3T, Società per la Gestione dell'incubatore di Imprese e per il Trasferimento Tecnologico, University of Torino, 10126 Torino, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| |
Collapse
|
21
|
Chen X, Guo J, Mahmoud S, Vanga G, Liu T, Xu W, Xiong Y, Xiong W, Abdel-Razek O, Wang G. Regulatory roles of SP-A and exosomes in pneumonia-induced acute lung and kidney injuries. Front Immunol 2023; 14:1188023. [PMID: 37256132 PMCID: PMC10225506 DOI: 10.3389/fimmu.2023.1188023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/02/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Pneumonia-induced sepsis can cause multiple organ dysfunction including acute lung and kidney injury (ALI and AKI). Surfactant protein A (SP-A), a critical innate immune molecule, is expressed in the lung and kidney. Extracellular vesicles like exosomes are involved in the processes of pathophysiology. Here we tested one hypothesis that SP-A regulates pneumonia-induced AKI through the modulation of exosomes and cell death. Methods Wild-type (WT), SP-A knockout (KO), and humanized SP-A transgenic (hTG, lung-specific SP-A expression) mice were used in this study. Results After intratracheal infection with Pseudomonas aeruginosa, KO mice showed increased mortality, higher injury scores, more severe inflammation in the lung and kidney, and increased serum TNF-α, IL-1β, and IL-6 levels compared to WT and hTG mice. Infected hTG mice exhibited similar lung injury but more severe kidney injury than infected WT mice. Increased renal tubular apoptosis and pyroptosis in the kidney of KO mice were found when compared with WT and hTG mice. We found that serum exosomes from septic mice cause ALI and AKI through mediating apoptosis and proptosis when mice were injected intravenously. Furthermore, primary proximal tubular epithelial cells isolated from KO mice showed more sensitivity than those from WT mice after exposure to septic serum exosomes. Discussion Collectively, SP-A attenuates pneumonia-induced ALI and AKI by regulating inflammation, apoptosis and pyroptosis; serum exosomes are important mediators in the pathogenesis of AKI.
Collapse
Affiliation(s)
- Xinghua Chen
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Nephrology, Wuhan University, Renmin Hospital, Wuhan, Hubei, China
| | - Junping Guo
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Salma Mahmoud
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Gautam Vanga
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Tianyi Liu
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Wanwen Xu
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Yunhe Xiong
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weichuan Xiong
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Osama Abdel-Razek
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
22
|
Chen Z, Ding W, Duan P, Lv X, Feng Y, Yin Z, Luo Z, Li Z, Zhang H, Zhou T, Tan H. HWJMSC-derived extracellular vesicles ameliorate IL-1β-induced chondrocyte injury through regulation of the BMP2/RUNX2 axis via up-regulation TFRC. Cell Signal 2023; 105:110604. [PMID: 36669606 DOI: 10.1016/j.cellsig.2023.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Articular osteochondral injury is a common and frequently occurring disease in orthopedics that is caused by aging, disease, and trauma. The cytokine interleukin-1β (IL-1β) is a crucial mediator of the inflammatory response, which exacerbates damage during chronic disease and acute tissue injury. Human Wharton's jelly mesenchymal stem cell (HWJMSC) extracellular vesicles (HWJMSC-EVs) have been shown to promote cartilage regeneration. The study aimed to investigate the influence and mechanisms of HWJMSC-EVs on the viability, apoptosis, and cell cycle of IL-1β-induced chondrocytes. HWJMSC-EVs were isolated by Ribo™ Exosome Isolation Reagent kit. Nanoparticle tracking analysis was used to determine the size and concentration of HWJMSC-EVs. We characterized HWJMSC-EVs by western blot and transmission electron microscope. The differentiation, viability, and protein level of chondrocytes were measured by Alcian blue staining, Cell Counting Kit-8, and western blot, respectively. Flow cytometer was used to determine apoptosis and cell cycle of chondrocytes. The results showed that HWJMSCs relieved IL-1β-induced chondrocyte injury by inhibiting apoptosis and elevating viability and cell cycle of chondrocyte, which was reversed with exosome inhibitor (GW4869). HWJMSC-EVs were successfully extracted and proven to be uptake by chondrocytes. HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury by inhibiting cell apoptosis and elevating viability and cycle of cell, but these effects were effectively reversed by knockdown of transferrin receptor (TFRC). Notably, using bone morphogenetic protein 2 (BMP2) pathway agonist and inhibitor suggested that HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury through activating the BMP2 pathway via up-regulation TFRC. Furthermore, over-expression of runt-related transcription factor 2 (RUNX2) reversed the effects of BMP2 pathway inhibitor promotion of IL-1β-induced chondrocyte injury. These results suggested that HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury by regulating the BMP2/RUNX2 axis via up-regulation TFRC. HWJMSC-EVs may play a new insight for early medical interventions in patients with articular osteochondral injury.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Wei Ding
- College of Medicine Technology, Yunnan Medical Health College, Kunming City, Yunnan Province, China
| | - Peiya Duan
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Xiaoyu Lv
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Yujiao Feng
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Zhengbo Yin
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Zhihong Luo
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Zhigui Li
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Hua Zhang
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Tianhua Zhou
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| |
Collapse
|
23
|
Wang DR, Pan J. Extracellular vesicles: Emerged as a promising strategy for regenerative medicine. World J Stem Cells 2023; 15:165-181. [PMID: 37181006 PMCID: PMC10173817 DOI: 10.4252/wjsc.v15.i4.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
Cell transplantation therapy has certain limitations including immune rejection and limited cell viability, which seriously hinder the transformation of stem cell-based tissue regeneration into clinical practice. Extracellular vesicles (EVs) not only possess the advantages of its derived cells, but also can avoid the risks of cell transplantation. EVs are intelligent and controllable biomaterials that can participate in a variety of physiological and pathological activities, tissue repair and regeneration by transmitting a variety of biological signals, showing great potential in cell-free tissue regeneration. In this review, we summarized the origins and characteristics of EVs, introduced the pivotal role of EVs in diverse tissues regeneration, discussed the underlying mechanisms, prospects, and challenges of EVs. We also pointed out the problems that need to be solved, application directions, and prospects of EVs in the future and shed new light on the novel cell-free strategy for using EVs in the field of regenerative medicine.
Collapse
Affiliation(s)
- Dian-Ri Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jian Pan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
24
|
Liu P, An Y, Zhu T, Tang S, Huang X, Li S, Fu F, Chen J, Xuan K. Mesenchymal stem cells: Emerging concepts and recent advances in their roles in organismal homeostasis and therapy. Front Cell Infect Microbiol 2023; 13:1131218. [PMID: 36968100 PMCID: PMC10034133 DOI: 10.3389/fcimb.2023.1131218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/03/2023] [Indexed: 03/11/2023] Open
Abstract
Stem cells play a crucial role in re-establishing homeostasis in the body, and the search for mechanisms by which they interact with the host to exert their therapeutic effects remains a key question currently being addressed. Considering their significant regenerative/therapeutic potential, research on mesenchymal stem cells (MSCs) has experienced an unprecedented advance in recent years, becoming the focus of extensive works worldwide to develop cell-based approaches for a variety of diseases. Initial evidence for the effectiveness of MSCs therapy comes from the restoration of dynamic microenvironmental homeostasis and endogenous stem cell function in recipient tissues by systemically delivered MSCs. The specific mechanisms by which the effects are exerted remain to be investigated in depth. Importantly, the profound cell-host interplay leaves persistent therapeutic benefits that remain detectable long after the disappearance of transplanted MSCs. In this review, we summarize recent advances on the role of MSCs in multiple disease models, provide insights into the mechanisms by which MSCs interact with endogenous stem cells to exert therapeutic effects, and refine the interconnections between MSCs and cells fused to damaged sites or differentiated into functional cells early in therapy.
Collapse
Affiliation(s)
- Peisheng Liu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongqian An
- Department of Stomatology, 962 Hospital of People's Liberation Army of China, Harbin, Heilongjiang, China
| | - Ting Zhu
- The College of Life Science, Northwest University, Xi’an, Shaanxi, China
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Siyuan Tang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- School of Basic Medicine, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xiaoyao Huang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shijie Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Fei Fu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Ji Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, The Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi, China
- *Correspondence: Ji Chen, ; Kun Xuan,
| |
Collapse
|
25
|
Wang J, Tian J, Wang L, Yang ZW, Xu P. Mesenchymal stem cells regulate M1 polarization of peritoneal macrophages through the CARD9-NF-κB signaling pathway in severe acute pancreatitis. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2023; 30:338-350. [PMID: 35738898 DOI: 10.1002/jhbp.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/19/2022] [Accepted: 06/01/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Macrophages release large numbers of proinflammatory cytokines that trigger inflammatory cascade reactions, which promote the rapid development of severe acute pancreatitis (SAP) from local to systemic inflammation. The ability of mesenchymal stem cells (MSCs) to suppress inflammation is related to inhibition of M1 polarization of macrophages. Our previous studies revealed that caspase recruitment domain protein 9 (CARD9) was involved in SAP inflammation and activation of the CARD9-NF-κB signaling pathway plays an important proinflammatory role in SAP. At present, there is no effective treatment to control the inflammatory response in SAP. Therefore, the aim of the present study was to determine whether MSCs regulate the polarization of macrophages through the CARD9-NF-κB signaling pathway in SAP. METHODS Short hairpin RNA interference technology and coculture in vitro were used to assess the activation status of the CARD9-NF-κB signal pathway in macrophages. Furthermore, flow cytometry was used to determine the polarization state of macrophages. RESULTS The results showed MSCs inhibited CARD9 expression in vivo and in vitro (P < .05), alleviated inflammation induced by proinflammatory cytokines, and inhibited the phosphorylation of NF-κB in macrophages both in vivo and in vitro. Meanwhile, MSCs downregulated the CARD9-NF-κB signal pathway and inhibited M1 polarization of macrophages. CONCLUSION In conclusion, MSCs regulate M1 polarization of peritoneal macrophages through the CARD9-NF-κB signaling pathway in SAP and transplantation of MSCs presents an effective treatment option for SAP.
Collapse
Affiliation(s)
- Jing Wang
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
- Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Jun Tian
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
- Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Jinshan Hospital of Fudan University, Shanghai, China
| | - Zhi-Wen Yang
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
- Shanghai Songjiang Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Ping Xu
- Songjiang Hospital Affiliated to Shanghai Jiaotong University School of Medicine (Preparatory Stage), Shanghai, China
| |
Collapse
|
26
|
Verta R, Saccu G, Tanzi A, Grange C, Buono L, Fagoonee S, Deregibus MC, Camussi G, Scalabrin S, Nuzzi R, Bussolati B. Phenotypic and functional characterization of aqueous humor derived extracellular vesicles. Exp Eye Res 2023; 228:109393. [PMID: 36709863 DOI: 10.1016/j.exer.2023.109393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/16/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Extracellular vesicles (EVs) are double membrane vesicles, abundant in all biological fluids. However, the characterization of EVs in aqueous humor (AH) is still limited. The aim of the present work was to characterize EVs isolated from AH (AH-EVs) in terms of surface markers of cellular origin and functional properties. We obtained AHs from patients with cataract undergoing surgical phacoemulsification and insertion of intraocular lenses (n = 10). Nanoparticle tracking analysis, electron microscopy, super resolution microscopy and bead-based cytofluorimetry were used to characterize EVs from AH. Subsequently, we investigated the effects of AH-EVs on viability, proliferation and wound healing of human immortalized keratinocyte (HaCaT) cells in vitro in comparison with the effect of mesenchymal stromal cell-EVs (MSC-EVs). AH-EVs had a mean size of around 100 nm and expressed the classical tetraspanins (CD9, CD63 and CD81). Super resolution microscopy revealed co-expression of CD9, CD63 and CD81. Moreover, cytofluorimetric analysis highlighted the expression of mesenchymal, stem, epithelial and endothelial markers. In the in vitro wound healing assay on HaCaT cells, AH-EVs induced a significantly faster wound repair, comparable to the effects of MSC-EVs, and promoted HaCaT cell viability and proliferation. We provide evidence, herein, of the possible AH-EV origin from stromal cells, limbal epithelial/stem cells, ciliary epithelium and corneal endothelium. In addition, we showed their in vitro proliferative and regenerative capacities.
Collapse
Affiliation(s)
- Roberta Verta
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Gabriele Saccu
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Adele Tanzi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Cristina Grange
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Lola Buono
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | | | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, Torino, Italy
| | | | - Raffaele Nuzzi
- Department of Surgical Sciences, University of Torino, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
27
|
Manzoor T, Saleem A, Farooq N, Dar LA, Nazir J, Saleem S, Ismail S, Gugjoo MB, Shiekh PA, Ahmad SM. Extracellular vesicles derived from mesenchymal stem cells - a novel therapeutic tool in infectious diseases. Inflamm Regen 2023; 43:17. [PMID: 36849892 PMCID: PMC9970864 DOI: 10.1186/s41232-023-00266-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/04/2023] [Indexed: 03/01/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized lipid-bilayer encapsulated vesicles produced by the cells. These EVs are released into the surrounding space by almost all cell types. The EVs help in intercellular communication via their payloads which contain various proteins, lipids, and nucleic acids generated from the donor cells and allow for synergistic responses in surrounding cells. In recent years, EVs have been increasingly important in treating infectious diseases, including respiratory tract infections, urinary tract infections, wound infections, sepsis, and intestinal infections. Studies have confirmed the therapeutic value of mesenchymal stem cell-derived EVs (MSC-EVs) for treating infectious diseases to eliminate the pathogen, modulate the resistance, and restore tissue damage in infectious diseases. This can be achieved by producing antimicrobial substances, inhibiting pathogen multiplication, and activating macrophage phagocytic activity. Pathogen compounds can be diffused by inserting them into EVs produced and secreted by host cells or by secreting them as microbial cells producing EVs carrying signalling molecules and DNA shielding infected pathogens from immune attack. EVs play a key role in infectious pathogenesis and hold great promise for developing innovative treatments. In this review, we discuss the role of MSC-EVs in treating various infectious diseases.
Collapse
Affiliation(s)
- Tasaduq Manzoor
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Srinagar, 190006 India
| | - Afnan Saleem
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Srinagar, 190006 India
| | - Nida Farooq
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Srinagar, 190006 India
| | - Lateef Ahmad Dar
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Srinagar, 190006 India
| | - Junaid Nazir
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Srinagar, 190006 India
| | - Sahar Saleem
- grid.444725.40000 0004 0500 6225Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Srinagar, 190006 India
| | - Sameena Ismail
- grid.412997.00000 0001 2294 5433Government Degree College, Khanabal Kashmir, India
| | - Mudasir Bashir Gugjoo
- grid.444725.40000 0004 0500 6225Veterinary Clinical Services Complex, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Srinagar, India
| | - Parvaiz A. Shiekh
- grid.417967.a0000 0004 0558 8755Centre for Biomedical Engineering, Indian Institute of Technology-Delhi, New Delhi, 110016 India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-Kashmir, Srinagar, 190006, India.
| |
Collapse
|
28
|
Stem Cells in Kidney Ischemia: From Inflammation and Fibrosis to Renal Tissue Regeneration. Int J Mol Sci 2023; 24:ijms24054631. [PMID: 36902062 PMCID: PMC10002584 DOI: 10.3390/ijms24054631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/19/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Ischemic nephropathy consists of progressive renal function loss due to renal hypoxia, inflammation, microvascular rarefaction, and fibrosis. We provide a literature review focused on kidney hypoperfusion-dependent inflammation and its influence on renal tissue's ability to self-regenerate. Moreover, an overview of the advances in regenerative therapy with mesenchymal stem cell (MSC) infusion is provided. Based on our search, we can point out the following conclusions: 1. endovascular reperfusion is the gold-standard therapy for RAS, but its success mostly depends on treatment timeliness and a preserved downstream vascular bed; 2. anti-RAAS drugs, SGLT2 inhibitors, and/or anti-endothelin agents are especially recommended for patients with renal ischemia who are not eligible for endovascular reperfusion for slowing renal damage progression; 3. TGF-β, MCP-1, VEGF, and NGAL assays, along with BOLD MRI, should be extended in clinical practice and applied to a pre- and post-revascularization protocols; 4. MSC infusion appears effective in renal regeneration and could represent a revolutionary treatment for patients with fibrotic evolution of renal ischemia.
Collapse
|
29
|
Li G, Zhang Y, Wu J, Yang R, Sun Q, Xu Y, Wang B, Cai M, Xu Y, Zhuang C, Wang L. Adipose stem cells-derived exosomes modified gelatin sponge promotes bone regeneration. Front Bioeng Biotechnol 2023; 11:1096390. [PMID: 36845194 PMCID: PMC9947707 DOI: 10.3389/fbioe.2023.1096390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Background: Large bone defects resulting from trauma and diseases still a great challenge for the surgeons. Exosomes modified tissue engineering scaffolds are one of the promising cell-free approach for repairing the defects. Despite extensive knowledge of the variety kinds of exosomes promote tissue regeneration, little is known of the effect and mechanism for the adipose stem cells-derived exosomes (ADSCs-Exos) on bone defect repair. This study aimed to explore whether ADSCs-Exos and ADSCs-Exos modified tissue engineering scaffold promotes bone defects repair. Material/Methods: ADSCs-Exos were isolated and identified by transmission electron microscopy nanoparticle tracking analysis, and western blot. Rat bone marrow mesenchymal stem cells (BMSCs) were exposed to ADSCs-Exos. The CCK-8 assay, scratch wound assay, alkaline phosphatase activity assay, and alizarin red staining were used to evaluate the proliferation, migration, and osteogenic differentiation of BMSCs. Subsequently, a bio-scaffold, ADSCs-Exos modified gelatin sponge/polydopamine scaffold (GS-PDA-Exos), were prepared. After characterized by scanning electron microscopy and exosomes release assay, the repair effect of the GS-PDA-Exos scaffold on BMSCs and bone defects was evaluated in vitro and in vivo. Results: The diameter of ADSCs-exos is around 122.1 nm and high expressed exosome-specific markers CD9 and CD63. ADSCs-Exos promote the proliferation migration and osteogenic differentiation of BMSCs. ADSCs-Exos was combined with gelatin sponge by polydopamine (PDA)coating and released slowly. After exposed to the GS-PDA-Exos scaffold, BMSCs have more calcium nodules with osteoinductive medium and higher expression the mRNA of osteogenic related genes compared with other groups. The quantitative analysis of all micro-CT parameters showed that GS-PDA-Exos scaffold promote new bone formed in the femur defect model in vivo and confirmed by histological analysis. Conclusion: This study demonstrates the repair efficacy of ADSCs-Exos in bone defects, ADSCs-Exos modified scaffold showing a huge potential in the treatment of large bone defects.
Collapse
Affiliation(s)
- Gen Li
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yin Zhang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jiezhou Wu
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Renhao Yang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qi Sun
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yidong Xu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bo Wang
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Cai
- Department of Orthopaedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Xu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chengyu Zhuang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Chengyu Zhuang, ; Lei Wang,
| | - Lei Wang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Chengyu Zhuang, ; Lei Wang,
| |
Collapse
|
30
|
Erdbrügger U, Hoorn EJ, Le TH, Blijdorp CJ, Burger D. Extracellular Vesicles in Kidney Diseases: Moving Forward. KIDNEY360 2023; 4:245-257. [PMID: 36821616 PMCID: PMC10103258 DOI: 10.34067/kid.0001892022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022]
Abstract
Extracellular vesicles (EVs) are evolving as novel cell mediators, biomarkers, and therapeutic targets in kidney health and disease. They are naturally derived from cells both within and outside the kidney and carry cargo which mirrors the state of the parent cell. Thus, they are potentially more sensitive and disease-specific as biomarkers and messengers in various kidney diseases. Beside their role as novel communicators within the nephron, they likely communicate between different organs affected by various kidney diseases. Study of urinary EVs (uEVs) can help to fill current knowledge gaps in kidney diseases. However, separation and characterization are challenged by their heterogeneity in size, shape, and cargo. Fortunately, more sensitive and direct EV measuring tools are in development. Many clinical syndromes in nephrology from acute to chronic kidney and glomerular to tubular diseases have been studied. Yet, validation of biomarkers in larger cohorts is warranted and simpler tools are needed. Translation from in vitro to in vivo studies is also urgently needed. The therapeutic role of uEVs in kidney diseases has been studied extensively in rodent models of AKI. On the basis of the current exponential growth of EV research, the field of EV diagnostics and therapeutics is moving forward.
Collapse
Affiliation(s)
- Uta Erdbrügger
- Division of Nephrology, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Ewout J. Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Thu H. Le
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Charles J. Blijdorp
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
31
|
Han N, Zhang W, Fang XX, Li QC, Pi W. Reduced graphene oxide-embedded nerve conduits loaded with bone marrow mesenchymal stem cell-derived extracellular vesicles promote peripheral nerve regeneration. Neural Regen Res 2023. [PMID: 35799543 PMCID: PMC9241414 DOI: 10.4103/1673-5374.343889] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We previously combined reduced graphene oxide (rGO) with gelatin-methacryloyl (GelMA) and polycaprolactone (PCL) to create an rGO-GelMA-PCL nerve conduit and found that the conductivity and biocompatibility were improved. However, the rGO-GelMA-PCL nerve conduits differed greatly from autologous nerve transplants in their ability to promote the regeneration of injured peripheral nerves and axonal sprouting. Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSCs) can be loaded into rGO-GelMA-PCL nerve conduits for repair of rat sciatic nerve injury because they can promote angiogenesis at the injured site. In this study, 12 weeks after surgery, sciatic nerve function was measured by electrophysiology and sciatic nerve function index, and myelin sheath and axon regeneration were observed by electron microscopy, immunohistochemistry, and immunofluorescence. The regeneration of microvessel was observed by immunofluorescence. Our results showed that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles were superior to rGO-GelMA-PCL conduits alone in their ability to increase the number of newly formed vessels and axonal sprouts at the injury site as well as the recovery of neurological function. These findings indicate that rGO-GelMA-PCL nerve conduits loaded with BMSC-derived extracellular vesicles can promote peripheral nerve regeneration and neurological function recovery, and provide a new direction for the curation of peripheral nerve defect in the clinic.
Collapse
|
32
|
Cell-Derived Vesicles for mRNA Delivery. Pharmaceutics 2022; 14:pharmaceutics14122699. [PMID: 36559192 PMCID: PMC9787719 DOI: 10.3390/pharmaceutics14122699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
The clinical translation of messenger mRNA (mRNA)-based therapeutics requires safe and effective delivery systems. Although considerable progress has been made on the development of mRNA delivery systems, many challenges, such as the dose-limiting toxicity and specific delivery to extrahepatic tissues, still remain. Cell-derived vesicles, a type of endogenous membranous particle secreted from living cells, can be leveraged to load mRNA during or after their biogenesis. Currently, they have received increasing interest for mRNA delivery due to their natural origin, good biocompatibility, cell-specific tropism, and unique ability to cross physiological barriers. In this review, we provide an overview of recent advances in the naturally occurring mRNA delivery platforms and their biomedical applications. Furthermore, the future perspectives on clinical translation of cell-derived vesicles have been discussed.
Collapse
|
33
|
The Use of Mesenchymal Stem Cells in the Complex Treatment of Kidney Tuberculosis (Experimental Study). Biomedicines 2022; 10:biomedicines10123062. [PMID: 36551818 PMCID: PMC9775022 DOI: 10.3390/biomedicines10123062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
In recent years, the application of mesenchymal stem cells (MSCs) has been recognized as a promising method for treatment of different diseases associated with inflammation and sclerosis, which include nephrotuberculosis. The aim of our study is to investigate the effectiveness of MSCs in the complex therapy of experimental rabbit kidney tuberculosis and to evaluate the effect of cell therapy on the reparative processes. Methods: To simulate kidney tuberculosis, a suspension of the standard strain Mycobacterium tuberculosis H37Rv (106 CFU) was used, which was injected into the cortical layer of the lower pole parenchyma of the left kidney under ultrasound control in rabbits. Anti-tuberculosis therapy (aTBT) was started on the 18th day after infection. MSCs (5 × 107 cells) were transplanted intravenously after the start of aTBT. Results: 2.5 months after infection, all animals showed renal failure. Conducted aTBT significantly reduced the level of albumin, ceruloplasmin, elastase and the severity of disorders in the proteinase/inhibitor system and increased the productive nature of inflammation. A month after MSC transplantation, the level of inflammatory reaction activity proteins decreased, the area of specific and destructive inflammation in kidneys decreased and the formation of mature connective tissue was noted, which indicates the reparative reaction activation.
Collapse
|
34
|
Dominguez JH, Xie D, Dominguez JM, Kelly KJ. Role of coagulation in persistent renal ischemia following reperfusion in an animal model. Am J Physiol Renal Physiol 2022; 323:F590-F601. [PMID: 36007891 PMCID: PMC9602917 DOI: 10.1152/ajprenal.00162.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022] Open
Abstract
Ischemic acute kidney injury is common, deadly, and accelerates the progression of chronic kidney disease, yet has no specific therapy. After ischemia, reperfusion is patchy with early and persistent impairment in regional renal blood flow and cellular injury. We tested the hypothesis that intrarenal coagulation results in sustained renal ischemia following reperfusion, using a well-characterized model. Markedly decreased, but heterogeneous, microvascular plasma flow with microthrombi was found postischemia by intravital microscopy. Widespread tissue factor expression and fibrin deposition were also apparent. Clotting was accompanied by complement activation and inflammation. Treatment with exosomes derived from renal tubular cells or with the fibrinolytic urokinase, given 24 h postischemia when renal failure was established, significantly improved microvascular flow, coagulation, serum creatinine, and histological evidence of injury. These data support the hypothesis that intrarenal clotting occurs early and the resultant sustained ischemia is a critical determinant of renal failure following ischemia; they demonstrate that the coagulation abnormalities are amenable to therapy and that therapy results in improvement in both function and postischemic inflammation.NEW & NOTEWORTHY Ischemic renal injury carries very high morbidity and mortality, yet has no specific therapy. We found markedly decreased, heterogeneous microvascular plasma flow, tissue factor induction, fibrin deposition, and microthrombi after renal ischemia-reperfusion using a well-characterized model. Renal exosomes or the fibrinolytic urokinase, administered after renal failure was established, improved microvascular flow, coagulation, renal function, and histology. Data demonstrate that intrarenal clotting results in sustained ischemia amenable to therapy that improves both function and postischemic inflammation.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| | - Danhui Xie
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - James M. Dominguez
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - K. J. Kelly
- Nephrology Division, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Roudebush Veterans Administration Hospital, Indianapolis, Indiana
| |
Collapse
|
35
|
McLaughlin C, Datta P, Singh YP, Lo A, Horchler S, Elcheva IA, Ozbolat IT, Ravnic DJ, Koduru SV. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Therapeutic Use and in Bioengineering Applications. Cells 2022; 11:3366. [PMID: 36359762 PMCID: PMC9657427 DOI: 10.3390/cells11213366] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 07/25/2023] Open
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-delimited particles that are naturally released from cells into body fluids, and therefore can travel and convey regulatory functions in the distal parts of the body. EVs can transmit paracrine signaling by carrying over cytokines, chemokines, growth factors, interleukins (ILs), transcription factors, and nucleic acids such as DNA, mRNAs, microRNAs, piRNAs, lncRNAs, sn/snoRNAs, mtRNAs and circRNAs; these EVs travel to predecided destinations to perform their functions. While mesenchymal stem cells (MSCs) have been shown to improve healing and facilitate treatments of various diseases, the allogenic use of these cells is often accompanied by serious adverse effects after transplantation. MSC-produced EVs are less immunogenic and can serve as an alternative to cellular therapies by transmitting signaling or delivering biomaterials to diseased areas of the body. This review article is focused on understanding the properties of EVs derived from different types of MSCs and MSC-EV-based therapeutic options. The potential of modern technologies such as 3D bioprinting to advance EV-based therapies is also discussed.
Collapse
Affiliation(s)
- Caroline McLaughlin
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Pallab Datta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, West Bengal 700054, India
| | - Yogendra P. Singh
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Alexis Lo
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Summer Horchler
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Irina A. Elcheva
- Department of Pediatrics, Hematology/Oncology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ibrahim T. Ozbolat
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of Life Sciences, Penn State University, University Park, PA 16802, USA
| | - Dino J. Ravnic
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Srinivas V. Koduru
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
36
|
Quaglia M, Fanelli V, Merlotti G, Costamagna A, Deregibus MC, Marengo M, Balzani E, Brazzi L, Camussi G, Cantaluppi V. Dual Role of Extracellular Vesicles in Sepsis-Associated Kidney and Lung Injury. Biomedicines 2022; 10:biomedicines10102448. [PMID: 36289710 PMCID: PMC9598620 DOI: 10.3390/biomedicines10102448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles form a complex intercellular communication network, shuttling a variety of proteins, lipids, and nucleic acids, including regulatory RNAs, such as microRNAs. Transfer of these molecules to target cells allows for the modulation of sets of genes and mediates multiple paracrine and endocrine actions. EVs exert broad pro-inflammatory, pro-oxidant, and pro-apoptotic effects in sepsis, mediating microvascular dysfunction and multiple organ damage. This deleterious role is well documented in sepsis-associated acute kidney injury and acute respiratory distress syndrome. On the other hand, protective effects of stem cell-derived extracellular vesicles have been reported in experimental models of sepsis. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, regenerative, and immunomodulatory properties of parental cells and have shown therapeutic effects in experimental models of sepsis with kidney and lung involvement. Extracellular vesicles are also likely to play a role in deranged kidney-lung crosstalk, a hallmark of sepsis, and may be key to a better understanding of shared mechanisms underlying multiple organ dysfunction. In this review, we analyze the state-of-the-art knowledge on the dual role of EVs in sepsis-associated kidney/lung injury and repair. PubMed library was searched from inception to July 2022, using a combination of medical subject headings (MeSH) and keywords related to EVs, sepsis, acute kidney injury (AKI), acute lung injury (ALI), and acute respiratory distress syndrome (ARDS). Key findings are summarized into two sections on detrimental and beneficial mechanisms of actions of EVs in kidney and lung injury, respectively. The role of EVs in kidney-lung crosstalk is then outlined. Efforts to expand knowledge on EVs may pave the way to employ them as prognostic biomarkers or therapeutic targets to prevent or reduce organ damage in sepsis.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Vito Fanelli
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Andrea Costamagna
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | | | - Marita Marengo
- Nephrology and Dialysis Unit, ASL CN1, 12038 Savigliano, Italy
| | - Eleonora Balzani
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Luca Brazzi
- Department of Anaesthesia, Critical Care and Emergency, Città della Salute e della Scienza Hospital, University of Torino, 10126 Torino, Italy
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
- Correspondence: (G.C.); (V.C.)
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy
- Correspondence: (G.C.); (V.C.)
| |
Collapse
|
37
|
CD73-Adenosinergic Axis Mediates the Protective Effect of Extracellular Vesicles Derived from Mesenchymal Stromal Cells on Ischemic Renal Damage in a Rat Model of Donation after Circulatory Death. Int J Mol Sci 2022; 23:ijms231810681. [PMID: 36142593 PMCID: PMC9501320 DOI: 10.3390/ijms231810681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/21/2022] Open
Abstract
We propose a new organ-conditioning strategy based on mesenchymal stromal cell (MSCs)/extracellular vesicle (EVs) delivery during hypothermic perfusion. MSCs/EVs marker CD73 is present on renal proximal tubular cells, and it protects against renal ischemia-reperfusion injury by converting adenosine monophosphate into adenosine (ADO). In this study, after checking if CD73-silenced EVs (EVsi) would impact in vitro tubular-cell proliferation, we perfused kidneys of a rat model of donation after circulatory death, with Belzer solution (BS) alone, BS supplemented with MSCs, EVs, or EVsi. The ADO and ATP levels were measured in the effluents and tissues. Global renal ischemic damage score (GRS), and tubular cell proliferation index (IPT) were evaluated in the tissue. EVsi did not induce cell proliferation in vitro. Ex vivo kidneys perfused with BS or BS + EVsi showed the worst GRS and higher effluent ADO levels than the MSC- and EV-perfused kidneys. In the EV-perfused kidneys, the tissue and effluent ATP levels and IPT were the highest, but not if CD73 was silenced. Tissue ATP content was positively correlated with tissue ADO content and negatively correlated with effluent ADO level in all groups. In conclusion, kidney conditioning with EVs protects against ischemic damage by activating the CD73/ADO system.
Collapse
|
38
|
Xie X, Yang X, Wu J, Tang S, Yang L, Fei X, Wang M. Exosome from indoleamine 2,3-dioxygenase-overexpressing bone marrow mesenchymal stem cells accelerates repair process of ischemia/reperfusion-induced acute kidney injury by regulating macrophages polarization. Stem Cell Res Ther 2022; 13:367. [PMID: 35902956 PMCID: PMC9331485 DOI: 10.1186/s13287-022-03075-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI)-induced acute kidney injury (AKI) can repair itself completely. However, most moderate and severe patients undergoing IRI-AKI progress to chronic kidney disease due to incomplete repair. The present study is aimed to investigate the role of bone marrow mesenchymal stem cell-derived exosomes (MSC-Exo) with indoleamine 2,3-dioxygenase (IDO) overexpression on incomplete repair in mice after IRI. METHODS IRI mice was established by clamping the unilateral renal pedicles and challenged with MSC-Exo. Blood biochemical indexes and inflammation factors contents were measured by ELISA assay. Histopathological examinations were monitored by HE, Masson, Immunohistochemical and TUNEL staining. Immunofluorescence, flow cytometry and immunoblotting were used to detect the polarization of macrophages, respectively. RESULTS As compared to sham operation mice, IRI mice showed high contents of serum BUN and Scr, and more severe damaged kidney tissues on days 1 and 3, which all gradually declined over time, showing the lowest level on day 7 after injury. Once treated with MSCs-Exo that could directly transfer to kidney tubular cells, the restoration of kidney functions significantly accelerated by contrast to IRI mice, and the promotive effects were more obvious in IDO-overexpressed MSCs-Exo (MSCs-Exo-IDO)-treated IRI mice. Furthermore, MSCs-Exo-IDO administration also accelerated renal tubular cells proliferation, restrained tubular cells apoptosis, fibrosis and inflammation factor secretions during self-repair process compared to IRI mice, whose effects were higher than MSCs-Exo-NC-challenged IRI mice and IDO overexpressing plasmid-injected IRI mice. Mechanistically, MSCs-Exo-NC and MSCs-Exo-IDO exposure promoted the polarization from M1 macrophage to M2 macrophage, leading to more anti-inflammatory factors production, and subsequently altered the inflammatory microenvironment of renal tubular cells, which facilitated the self-repair process in mice after IRI. CONCLUSION MSCs-derived exosome accelerated renal self-repair in IRI mice by activating M2 macrophages polarization, which effects were amplified by IDO overexpression in MSCs. Potentially, genetically modified MSCs-Exo is an effective approach to improve renal self-repair in IRI-AKI mice.
Collapse
Affiliation(s)
- Xiangcheng Xie
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Xiu Yang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Junxia Wu
- Department of Nephrology, School of Medicine, The Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shengjie Tang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - LiLi Yang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Xiao Fei
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China
| | - Ming Wang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, No. 261, Huansha Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
39
|
Liu F, Ye S, Jiang P, Zhang W, Wang Z, Li C. The proteome profiling of EVs originating from senescent cell model using quantitative proteomics and parallel reaction monitoring. J Proteomics 2022; 266:104669. [PMID: 35788408 DOI: 10.1016/j.jprot.2022.104669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/30/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
Senescence is the inevitable biological processes and is also considered as the biggest risk factor for the development of age - related diseases (ARDs) and geriatric syndrome (GS). Senescence is also known as inflammaging because it is characterized by persistent, long-term, low-grade inflammation named senescence-associated secretory phenotype (SASP). However, the mechanism for the persistence of inflammaging remains largely unclear. To explore the role of extracellular vesicles (EVs) in senescence/inflammaging, we established the cellular senescence model and performed TMT-based comparative quantitative proteomics and parallel reaction monitoring (PRM) to reveal the changes of EVs between young cells and senescent cells. A total of 3966 proteins were quantifiable, of which 132 were up-regulated, 144 were down-regulated, compared with the young cells. Subsequently, we chose 19 proteins involved in inflammation or proliferation to carry out PRM validation analysis. The result indicated that proteins promoting NF-κB signal pathway were up-regulated, and proteins promoting cell proliferation were down-regulated. The study provided a comprehensive altered proteomics profiles of EVs from senescent cells, and the result showed that EVs could serve as information carrier for further research on the pathogenesis and progression of senescence/inflammaging. SIGNIFICANCE: The mechanism of inflammaging occurrence and development has yet been clear. Therefore, this study attempts to provide an improved understanding of inflammaging from the perspective of EVs. The proteomics analysis revealed that the most changed proteins were connected to inflammation signaling pathways, cell growth and cell death, and PRM analysis results showed that proteins involved in NF-κB signal pathway and cell proliferation were more changed. The research systematically analyzed the profiles of proteins in senescence cell model, and the result indicated that further research should focus on the relationship between EVs and senescence/inflammaging.
Collapse
Affiliation(s)
- Fengjuan Liu
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Shengliang Ye
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Peng Jiang
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Wei Zhang
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China
| | - Zongkui Wang
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| | - Changqing Li
- Institute of blood transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052, China.
| |
Collapse
|
40
|
Abstract
Extracellular vesicles are released by the majority of cell types and circulate in body fluids. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has established a central role of extracellular vesicles in kidney physiology and pathology. Urinary extracellular vesicles mediate crosstalk between glomerular and tubular cells and between different segments of the tubule, whereas circulating extracellular vesicles mediate organ crosstalk and are involved in the amplification of kidney damage and inflammation. The molecular profile of extracellular vesicles reflects the type and pathophysiological status of the originating cell so could potentially be exploited for diagnostic and prognostic purposes. In addition, robust preclinical data suggest that administration of exogenous extracellular vesicles could promote kidney regeneration and reduce inflammation and fibrosis in acute and chronic kidney diseases. Stem cells are thought to be the most promising source of extracellular vesicles with regenerative activity. Extracellular vesicles are also attractive candidates for drug delivery and various engineering strategies are being investigated to alter their cargo and increase their efficacy. However, rigorous standardization and scalable production strategies will be necessary to enable the clinical application of extracellular vesicles as potential therapeutics. In this Review, the authors discuss the roles of extracellular vesicles in kidney physiology and disease as well as the beneficial effects of stem cell-derived extracellular vesicles in preclinical models of acute kidney injury and chronic kidney disease. They also highlight current and future clinical applications of extracellular vesicles in kidney diseases. Urinary extracellular vesicles have roles in intra-glomerular, glomerulo-tubular and intra-tubular crosstalk, whereas circulating extracellular vesicles might mediate organ crosstalk; these mechanisms could amplify kidney damage and contribute to disease progression. Urinary extracellular vesicles could potentially be analysed using multiplex diagnostic platforms to identify pathological processes and the originating cell types; technological advances including single extracellular vesicle analysis might increase the specificity of bulk analysis of extracellular vesicle preparations. Robust standardization and validation in large patient cohorts are required to enable clinical application of extracellular vesicle-based biomarkers. Stem cell-derived extracellular vesicles have been shown to improve renal recovery, limit progression of injury and reduce fibrosis in animal models of acute kidney injury and chronic kidney disease. Various engineering approaches can be used to load extracellular vesicles with therapeutic molecules and increase their delivery to the kidney. A small clinical trial that tested the efficacy of mesenchymal stem cell extracellular vesicle administration in patients with chronic kidney disease reported promising results; however, therapeutic application of extracellular vesicles is limited by a lack of scalable manufacturing protocols and clear criteria for standardization.
Collapse
|
41
|
Quaglia M, Merlotti G, Fornara L, Colombatto A, Cantaluppi V. Extracellular Vesicles Released from Stem Cells as a New Therapeutic Strategy for Primary and Secondary Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23105760. [PMID: 35628570 PMCID: PMC9142886 DOI: 10.3390/ijms23105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022] Open
Abstract
Current treatment of primary and secondary glomerulopathies is hampered by many limits and a significant proportion of these disorders still evolves towards end-stage renal disease. A possible answer to this unmet challenge could be represented by therapies with stem cells, which include a variety of progenitor cell types derived from embryonic or adult tissues. Stem cell self-renewal and multi-lineage differentiation ability explain their potential to protect and regenerate injured cells, including kidney tubular cells, podocytes and endothelial cells. In addition, a broad spectrum of anti-inflammatory and immunomodulatory actions appears to interfere with the pathogenic mechanisms of glomerulonephritis. Of note, mesenchymal stromal cells have been particularly investigated as therapy for Lupus Nephritis and Diabetic Nephropathy, whereas initial evidence suggest their beneficial effects in primary glomerulopathies such as IgA nephritis. Extracellular vesicles mediate a complex intercellular communication network, shuttling proteins, nucleic acids and other bioactive molecules from origin to target cells to modulate their functions. Stem cell-derived extracellular vesicles recapitulate beneficial cytoprotective, reparative and immunomodulatory properties of parental cells and are increasingly recognized as a cell-free alternative to stem cell-based therapies for different diseases including glomerulonephritis, also considering the low risk for potential adverse effects such as maldifferentiation and tumorigenesis. We herein summarize the renoprotective potential of therapies with stem cells and extracellular vesicles derived from progenitor cells in glomerulonephritis, with a focus on their different mechanisms of actions. Technological progress and growing knowledge are paving the way for wider clinical application of regenerative medicine to primary and secondary glomerulonephritis: this multi-level, pleiotropic therapy may open new scenarios overcoming the limits and side effects of traditional treatments, although the promising results of experimental models need to be confirmed in the clinical setting.
Collapse
|
42
|
Quaglia M, Merlotti G, Colombatto A, Bruno S, Stasi A, Franzin R, Castellano G, Grossini E, Fanelli V, Cantaluppi V. Stem Cell-Derived Extracellular Vesicles as Potential Therapeutic Approach for Acute Kidney Injury. Front Immunol 2022; 13:849891. [PMID: 35359949 PMCID: PMC8960117 DOI: 10.3389/fimmu.2022.849891] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury is a frequent complication of hospitalized patients and significantly increases morbidity and mortality, worsening costs and length of hospital stay. Despite this impact on healthcare system, treatment still remains only supportive (dialysis). Stem cell-derived extracellular vesicles are a promising option as they recapitulate stem cells properties, overcoming safety issues related to risks or rejection or aberrant differentiation. A growing body of evidence based on pre-clinical studies suggests that extracellular vesicles may be effective to treat acute kidney injury and to limit fibrosis through direct interference with pathogenic mechanisms of vascular and tubular epithelial cell damage. We herein analyze the state-of-the-art knowledge of therapeutic approaches with stem cell-derived extracellular vesicles for different forms of acute kidney injury (toxic, ischemic or septic) dissecting their cytoprotective, regenerative and immunomodulatory properties. We also analyze the potential impact of extracellular vesicles on the mechanisms of transition from acute kidney injury to chronic kidney disease, with a focus on the pivotal role of the inhibition of complement cascade in this setting. Despite some technical limits, nowadays the development of therapies based on stem cell-derived extracellular vesicles holds promise as a new frontier to limit acute kidney injury onset and progression.
Collapse
Affiliation(s)
- Marco Quaglia
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Guido Merlotti
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Andrea Colombatto
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Stefania Bruno
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Alessandra Stasi
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Rossana Franzin
- Nephrology, Dialysis and Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Bari, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Kidney Transplantation Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Elena Grossini
- Laboratory of Physiology, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale, Novara, Italy
| | - Vito Fanelli
- Department of Anesthesiology and Intensive Care, University of Torino, Torino, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplantation Unit, "Maggiore della Carità" University Hospital, Department of Translational Medicine, Translational Research on Autoimmune and Allergic Disease (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| |
Collapse
|
43
|
Yang L, Patel KD, Rathnam C, Thangam R, Hou Y, Kang H, Lee KB. Harnessing the Therapeutic Potential of Extracellular Vesicles for Biomedical Applications Using Multifunctional Magnetic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104783. [PMID: 35132796 PMCID: PMC9344859 DOI: 10.1002/smll.202104783] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/12/2022] [Indexed: 04/14/2023]
Abstract
Extracellular vesicles (e.g., exosomes) carrying various biomolecules (e.g., proteins, lipids, and nucleic acids) have rapidly emerged as promising platforms for many biomedical applications. Despite their enormous potential, their heterogeneity in surfaces and sizes, the high complexity of cargo biomolecules, and the inefficient uptake by recipient cells remain critical barriers for their theranostic applications. To address these critical issues, multifunctional nanomaterials, such as magnetic nanomaterials, with their tunable physical, chemical, and biological properties, may play crucial roles in next-generation extracellular vesicles (EV)-based disease diagnosis, drug delivery, tissue engineering, and regenerative medicine. As such, one aims to provide cutting-edge knowledge pertaining to magnetic nanomaterials-facilitated isolation, detection, and delivery of extracellular vesicles and their associated biomolecules. By engaging the fields of extracellular vesicles and magnetic nanomaterials, it is envisioned that their properties can be effectively combined for optimal outcomes in biomedical applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123 Bevier Road, Pis cataway, NJ 08854, USA
| |
Collapse
|
44
|
Kosanović M, Milutinovic B, Glamočlija S, Morlans IM, Ortiz A, Bozic M. Extracellular Vesicles and Acute Kidney Injury: Potential Therapeutic Avenue for Renal Repair and Regeneration. Int J Mol Sci 2022; 23:ijms23073792. [PMID: 35409151 PMCID: PMC8998560 DOI: 10.3390/ijms23073792] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/10/2022] Open
Abstract
Acute kidney injury (AKI) is a sudden decline of renal function and represents a global clinical problem due to an elevated morbidity and mortality. Despite many efforts, currently there are no treatments to halt this devastating condition. Extracellular vesicles (EVs) are nanoparticles secreted by various cell types in both physiological and pathological conditions. EVs can arise from distinct parts of the kidney and can mediate intercellular communication between various cell types along the nephron. Besides their potential as diagnostic tools, EVs have been proposed as powerful new tools for regenerative medicine and have been broadly studied as therapeutic mediators in different models of experimental AKI. In this review, we present an overview of the basic features and biological relevance of EVs, with an emphasis on their functional role in cell-to-cell communication in the kidney. We explore versatile roles of EVs in crucial pathophysiological mechanisms contributing to AKI and give a detailed description of the renoprotective effects of EVs from different origins in AKI. Finally, we explain known mechanisms of action of EVs in AKI and provide an outlook on the potential clinical translation of EVs in the setting of AKI.
Collapse
Affiliation(s)
- Maja Kosanović
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Bojana Milutinovic
- Department of Neurosurgery, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA;
| | - Sofija Glamočlija
- Institute for the Application of Nuclear Energy, INEP, University of Belgrade, 11080 Belgrade, Serbia; (M.K.); (S.G.)
| | - Ingrid Mena Morlans
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, 28040 Madrid, Spain;
| | - Milica Bozic
- Vascular and Renal Translational Research Group, Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRBLleida), 25196 Lleida, Spain;
- Correspondence:
| |
Collapse
|
45
|
Rampino T, Gregorini M, Germinario G, Pattonieri EF, Erasmi F, Grignano MA, Bruno S, Alomari E, Bettati S, Asti A, Ramus M, De Amici M, Testa G, Bruno S, Ceccarelli G, Serpieri N, Libetta C, Sepe V, Blasevich F, Odaldi F, Maroni L, Vasuri F, La Manna G, Ravaioli M. Extracellular Vesicles Derived from Mesenchymal Stromal Cells Delivered during Hypothermic Oxygenated Machine Perfusion Repair Ischemic/Reperfusion Damage of Kidneys from Extended Criteria Donors. BIOLOGY 2022; 11:biology11030350. [PMID: 35336724 PMCID: PMC8945029 DOI: 10.3390/biology11030350] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary In this study, we explore for the first time an innovative tool for organ preservation aimed to preventing ischemia reperfusion injury (IRI) in marginal kidneys from expanded criteria donors (ECD) unsuitable for transplantation. Ex vivo hypothermic oxygenated perfusion (HOPE) with and without MSC-derived EV and normothermic reperfusion (NR) with artificial blood composed of bovine hemoglobin were applied on kidneys to evaluate global renal ischemic damage score, renal ultrastructure, mitochondrial distress, apoptosis, cell proliferation index, and the mediators of energy metabolism. Our study demonstrates that kidney conditioning with HOPE+EV arrests the ischemic damage, prevents reoxygenation-dependent injury, and preserves tissue integrity. EV delivery during HOPE can be considered a new organ preservation strategy to increase the donor pool and improving transplant outcome. The originality of our study lies an EV and HOPE combined novel setting use in kidneys from ECD, but also in any condition for graft dysfunction such as ischemia/reperfusion. Abstract The poor availability of kidney for transplantation has led to a search for new strategies to increase the donor pool. The main option is the use of organs from extended criteria donors. We evaluated the effects of hypothermic oxygenated perfusion (HOPE) with and without extracellular vesicles (EV) derived from mesenchymal stromal cells on ischemic/reperfusion injury of marginal kidneys unsuitable for transplantation. For normothermic reperfusion (NR), we used artificial blood as a substitute for red blood cells. We evaluated the global renal ischemic dam-age score (GRS), analyzed the renal ultrastructure (RU), cytochrome c oxidase (COX) IV-1 (a mitochondrial distress marker), and caspase-3 renal expression, the tubular cell proliferation index, hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) tissue levels, and effluent lactate and glucose levels. HOPE+EV kidneys had lower GRS and better RU, higher COX IV-1 expression and HGF and VEGF levels and lower caspase-3 expression than HOPE kidneys. During NR, HOPE+EV renal effluent had lower lactate release and higher glucose levels than HOPE renal effluent, suggesting that the gluconeogenesis system in HOPE+EV group was pre-served. In conclusion, EV delivery during HOPE can be considered a new organ preservation strategy for increasing the donor pool and improving transplant outcome.
Collapse
Affiliation(s)
- Teresa Rampino
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Marilena Gregorini
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-503896
| | - Giuliana Germinario
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), University of Bologna, 40126 Bologna, Italy
| | - Eleonora Francesca Pattonieri
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Fulvia Erasmi
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Maria Antonietta Grignano
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Stefano Bruno
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (S.B.); (E.A.)
- Biopharmatec TEC, University of Parma, Tecnopolo Padiglione 33, 43124 Parma, Italy;
| | - Esra Alomari
- Department of Food and Drug, University of Parma, 43124 Parma, Italy; (S.B.); (E.A.)
| | - Stefano Bettati
- Biopharmatec TEC, University of Parma, Tecnopolo Padiglione 33, 43124 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Annalia Asti
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Marina Ramus
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Mara De Amici
- Laboratory of Immuno-Allergology of Clinical Chemistry and Pediatric Clinic, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy;
| | - Giorgia Testa
- Department of Pediatrics, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy;
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy;
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Nicoletta Serpieri
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Carmelo Libetta
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Vincenzo Sepe
- Department of Nephrology, Dialysis and Transplantation, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy; (T.R.); (E.F.P.); (F.E.); (M.A.G.); (A.A.); (M.R.); (N.S.); (C.L.); (V.S.)
| | - Flavia Blasevich
- Department of Neuroimmunology and Neuromuscular Diseases, Fondazione IRCCS Neurological Institute Carlo Besta, 20133 Milan, Italy;
| | - Federica Odaldi
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
| | - Lorenzo Maroni
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
| | - Francesco Vasuri
- “F. Addarii” Institute of Oncology and Transplantation Pathology, S. Orsola-Malpighi University Hospital, 40138 Bologna, Italy;
| | - Gaetano La Manna
- Department of Nephrology, S.Orsola-Malpighi Hospital, University of Bologna, 40138 Bologna, Italy;
| | - Matteo Ravaioli
- Department of General Surgery and Transplantation, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (G.G.); (F.O.); (L.M.); (M.R.)
- Dipartimento di Scienze Mediche e Chirurgiche (DIMEC), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
46
|
Zhang F, Guo J, Zhang Z, Duan M, Wang G, Qian Y, Zhao H, Yang Z, Jiang X. Application of engineered extracellular vesicles for targeted tumor therapy. J Biomed Sci 2022; 29:14. [PMID: 35189894 PMCID: PMC8862579 DOI: 10.1186/s12929-022-00798-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
All cells, including prokaryotes and eukaryotes, could release extracellular vesicles (EVs). EVs contain many cellular components, including RNA, and surface proteins, and are essential for maintaining normal intercellular communication and homeostasis of the internal environment. EVs released from different tissues and cells exhibit excellent properties and functions (e.g., targeting specificity, regulatory ability, physical durability, and immunogenicity), rendering them a potential new option for drug delivery and precision therapy. EVs have been demonstrated to transport antitumor drugs for tumor therapy; additionally, EVs' contents and surface substance can be altered to improve their therapeutic efficacy in the clinic by boosting targeting potential and drug delivery effectiveness. EVs can regulate immune system function by affecting the tumor microenvironment, thereby inhibiting tumor progression. Co-delivery systems for EVs can be utilized to further improve the drug delivery efficiency of EVs, including hydrogels and liposomes. In this review, we discuss the isolation technologies of EVs, as well as engineering approaches to their modification. Moreover, we evaluate the therapeutic potential of EVs in tumors, including engineered extracellular vesicles and EVs' co-delivery systems. Technologies such as microfluidics can improve EVs isolation efficiency. Engineering technologies can improve EVs drug loading efficiency and tumor targeting. EVs-based drug co-delivery systems are being developed, such as those with liposomes and hydrogels.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jinshuai Guo
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenghou Zhang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meiqi Duan
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guang Wang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiping Qian
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiying Zhao
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Yang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
47
|
Kang X, Chen Y, Xin X, Liu M, Ma Y, Ren Y, Ji J, Yu Q, Qu L, Wang S, Liu G, Xiang C, Yang L. Human Amniotic Epithelial Cells and Their Derived Exosomes Protect Against Cisplatin-Induced Acute Kidney Injury Without Compromising Its Antitumor Activity in Mice. Front Cell Dev Biol 2022; 9:752053. [PMID: 35186944 PMCID: PMC8851426 DOI: 10.3389/fcell.2021.752053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Cisplatin is a widely used chemotherapeutic drug, whereas the clinical application is greatly limited by its nephrotoxic side effect. Currently, there has been no effective treatment to prevent cisplatin-induced acute kidney injury (cisplatin-AKI). Human amniotic epithelial cells (hAECs) and their derived exosomes (EXOs) have been proven to effectively protect against ischemia reperfusion-induced AKI, yet their roles in cisplatin-AKI are still unknown.Methods: C57BL/6J mice were given two doses of cisplatin at 20 or 15 mg/kg of body weight to induce AKI with or without mortality. hAECs or EXOs were injected via tail vein 1 day after cisplatin administration. Serum and kidney tissues were collected on the fourth day after 15 mg/kg cisplatin treatment to explore the nephro-protective effects of hAECs and EXOs on cisplatin-AKI. Lung cancer xenograft model was built by subcutaneous injection of A549 cells into BALB/c nude mice to evaluate the effect of hAECs or EXOs on cisplatin chemotherapy.Results: Cisplatin nephrotoxicity was significantly attenuated by hAECs and EXOs as evidenced by reduced mortality rate and decreased serum creatinine (sCr) and reduced tubular injury score. hAECs or EXOs exerted the nephro-protective effects via suppression of TNF-α/MAPK and caspase signaling pathways. In the A549 lung cancer xenograft mouse model, administration of hAECs or EXOs did not promote tumor growth or compromise the therapeutic effects of cisplatin on tumors.Conclusion: This study is the first to demonstrate that hAECs and their derived exosomes have nephro-protective effects in cisplatin-AKI in vivo. Importantly, neither hAECs nor EXOs compromise the antitumor activity of cisplatin. These results potentially support the use of hAECs and their derived EXOs as nephro-protectors against cisplatin-induced nephrotoxicity clinically.
Collapse
Affiliation(s)
- Xin Kang
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Ying Chen
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Peking University, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaohong Xin
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Menghan Liu
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Yuan Ma
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Yifei Ren
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Jing Ji
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Qi Yu
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Lei Qu
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Pathological Center, Peking University First Hospital, Beijing, China
| | - Gang Liu
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Peking University, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Chengang Xiang
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Peking University, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Li Yang, ; Chengang Xiang,
| | - Li Yang
- Renal Division, Renal Pathology Center, Peking University First Hospital, Beijing, China
- Institute of Nephrology, Peking University, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Peking University, Beijing, China
- Research Units of Diagnosis and Treatment of Immune-mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Li Yang, ; Chengang Xiang,
| |
Collapse
|
48
|
Extracellular Vesicles Derived from Human Liver Stem Cells Attenuate Chronic Kidney Disease Development in an In Vivo Experimental Model of Renal Ischemia and Reperfusion Injury. Int J Mol Sci 2022; 23:ijms23031485. [PMID: 35163409 PMCID: PMC8835844 DOI: 10.3390/ijms23031485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
The potential therapeutic effect of extracellular vesicles (EVs) that are derived from human liver stem cells (HLSCs) has been tested in an in vivo model of renal ischemia and reperfusion injury (IRI), that induce the development of chronic kidney disease (CKD). EVs were administered intravenously immediately after the IRI and three days later, then their effect was tested at different time points to evaluate how EV-treatment might interfere with fibrosis development. In IRI-mice that were sacrificed two months after the injury, EV- treatment decreased the development of interstitial fibrosis at the histological and molecular levels. Furthermore, the expression levels of pro-inflammatory genes and of epithelial-mesenchymal transition (EMT) genes were significantly reverted by EV-treatment. In IRI-mice that were sacrificed at early time points (two and three days after the injury), functional and histological analyses showed that EV-treatment induced an amelioration of the acute kidney injury (AKI) that was induced by IRI. Interestingly, at the molecular level, a reduction of pro-fibrotic and EMT-genes in sacrificed IRI-mice was observed at days two and three after the injury. These data indicate that in renal IRI, treatment with HLSC-derived EVs improves AKI and interferes with the development of subsequent CKD by modulating the genes that are involved in fibrosis and EMT.
Collapse
|
49
|
Verta R, Grange C, Skovronova R, Tanzi A, Peruzzi L, Deregibus MC, Camussi G, Bussolati B. Generation of Spike-Extracellular Vesicles (S-EVs) as a Tool to Mimic SARS-CoV-2 Interaction with Host Cells. Cells 2022; 11:146. [PMID: 35011708 PMCID: PMC8750506 DOI: 10.3390/cells11010146] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs) and viruses share common features: size, structure, biogenesis and uptake. In order to generate EVs expressing the SARS-CoV-2 spike protein on their surface (S-EVs), we collected EVs from SARS-CoV-2 spike expressing human embryonic kidney (HEK-293T) cells by stable transfection with a vector coding for the S1 and S2 subunits. S-EVs were characterized using nanoparticle tracking analysis, ExoView and super-resolution microscopy. We obtained a population of EVs of 50 to 200 nm in size. Spike expressing EVs represented around 40% of the total EV population and co-expressed spike protein with tetraspanins on the surfaces of EVs. We subsequently used ACE2-positive endothelial and bronchial epithelial cells for assessing the internalization of labeled S-EVs using a cytofluorimetric analysis. Internalization of S-EVs was higher than that of control EVs from non-transfected cells. Moreover, S-EV uptake was significantly decreased by anti-ACE2 antibody pre-treatment. Furthermore, colchicine, a drug currently used in clinical trials, significantly reduced S-EV entry into the cells. S-EVs represent a simple, safe, and scalable model to study host-virus interactions and the mechanisms of novel therapeutic drugs.
Collapse
Affiliation(s)
- Roberta Verta
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (R.V.); (R.S.); (A.T.)
| | - Cristina Grange
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (C.G.); (G.C.)
| | - Renata Skovronova
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (R.V.); (R.S.); (A.T.)
| | - Adele Tanzi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (R.V.); (R.S.); (A.T.)
| | - Licia Peruzzi
- Pediatric Nephrology Unit, Regina Margherita Children’s Hospital, Città della Salute e della Scienza di Torino, 10126 Turin, Italy;
| | - Maria Chiara Deregibus
- 2i3T Business Incubator and Technology Transfer, University of Turin, 10126 Turin, Italy;
| | - Giovanni Camussi
- Department of Medical Science, University of Turin, 10126 Turin, Italy; (C.G.); (G.C.)
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy; (R.V.); (R.S.); (A.T.)
| |
Collapse
|
50
|
Mas-Bargues C, Alique M, Barrús-Ortiz MT, Borrás C, Rodrigues-Díez R. Exploring New Kingdoms: The Role of Extracellular Vesicles in Oxi-Inflamm-Aging Related to Cardiorenal Syndrome. Antioxidants (Basel) 2021; 11:78. [PMID: 35052582 PMCID: PMC8773353 DOI: 10.3390/antiox11010078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
The incidence of age associated chronic diseases has increased in recent years. Although several diverse causes produce these phenomena, abundant evidence shows that oxidative stress plays a central role. In recent years, numerous studies have focused on elucidating the role of oxidative stress in the development and progression of both aging and chronic diseases, opening the door to the discovery of new underlying mechanisms and signaling pathways. Among them, senolytics and senomorphics, and extracellular vesicles offer new therapeutic strategies to slow the development of aging and its associated chronic diseases by decreasing oxidative stress. In this review, we aim to discuss the role of extracellular vesicles in human cardiorenal syndrome development and their possible role as biomarkers, targets, or vehicles of drugs to treat this syndrome.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Grupo de Investigación Freshage, Departmento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (C.M.-B.); (C.B.)
- Instituto Sanitario de Investigación INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
| | - Matilde Alique
- Departamento de Biología de Sistemas, Universidad de Alcalá, 28871 Madrid, Spain;
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - María Teresa Barrús-Ortiz
- Área de Fisiología, Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Univesidad Rey Juan Carlos, Avenida de Atenas s/n, 28922 Madrid, Spain
| | - Consuelo Borrás
- Grupo de Investigación Freshage, Departmento de Fisiología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (C.M.-B.); (C.B.)
- Instituto Sanitario de Investigación INCLIVA, 46010 Valencia, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III (CIBERFES, ISCIII), 28029 Madrid, Spain
| | - Raquel Rodrigues-Díez
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
- Instituto de Investigación Hospital La Paz (IdiPAZ), 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 08036 Barcelona, Spain
| |
Collapse
|