1
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
2
|
Lin Z, Zhuang J, He L, Zhu S, Kong W, Lu W, Zhang Z. Exploring Smad5: a review to pave the way for a deeper understanding of the pathobiology of common respiratory diseases. Mol Med 2024; 30:225. [PMID: 39578779 PMCID: PMC11585160 DOI: 10.1186/s10020-024-00961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 11/24/2024] Open
Abstract
Smad5 (small mothers against decapentaplegic 5) protein is a receptor-regulated member of the Smad family proteins, mainly participating in the bone morphogenetic protein (BMP) signaling pathway in its phosphorylated form. This article will provide a detailed review of Smad5, focusing on its gene characteristics, protein structure, and subcellular localization properties. We will also explore the related signaling pathways and the mechanisms of Smad5 in respiratory diseases, including chronic obstructive pulmonary disease (COPD), bronchial asthma, pulmonary arterial hypertension(PAH), lung cancer, and idiopathic pulmonary fibrosis (IPF). Additionally, the review will cover aspects such as proliferation, differentiation, apoptosis, anti-fibrosis, and mitochondrial function metabolism. In addition, the review will cover aspects of proliferation, differentiation, apoptosis, anti-fibrosis and functional mitochondrial metabolism related to the above topics. Numerous studies suggest that Smad5 may play a unique and important role in the pathogenesis of respiratory system diseases. However, in previous research, Smad5 was mainly used to broadly determine the activation of the BMP signaling pathway, and its own function has not been given much attention. It is worth noting that Smad5 has distinct nuclear-cytoplasmic distribution characteristics different from Smad1 and Smad8. It can undergo significant nuclear-cytoplasmic shuttling when intracellular pH (pHi) changes, playing important roles in both the classical BMP signaling pathway and non-BMP signaling pathways. Given that Smad5 can move intracellularly in response to changes in physicochemical properties, its cellular localization may play a crucial role in the development of respiratory diseases. This article will explore the possibility that its distribution characteristics may be an important factor that is easily overlooked and not adequately considered in disease research.
Collapse
Affiliation(s)
- Zeqiang Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiayu Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lixia He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Siyuan Zhu
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weiguo Kong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Zili Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Guan H, Fang J. BMP10 Knockdown Modulates Endothelial Cell Immunoreactivity by Inhibiting the HIF-1α Pathway in the Sepsis-Induced Myocardial Injury. J Cell Mol Med 2024; 28:e70232. [PMID: 39611400 PMCID: PMC11605482 DOI: 10.1111/jcmm.70232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/23/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024] Open
Abstract
Sepsis is a life-threatening syndrome triggered by a cascade of dysregulated immune responses. Sepsis-induced myocardial injury (SIMI) substantially impacts the survival time of septic patients. However, the molecular mechanisms underlying the pathology of SIMI remain unclear. Immune-related differentially expressed genes in SIMI were identified through RNA sequencing and bioinformatics analysis. The expression levels of hub genes were detected using reverse transcription quantitative PCR. BMP10 was knocked down in the lipopolysaccharide-induced mouse and cardiac microvascular endothelial cell (CMEC) models, and its functions were assessed by a series of in vitro and in vivo assays. Cell adhesion and HIF-1 pathway-associated protein expressions were measured by western blot. Fenbendazole-d3 was used to investigate whether BMP10 influenced SIMI development by modulating the HIF-1 pathway. Six key genes were screened, of which BMP10, HAMP, TRIM5, and MLANA were highly expressed, and PTPRN2 and AVP were lowly expressed. BMP10 knockdown ameliorated histopathological changes and inhibited apoptosis and CMEC immune infiltration in SIMI. BMP10 knockdown reduced inflammatory factor (IL-6, MCP-1, IFN-β, and CCL11) levels and protein expressions of cell adhesion-related molecules (VCAM-1 and ICAM-1). Mechanistically, the HIF-1 pathway agonist, Fenbendazole-d3, significantly reversed the inhibitory effects of BMP10 knockdown on SIMI in vitro, indicating that BMP10 knockdown impeded the development of SIMI by suppressing the HIF-1α pathway. BMP10 knockdown blocks SIMI progression by inhibiting the HIF-1α pathway, which provides a new potential therapeutic strategy for SIMI treatment.
Collapse
Affiliation(s)
- Huan Guan
- Department of EmergencyGanzhou People's HospitalGanzhouJiangxiChina
| | - Jingyun Fang
- Department of EmergencyGanzhou People's HospitalGanzhouJiangxiChina
| |
Collapse
|
4
|
Hasan S, Mahmud Z, Hossain M, Islam S. Harnessing the role of aberrant cell signaling pathways in glioblastoma multiforme: a prospect towards the targeted therapy. Mol Biol Rep 2024; 51:1069. [PMID: 39424705 DOI: 10.1007/s11033-024-09996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Glioblastoma Multiforme (GBM), designated as grade IV by the World Health Organization, is the most aggressive and challenging brain tumor within the central nervous system. Around 80% of GBM patients have a poor prognosis, with a median survival of 12-15 months. Approximately 90% of GBM cases originate from normal glial cells via oncogenic processes, while the remainder arise from low-grade tumors. GBM is notorious for its heterogeneity, high recurrence rates, invasiveness, and aggressive behavior. Its malignancy is driven by increased invasive migration, proliferation, angiogenesis, and reduced apoptosis. Throughout various stages of central nervous system (CNS) development, pivotal signaling pathways, including Wnt/β-catenin, Sonic hedgehog signaling (Shh), PI3K/AKT/mTOR, Ras/Raf/MAPK/ERK, STAT3, NF-КB, TGF-β, and Notch signaling, orchestrate the growth, proliferation, differentiation, and migration of neural progenitor cells in the brain. Numerous upstream and downstream regulators within these signaling pathways have been identified as significant contributors to the development of human malignancies. Disruptions or aberrant activations in these pathways are linked to gliomagenesis, enhancing the invasiveness, progression, and aggressiveness of GBM, along with epithelial to mesenchymal transition (EMT) and the presence of glioma stem cells (GSCs). Traditional GBM treatment involves surgery, radiotherapy, and chemotherapy with Temozolomide (TMZ). However, most patients experience tumor recurrence, leading to low survival rates. This review provides an overview of the major cell signaling pathways involved in gliomagenesis. Furthermore, we explore the signaling pathways leading to therapy resistance and target key molecules within these signaling pathways, paving the way for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Subbrina Hasan
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mahmud Hossain
- Laboratory of Neuroscience and Neurogenetics, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Sohidul Islam
- Department of Biochemistry & Microbiology, North South University, Dhaka, 1229, Bangladesh
| |
Collapse
|
5
|
Minto MS, Sotelo-Fonseca JE, Ramesh V, West AE. Genome binding properties of Zic transcription factors underlie their changing functions during neuronal maturation. BMC Biol 2024; 22:189. [PMID: 39218853 PMCID: PMC11367862 DOI: 10.1186/s12915-024-01989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during postnatal CGN differentiation. RESULTS We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. CONCLUSIONS Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.
Collapse
Affiliation(s)
- Melyssa S Minto
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, 27710, USA
- Omics, Epidemiology and Analytics Program, RTI International, Research Triangle Park, NC, 27709, USA
| | | | - Vijyendra Ramesh
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
6
|
Shah SF, Noorali S, Faizi S, Jabeen A. Patuletin Ameliorates Inflammation and Letrozole-Induced Polycystic Ovarian Syndrome in Rats. Cell Biochem Funct 2024; 42:e4123. [PMID: 39294896 DOI: 10.1002/cbf.4123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/01/2024] [Accepted: 08/30/2024] [Indexed: 09/21/2024]
Abstract
Concerns about inflammation-related issues affecting female reproductive health are growing. Chronic low-grade inflammation in women with polycystic ovarian syndrome (PCOS) affects follicular growth, ovulation, and androgen production. The present investigation aimed to elucidate the efficacy of flavonoid patuletin in ameliorating the letrozole-induced PCOS and associated inflammation in rats. Female Wistar rats (32 days old) were divided into five groups (n = 12): Group I, control; Group II, vehicle control; Group III, letrozole oral (1 mg/kg) for 28 days; Group IV and Group V treatment groups, patuletin i.p. (25 mg/kg) and clomiphene citrate + metformin i.p. (50 mg/kg + 300 mg/kg), respectively. Leterozole-induced PCOS and ovarian inflammation were ameliorated by patuletin, as reflected in the improved histopathology, prevention of cyst formation, significant upregulation of growth factors such as growth differentiation factor 9 (GDF-9) and bone morphogenetic protein-15 (BMP-15) expression, and a decrease in the pro-inflammatory cytokines TNF-α, IL-6, and COX-2. Additionally, the plasma levels of reproductive hormones were restored. Upregulation of FSH-R, PR, and CYP19a1, along with downregulation of ERα, LHR, CYP17a1, CYP11a1 and HSDβ17a1, showed the regulation of gonadotropin receptors and steroid biosynthesis genes in ovarian tissues. Patuletin demonstrated a promising protective approach against the biological model of PCOS by increasing the inflammation in ovarian tissues with consequent regulation of growth factors, enzymes, and hormones, and might be used as adjuvant therapy in the treatment of problems related to female reproductive health.
Collapse
Affiliation(s)
- Syeda Farah Shah
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Samina Noorali
- Molecular Virology Laboratory, Department of Biology, Henry N. Tisdale Molecular Science Research Center, Claflin University, Orangeburg, South Carolina, USA
| | - Shaheen Faizi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
7
|
Dong Y, Li J, Jiang Q, He S, Wang B, Yi Q, Cheng X, Gao X, Bai Y. Structure, ingredient, and function-based biomimetic scaffolds for accelerated healing of tendon-bone interface. J Orthop Translat 2024; 48:70-88. [PMID: 39185339 PMCID: PMC11342074 DOI: 10.1016/j.jot.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/11/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Background Tendon-bone interface (TBI) repair is slow and challenging owing to its hierarchical structure, gradient composition, and complex function. In this work, enlightened by the natural characteristics of TBI microstructure and the demands of TBI regeneration, a structure, composition, and function-based scaffold was fabricated. Methods: The biomimetic scaffold was designed based on the "tissue-inducing biomaterials" theory: (1) a porous scaffold was created with poly-lactic-co-glycolic-acid, nano-hydroxyapatite and loaded with BMP2-gelatinmp to simulate the bone (BP); (2) a hydrogel was produced from sodium alginate, type I collagen, and loaded with TGF-β3 to simulate the cartilage (CP); (3) the L-poly-lactic-acid fibers were oriented to simulate the tendon (TP). The morphology of tri-layered constructs, gelation kinetics, degradation rate, release kinetics and mechanical strength of the scaffold were characterized. Then, bone marrow mesenchymal stem cells (MSCs) and tenocytes (TT-D6) were cultured on the scaffold to evaluate its gradient differentiation inductivity. A rat Achilles tendon defect model was established, and BMSCs seeded on scaffolds were implanted into the lesionsite. The tendon-bone lesionsite of calcaneus at 4w and 8w post-operation were obtained for gross observation, radiological evaluation, biomechanical and histological assessment. Results The hierarchical microstructures not only endowed the scaffold with gradual composition and mechanical properties for matching the regional biophysical characteristics of TBI but also exhibited gradient differentiation inductivity through providing regional microenvironment for cells. Moreover, the scaffold seeded with cells could effectively accelerate healing in rat Achilles tendon defects, attributable to its enhanced differentiation performance. Conclusion The hierarchical scaffolds simulating the structural, compositional, and cellular heterogeneity of natural TBI tissue performed therapeutic effects on promoting regeneration of TBI and enhancing the healing quality of Achilles tendon. The translational potential of this article The novel scaffold showed the great efficacy on tendon to bone healing by offering a structural and compositional microenvironment. The results meant that the hierarchical scaffold with BMSCs may have a great potential for clinical application.
Collapse
Affiliation(s)
- YuHan Dong
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - JiangFeng Li
- Institute of Burn Research, Southwest Hospital & State Key Lab of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qiang Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - SiRong He
- School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - QiYing Yi
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, China
| | - XiTing Cheng
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 400016, China
| | - Yan Bai
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
8
|
Kratochvilova A, Knopfova L, Gregorkova J, Gruber R, Janeckova E, Chai Y, Matalova E. FasL impacts Tgfb signaling in osteoblastic cells. Cells Dev 2024; 179:203929. [PMID: 38810946 DOI: 10.1016/j.cdev.2024.203929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/26/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Fas ligand (FasL, CD178) belongs to classical apoptotic molecules, however, recent evidence expands the spectrum of FasL functions into non-apoptotic processes which also applies for the bone. Tgfb subfamily members (Tgfb1, Tgfb2, Tgfb3) represent major components in osteogenic pathways and extracellular matrix. Their possible association with FasL has not yet been investigated but can be postulated. To test such a hypothesis, FasL deficient (gld) calvaria-derived cells were examined with a focus on the expression of Tgfb receptor ligands. The qPCR analysis revealed significantly increased expression of Tgfb1, Tgfb2 and Tgfb3 in gld cells. To check the vice versa effect, the gld cells were stimulated by soluble FasL. As a consequence, a dramatic decrease in expression levels of all three ligands was observed. This phenomenon was also confirmed in IDG-SW3 (osteoblastic cells of endochondral origin). TFLink gateway identified Fosl2 as an exclusive candidate of FasL capable to impact expression of all three Tgfb ligands. However, Fosl2 siRNA did not cause any significant changes in expression of Tgfb ligands. Therefore, the upregulation of the three ligands is likely to occur separately. In this respect, we tested the only exclusive candidate transcription factor for Tgfb3, Prrx1. Additionally, an overlapping candidate for Tgfb1 and Tgfb2, Mef2c capable to modulate expression of sclerostin, was examined. Prrx1 as well as Mef2c were found upregulated in gld samples and their expression decreased after addition of FasL. The same effect of FasL treatment was observed in the IDG-SW3 model. Taken together, FasL deficiency causes an increase in the expression of Tgfb ligands and stimulation by FasL reduces Tgfb expression in osteoblastic cells. The candidates mediating the effect comprise Prrx1 for Tgfb3 and Mef2c for Tgfb1/2. These results indicate FasL as a novel cytokine interfering with Tgfb signaling and thus the complex osteogenic network. The emerging non-apoptotic functions of FasL in bone development and maintenance should also be considered in treatment strategies such as the anti-osteoporotic factor.
Collapse
Affiliation(s)
- Adela Kratochvilova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Lucia Knopfova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Janka Gregorkova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | | | | | - Yang Chai
- University of Southern California, Los Angeles, USA
| | - Eva Matalova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic; University of Veterinary Sciences, Brno, Czech Republic.
| |
Collapse
|
9
|
Choi SH, Kim E, Heo SJ, Seol MY, Chung Y, Yoon HI. Integrative prediction model for radiation pneumonitis incorporating genetic and clinical-pathological factors using machine learning. Clin Transl Radiat Oncol 2024; 48:100819. [PMID: 39161733 PMCID: PMC11332843 DOI: 10.1016/j.ctro.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose We aimed to develop a machine learning-based prediction model for severe radiation pneumonitis (RP) by integrating relevant clinicopathological and genetic factors, considering the associations of clinical, dosimetric parameters, and single nucleotide polymorphisms (SNPs) of genes in the TGF-β1 pathway with RP. Methods We prospectively enrolled 59 primary lung cancer patients undergoing radiotherapy and analyzed pretreatment blood samples, clinicopathological/dosimetric variables, and 11 functional SNPs in TGFβ pathway genes. Using the Synthetic Minority Over-sampling Technique (SMOTE) and nested cross-validation, we developed a machine learning-based prediction model for severe RP (grade ≥ 2). Feature selection was conducted using four methods (filtered-based, wrapper-based, embedded, and logistic regression), and performance was evaluated using three machine learning models. Results Severe RP occurred in 20.3 % of patients with a median follow-up of 39.7 months. In our final model, age (>66 years), smoking history, PTV volume (>300 cc), and AG/GG genotype in BMP2 rs1979855 were identified as the most significant predictors. Additionally, incorporating genomic variables for prediction alongside clinicopathological variables significantly improved the AUC compared to using clinicopathological variables alone (0.822 vs. 0.741, p = 0.029). The same feature set was selected using both the wrapper-based method and logistic model, demonstrating the best performance across all machine learning models (AUC: XGBoost 0.815, RF 0.805, SVM 0.712, respectively). Conclusion We successfully developed a machine learning-based prediction model for RP, demonstrating age, smoking history, PTV volume, and BMP2 rs1979855 genotype as significant predictors. Notably, incorporating SNP data significantly enhanced predictive performance compared to clinicopathological factors alone.
Collapse
Affiliation(s)
- Seo Hee Choi
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Euidam Kim
- Department of Nuclear Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Youn Seol
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonsun Chung
- Department of Nuclear Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
11
|
Chi LH, Redfern AD, Lim Kam Sian TCC, Street IP, Burrows AD, Roslan S, Daly RJ, Anderson RL. BMP4-Induced Suppression of Breast Cancer Metastasis Is Associated with Inhibition of Cholesterol Biosynthesis. Int J Mol Sci 2024; 25:9160. [PMID: 39273106 PMCID: PMC11395556 DOI: 10.3390/ijms25179160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
We reported previously that in preclinical models, BMP4 is a potent inhibitor of breast cancer metastasis and that high BMP4 protein levels predict favourable patient outcomes. Here, we analysed a breast cancer xenograft with or without enforced expression of BMP4 to gain insight into the mechanisms by which BMP4 suppresses metastasis. Transcriptomic analysis of cancer cells recovered from primary tumours and phosphoproteomic analyses of cancer cells exposed to recombinant BMP4 revealed that BMP4 inhibits cholesterol biosynthesis, with many genes in this biosynthetic pathway being downregulated by BMP4. The treatment of mice bearing low-BMP4 xenografts with a cholesterol-lowering statin partially mimicked the anti-metastatic activity of BMP4. Analysis of a cohort of primary breast cancers revealed a reduced relapse rate for patients on statin therapy if their tumours exhibited low BMP4 levels. These findings indicate that BMP4 may represent a predictive biomarker for the benefit of additional statin therapy in breast cancer patients.
Collapse
Affiliation(s)
- Lap Hing Chi
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; (L.H.C.)
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3083, Australia
| | - Andrew D. Redfern
- Medical School, University of Western Australia, Perth, WA 6009, Australia;
| | - Terry C. C. Lim Kam Sian
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3168, Australia; (T.C.C.L.K.S.); (R.J.D.)
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Ian P. Street
- Children’s Cancer Institute, University of New South Wales, Sydney, NSW 2052, Australia;
| | - Allan D. Burrows
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; (L.H.C.)
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3083, Australia
| | - Suraya Roslan
- Department of Surgery, St. Vincent’s Hospital, Fitzroy, VIC 3065, Australia;
| | - Roger J. Daly
- Cancer Program, Monash Biomedicine Discovery Institute, Clayton, VIC 3168, Australia; (T.C.C.L.K.S.); (R.J.D.)
- Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3168, Australia
| | - Robin L. Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC 3084, Australia; (L.H.C.)
- School of Cancer Medicine, La Trobe University, Bundoora, VIC 3083, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
12
|
Towler OW, Shore EM, Kaplan FS. Molecular Developmental Biology of Fibrodysplasia Ossificans Progressiva: Measuring the Giant by Its Toe. Biomolecules 2024; 14:1009. [PMID: 39199396 PMCID: PMC11353020 DOI: 10.3390/biom14081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
When a genetic disease is characterized by the abnormal activation of normal molecular pathways and cellular events, it is illuminating to critically examine the places and times of these activities both in health and disease. Therefore, because heterotopic ossification (HO) in fibrodysplasia ossificans progressiva (FOP) is by far the disease's most prominent symptom, attention is also directed toward the pathways and processes of bone formation during skeletal development. FOP is recognizable by effects of the causative mutation on skeletal development even before HO manifests, specifically in the malformation of the great toes. This signature skeletal phenotype is the most highly penetrant, but is only one among several skeletal abnormalities associated with FOP. Patients may present clinically with joint malformation and ankylosis, particularly in the cervical spine and costovertebral joints, as well as characteristic facial features and a litany of less common, non-skeletal symptoms, all stemming from missense mutations in the ACVR1 gene. In the same way that studying the genetic cause of HO advanced our understanding of HO initiation and progression, insight into the roles of ACVR1 signaling during tissue development, particularly in the musculoskeletal system, can be gained from examining altered skeletal development in individuals with FOP. This review will detail what is known about the molecular mechanisms of developmental phenotypes in FOP and the early role of ACVR1 in skeletal patterning and growth, as well as highlight how better understanding these processes may serve to advance patient care, assessments of patient outcomes, and the fields of bone and joint biology.
Collapse
Affiliation(s)
- O. Will Towler
- Division of Plastic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Eileen M. Shore
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederick S. Kaplan
- Center for Research in FOP and Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Larionov A, Hammer CM, Fiedler K, Filgueira L. Dynamics of Endothelial Cell Diversity and Plasticity in Health and Disease. Cells 2024; 13:1276. [PMID: 39120307 PMCID: PMC11312403 DOI: 10.3390/cells13151276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are vital structural units of the cardiovascular system possessing two principal distinctive properties: heterogeneity and plasticity. Endothelial heterogeneity is defined by differences in tissue-specific endothelial phenotypes and their high predisposition to modification along the length of the vascular bed. This aspect of heterogeneity is closely associated with plasticity, the ability of ECs to adapt to environmental cues through the mobilization of genetic, molecular, and structural alterations. The specific endothelial cytoarchitectonics facilitate a quick structural cell reorganization and, furthermore, easy adaptation to the extrinsic and intrinsic environmental stimuli, known as the epigenetic landscape. ECs, as universally distributed and ubiquitous cells of the human body, play a role that extends far beyond their structural function in the cardiovascular system. They play a crucial role in terms of barrier function, cell-to-cell communication, and a myriad of physiological and pathologic processes. These include development, ontogenesis, disease initiation, and progression, as well as growth, regeneration, and repair. Despite substantial progress in the understanding of endothelial cell biology, the role of ECs in healthy conditions and pathologies remains a fascinating area of exploration. This review aims to summarize knowledge and concepts in endothelial biology. It focuses on the development and functional characteristics of endothelial cells in health and pathological conditions, with a particular emphasis on endothelial phenotypic and functional heterogeneity.
Collapse
Affiliation(s)
- Alexey Larionov
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Christian Manfred Hammer
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| | - Klaus Fiedler
- Independent Researcher, CH-1700 Fribourg, Switzerland;
| | - Luis Filgueira
- Faculty of Science and Medicine, Anatomy, University of Fribourg, Route Albert-Gockel 1, CH-1700 Fribourg, Switzerland; (C.M.H.); (L.F.)
| |
Collapse
|
14
|
Mitra S, Werner CT, Shwani T, Lopez AG, Federico D, Higdon K, Li X, Gobira PH, Thomas SA, Martin JA, An C, Chandra R, Maze I, Neve R, Lobo MK, Gancarz AM, Dietz DM. A Novel Role for the Histone Demethylase JMJD3 in Mediating Heroin-Induced Relapse-Like Behaviors. Biol Psychiatry 2024:S0006-3223(24)01452-5. [PMID: 39019389 DOI: 10.1016/j.biopsych.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/10/2024] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Epigenetic changes that lead to long-term neuroadaptations following opioid exposure are not well understood. We examined how histone demethylase JMJD3 in the nucleus accumbens (NAc) influences heroin seeking after abstinence from self-administration. METHODS Male Sprague Dawley rats were trained to self-administer heroin. Western blotting and quantitative polymerase chain reaction were performed to quantify JMJD3 and bone morphogenetic protein (BMP) pathway expression in the NAc (n = 7-11/group). Pharmacological inhibitors or viral expression vectors were microinfused into the NAc to manipulate JMJD3 or the BMP pathway member SMAD1 (n = 9-11/group). The RiboTag capture method (n = 3-5/group) and viral vectors (n = 7-8/group) were used in male transgenic rats to identify the contributions of D1- and D2-expressing medium spiny neurons in the NAc. Drug seeking was tested by cue-induced response previously paired with drug infusion. RESULTS Levels of JMJD3 and phosphorylated SMAD1/5 in the NAc were increased after 14 days of abstinence from heroin self-administration. Pharmacological and virus-mediated inhibition of JMJD3 or the BMP pathway attenuated cue-induced seeking. Pharmacological inhibition of BMP signaling reduced JMJD3 expression and H3K27me3 levels. JMJD3 bidirectionally affected seeking: expression of the wild-type increased cue-induced seeking whereas expression of a catalytic dead mutant decreased it. JMJD3 expression was increased in D2+ but not D1+ medium spiny neurons. Expression of the mutant JMJD3 in D2+ neurons was sufficient to decrease cue-induced heroin seeking. CONCLUSIONS JMJD3 mediates persistent cellular and behavioral adaptations that underlie heroin relapse, and this activity is regulated by the BMP pathway.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Craig T Werner
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Treefa Shwani
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ana Garcia Lopez
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Dale Federico
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Kate Higdon
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Xiaofang Li
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Pedro H Gobira
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Shruthi A Thomas
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Jennifer A Martin
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Chunna An
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Howard Hughes Medical Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Neve
- Gene Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Amy M Gancarz
- Department of Psychology, California State University, Bakersfield, Bakersfield, California
| | - David M Dietz
- Department of Pharmacology and Toxicology, Program in Neuroscience, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York.
| |
Collapse
|
15
|
Ogata FT, Verma S, Coulson-Thomas VJ, Gesteira TF. TGF-β-Based Therapies for Treating Ocular Surface Disorders. Cells 2024; 13:1105. [PMID: 38994958 PMCID: PMC11240592 DOI: 10.3390/cells13131105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-β is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-β-mediated processes are essential for wound closure; however, excessive levels of TGF-β can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-β exist-TGF-β1, TGF-β2, and TGF-β3. Although TGF-β isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-β in corneal wound healing. Further, aberrant TGF-β activity has been linked to various corneal pathologies, such as scarring and Peter's Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-β1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-β in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis.
Collapse
Affiliation(s)
- Fernando T Ogata
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
| | - Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | | | - Tarsis F Gesteira
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA
| |
Collapse
|
16
|
Verdura S, Encinar JA, Gratchev A, Llop-Hernández À, López J, Serrano-Hervás E, Teixidor E, López-Bonet E, Martin-Castillo B, Micol V, Bosch-Barrera J, Cuyàs E, Menendez JA. Silibinin is a suppressor of the metastasis-promoting transcription factor ID3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155493. [PMID: 38484626 DOI: 10.1016/j.phymed.2024.155493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND ID3 (inhibitor of DNA binding/differentiation-3) is a transcription factor that enables metastasis by promoting stem cell-like properties in endothelial and tumor cells. The milk thistle flavonolignan silibinin is a phytochemical with anti-metastatic potential through largely unknown mechanisms. HYPOTHESIS/PURPOSE We have mechanistically investigated the ability of silibinin to inhibit the aberrant activation of ID3 in brain endothelium and non-small cell lung cancer (NSCLC) models. METHODS Bioinformatic analyses were performed to investigate the co-expression correlation between ID3 and bone morphogenic protein (BMP) ligands/BMP receptors (BMPRs) genes in NSCLC patient datasets. ID3 expression was assessed by immunoblotting and qRT-PCR. Luciferase reporter assays were used to evaluate the gene sequences targeted by silibinin to regulate ID3 transcription. In silico computational modeling and LanthaScreen TR-FRET kinase assays were used to characterize and validate the BMPR inhibitory activity of silibinin. Tumor tissues from NSCLC xenograft models treated with oral silibinin were used to evaluate the in vivo anti-ID3 effects of silibinin. RESULTS Analysis of lung cancer patient datasets revealed a top-ranked positive association of ID3 with the BMP9 endothelial receptor ACVRL1/ALK1 and the BMP ligand BMP6. Silibinin treatment blocked the BMP9-induced activation of the ALK1-phospho-SMAD1/5-ID3 axis in brain endothelial cells. Constitutive, acquired, and adaptive expression of ID3 in NSCLC cells were all significantly downregulated in response to silibinin. Silibinin blocked ID3 transcription via BMP-responsive elements in ID3 gene enhancers. Silibinin inhibited the kinase activities of BMPRs in the micromolar range, with the lower IC50 values occurring against ACVRL1/ALK1 and BMPR2. In an in vivo NSCLC xenograft model, tumoral overexpression of ID3 was completely suppressed by systematically achievable oral doses of silibinin. CONCLUSIONS ID3 is a largely undruggable metastasis-promoting transcription factor. Silibinin is a novel suppressor of ID3 that may be explored as a novel therapeutic approach to interfere with the metastatic dissemination capacity of NSCLC.
Collapse
Affiliation(s)
- Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain
| | - Alexei Gratchev
- Laboratory for Tumor Stromal Cell Biology, Institute of Carcinogenesis, Nikolaj Nikolajevich (N.N.) Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Júlia López
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Eduard Teixidor
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, Girona 17007, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Unit of Clinical Research, Catalan Institute of Oncology, Girona, 17007, Spain
| | - Vicente Micol
- Institute of Research, Development and Innovation in Health Biotechnology of Elche (IDiBE), Universitas Miguel Hernández (UMH), Elche 03202, Spain; CIBER Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Joaquim Bosch-Barrera
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain; Medical Oncology, Catalan Institute of Oncology, Girona, 17007, Spain; Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona, 17007, Spain; Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), Girona 17190, Spain.
| |
Collapse
|
17
|
Govorova IA, Nikitochkina SY, Vorotelyak EA. Influence of intersignaling crosstalk on the intracellular localization of YAP/TAZ in lung cells. Cell Commun Signal 2024; 22:289. [PMID: 38802925 PMCID: PMC11129370 DOI: 10.1186/s12964-024-01662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024] Open
Abstract
A cell is a dynamic system in which various processes occur simultaneously. In particular, intra- and intercellular signaling pathway crosstalk has a significant impact on a cell's life cycle, differentiation, proliferation, growth, regeneration, and, consequently, on the normal functioning of an entire organ. Hippo signaling and YAP/TAZ nucleocytoplasmic shuttling play a pivotal role in normal development, homeostasis, and tissue regeneration, particularly in lung cells. Intersignaling communication has a significant impact on the core components of the Hippo pathway and on YAP/TAZ localization. This review describes the crosstalk between Hippo signaling and key lung signaling pathways (WNT, SHH, TGFβ, Notch, Rho, and mTOR) using lung cells as an example and highlights the remaining unanswered questions.
Collapse
Affiliation(s)
- I A Govorova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov str, 26, Moscow, 119334, Russia.
| | - S Y Nikitochkina
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov str, 26, Moscow, 119334, Russia
| | - E A Vorotelyak
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Vavilov str, 26, Moscow, 119334, Russia
| |
Collapse
|
18
|
Gu Y, Bai Y. LncRNA MALAT1 promotes osteogenic differentiation through the miR-93-5p/SMAD5 axis. Oral Dis 2024; 30:2398-2409. [PMID: 37533355 DOI: 10.1111/odi.14705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVES Promoting the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) is a way to regenerate periodontal bone. This study aimed to determine whether lncRNA MALAT1 promotes the osteogenic differentiation of human PDLSCs in vitro. MATERIALS AND METHODS Human PDLSCs were extracted from the human periodontal ligament, and after osteogenic differentiation was induced using osteogenic medium, the human PDLSCs were transfected with siRNA-MALAT1, miR-93-5p mimics, and miR-93-5p inhibitors. The expression of osteogenesis-related genes was assessed by RT-qPCR and western blotting, alkaline phosphatase (ALP) activity was assessed by ALP activity assay, and the formation of mineralized nodules was assessed by alizarin red S (ARS) staining. RNA immunoprecipitation (RIP) and luciferase assays were performed to assess the binding of MALAT1, miR-93-5p, and SMAD5. RESULTS The expression of lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was upregulated, while that of miR-93-5p was downregulated after PDLSC osteogenic differentiation. Knockdown of MALAT1 inhibited the osteogenic differentiation of PDLSCs, and MALAT1 expression negatively correlated with miR-93-5p expression. miR-93-5p inhibited the osteogenic differentiation of human PDLSCs by specifically binding to SMAD5. CONCLUSION MALAT1 regulates human PDLSC differentiation by regulating the miR-93-5p/SMAD5 axis.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Xie Y, Ke X, Ye Z, Li X, Chen Z, Liu J, Wu Z, Liu Q, Du X. Se-methylselenocysteine ameliorates mitochondrial function by targeting both mitophagy and autophagy in the mouse model of Alzheimer's disease. Food Funct 2024; 15:4310-4322. [PMID: 38529619 DOI: 10.1039/d4fo00520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Background: Alzheimer's disease (AD) exerts tremendous pressure on families and society due to its unknown etiology and lack of effective treatment options. Our previous study had shown that Se-methylselenocysteine (SMC) improved the cognition and synaptic plasticity of triple-transgenic AD (3 × Tg-AD) mice and alleviated the related pathological indicators. We are dedicated to investigating the therapeutic effects and molecular mechanisms of SMC on mitochondrial function in 3 × Tg-AD mice. Methods: Transmission electron microscopy (TEM), western blotting (WB), mitochondrial membrane potential (ΔΨm), mitochondrial swelling test, and mitochondrial oxygen consumption test were used to evaluate the mitochondrial morphology and function. Mitophagy flux and autophagy flux were assessed with immunofluorescence, TEM and WB. The Morris water maze test was applied to detect the behavioral ability of mice. Results: The destroyed mitochondrial morphology and function were repaired by SMC through ameliorating mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial fusion/fission balance in 3 × Tg-AD mice. In addition, SMC ameliorated mitochondria by activating mitophagy flux via the BNIP3/NIX pathway and triggering autophagy flux by suppressing the Ras/Raf/MEK/ERK/mTOR pathway. SMC remarkably increased the cognitive ability of AD mice. Conclusions: This research indicated that SMC might exert its therapeutic effect by protecting mitochondria in 3 × Tg-AD mice.
Collapse
Affiliation(s)
- Yongli Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Xiaoshan Ke
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Zhencong Ye
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Xuexia Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Zetao Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Jiantao Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Ziyi Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| | - Qiong Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China
| | - Xiubo Du
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
20
|
Stempel M, Maier O, Mhlekude B, Drakesmith H, Brinkmann MM. Novel role of bone morphogenetic protein 9 in innate host responses to HCMV infection. EMBO Rep 2024; 25:1106-1129. [PMID: 38308064 PMCID: PMC10933439 DOI: 10.1038/s44319-024-00072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/04/2024] Open
Abstract
Herpesviruses modulate immune control to secure lifelong infection. The mechanisms Human Cytomegalovirus (HCMV) employs in this regard can reveal unanticipated aspects of cellular signaling involved in antiviral immunity. Here, we describe a novel relationship between the TGF-β family cytokine BMP9 and HCMV infection. We identify a cross-talk between BMP9-induced and IFN receptor-mediated signaling, showing that BMP9 boosts the transcriptional response to and antiviral activity of IFNβ, thereby enhancing viral restriction. We also show that BMP9 is secreted by human fibroblasts upon HCMV infection. However, HCMV infection impairs BMP9-induced enhancement of the IFNβ response, indicating that this signaling role of BMP9 is actively targeted by HCMV. Indeed, transmembrane proteins US18 and US20, which downregulate type I BMP receptors, are necessary and sufficient to cause inhibition of BMP9-mediated boosting of the antiviral response to IFNβ. HCMV lacking US18 and US20 is more sensitive to IFNβ. Thus, HCMV has a mutually antagonistic relationship with BMP9, which extends the growing body of evidence that BMP signaling is an underappreciated modulator of innate immunity in response to viral infection.
Collapse
Affiliation(s)
- Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Oliver Maier
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Baxolele Mhlekude
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Melanie M Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany.
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
21
|
Akiyama T, Raftery LA, Wharton KA. Bone morphogenetic protein signaling: the pathway and its regulation. Genetics 2024; 226:iyad200. [PMID: 38124338 PMCID: PMC10847725 DOI: 10.1093/genetics/iyad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023] Open
Abstract
In the mid-1960s, bone morphogenetic proteins (BMPs) were first identified in the extracts of bone to have the remarkable ability to induce heterotopic bone. When the Drosophila gene decapentaplegic (dpp) was first identified to share sequence similarity with mammalian BMP2/BMP4 in the late-1980s, it became clear that secreted BMP ligands can mediate processes other than bone formation. Following this discovery, collaborative efforts between Drosophila geneticists and mammalian biochemists made use of the strengths of their respective model systems to identify BMP signaling components and delineate the pathway. The ability to conduct genetic modifier screens in Drosophila with relative ease was critical in identifying the intracellular signal transducers for BMP signaling and the related transforming growth factor-beta/activin signaling pathway. Such screens also revealed a host of genes that encode other core signaling components and regulators of the pathway. In this review, we provide a historical account of this exciting time of gene discovery and discuss how the field has advanced over the past 30 years. We have learned that while the core BMP pathway is quite simple, composed of 3 components (ligand, receptor, and signal transducer), behind the versatility of this pathway lies multiple layers of regulation that ensures precise tissue-specific signaling output. We provide a sampling of these discoveries and highlight many questions that remain to be answered to fully understand the complexity of BMP signaling.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Biology, Rich and Robin Porter Cancer Research Center, The Center for Genomic Advocacy, Indiana State University, Terre Haute, IN 47809, USA
| | - Laurel A Raftery
- School of Life Sciences, University of Nevada, 4505 S. Maryland Parkway, Las Vegas, NV 89154, USA
| | - Kristi A Wharton
- Department of Molecular Biology, Cell Biology, and Biochemistry, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| |
Collapse
|
22
|
Knabl P, Schauer A, Pomreinke AP, Zimmermann B, Rogers KW, Čapek D, Müller P, Genikhovich G. Analysis of SMAD1/5 target genes in a sea anemone reveals ZSWIM4-6 as a novel BMP signaling modulator. eLife 2024; 13:e80803. [PMID: 38323609 PMCID: PMC10849676 DOI: 10.7554/elife.80803] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/28/2024] [Indexed: 02/08/2024] Open
Abstract
BMP signaling has a conserved function in patterning the dorsal-ventral body axis in Bilateria and the directive axis in anthozoan cnidarians. So far, cnidarian studies have focused on the role of different BMP signaling network components in regulating pSMAD1/5 gradient formation. Much less is known about the target genes downstream of BMP signaling. To address this, we generated a genome-wide list of direct pSMAD1/5 target genes in the anthozoan Nematostella vectensis, several of which were conserved in Drosophila and Xenopus. Our ChIP-seq analysis revealed that many of the regulatory molecules with documented bilaterally symmetric expression in Nematostella are directly controlled by BMP signaling. We identified several so far uncharacterized BMP-dependent transcription factors and signaling molecules, whose bilaterally symmetric expression may be indicative of their involvement in secondary axis patterning. One of these molecules is zswim4-6, which encodes a novel nuclear protein that can modulate the pSMAD1/5 gradient and potentially promote BMP-dependent gene repression.
Collapse
Affiliation(s)
- Paul Knabl
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
- Vienna Doctoral School of Ecology and Evolution (VDSEE), University of ViennaViennaAustria
| | - Alexandra Schauer
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | - Bob Zimmermann
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| | | | | | - Patrick Müller
- Friedrich Miescher Laboratory of the Max Planck SocietyTübingenGermany
- University of KonstanzKonstanzGermany
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, University of ViennaViennaAustria
| |
Collapse
|
23
|
Burdick LN, DelVichio AH, Hanson LR, Griffith BB, Bouchard KR, Hunter JW, Goldhamer DJ. Sex as a Critical Variable in Basic and Pre-Clinical Studies of Fibrodysplasia Ossificans Progressiva. Biomolecules 2024; 14:177. [PMID: 38397414 PMCID: PMC10886767 DOI: 10.3390/biom14020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Heterotopic ossification (HO) is most dramatically manifested in the rare and severely debilitating disease, fibrodysplasia ossificans progressiva (FOP), in which heterotopic bone progressively accumulates in skeletal muscles and associated soft tissues. The great majority of FOP cases are caused by a single amino acid substitution in the type 1 bone morphogenetic protein (BMP) receptor ACVR1, a mutation that imparts responsiveness to activin A. Although it is well-established that biological sex is a critical variable in a range of physiological and disease processes, the impact of sex on HO in animal models of FOP has not been explored. We show that female FOP mice exhibit both significantly greater and more variable HO responses after muscle injury. Additionally, the incidence of spontaneous HO was significantly greater in female mice. This sex dimorphism is not dependent on gonadally derived sex hormones, and reciprocal cell transplantations indicate that apparent differences in osteogenic activity are intrinsic to the sex of the transplanted cells. By circumventing the absolute requirement for activin A using an agonist of mutant ACVR1, we show that the female-specific response to muscle injury or BMP2 implantation is dependent on activin A. These data identify sex as a critical variable in basic and pre-clinical studies of FOP.
Collapse
Affiliation(s)
- Lorraine N. Burdick
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - Amanda H. DelVichio
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - L. Russell Hanson
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - Brenden B. Griffith
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| | - Keith R. Bouchard
- Alexion Pharmaceuticals Inc., 100 College Street, New Haven, CT 06510, USA; (K.R.B.); (J.W.H.)
| | - Jeffrey W. Hunter
- Alexion Pharmaceuticals Inc., 100 College Street, New Haven, CT 06510, USA; (K.R.B.); (J.W.H.)
| | - David J. Goldhamer
- Department of Molecular & Cell Biology, University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 06269, USA; (L.N.B.); (A.H.D.); (L.R.H.); (B.B.G.)
| |
Collapse
|
24
|
Minto M, Sotelo-Fonseca JE, Ramesh V, West AE. Genome binding properties of Zic transcription factors underlie their changing functions during neuronal maturation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574185. [PMID: 38260638 PMCID: PMC10802290 DOI: 10.1101/2024.01.04.574185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Background The Zic family of transcription factors (TFs) promote both proliferation and maturation of cerebellar granule neurons (CGNs), raising the question of how a single, constitutively expressed TF family can support distinct developmental processes. Here we use an integrative experimental and bioinformatic approach to discover the regulatory relationship between Zic TF binding and changing programs of gene transcription during CGN differentiation. Results We first established a bioinformatic pipeline to integrate Zic ChIP-seq data from the developing mouse cerebellum with other genomic datasets from the same tissue. In newborn CGNs, Zic TF binding predominates at active enhancers that are co-bound by developmentally-regulated TFs including Atoh1, whereas in mature CGNs, Zic TF binding consolidates toward promoters where it co-localizes with activity-regulated TFs. We then performed CUT&RUN-seq in differentiating CGNs to define both the time course of developmental shifts in Zic TF binding and their relationship to gene expression. Mapping Zic TF binding sites to genes using chromatin looping, we identified the set of Zic target genes that have altered expression in RNA-seq from Zic1 or Zic2 knockdown CGNs. Conclusion Our data show that Zic TFs are required for both induction and repression of distinct, developmentally regulated target genes through a mechanism that is largely independent of changes in Zic TF binding. We suggest that the differential collaboration of Zic TFs with other TF families underlies the shift in their biological functions across CGN development.
Collapse
Affiliation(s)
- Melyssa Minto
- Duke University, Program in Computational Biology and Bioinformatics, Durham, NC 27710
- GenOmics and Translational Research Center, RTI International, Research Triangle Park, NC 27709
| | | | | | - Anne E. West
- Duke University, Department of Neurobiology, Durham, NC 27710
| |
Collapse
|
25
|
Koyya P, Manthari RK, Pandrangi SL. Brain-Derived Neurotrophic Factor - The Protective Agent Against Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:353-366. [PMID: 37287291 PMCID: PMC11348470 DOI: 10.2174/1871527322666230607110617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
The burden of neurological illnesses on global health is significant. Our perception of the molecular and biological mechanisms underlying intellectual processing and behavior has significantly advanced over the last few decades, laying the groundwork for potential therapies for various neurodegenerative diseases. A growing body of literature reveals that most neurodegenerative diseases could be due to the gradual failure of neurons in the brain's neocortex, hippocampus, and various subcortical areas. Research on various experimental models has uncovered several gene components to understand the pathogenesis of neurodegenerative disorders. One among them is the brain-derived neurotrophic factor (BDNF), which performs several vital functions, enhancing synaptic plasticity and assisting in the emergence of long-term thoughts. The pathophysiology of some neurodegenerative diseases, including Alzheimer's, Parkinson's, Schizophrenia, and Huntington's, has been linked to BDNF. According to numerous research, high levels of BDNF are connected to a lower risk of developing a neurodegenerative disease. As a result, we want to concentrate on BDNF in this article and outline its protective role against neurological disorders.
Collapse
Affiliation(s)
- Prathyusha Koyya
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Ram Kumar Manthari
- Department of Biotechnology, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| | - Santhi Latha Pandrangi
- Department of Biochemistry and Bioinformatics, GITAM School of Science, Gandhi Institute of Technology and Management (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
26
|
Mahmoudi R, Afshar S, Amini R, Jalali A, Saidijam M, Najafi R. Evaluation of BMP-2 as a Differentiating and Radiosensitizing Agent for Colorectal Cancer Stem Cells. Curr Stem Cell Res Ther 2024; 19:83-93. [PMID: 36998132 DOI: 10.2174/1574888x18666230330085615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Despite effective clinical responses, a large proportion of patients undergo resistance to radiotherapy. The low response rate to current treatments in different stages of colorectal cancer depends on the prominent role of stem cells in cancer. OBJECTIVE In the present study, the role of BMP-2 as an ionizing radiation-sensitive factor in colorectal cancer cells was investigated. METHODS A sphere formation assay was used for the enrichment of HCT-116 cancer stem cells (CSCs). The effects of combination therapy (BMP-2+ radiation) on DNA damage response (DDR), proliferation, and apoptosis were evaluated in HCT-116 and CSCs. Gene expressions of CSCs and epithelialmesenchymal transition (EMT) markers were also evaluated. RESULTS We found that the sphere formation assay showed a significant increase in the percentage of CSCs. Moreover, expression of CSCs markers, EMT-related genes, and DNA repair proteins significantly decreased in HCT-116 cells compared to the CSCs group after radiation. In addition, BMP-2 promoted the radiosensitivity of HCT-116 cells by decreasing the survival rate of the treated cells at 2, 4, and 6 Gy compared to the control group in HCT-116 cells. CONCLUSION Our findings indicated that BMP-2 could affect numerous signaling pathways involved in radioresistance. Therefore, BMP-2 can be considered an appealing therapeutic target for the treatment of radioresistant human colorectal cancer.
Collapse
Affiliation(s)
- Roghayeh Mahmoudi
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Amini
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Jalali
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Massoud Saidijam
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
27
|
Sun J, Wu Q, Wei Y, Zhao W, Lv H, Peng W, Zheng J, Chen Y, Wang Z, Pan Y, Xue Y. Agaricus bisporus-Derived Glucosamine Hydrochloride Regulates VEGF through BMP Signaling to Promote Zebrafish Vascular Development and Impairment Repair. Life (Basel) 2023; 13:2330. [PMID: 38137931 PMCID: PMC10745105 DOI: 10.3390/life13122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Glucosamine hydrochloride (GAH) is a natural component of glycoproteins present in almost all human tissues and participates in the construction of human tissues and cell membranes. GAH has a wide range of biological activities, particularly in anti-inflammatory and osteogenic damage repair. At present, little is known about how GAH functions in angiogenesis. To determine the role of GAH on vascular development and impairment repair, we used the inhibitors VRI, DMH1, and dorsomorphin (DM) to construct vascular-impaired models in Tg(kdrl: mCherry) transgenic zebrafish. We then treated with GAH and measured its repair effects on vascular impairment through fluorescence intensity, mRNA, and protein expression levels of vascular-specific markers. Our results indicate that GAH promotes vascular development and repairs impairment by regulating the vascular endothelial growth factor (VEGF) signaling pathway through modulation of bone morphogenetic protein (BMP) signaling. This study provides an experimental basis for the development of GAH as a drug to repair vascular diseases.
Collapse
Affiliation(s)
- Jiarui Sun
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Qici Wu
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yuxin Wei
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Wei Zhao
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Haokun Lv
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Wei Peng
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Jiayi Zheng
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yixuan Chen
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Zhengsen Wang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China; (J.S.); (Q.W.); (Y.W.); (W.Z.); (H.L.); (W.P.); (J.Z.); (Y.C.); (Z.W.)
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| |
Collapse
|
28
|
Krzysiek-Maczka G, Brzozowski T, Ptak-Belowska A. Helicobacter pylori-activated fibroblasts as a silent partner in gastric cancer development. Cancer Metastasis Rev 2023; 42:1219-1256. [PMID: 37460910 PMCID: PMC10713772 DOI: 10.1007/s10555-023-10122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/20/2023] [Indexed: 12/18/2023]
Abstract
The discovery of Helicobacter pylori (Hp) infection of gastric mucosa leading to active chronic gastritis, gastroduodenal ulcers, and MALT lymphoma laid the groundwork for understanding of the general relationship between chronic infection, inflammation, and cancer. Nevertheless, this sequence of events is still far from full understanding with new players and mediators being constantly identified. Originally, the Hp virulence factors affecting mainly gastric epithelium were proposed to contribute considerably to gastric inflammation, ulceration, and cancer. Furthermore, it has been shown that Hp possesses the ability to penetrate the mucus layer and directly interact with stroma components including fibroblasts and myofibroblasts. These cells, which are the source of biophysical and biochemical signals providing the proper balance between cell proliferation and differentiation within gastric epithelial stem cell compartment, when exposed to Hp, can convert into cancer-associated fibroblast (CAF) phenotype. The crosstalk between fibroblasts and myofibroblasts with gastric epithelial cells including stem/progenitor cell niche involves several pathways mediated by non-coding RNAs, Wnt, BMP, TGF-β, and Notch signaling ligands. The current review concentrates on the consequences of Hp-induced increase in gastric fibroblast and myofibroblast number, and their activation towards CAFs with the emphasis to the altered communication between mesenchymal and epithelial cell compartment, which may lead to inflammation, epithelial stem cell overproliferation, disturbed differentiation, and gradual gastric cancer development. Thus, Hp-activated fibroblasts may constitute the target for anti-cancer treatment and, importantly, for the pharmacotherapies diminishing their activation particularly at the early stages of Hp infection.
Collapse
Affiliation(s)
- Gracjana Krzysiek-Maczka
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Tomasz Brzozowski
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland.
| | - Agata Ptak-Belowska
- Department of Physiology, the Faculty of Medicine, Jagiellonian University Medical College, 16 Grzegorzecka Street, 31-531, Kraków, Poland
| |
Collapse
|
29
|
Lhousni S, Charif M, Derouich Y, Elidrissi Errahhali M, Elidrissi Errahhali M, Ouarzane M, Lenaers G, Boulouiz R, Belahcen M, Bellaoui M. A novel variant in BMPR1B causes acromesomelic dysplasia Grebe type in a consanguineous Moroccan family: Expanding the phenotypic and mutational spectrum of acromesomelic dysplasias. Bone 2023; 175:116860. [PMID: 37524292 DOI: 10.1016/j.bone.2023.116860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Acromesomelic dysplasia Grebe type (AMD Grebe type) is an autosomal recessive trait characterized by short stature, shortened limbs and malformations of the hands and feet. It is caused by variants in the growth differentiation factor 5 (GDF5) or, in rare cases, its receptor, the bone morphogenetic protein receptor-1B (BMPR1B). Here, we report a novel homozygous BMPR1B variant causing AMD Grebe type in a consanguineous Moroccan family with two affected sibs from BRO Biobank. Remarkably, the affected individuals showed additional features including bilateral simian creases, lumbar hyperlordosis, as well as lower limb length inequality and dislocated hips in one of them, which were never reported previously for AMD Grebe type patients. The identified novel BMPR1B variant (c.1201C>T, p.R401*) is predicted to result in loss of function of the BMPR1B protein either by nonsense-mediated mRNA decay or production of a truncated BMPR1B protein. Thus, these findings expand the phenotypic and mutational spectrum of AMD, and may improve the diagnosis of AMD and enable appropriate genetic counselling to be offered to patients.
Collapse
Affiliation(s)
- Saida Lhousni
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Majida Charif
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; Genetics and Immuno-Cell Therapy Team, Faculty of Science, University Mohammed Premier, Oujda, Morocco
| | - Yassine Derouich
- Department of Pediatric Orthopedic and Trauma Surgery, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mounia Elidrissi Errahhali
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Manal Elidrissi Errahhali
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Meryem Ouarzane
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Guy Lenaers
- Université d'Angers, Equipe MitoLab, Unité MitoVasc, INSERM U1083, CNRS 6015, F-49933 Angers, France; Service de Neurologie, CHU d'Angers, Angers, France
| | - Redouane Boulouiz
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mohammed Belahcen
- Department of Pediatric Orthopedic and Trauma Surgery, Mohammed VI University Hospital, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco
| | - Mohammed Bellaoui
- Genetics Unit, Medical Sciences Research Laboratory, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco; BRO Biobank, Faculty of Medicine and Pharmacy, University Mohammed Premier, Oujda, Morocco.
| |
Collapse
|
30
|
Liu C, Guo H, Shi C, Sun H. BMP signaling in the development and regeneration of tooth roots: from mechanisms to applications. Front Cell Dev Biol 2023; 11:1272201. [PMID: 37779895 PMCID: PMC10540449 DOI: 10.3389/fcell.2023.1272201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Short root anomaly (SRA), along with caries, periodontitis, and trauma, can cause tooth loss, affecting the physical and mental health of patients. Dental implants have become widely utilized for tooth restoration; however, they exhibit certain limitations compared to natural tooth roots. Tissue engineering-mediated root regeneration offers a strategy to sustain a tooth with a physiologically more natural function by regenerating the bioengineered tooth root (bio-root) based on the bionic principle. While the process of tooth root development has been reported in previous studies, the specific molecular mechanisms remain unclear. The Bone Morphogenetic Proteins (BMPs) family is an essential factor regulating cellular activities and is involved in almost all tissue development. Recent studies have focused on exploring the mechanism of BMP signaling in tooth root development by using transgenic animal models and developing better tissue engineering strategies for bio-root regeneration. This article reviews the unique roles of BMP signaling in tooth root development and regeneration.
Collapse
Affiliation(s)
- Cangwei Liu
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hao Guo
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Ce Shi
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| | - Hongchen Sun
- Department of Oral Pathology, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Changchun, China
| |
Collapse
|
31
|
Trumpp M, Tan WH, Burdzinski W, Basler Y, Jatzlau J, Knaus P, Winkler C. Characterization of Fibrodysplasia Ossificans Progessiva relevant Acvr1/Acvr2 Activin receptors in medaka (Oryzias latipes). PLoS One 2023; 18:e0291379. [PMID: 37708126 PMCID: PMC10501582 DOI: 10.1371/journal.pone.0291379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Activin and Bone Morphogenetic Protein (BMP) signaling plays crucial roles in vertebrate organ formation, including osteo- and angiogenesis, and tissue homeostasis, such as neuronal maintenance. Activin and BMP signaling needs to be precisely controlled by restricted expression of shared receptors, stoichiometric composition of receptor-complexes and presence of regulatory proteins. A R206H mutation in the human (hs) BMP type I receptor hsACVR1, on the other hand, leads to excessive phosphorylation of Sons of mothers against decapentaplegic (SMAD) 1/5/8. This in turn causes increased inflammation and heterotopic ossification in soft tissues of patients suffering from Fibrodysplasia Ossificans Progressiva (FOP). Several animal models have been established to understand the spontaneous and progressive nature of FOP, but often have inherent limitations. The Japanese medaka (Oryzias latipes, ola) has recently emerged as popular model for bone research. To assess whether medaka is suitable as a potential FOP animal model, we determined the expression of Activin receptor type I (ACVR1) orthologs olaAcvr1 and olaAcvr1l with that of Activin type II receptors olaAcvr2ab, olaAcvr2ba and olaAcvr2bb in embryonic and adult medaka tissues by in situ hybridization. Further, we showed that Activin A binding properties are conserved in olaAcvr2, as are the mechanistic features in the GS-Box of both olaAcvr1 and olaAcvr1l. This consequently leads to FOP-typical elevated SMAD signaling when the medaka type I receptors carry the R206H equivalent FOP mutation. Together, this study therefore provides experimental groundwork needed to establish a unique medaka model to investigate mechanisms underlying FOP.
Collapse
Affiliation(s)
- Michael Trumpp
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| | - Wiktor Burdzinski
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Yara Basler
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jerome Jatzlau
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
32
|
Erdem C, Gross SM, Heiser LM, Birtwistle MR. MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms. Nat Commun 2023; 14:3991. [PMID: 37414767 PMCID: PMC10326020 DOI: 10.1038/s41467-023-39729-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Robust identification of context-specific network features that control cellular phenotypes remains a challenge. We here introduce MOBILE (Multi-Omics Binary Integration via Lasso Ensembles) to nominate molecular features associated with cellular phenotypes and pathways. First, we use MOBILE to nominate mechanisms of interferon-γ (IFNγ) regulated PD-L1 expression. Our analyses suggest that IFNγ-controlled PD-L1 expression involves BST2, CLIC2, FAM83D, ACSL5, and HIST2H2AA3 genes, which were supported by prior literature. We also compare networks activated by related family members transforming growth factor-beta 1 (TGFβ1) and bone morphogenetic protein 2 (BMP2) and find that differences in ligand-induced changes in cell size and clustering properties are related to differences in laminin/collagen pathway activity. Finally, we demonstrate the broad applicability and adaptability of MOBILE by analyzing publicly available molecular datasets to investigate breast cancer subtype specific networks. Given the ever-growing availability of multi-omics datasets, we envision that MOBILE will be broadly useful for identification of context-specific molecular features and pathways.
Collapse
Affiliation(s)
- Cemal Erdem
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA
| | - Sean M Gross
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
| | - Marc R Birtwistle
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC, USA.
- Department of Bioengineering, Clemson University, Clemson, SC, USA.
| |
Collapse
|
33
|
Klumpe HE, Garcia-Ojalvo J, Elowitz MB, Antebi YE. The computational capabilities of many-to-many protein interaction networks. Cell Syst 2023; 14:430-446. [PMID: 37348461 PMCID: PMC10318606 DOI: 10.1016/j.cels.2023.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/14/2023] [Accepted: 05/11/2023] [Indexed: 06/24/2023]
Abstract
Many biological circuits comprise sets of protein variants that interact with one another in a many-to-many, or promiscuous, fashion. These architectures can provide powerful computational capabilities that are especially critical in multicellular organisms. Understanding the principles of biochemical computations in these circuits could allow more precise control of cellular behaviors. However, these systems are inherently difficult to analyze, due to their large number of interacting molecular components, partial redundancies, and cell context dependence. Here, we discuss recent experimental and theoretical advances that are beginning to reveal how promiscuous circuits compute, what roles those computations play in natural biological contexts, and how promiscuous architectures can be applied for the design of synthetic multicellular behaviors.
Collapse
Affiliation(s)
- Heidi E Klumpe
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Pompeu Fabra University, 08003 Barcelona, Spain.
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - Yaron E Antebi
- Department of Molecular Genetics, Weizmann Institute of Science 76100, Rehovot, Israel.
| |
Collapse
|
34
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
35
|
Schwarz A, Kinscherf R, Bonaterra GA. Role of the Stress- and Inflammation-Induced Cytokine GDF-15 in Cardiovascular Diseases: From Basic Research to Clinical Relevance. Rev Cardiovasc Med 2023; 24:81. [PMID: 39077481 PMCID: PMC11264000 DOI: 10.31083/j.rcm2403081] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 07/31/2024] Open
Abstract
Stress- and inflammation-induced growth differentiation factor-15 (GDF-15) is proposed as a biomarker for mortality and disease progression in patients with atherosclerosis and/or cardiovascular disease (CVD). The development of atherosclerotic lesions depends, among other factors, on inflammatory processes, oxidative stress, and impaired lipid homeostasis. As a consequence, activation and dysfunction of endothelial cells, release of chemokines, growth factors and lipid mediators occur. GDF-15 is suggested as an acute-phase modifier of transforming growth factor (TGF)-ßRII-dependent pro-inflammatory responses leading to rupture of atherosclerotic plaques, although the exact biological function is poorly understood to date. GDF-15 is upregulated in many disease processes, and its effects may be highly context-dependent. To date, it is unclear whether the upregulation of GDF-15 leads to disease progression or provides protection against disease. Concerning CVD, cardiomyocytes are already known to produce and release GDF-15 in response to angiotensin II stimulation, ischemia, and mechanical stretch. Cardiomyocytes, macrophages, vascular smooth muscle cells, endothelial cells, and adipocytes also release GDF-15 in response to oxidative as well as metabolic stress or stimulation with pro-inflammatory cytokines. Given the critically discussed pathophysiological and cellular functions and the important clinical significance of GDF-15 as a biomarker in CVD, we have summarized here the basic research findings on different cell types. In the context of cellular stress and inflammation, we further elucidated the signaling pathway of GDF-15 in coronary artery disease (CAD), the most common CVD in developing and industrial nations.
Collapse
Affiliation(s)
- Anja Schwarz
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, 35037 Marburg, Germany
| | - Gabriel A. Bonaterra
- Department of Medical Cell Biology, Institute for Anatomy and Cell Biology, Philipps-University of Marburg, 35037 Marburg, Germany
| |
Collapse
|
36
|
Jiang F, Qi X, Wu X, Lin S, Shi J, Zhang W, Jiang X. Regulating macrophage-MSC interaction to optimize BMP-2-induced osteogenesis in the local microenvironment. Bioact Mater 2023; 25:307-318. [PMID: 36844362 PMCID: PMC9947106 DOI: 10.1016/j.bioactmat.2023.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Bone morphogenetic protein (BMP-2) has been approved by the FDA to promote bone regeneration, but uncertain osteogenic effect and dose-dependent side effects may occur. Osteoimmunomodulation plays an important role in growth factor-based osteogenesis. Here, we explored how proinflammatory signals affect the dose-dependent osteogenic potential of BMP-2. We observed that the expression level of local IL-1β did not increase with the dose of BMP-2 in the mouse osteogenesis model. A low dose of BMP-2 could not promote new bone formation, but trigger the release of IL-1β from M1 macrophages. As the dose of BMP-2 increased, the IL-1β expression and M1 infiltration in local microenvironment were inhibited by IL-1Ra from MSCs under osteogenic differentiation induced by BMP-2, and new bone tissues formed, even excessively. Anti-inflammatory drugs (Dexamethasone, Dex) promoted osteogenesis via inhibiting M1 polarization and enhancing BMP-2-induced MSC osteo-differentiation. Thus, we suggest that the osteogenic effect of BMP-2 involves macrophage-MSC interaction that is dependent on BMP-2 dose and based on IL-1R1 ligands, including IL-1β and IL-1Ra. The dose of BMP-2 could be reduced by introducing immunoregulatory strategies.
Collapse
Affiliation(s)
- Fei Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, No. 140, Han Zhong Road, Nanjing, 210029, China
- Department of General Dentistry, Affiliated Hospital of Stomatology, Nanjing Medical University, No. 136, Han Zhong Road, Nanjing, 210029, China
| | - Xuanyu Qi
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Xiaolin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Sihan Lin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Junfeng Shi
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, No.639, Zhizaoju Road, Shanghai, 200011, China
- Corresponding author. Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No.639, Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
37
|
Synthesis, Regulatory Factors, and Signaling Pathways of Estrogen in the Ovary. Reprod Sci 2023; 30:350-360. [PMID: 35384637 DOI: 10.1007/s43032-022-00932-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/28/2022] [Indexed: 02/06/2023]
Abstract
New insights have been thrown for understanding the significant role of estrogen on various systems of humans. Increasing evidences have determined the significant roles of estrogen in female reproductive system. So, the normal synthesis and secretion of estrogen play important roles in maintaining the function of tissues and organs. The ovaries are the main synthetic organs of estrogen. In this review, we summarized the current knowledge of the estrogen synthesis in the ovaries. A series of factors and signaling pathways that regulate the synthesis of estrogen are expounded in detail. Understanding the regulating factors and potential mechanism related to estrogen synthesis will be beneficial for understanding estrogen disorder related diseases and may provide novel therapeutic targets.
Collapse
|
38
|
Gipson GR, Nolan K, Kattamuri C, Kenny AP, Agricola Z, Edwards NA, Zinski J, Czepnik M, Mullins MC, Zorn AM, Thompson TB. Formation and characterization of BMP2/GDF5 and BMP4/GDF5 heterodimers. BMC Biol 2023; 21:16. [PMID: 36726183 PMCID: PMC9893541 DOI: 10.1186/s12915-023-01522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Proteins of the TGFβ family, which are largely studied as homodimers, are also known to form heterodimers with biological activity distinct from their component homodimers. For instance, heterodimers of bone morphogenetic proteins, including BMP2/BMP7, BMP2/BMP6, and BMP9/BMP10, among others, have illustrated the importance of these heterodimeric proteins within the context of TGFβ signaling. RESULTS In this study, we have determined that mature GDF5 can be combined with mature BMP2 or BMP4 to form BMP2/GDF5 and BMP4/GDF5 heterodimer. Intriguingly, this combination of a BMP2 or BMP4 monomer, which exhibit high affinity to heparan sulfate characteristic to the BMP class, with a GDF5 monomer with low heparan sulfate affinity produces a heterodimer with an intermediate affinity. Using heparin affinity chromatography to purify the heterodimeric proteins, we then determined that both the BMP2/GDF5 and BMP4/GDF5 heterodimers consistently signaled potently across an array of cellular and in vivo systems, while the activities of their homodimeric counterparts were more context dependent. These differences were likely driven by an increase in the combined affinities for the type 1 receptors, Alk3 and Alk6. Furthermore, the X-ray crystal structure of BMP2/GDF5 heterodimer was determined, highlighting the formation of two asymmetric type 1 receptor binding sites that are both unique relative to the homodimers. CONCLUSIONS Ultimately, this method of heterodimer production yielded a signaling molecule with unique properties relative to the homodimeric ligands, including high affinity to multiple type 1 and moderate heparan binding affinity.
Collapse
Affiliation(s)
- Gregory R Gipson
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kristof Nolan
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Chandramohan Kattamuri
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alan P Kenny
- Perinatal Institute, Divisions of Developmental Biology and Neonatology & Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Zachary Agricola
- Perinatal Institute, Divisions of Developmental Biology and Neonatology & Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nicole A Edwards
- Perinatal Institute, Divisions of Developmental Biology and Neonatology & Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph Zinski
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Magdalena Czepnik
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aaron M Zorn
- Perinatal Institute, Divisions of Developmental Biology and Neonatology & Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Thomas B Thompson
- Department of Molecular & Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
39
|
Tu P, Xu Q, Zhou X, Villa-Roel N, Kumar S, Dong N, Jo H, Ou C, Lin Z. Myeloid CCN3 protects against aortic valve calcification. Cell Commun Signal 2023; 21:14. [PMID: 36670446 PMCID: PMC9854076 DOI: 10.1186/s12964-022-01020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/14/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cellular communication network factor 3 (CCN3) has been implicated in the regulation of osteoblast differentiation. However, it is not known if CCN3 can regulate valvular calcification. While macrophages have been shown to regulate valvular calcification, the molecular and cellular mechanisms of this process remain poorly understood. In the present study, we investigated the role of macrophage-derived CCN3 in the progression of calcific aortic valve disease. METHODS Myeloid-specific knockout of CCN3 (Mye-CCN3-KO) and control mice were subjected to a single tail intravenous injection of AAV encoding mutant mPCSK9 (rAAV8/D377Y-mPCSK9) to induce hyperlipidemia. AAV-injected mice were then fed a high fat diet for 40 weeks. At the conclusion of high fat diet feeding, tissues were harvested and subjected to histologic and pathologic analyses. In vitro, bone marrow-derived macrophages (BMDM) were obtained from Mye-CCN3-KO and control mice and the expression of bone morphogenic protein signaling related gene were verified via quantitative real-time PCR and Western blotting. The BMDM conditioned medium was cocultured with human valvular intersititial cells which was artificially induced calcification to test the effect of the conditioned medium via Western blotting and Alizarin red staining. RESULTS Echocardiography revealed that both male and female Mye-CCN3-KO mice displayed compromised aortic valvular function accompanied by exacerbated valve thickness and cardiac dysfunction. Histologically, Alizarin-Red staining revealed a marked increase in aortic valve calcification in Mye-CCN3-KO mice when compared to the controls. In vitro, CCN3 deficiency augmented BMP2 production and secretion from bone marrow-derived macrophages. In addition, human valvular interstitial cells cultured with conditioned media from CCN3-deficient BMDMs resulted in exaggerated pro-calcifying gene expression and the consequent calcification. CONCLUSION Our data uncovered a novel role of myeloid CCN3 in the regulation of aortic valve calcification. Modulation of BMP2 production and secretion in macrophages might serve as a key mechanism for macrophage-derived CCN3's anti-calcification function in the development of CAVD. Video Abstract.
Collapse
Affiliation(s)
- Peinan Tu
- grid.189967.80000 0001 0941 6502Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA 30322 USA ,grid.284723.80000 0000 8877 7471Affiliated Dongguan Hospital Southern Medical University (Dongguan People’s Hospital), Dongguan, 523058 China
| | - Qian Xu
- grid.189967.80000 0001 0941 6502Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA 30322 USA ,grid.452223.00000 0004 1757 7615Department of Cardiovascular Surgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xianming Zhou
- grid.189967.80000 0001 0941 6502Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA 30322 USA ,grid.33199.310000 0004 0368 7223Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nicolas Villa-Roel
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA USA
| | - Sandeep Kumar
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA USA
| | - Nianguo Dong
- grid.33199.310000 0004 0368 7223Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanjoong Jo
- grid.213917.f0000 0001 2097 4943Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA USA
| | - Caiwen Ou
- Affiliated Dongguan Hospital Southern Medical University (Dongguan People's Hospital), Dongguan, 523058, China.
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, 101 Woodruff Circle, Room 3004, Atlanta, GA, 30322, USA.
| |
Collapse
|
40
|
Jatzlau J, Burdzinski W, Trumpp M, Obendorf L, Roßmann K, Ravn K, Hyvönen M, Bottanelli F, Broichhagen J, Knaus P. A versatile Halo- and SNAP-tagged BMP/TGFβ receptor library for quantification of cell surface ligand binding. Commun Biol 2023; 6:34. [PMID: 36635368 PMCID: PMC9837045 DOI: 10.1038/s42003-022-04388-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
TGFβs, BMPs and Activins regulate numerous developmental and homeostatic processes and signal through hetero-tetrameric receptor complexes composed of two types of serine/threonine kinase receptors. Each of the 33 different ligands possesses unique affinities towards specific receptor types. However, the lack of specific tools hampered simultaneous testing of ligand binding towards all BMP/TGFβ receptors. Here we present a N-terminally Halo- and SNAP-tagged TGFβ/BMP receptor library to visualize receptor complexes in dual color. In combination with fluorescently labeled ligands, we established a Ligand Surface Binding Assay (LSBA) for optical quantification of receptor-dependent ligand binding in a cellular context. We highlight that LSBA is generally applicable to test (i) binding of different ligands such as Activin A, TGFβ1 and BMP9, (ii) for mutant screens and (iii) evolutionary comparisons. This experimental set-up opens opportunities for visualizing ligand-receptor binding dynamics, essential to determine signaling specificity and is easily adaptable for other receptor signaling pathways.
Collapse
Affiliation(s)
- Jerome Jatzlau
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Wiktor Burdzinski
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
| | - Michael Trumpp
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Leon Obendorf
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Kilian Roßmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Katharina Ravn
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Petra Knaus
- Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany.
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany.
| |
Collapse
|
41
|
Bonds JA, Tunc-Ozcan E, Dunlop SR, Rawat R, Peng CY, Kessler JA. Why Some Mice Are Smarter than Others: The Impact of Bone Morphogenetic Protein Signaling on Cognition. eNeuro 2023; 10:ENEURO.0213-22.2022. [PMID: 36596594 PMCID: PMC9833048 DOI: 10.1523/eneuro.0213-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/20/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023] Open
Abstract
Inbred mice (C57Bl/6) display wide variability in performance on hippocampal-dependent cognitive tasks. Examination of microdissected dentate gyrus (DG) after cognitive testing showed a highly significant negative correlation between levels of bone morphogenetic protein (BMP) signaling and recognition memory. Cognitive performance decline during the aging process, and the degree of cognitive decline is strongly correlated with aging-related increases in BMP signaling. Further, cognitive performance was impaired when the BMP inhibitor, noggin, was knocked down in the DG. Infusion of noggin into the lateral ventricles enhanced DG-dependent cognition while BMP4 infusion led to significant impairments. Embryonic overexpression of noggin resulted in lifelong enhancement of recognition and spatial memory while overexpression of BMP4 resulted in lifelong impairment, substantiating the importance of differences in BMP signaling in wild-type mice. These findings indicate that performance in DG-dependent cognitive tasks is largely determined by differences in levels BMP signaling in the dentate gyrus.
Collapse
Affiliation(s)
- Jacqueline A Bonds
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Department of Anesthesiology, University of California San Diego, San Diego, CA 92161
| | - Elif Tunc-Ozcan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Sara R Dunlop
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Radhika Rawat
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - John A Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
42
|
Asati V, Bharti SK, Das R, Kashaw V, Kashaw SK. Discovery of novel ALK2 inhibitors of pyrazolo-pyrimidines: A computational study. J Biomol Struct Dyn 2022; 40:10422-10436. [PMID: 34225569 DOI: 10.1080/07391102.2021.1944320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ALK2 is a serine/threonine kinase, involved in different signaling pathways and associated with cell proliferation and differentiation. The present study includes development of pharmacophore, 3-D QSAR, docking and virtual screening studies on 30 different pyrazolo[1,5-a]pyrimidine derivatives. The pharmacophore study provides ARRR_2 hypothesis with four different features essential for ALK2 kinase inhibitory activity. The 3 D-QSAR study determined the statistically significant model by using partial least-square regression (PLS) method with R2 value of 0.9711 and Q2 value of 0.6846. Validation of 3 D-QSAR has been performed by LOO cross-validation method where with R2CV value of 0.56. The virtual screening study on ZINC database provides compounds such as ZINC66091638, ZINC43524105, ZINC19458227 and ZINC72441013 involved good binding interactions (docking scores -8.91, -7.40, -8.43, and -9.47, respectively) with ALK2 kinase (PDB ID: 3Q4U). The docking study of pyrazolo-pyrimidines derivatives found potent compounds, 7i, 13r, 13d, and 21 with docking scores -9.83, -9.75, -9.76, and -9.75, respectively. The important interactions with amino acid residues were HID 286, ASN341. ADME properties further assist to provide important structural features of ALK2 kinase. The present study may be help to medicinal scientists in the direction to develop potent inhibitors against ALK2 kinase.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Sanjay K Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ratnesh Das
- Department of Chemistry, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| | - Varsha Kashaw
- Sagar Institute of Pharmaceutical Sciences, Sagar, Madhya Pradesh, India
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh, India
| |
Collapse
|
43
|
Yamamoto M, Stoessel SJ, Yamamoto S, Goldhamer DJ. Overexpression of Wild-Type ACVR1 in Fibrodysplasia Ossificans Progressiva Mice Rescues Perinatal Lethality and Inhibits Heterotopic Ossification. J Bone Miner Res 2022; 37:2077-2093. [PMID: 35637634 PMCID: PMC9708949 DOI: 10.1002/jbmr.4617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/22/2022] [Accepted: 05/28/2022] [Indexed: 11/07/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a devastating disease of progressive heterotopic bone formation for which effective treatments are currently unavailable. FOP is caused by dominant gain-of-function mutations in the receptor ACVR1 (also known as ALK2), which render the receptor inappropriately responsive to activin ligands. In previous studies, we developed a genetic mouse model of FOP that recapitulates most clinical aspects of the disease. In this model, genetic loss of the wild-type Acvr1 allele profoundly exacerbated heterotopic ossification, suggesting the hypothesis that the stoichiometry of wild-type and mutant receptors dictates disease severity. Here, we tested this model by producing FOP mice that conditionally overexpress human wild-type ACVR1. Injury-induced heterotopic ossification (HO) was completely blocked in FOP mice when expression of both the mutant and wild-type receptor were targeted to Tie2-positive cells, which includes fibro/adipogenic progenitors (FAPs). Perinatal lethality of Acvr1R206H/+ mice was rescued by constitutive ACVR1 overexpression, and these mice survived to adulthood at predicted Mendelian frequencies. Constitutive overexpression of ACVR1 also provided protection from spontaneous abnormal skeletogenesis, and the incidence and severity of injury-induced HO in these mice was dramatically reduced. Analysis of pSMAD1/5/8 signaling both in cultured cells and in vivo indicates that ACVR1 overexpression functions cell-autonomously by reducing osteogenic signaling in response to activin A. We propose that ACVR1 overexpression inhibits HO by decreasing the abundance of ACVR1(R206H)-containing signaling complexes at the cell surface while increasing the representation of activin-A-bound non-signaling complexes comprised of wild-type ACVR1. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Masakazu Yamamoto
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| | - Sean J Stoessel
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| | - Shoko Yamamoto
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| | - David J Goldhamer
- Department of Molecular and Cell BiologyUniversity of Connecticut Stem Cell Institute, University of ConnecticutStorrsCTUSA
| |
Collapse
|
44
|
Wentworth KL, Lalonde RL, Groppe JC, Brewer N, Moody T, Hansberry S, Taylor KE, Shore EM, Kaplan FS, Pignolo RJ, Yelick PC, Hsiao EC. Functional Testing of Bone Morphogenetic Protein (BMP) Pathway Variants Identified on Whole-Exome Sequencing in a Patient with Delayed-Onset Fibrodysplasia Ossificans Progressiva (FOP) Using ACVR1 R206H -Specific Human Cellular and Zebrafish Models. J Bone Miner Res 2022; 37:2058-2076. [PMID: 36153796 PMCID: PMC9950781 DOI: 10.1002/jbmr.4711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/06/2022]
Abstract
Bone morphogenetic protein (BMP) signaling is critical in skeletal development. Overactivation can trigger heterotopic ossification (HO) as in fibrodysplasia ossificans progressiva (FOP), a rare, progressive disease of massive HO formation. A small subset of FOP patients harboring the causative ACVR1R206H mutation show strikingly mild or delayed-onset HO, suggesting that genetic variants in the BMP pathway could act as disease modifiers. Whole-exome sequencing of one such patient identified BMPR1AR443C and ACVR2AV173I as candidate modifiers. Molecular modeling predicted significant structural perturbations. Neither variant decreased BMP signaling in ACVR1R206H HEK 293T cells at baseline or after stimulation with BMP4 or activin A (AA), ligands that activate ACVR1R206H signaling. Overexpression of BMPR1AR443C in a Tg(ACVR1-R206Ha) embryonic zebrafish model, in which overactive BMP signaling yields ventralized embryos, did not alter ventralization severity, while ACVR2AV173I exacerbated ventralization. Co-expression of both variants did not affect dorsoventral patterning. In contrast, BMPR1A knockdown in ACVR1R206H HEK cells decreased ligand-stimulated BMP signaling but did not affect dorsoventral patterning in Tg(ACVR1-R206Ha) zebrafish. ACVR2A knockdown decreased only AA-stimulated signaling in ACVR1R206H HEK cells and had no effect in Tg(ACVR1-R206Ha) zebrafish. Co-knockdown in ACVR1R206H HEK cells decreased basal and ligand-stimulated signaling, and co-knockdown/knockout (bmpr1aa/ab; acvr2aa/ab) decreased Tg(ACVR1-R206Ha) zebrafish ventralization phenotypes. Our functional studies showed that knockdown of wild-type BMPR1A and ACVR2A could attenuate ACVR1R206H signaling, particularly in response to AA, and that ACVR2AV173I unexpectedly increased ACVR1R206H -mediated signaling in zebrafish. These studies describe a useful strategy and platform for functionally interrogating potential genes and genetic variants that may impact the BMP signaling pathway. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, Zuckerberg San Francisco General Hospital, San Francisco, CA, USA
| | - Robert L Lalonde
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, Boston, MA, USA
| | - Jay C Groppe
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Niambi Brewer
- Department of Orthopedic Surgery and The Center of Research for FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tania Moody
- Institute for Human Genetics, the Program in Craniofacial Biology, the UCSF Eli and Edythe Broad Institute for Regeneration Medicine, and the Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA
| | - Steven Hansberry
- San Francisco State University, California Institute of Regenerative Medicine Bridges to Stem Cell Research Program, San Francisco, CA, USA
| | - Kimberly E Taylor
- Russell/Engleman Rheumatology Research Center, University of California, San Francisco, CA, USA
| | - Eileen M Shore
- Department of Orthopedic Surgery and The Center of Research for FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick S Kaplan
- Department of Orthopedic Surgery and The Center of Research for FOP & Related Disorders, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Pamela C Yelick
- Tufts University School of Dental Medicine, Division of Craniofacial and Molecular Genetics, Boston, MA, USA
| | - Edward C Hsiao
- Institute for Human Genetics, the Program in Craniofacial Biology, the UCSF Eli and Edythe Broad Institute for Regeneration Medicine, and the Department of Medicine, Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA
| |
Collapse
|
45
|
Downregulation of METTL14 improves postmenopausal osteoporosis via IGF2BP1 dependent posttranscriptional silencing of SMAD1. Cell Death Dis 2022; 13:919. [PMID: 36319624 PMCID: PMC9626483 DOI: 10.1038/s41419-022-05362-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/19/2022] [Accepted: 10/20/2022] [Indexed: 11/21/2022]
Abstract
Osteoporosis (OP) tends to occur in postmenopausal women, making them prone to fractures. N6-methyladenosine (m6A) methylation plays a crucial role in OP. Herein, we aimed to explore the effects of METTL14 on osteogenesis and the underlying mechanism. Osteogenic differentiation was assessed through osteoblast markers expression, cell proliferation, ALP activity, and mineralization, which were detected by qRT-PCR, CCK-8, EdU assay, ALP staining assay, and ARS staining assay, respectively. Osteoporosis was evaluated in OVX mice using qRT-PCR, microcomputed tomography, and H&E staining assay. The levels of METTL14 and SMAD1 were measured using qRT-PCR and western blot, and their interaction was assessed using RIP and luciferase reporter assay. M6A methylation was analyzed using the Me-RIP assay. The results indicated that m6A, METTL14, and SMAD1 levels were downregulated in patients with OP and OVX mice, and upregulated in osteogenic BMSCs. Knockdown of METTL14 suppressed osteogenesis of BMSCs and reduced bone mass of OVX mice. Moreover, silencing of METTL14 positively related to SMAD1 and inhibited m6A modification of SMAD1 by suppressing its stability. IGF2BP1 was identified as the methylation reader, and which knockdown reversed the upregulation induced by SMAD1. Overexpression of SMAD1 reversed the suppression of osteogenic differentiation induced by METTL14 knockdown. In conclusion, interference with METTL14 inhibited osteogenic differentiation of BSMCs by m6A modification of SMAD1 in an IGFBP1 manner, suggesting that METTL14 might be a novel approach for improving osteoporosis.
Collapse
|
46
|
Guevara-Garcia A, Fourel L, Bourrin-Reynard I, Sales A, Oddou C, Pezet M, Rossier O, Machillot P, Chaar L, Bouin AP, Giannone G, Destaing O, Picart C, Albiges-Rizo C. Integrin-based adhesion compartmentalizes ALK3 of the BMPRII to control cell adhesion and migration. J Biophys Biochem Cytol 2022; 221:213529. [PMID: 36205720 PMCID: PMC9552562 DOI: 10.1083/jcb.202107110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 07/25/2022] [Accepted: 09/19/2022] [Indexed: 02/02/2023] Open
Abstract
The spatial organization of cell-surface receptors is fundamental for the coordination of biological responses to physical and biochemical cues of the extracellular matrix. How serine/threonine kinase receptors, ALK3-BMPRII, cooperate with integrins upon BMP2 to drive cell migration is unknown. Whether the dynamics between integrins and BMP receptors intertwine in space and time to guide adhesive processes is yet to be elucidated. We found that BMP2 stimulation controls the spatial organization of BMPRs by segregating ALK3 from BMPRII into β3 integrin-containing focal adhesions. The selective recruitment of ALK3 to focal adhesions requires β3 integrin engagement and ALK3 activation. BMP2 controls the partitioning of immobilized ALK3 within and outside focal adhesions according to single-protein tracking and super-resolution imaging. The spatial control of ALK3 in focal adhesions by optogenetics indicates that ALK3 acts as an adhesive receptor by eliciting cell spreading required for cell migration. ALK3 segregation from BMPRII in integrin-based adhesions is a key aspect of the spatio-temporal control of BMPR signaling.
Collapse
Affiliation(s)
- Amaris Guevara-Garcia
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France,Commissariat à l’Energie Atomique, Institut National de la Santé et de la Recherche Médicale U1292, Centre National de La Recherche Scientifique Equipe Mixte de Recherche Biomimetism and Regenerative Medicine 5000, Université Grenoble Alpes, Grenoble, France,Centre National de La Recherche Scientifique, Grenoble Institute of Technology, Laboratoire des Matériaux et du Génie Physique, Unité Mixte de Recherche 5628, Grenoble, France
| | - Laure Fourel
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Ingrid Bourrin-Reynard
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Adria Sales
- Commissariat à l’Energie Atomique, Institut National de la Santé et de la Recherche Médicale U1292, Centre National de La Recherche Scientifique Equipe Mixte de Recherche Biomimetism and Regenerative Medicine 5000, Université Grenoble Alpes, Grenoble, France,Centre National de La Recherche Scientifique, Grenoble Institute of Technology, Laboratoire des Matériaux et du Génie Physique, Unité Mixte de Recherche 5628, Grenoble, France
| | - Christiane Oddou
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Mylène Pezet
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Olivier Rossier
- Centre National de La Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Interdisciplinary Institute for Neurosciences, Unité Mixte de Recherche 5297, Université Bordeaux, Bordeaux, France
| | - Paul Machillot
- Commissariat à l’Energie Atomique, Institut National de la Santé et de la Recherche Médicale U1292, Centre National de La Recherche Scientifique Equipe Mixte de Recherche Biomimetism and Regenerative Medicine 5000, Université Grenoble Alpes, Grenoble, France,Centre National de La Recherche Scientifique, Grenoble Institute of Technology, Laboratoire des Matériaux et du Génie Physique, Unité Mixte de Recherche 5628, Grenoble, France
| | - Line Chaar
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Anne-Pascale Bouin
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Gregory Giannone
- Centre National de La Recherche Scientifique, Interdisciplinary Institute for Neuroscience, Interdisciplinary Institute for Neurosciences, Unité Mixte de Recherche 5297, Université Bordeaux, Bordeaux, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France
| | - Catherine Picart
- Commissariat à l’Energie Atomique, Institut National de la Santé et de la Recherche Médicale U1292, Centre National de La Recherche Scientifique Equipe Mixte de Recherche Biomimetism and Regenerative Medicine 5000, Université Grenoble Alpes, Grenoble, France,Centre National de La Recherche Scientifique, Grenoble Institute of Technology, Laboratoire des Matériaux et du Génie Physique, Unité Mixte de Recherche 5628, Grenoble, France
| | - Corinne Albiges-Rizo
- Institute for Advanced Biosciences, Institut National de la Santé et de la Recherche Médicale U1209, Centre National de La Recherche Scientifique 5309, Université Grenoble Alpes, Grenoble, France,Correspondence to Corinne Albiges-Rizo:
| |
Collapse
|
47
|
Could BMPs Therapy Be Improved if BMPs Were Used in Composition Acting during Bone Formation in Endochondral Ossification? Int J Mol Sci 2022; 23:ijms231810327. [PMID: 36142232 PMCID: PMC9499665 DOI: 10.3390/ijms231810327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of bone morphogenetic proteins (BMPs) inspired hope for the successful treatment of bone disorders, but side effects worsening the clinical effects were eventually observed. BMPs exert a synergistic effect, stimulating osteogenesis; however, predicting the best composition of growth factors for use in humans is difficult. Chondrocytes present within the growth plate produce growth factors stored in calcified cartilage adhering to metaphysis. These factors stimulate initial bone formation in metaphysis. We have previously determined the growth factors present in bovine calcified cartilage and produced by rat epiphyseal chondrocytes. The results suggest that growth factors stimulating physiological ossification are species dependent. The collection of human calcified cartilage for growth factors determination does not appear feasible, but chondrocytes for mRNA determination could be obtained. Their collection from young recipients, in view of the Academy of Medical Royal Colleges Recommendation, would be ethical. The authors of this review do not have facilities to conduct such a study and can only appeal to competent institutions to undertake the task. The results could help to formulate a better recipe for the stimulation of bone formation and improve clinical results.
Collapse
|
48
|
Hochgerner M, Bauer T, Zyulina V, Glitzner E, Warsi S, Konkel JE, Tam-Amersdorfer C, Chen W, Karlsson S, Sibilia M, Strobl H. BMPR1a Is Required for the Optimal TGFβ1-Dependent CD207 + Langerhans Cell Differentiation and Limits Skin Inflammation through CD11c + Cells. J Invest Dermatol 2022; 142:2446-2454.e3. [PMID: 35300973 DOI: 10.1016/j.jid.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
The cytokine TGFβ1 induces epidermal Langerhans cell (LC) differentiation from human precursors, an effect mediated through BMPR1a/ALK3 signaling, as revealed from ectopic expression and receptor inhibition studies. Whether TGFβ1‒BMPR1a signaling is required for LC differentiation in vivo remained incompletely understood. We found that TGFβ1-deficient mice show defective perinatal expansion and differentiation of LCs. LCs can be identified within the normal healthy human epidermis by anti-BMPR1a immunohistology staining. Deletion of BMPR1a in all (vav+) hematopoietic cells revealed that BMPR1a is required for the efficient TGFβ1-dependent generation of CD207+ LC-like cells from CD11c+ intermediates in vitro. Similarly, BMPR1a was required for the optimal induction of CD207 by preformed major histocompatibility complex II‒positive epidermal resident LC precursors in the steady state. BMPR1a expression is strongly upregulated in epidermal cells in psoriatic lesions, and BMPR1aΔCD11c mice showed a defect in the resolution phase of allergic and psoriatic skin inflammation. Moreover, whereas LCs from these mice expressed CD207, BMPR1a counteracted LC activation and migration from skin explant cultures. Therefore, TGFβ1‒BMPR1a signaling seems to be required for the efficient induction of CD207 during LC differentiation in the steady state, and bone marrow‒derived lesional CD11c+ cells may limit established skin inflammation through enhanced BMPR1a signaling.
Collapse
Affiliation(s)
- Mathias Hochgerner
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria; Center for Cancer Research, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Vienna, Austria
| | - Thomas Bauer
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Vienna, Austria
| | - Victoria Zyulina
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Elisabeth Glitzner
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Vienna, Austria
| | - Sarah Warsi
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden
| | - Joanne E Konkel
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA; The Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Carmen Tam-Amersdorfer
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Wanjun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Stefan Karlsson
- Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University Hospital, Lund, Sweden
| | - Maria Sibilia
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Vienna, Austria
| | - Herbert Strobl
- Division of Immunology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
49
|
Pathophysiology and Emerging Molecular Therapeutic Targets in Heterotopic Ossification. Int J Mol Sci 2022; 23:ijms23136983. [PMID: 35805978 PMCID: PMC9266941 DOI: 10.3390/ijms23136983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 12/23/2022] Open
Abstract
The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.
Collapse
|
50
|
Kim BY, Choi SH, Kim JY, Ko J, Yook JI, Kim HS, Lee EJ, Kikkawa DO, Yoon JS. Potential Therapeutic Role of Bone Morphogenic Protein 7 (BMP7) in the Pathogenesis of Graves' Orbitopathy. Invest Ophthalmol Vis Sci 2022; 63:7. [PMID: 35671049 PMCID: PMC9187939 DOI: 10.1167/iovs.63.6.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigated a role of bone morphogenic protein 7 (BMP7), a member of the TGF-β superfamily on pathogenic mechanism of Graves' orbitopathy (GO). The therapeutic effects of BMP7 on inflammation and fibrosis were evaluated in cultured Graves' orbital fibroblasts. Methods Expression of BMP7 was compared in cultured orbital tissue explants from GO (n = 12) and normal control (n = 12) subjects using real-time PCR. Orbital fibroblasts were cultured from orbital connective tissues obtained from GO (n = 3) and normal control patients (n = 3). Cells were pretreated with recombinant human BMP7 (rhBMP7) before stimulation with TGF-β, IL-1β, and TNF-α. Fibrosis-related proteins and inflammatory cytokines were analyzed by Western blotting. The activation of signaling molecules in inflammation and fibrosis was also analyzed. Results The expressions of BMP7 mRNA were lower in GO orbital tissues than control. Fibrosis-related proteins, fibronectin, collagen 1α, and α-SMA induced by TGF-β were suppressed by treating rhBMP7, and rhBMP7 upregulated TGF-β induced SMAD1/5/8 protein expression, whereas downregulated SMAD2/3. Increased pro-inflammatory molecules, IL-6, IL-8, and intercellular adhesion molecule-1 (ICAM-1) by IL-1β or TNF-α were blocked by rhBMP7 treatment, and the expression of phosphorylated NFκB and Akt was suppressed by rhBMP7 treatment. Conclusions BMP7 transcript levels were downregulated in Graves' orbital tissues. Exogenous BMP7 treatment showed inhibitory effects on the production of profibrotic proteins and proinflammatory cytokines in orbital fibroblasts. Our results provide a molecular basis of BMP7 as a new potential therapeutic agent through the opposing mechanism of profibrotic TGF-β/SMAD signaling and proinflammatory cytokine production.
Collapse
Affiliation(s)
- Bo Yi Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Hyun Choi
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Ji-Young Kim
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - JaeSang Ko
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - Jong In Yook
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Hyun Sil Kim
- Department of Oral Pathology, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Eun Jig Lee
- Department of Endocrinology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Don O Kikkawa
- Department of Ophthalmology, Division of Oculofacial Plastic and Reconstructive Surgery, University of California San Diego, La Jolla, California, United States
| | - Jin Sook Yoon
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|