1
|
Liu Y, Li W, Lei L, Zhou Y, Huang M, Li Y, Zhang X, Jiang Y, Wu H, Zheng Z, Ma K, Tang C. Effects of PGK1 on immunoinfiltration by integrated single-cell and bulk RNA-sequencing analysis in sepsis. Front Immunol 2024; 15:1449975. [PMID: 39712033 PMCID: PMC11659135 DOI: 10.3389/fimmu.2024.1449975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Background Sepsis, a life-threatening organ dysfunction caused by a dysregulated immune response to infection, remains a significant global health challenge. Phosphoglycerate kinase 1 (PGK1) has been implicated in regulating inflammation and immune cell infiltration in inflammatory conditions. However, the role of PGK1 in sepsis remains largely unexplored. Methods Four microarray datasets and a high throughput sequencing dataset were acquired from GEO database to reveal the PGK1 expression in patients of sepsis. Quantitative real-time PCR and western blotting was then used to validate the PGK1 level. Additionally, microarray and single-cell RNA sequencing data integration, including gene set enrichment analysis (GSEA), KEGG and GO functional enrichment analysis, immune infiltration analysis, and single-cell sequencing analysis, were performed to elucidate the role of PGK1 in sepsis. Results Our results revealed a significant upregulation of PGK1 in sepsis patients, with the area under the ROC curve (AUC) exceeding 0.9 across multiple datasets, indicating PGK1's strong potential as a diagnostic biomarker. Notably, PGK1 was enriched in key immune-related pathways, including the TNF signaling pathways, and leukocyte transendothelial migration, suggesting its involvement in immune regulation. Furthermore, PGK1 expression showed a positive correlation with the levels of inflammatory mediators CXCL1, CXCL16, and the chemokine receptor CCR1. In terms of immune cell infiltration, PGK1 was positively correlated with naive B cells, resting memory CD4 T cell, gamma delta T cells, M0 macrophages, eosinophils and negatively correlated with plasma cells, CD8 T cells, activated memory CD4 T cell, Tregs, activated dendritic cells. Conclusions This study concluded that PGK1 served as a novel diagnostic biomarker for sepsis, with potential implications for prognosis and immune regulation. The significant upregulation of PGK1 in sepsis patients and its association with immune-related pathways and cell types highlight its potential role in the pathogenesis of sepsis.
Collapse
Affiliation(s)
- Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weijie Li
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yaoliang Zhou
- Emergency and Disaster Medical Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Mingcheng Huang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yide Li
- Department of Critical Care Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiaoying Zhang
- Health Management Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yingyu Jiang
- Department of Renal Rheumatology and Immunology, The People’s Hospital of Hezhou, Hezhou, China
| | - Haiqi Wu
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Kongyang Ma
- Centre for Infection and Immunity Studies, School of Medicine, The Sun Yat-sen University, Shenzhen, China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
2
|
Cong F, Zhang Y, Xu J, Fang X, Li X, Xue Q, Wang J, Liu Y. The effect of abnormal lipid metabolism on immunosenescence of the colonic lamina propria in mice of different ages. Immunol Lett 2024; 270:106940. [PMID: 39477189 DOI: 10.1016/j.imlet.2024.106940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 11/13/2024]
Abstract
Immunosenescence is an age-associated change in immunological function. The intestinal mucosal immune system is considered the largest immune system in the human body, and its immunosenescence is closely related to the occurrence and development of many diseases. In recent years, studies have identified a crucial correlation between abnormal lipid metabolism induced by high-fat diet (HFD) and immunity, but the effect and mechanism of HFD on colonic mucosal immunosenescence are still unclear. In this study, we established an abnormal lipid metabolism model at different ages by feeding male wild-type mice HFD and compared the immunosenescence of the spleen, which reflects systemic immunity, and the colonic lamina propria (LP), which reflects local immunity. The results showed that HFD could lead to abnormal lipid metabolism at different ages, accelerate systemic and local immunosenescence, and increase the expression of inflammatory factors in colonic tissue. The levels of abnormal biochemical indicators induced by HFD were closely related to the proportions of T cell subsets associated with immunosenescence. Overall, the results showed that HFD had the most significant impact on aged mice. This study provides new ideas for further understanding the relationship between abnormal lipid metabolism and intestinal mucosal immunosenescence.
Collapse
Affiliation(s)
- Fangyuan Cong
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Yang Zhang
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Jun Xu
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Xiaohui Fang
- Gastroenterology Department, Peking University People's Hospital, Beijing, China
| | - Xia Li
- Geriatric Department, Peking University People's Hospital, Beijing, China
| | - Qian Xue
- Geriatric Department, Peking University People's Hospital, Beijing, China
| | - Jingtong Wang
- Geriatric Department, Peking University People's Hospital, Beijing, China.
| | - Yulan Liu
- Gastroenterology Department, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
3
|
Coenen H, Somers V, Fraussen J. Peripheral immune reactions following human traumatic spinal cord injury: the interplay of immune activation and suppression. Front Immunol 2024; 15:1495801. [PMID: 39664385 PMCID: PMC11631733 DOI: 10.3389/fimmu.2024.1495801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Traumatic spinal cord injury (SCI) damages the nerve tissue of the spinal cord, resulting in loss of motor and/or sensory functions at and below the injury level. SCI provokes a long-lasting immune response that extends beyond the spinal cord and induces changes in the composition and function of the peripheral immune system. Seemingly contradictory findings have been observed, as both systemic immune activation, including inflammation and autoimmunity, and immune suppression have been reported. Differences in the levels and functions of various cell types and components of both the innate and adaptive immune system supporting these changes have been described at (sub)acute and chronic stages post-injury. Further research is needed for a more comprehensive understanding of the peripheral immune reactions following SCI, their possible correlations with clinical characteristics, and how these immune responses could be targeted to facilitate the therapeutic management of SCI. In this review, we provide an overview of the current literature discussing changes in the peripheral immune system and their occurrence over time following a traumatic SCI.
Collapse
Affiliation(s)
| | | | - Judith Fraussen
- Department of Immunology and Infection, Biomedical Research Institute, UHasselt – Hasselt University, Hasselt, Belgium
| |
Collapse
|
4
|
Mangoni AA, Zinellu A. A systematic review and meta-analysis of the endothelial-immune candidate biomarker endoglin in rheumatic diseases. Clin Exp Med 2024; 25:4. [PMID: 39535678 PMCID: PMC11561007 DOI: 10.1007/s10238-024-01519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Existing challenges in accurately diagnosing various rheumatic diseases (RDs) have stimulated the search for novel biomarkers to aid clinical evaluation and monitoring. We conducted a systematic review and meta-analysis of studies investigating the candidate biomarker endoglin (CD105), a transmembrane glycoprotein expressed in endothelial, myeloid, and lymphoid cells, in RD patients and healthy controls. We searched PubMed, Scopus, and Web of Science from inception to 10 August 2024 to identify relevant studies. We evaluated the risk of bias using the JBI Critical Appraisal Checklist and the certainty of evidence using GRADE (PROSPERO registration number: CRD42023581008). Overall, circulating endoglin concentrations were significantly higher in RD patients compared to controls (13 studies; standard mean difference, SMD = 0.64, 95% CI 0.13 to 1.14, p = 0.014; low certainty of evidence). The effect size of the between-group differences in endoglin concentrations was not significantly associated with age, male-to-female ratio, year of publication, number of participants, or mean RD duration. By contrast, the effect size was statistically significant in studies conducted in the European region (p = 0.033), involving patients with systemic sclerosis (p = 0.032), and measuring serum (p = 0.019). The results of this systematic review and meta-analysis suggest the potential pathophysiological role of endoglin in RDs. This, however, requires further investigation in prospective studies, particularly in patients with systemic sclerosis.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, and Flinders Medical Centre, Bedford Park, Adelaide, SA, 5042, Australia.
- Department of Clinical Pharmacology, Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia.
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
5
|
Mahjoubin-Tehran M, Rezaei S, Karav S, Kesharwani P, Sahebkar A. Decoy oligodeoxynucleotides: A promising therapeutic strategy for inflammatory skin disorders. Hum Immunol 2024; 85:111161. [PMID: 39454315 DOI: 10.1016/j.humimm.2024.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Chronic inflammatory skin conditions such as psoriasis and atopic dermatitis (AD) impose a significant burden on both the skin and the overall well-being of individuals, leading to a diminished quality of life. Despite the use of conventional treatments like topical steroids, there remains a need for more effective and safer therapeutic options to improve the lives of patients with severe skin conditions. Molecular therapy has emerged as a promising approach to address disorders such as atopic dermatitis, psoriasis, and contact hypersensitivity. One strategy to counteract the disease processes involves targeting the transcriptional process. A novel form of gene therapy utilizes double-stranded oligodeoxynucleotides (ODNs), also known as decoys, that contain cis-elements. By introducing these decoy ODNs through transfection, the cis-trans interactions are disrupted, leading to the inhibition of trans-factors from binding to the intrinsic cis-elements and thus regulating gene expression. In this review, we have summarized studies investigating the therapeutic effects of decoy ODNs on inflammatory skin diseases. Various transcription factors, including NF-kB, STAT6, HIF-1α/STAT5, STAT1, and Smad, have been targeted and inhibited using designed decoy ODNs for the treatment of atopic dermatitis, psoriasis, hypertrophic scarring, and contact hypersensitivity. The findings of these studies confirm the significant potential of the decoy approach in the treatment of inflammatory skin diseases.
Collapse
Affiliation(s)
| | - Samaneh Rezaei
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale 17100, Turkey
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Lichtnekert J, Anders HJ. Lupus nephritis-related chronic kidney disease. Nat Rev Rheumatol 2024; 20:699-711. [PMID: 39317803 DOI: 10.1038/s41584-024-01158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Lupus nephritis is a common complication of systemic lupus erythematosus (SLE) and a determinant of overall morbidity and mortality, as lupus nephritis-related chronic kidney disease (CKD) drives cardiovascular disease and secondary immunodeficiency. Two lines of action are required to prevent the progression of lupus nephritis-related CKD: suppression of autoimmune SLE activity, which is a risk factor for immunopathology-related irreversible kidney injury, and management of non-immune risk factors that contribute to CKD progression. As each episode or relapse of active lupus nephritis implicates CKD progression, preventing flares of lupus nephritis is a key treatment target. Non-immune risk factors of CKD mostly include causes of nephron hyperfiltration, such as obesity, hypertension, sodium- or protein-rich diets and type 2 diabetes mellitus, as well as pregnancy. Nephrotoxic agents and smoking also drive kidney cell loss. Intrinsic risk factors for CKD progression include poor nephron endowment because of prematurity at birth, nephropathic genetic variants, ageing, male sex and previous or concomitant kidney diseases. Care for lupus nephritis involves the control of all modifiable risk factors of CKD progression. In addition, remnant nephron overload can be reduced using early dual therapy with inhibitors of the renin-angiotensin system and sodium-glucose transporter-2, whereas further renoprotective drug interventions are underway. As patients with lupus nephritis are at risk of CKD progression, they would all benefit from interdisciplinary care to minimize the risk of kidney failure, cardiovascular disease and infections.
Collapse
|
7
|
Euliano EM, Pogostin BH, Agrawal A, Yu MH, Baryakova TH, Graf TP, Kunkel AA, Cahue KA, Hartgerink JD, McHugh KJ. A TLR7 Agonist Conjugated to a Nanofibrous Peptide Hydrogel as a Potent Vaccine Adjuvant. Adv Healthc Mater 2024:e2402958. [PMID: 39460390 DOI: 10.1002/adhm.202402958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 10/28/2024]
Abstract
Toll-like receptors (TLRs) recognize pathogen- and damage-associated molecular patterns and, in turn, trigger the release of cytokines and other immunostimulatory molecules. As a result, TLR agonists are increasingly being investigated as vaccine adjuvants. Many of these agonists are small molecules that quickly diffuse away from the vaccination site, limiting their co-localization with antigens and, thus, their effect. Here, the small-molecule TLR7 agonist 1V209 is conjugated to a positively-charged multidomain peptide (MDP) hydrogel, K2, which was previously shown to act as an adjuvant promoting humoral immunity. Mixing the 1V209-conjugated K2 50:50 with the unfunctionalized K2 produces hydrogels that retain the shear-thinning and self-healing physical properties of the original MDP while improving the solubility of 1V209 more than 200-fold compared to the unconjugated molecule. When co-delivered with ovalbumin as a model antigen, 1V209-functionalized K2 produces a robust Th2 immune response and an antigen-specific Th1 immune response superior to alum, a widely used vaccine adjuvant. Together, these results suggest that K2 MDP hydrogels functionalized with 1V209 are a promising adjuvant for vaccines against infectious diseases, especially those benefiting from a combined Th1 and Th2 immune response.
Collapse
Affiliation(s)
- Erin M Euliano
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Brett H Pogostin
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Anushka Agrawal
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Marina H Yu
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | | | - Tyler P Graf
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Alyssa A Kunkel
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Kiana A Cahue
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX, 77005, USA
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main St, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX, 77005, USA
| |
Collapse
|
8
|
Cui X, Xiang Q, Huang Y, Ji Q, Hu Z, Shi T, Bao G, Liu Y. Mixed Th1/Th2/Th17 Responses Induced by Plant Oil Adjuvant-Based B. bronchiseptica Vaccine in Mice, with Mechanisms Unraveled by RNA-Seq, 16S rRNA and Metabolomics. Vaccines (Basel) 2024; 12:1182. [PMID: 39460348 PMCID: PMC11512391 DOI: 10.3390/vaccines12101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The current Bordetella bronchiseptica (Bb) vaccine, when adjuvanted with alum, does not elicit adequate robust cellular immunity or effective antibody defense against Bb attacks. Unfortunately, antibiotic treatment generally represents an ineffective strategy due to the development of resistance against a broad range of antibiotics. METHODS The present study was designed to investigate the immune response, protective capabilities and underlying mechanisms of a plant oil-based adjuvant E515 formulated with inactivated Bb antigen as a potential vaccine candidate against Bordetella bronchiseptica. RESULTS Immunization studies revealed that a combination of SO, VE and GS (E515) exhibited a good synergistic adjuvant effect. The E515 adjuvanted Bb vaccine was proven to be highly efficacious and induced a mixed Th1/Th2/Th17 immune response in mice, leading to a significant increase in Bb-specific IgG, IgG1 and IgG2a antibodies, proliferative lymphocyte responses and cytokine levels (by lymphocytes and serum) and effectively induced responses by CD4+ TE, TM cells and B cells. The E515 adjuvant significantly enhanced the immune protection provided by the Bb vaccine in a mice model, as indicated by a reduced bacterial burden in the lungs. Multi-omics sequencing analysis revealed that E515 functions as an adjuvant by modulating critical pathways, including cytokine-cytokine receptor interaction, the IL-17 signaling pathway and the chemokine signaling pathway. This modulation also included interactions with beneficial species of bacteria including Alistipes, Odoribacter and Colidextribacter, as well as energy and lipid-related metabolites, thus highlighting its role as an immunomodulatory agent. CONCLUSION Collectively, our results demonstrate the huge potential of E515-Bb vaccine candidates, thus highlighting the vegetable oil original adjuvant E515 as a promising agent for the development of new veterinary vaccines.
Collapse
Affiliation(s)
- Xuemei Cui
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.C.); (Q.X.); (Y.H.); (Q.J.); (Z.H.); (T.S.)
| | - Qiuju Xiang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.C.); (Q.X.); (Y.H.); (Q.J.); (Z.H.); (T.S.)
- College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.C.); (Q.X.); (Y.H.); (Q.J.); (Z.H.); (T.S.)
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.C.); (Q.X.); (Y.H.); (Q.J.); (Z.H.); (T.S.)
| | - Zizhe Hu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.C.); (Q.X.); (Y.H.); (Q.J.); (Z.H.); (T.S.)
| | - Tuanyuan Shi
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.C.); (Q.X.); (Y.H.); (Q.J.); (Z.H.); (T.S.)
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.C.); (Q.X.); (Y.H.); (Q.J.); (Z.H.); (T.S.)
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.C.); (Q.X.); (Y.H.); (Q.J.); (Z.H.); (T.S.)
| |
Collapse
|
9
|
Hajiaghayi M, Gholizadeh F, Han E, Little SR, Rahbari N, Ardila I, Lopez Naranjo C, Tehranimeh K, Shih SCC, Darlington PJ. The β 2-adrenergic biased agonist nebivolol inhibits the development of Th17 and the response of memory Th17 cells in an NF-κB-dependent manner. Front Immunol 2024; 15:1446424. [PMID: 39445009 PMCID: PMC11496295 DOI: 10.3389/fimmu.2024.1446424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/11/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Adrenergic receptors regulate metabolic, cardiovascular, and immunological functions in response to the sympathetic nervous system. The effect of β2-adrenergic receptor (AR) as a high expression receptor on different subpopulations of T cells is complex and varies depending on the type of ligand and context. While traditional β2-AR agonists generally suppress T cells, they potentially enhance IL-17A production by Th17 cells. The effects of pharmacological drugs that count as biased agonists of AR like nebivolol are not completely understood. We investigated the impact of nebivolol on human memory CD4+ T (Th1, Th2, Th17) cells and polarized naive Th17 cells, highlighting its potential for IL-17A suppression via a non-canonical β2-AR cell signaling pathway. Methods The effects of nebivolol were tested on healthy human peripheral blood mononuclear cells, purified memory Th cells, and polarized naive Th17 cells activated with anti-CD3/anti-CD28/anti-CD2 ImmunoCult reagent. IFN-γ, IL-4, and IL-17A, which are primarily derived from Th1, Th2, and Th17 cells, respectively, were quantified by ELISA and flow cytometry. IL-10 was measured by ELISA. Gene expression of RORC, ADRB1, ADRB2, and ADRB3 was evaluated by qPCR. The ADRB2 gene was knocked out in memory Th cells using CRISPR/Cas9. Protein expression of phosphorylated serine133-CREB and phosphorylated NF-κB p65 was assessed by Western blot. Proliferation was assessed by fluorescent dye loading and flow cytometry. Results Nebivolol treatment decreased IL-17A and IFN-γ secretion by activated memory Th cells and elevated IL-4 levels. Nebivolol reduced the proportion of IL-17A+ Th cells and downregulated RORC expression. Unlike the β2-AR agonist terbutaline, nebivolol inhibited the shift of naive CD4+ T cells toward the Th17 phenotype. IL-10 and the proliferation index remained unchanged. Nebivolol-treated β2-knockout memory Th cells showed significant inhibition of β2-AR-mediated signaling, evidenced by the absence of IL-17A suppression compared to controls. Phosphorylation of the NF-κB p65 subunit was inhibited by nebivolol, but CREB phosphorylation was not changed, suggesting a selective transcriptional control. Conclusions The findings demonstrate that nebivolol acts through a β2-AR-mediated signaling pathway, as a distinctive anti-inflammatory agent capable of selectively shifting Th17 cells and suppressing the phosphorylation of NF-κB. This highlights nebivolol's potential for therapeutic interventions in chronic autoimmune conditions with elevated IL-17A levels.
Collapse
Affiliation(s)
- Mehri Hajiaghayi
- Department of Biology, Concordia University, Montréal, QC, Canada
| | | | - Eric Han
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal QC, Canada
| | - Samuel R. Little
- Department of Electrical and Computer Engineering, Concordia University, Center of Applied Synthetic Biology, Montréal, QC, Canada
| | - Niloufar Rahbari
- Department of Electrical and Computer Engineering, Concordia University, Center of Applied Synthetic Biology, Montréal, QC, Canada
| | - Isabella Ardila
- Department of Biology, Concordia University, Montréal, QC, Canada
| | | | - Kasra Tehranimeh
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal QC, Canada
| | - Steve C. C. Shih
- Department of Electrical and Computer Engineering, Concordia University, Center of Applied Synthetic Biology, Montréal, QC, Canada
| | - Peter J. Darlington
- Department of Biology, Concordia University, Montréal, QC, Canada
- Department of Health, Kinesiology and Applied Physiology, Concordia University, Montréal QC, Canada
| |
Collapse
|
10
|
Xia T, Zhou Y, An J, Cui Z, Zhong X, Cui T, Lv B, Zhao X, Gao X. Benefit delayed immunosenescence by regulating CD4 +T cells: A promising therapeutic target for aging-related diseases. Aging Cell 2024; 23:e14317. [PMID: 39155409 PMCID: PMC11464113 DOI: 10.1111/acel.14317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024] Open
Abstract
CD4+T cells play a notable role in immune protection at different stages of life. During aging, the interaction between the body's internal and external environment and CD4+T cells results in a series of changes in the CD4+T cells pool making it involved in immunosenescence. Many studies have extensively examined the subsets and functionality of CD4+T cells within the immune system, highlighted their pivotal role in disease pathogenesis, progression, and therapeutic interventions. However, the underlying mechanism of CD4+T cells senescence and its intricate association with diseases remains to be elucidated and comprehensively understood. By summarizing the immunosenescent progress and network of CD4+T cell subsets, we reveal the crucial role of CD4+T cells in the occurrence and development of age-related diseases. Furthermore, we provide new insights and theoretical foundations for diseases targeting CD4+T cell subsets aging as a treatment focus, offering novel approaches for therapy, especially in infections, cancers, autoimmune diseases, and other diseases in the elderly.
Collapse
Affiliation(s)
- Tingting Xia
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Zhou
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiayao An
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Zhi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xinqin Zhong
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Tianyi Cui
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Bin Lv
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xin Zhao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiumei Gao
- Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical FormulaeTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
11
|
Ruan L, Ma X, Zhu L, Su L, Wang S, Guo Q, Wan B, Qiu S, Zhang Y, Hu S, Zhou B, Wei Y. Peripheral immunological characteristics of spontaneous pneumothorax: a Mendelian randomization study. J Thorac Dis 2024; 16:5559-5570. [PMID: 39444894 PMCID: PMC11494576 DOI: 10.21037/jtd-24-798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/12/2024] [Indexed: 10/25/2024]
Abstract
Background Spontaneous pneumothorax (SP) is a common pleural disease in adolescents and adults. However, the role of immunological characteristics in the pathogenesis of SP remains unclear. This study aims to clarify the causal associations between circulating immune cells, lymphocyte subgroups, and SP susceptibility. Methods Employing Mendelian randomization (MR), the causal association between circulating immune blood cells and lymphocyte subgroups on SP susceptibility have been assessed. Reverse MR analysis was used to further explore the causal relationship. The MR analysis ensured the reliability of the study results through the deletion of confounding single nucleotide polymorphisms (SNPs), heterogeneity testing, sensitivity analysis. Results Seven immune cells and SP risk under stringent and lenient threshold conditions were identified. Eosinophils absolute count (AC) [odds ratio (OR) =1.0014, 95% confidence interval (CI): 1.0001-1.0014, P=0.02], memory B cell %B cell ratio (OR =1.008, 95% CI: 1.0002-1.0015, P=0.01), CD4+ T cell AC (OR =1.0014, 95% CI: 1.0003-1.0025, P=0.009), effector memory CD4+ T cell %T cell ratio (OR =1.0028, 95% CI: 1.0010-1.0046, P=0.003), and HLA-DR+CD8+ T cell %T cell ratio (OR =1.0019, 95% CI: 1.0004-1.0035, P=0.01) were identified as risk factors for increased susceptibility to SP. Conversely, CD8dim T cell AC (OR =0.9983, 95% CI: 0.9967-0.9999, P=0.03) and CD8dim natural killer T (NKT) %T cell ratio (OR =0.9982, 95% CI: 0.9965-0.9999, P=0.04) exhibited protective effects on SP. In natural killer (NK) cell subgroups and reverse MR analysis, no significance was found. Conclusions This study establishes a close causal relationship between immune cells and SP through genetic methods, providing a new perspective for understanding the pathophysiological mechanisms of SP.
Collapse
Affiliation(s)
- Liancheng Ruan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiong Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lingxiao Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lang Su
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Silin Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qiang Guo
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bingen Wan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shengyu Qiu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yang Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Sheng Hu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Binfeng Zhou
- Department of Thoracic Surgery, People’s Hospital of Yingtan, Yingtan, China
| | - Yiping Wei
- Department of Thoracic Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Zhu L, Wu H, Peng L, Huang X, Yang R, Ma W, Zhong L, Li B, Song J, Luo S, Gao L, Wu X, Ma W, Bao F, Liu A. CD4 + Effective Memory T Cell Markers GBP2 and LAG3 Are Risk Factors for PTB and COVID-19 Infection: A Study Integrating Single-Cell Expression Quantitative Trait Locus and Mendelian Randomization Analyses. Int J Mol Sci 2024; 25:9971. [PMID: 39337460 PMCID: PMC11432203 DOI: 10.3390/ijms25189971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Observational studies indicate that variations in peripheral blood mononuclear cell (PBMC) subsets are associated with an increased risk of pulmonary tuberculosis (PTB) and coronavirus disease 2019 (COVID-19), but causal validation is lacking. Here, we combined single-cell expression quantitative trait locus (sc-eQTL) and two-sample mendelian randomization (MR) analyses to elucidate the causal relationship between PBMC subsets and the occurrence of PTB and COVID-19 and verified by RT-qPCR. We observed an increase in the CD4+ Effective Memory T Cell (CD4+ TEM) cluster in both PTB and COVID-19 patients according to the single-cell transcriptional landscape of PBMC. Through MR analysis using an inverse variance weighted (IVW) method, we found strong evidence of positive correlations between CD4+ TEM cell markers (GBP2, TRAV1-2, and ODF2L) and PTB, and between markers (LAG3 and SLFN5) and COVID-19, especially highlighted by lead eQTL-SNPs of GBP2 (rs2256752, p = 4.76321 × 10-15) and LAG3 (rs67706382, p = 6.16× 10-16). Similar results were observed in validation sets, and no pleiotropy was detected in sensitivity analyses including weighted median (WM), MR-Egger, MR-pleiotropy residual sum and outlier, and leave-one-out analyses (all p > 0.05). We visualized the colocalization of marker-eQTLs and markers of PTB and COVID-19 genome-wide association study (GWAS) associations. Based on CellChat analyses, monocytes communicated predominantly with CD4+ TEM cells positively expressing PTB markers (GBP2, TRAV1-2, and ODF2L) and COVID-19 markers (LAG3 and SLFN5) in both PTB and COVID-19. Our data suggest a causal effect between two key CD4+ TEM cell markers (GBP2 and LAG3) and the risk for PTB and COVID-19 infection. Our findings provide novel insights into the biological mechanism for PTB and COVID-19 infection, but future single-cell studies are necessary to further enhance understanding of this find.
Collapse
Affiliation(s)
- Liangyu Zhu
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Hanxin Wu
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Li Peng
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Xun Huang
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Rui Yang
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Weijie Ma
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Lei Zhong
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Bingxue Li
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Jieqin Song
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Suyi Luo
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Li Gao
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Xinya Wu
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Weijiang Ma
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
| | - Fukai Bao
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China
| | - Aihua Liu
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, Department of Pathogen Biology and Immunology, School of Basic Medicine, Kunming Medical University, Kunming 650500, China; (L.Z.); (H.W.); (L.P.); (X.H.); (R.Y.); (W.M.); (L.Z.); (B.L.); (J.S.); (S.L.); (L.G.); (X.W.); (W.M.)
- Yunnan Provincial Key Laboratory of Public Health and Biosafety, School of Public Health, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
13
|
Wang F, Zhu D, Cao L, Wang S, Tong Y, Xie F, Zhang X, Su P, Wang G. Peripheral CD4 + T helper lymphocytes alterations in major depressive disorder: A systematic review and meta-analysis. Neuroscience 2024; 555:145-155. [PMID: 39059741 DOI: 10.1016/j.neuroscience.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Previous research has shown that patients with major depressive disorder (MDD) develop immune dysfunction. However, the exact alterations of cluster of differentiation (CD)4+ T helper (Th) lymphocytes in MDD remains unclear. This meta-analysis aimed to examine the specific changes in CD4+ Th cells. A comprehensive search of PubMed, EMBASE, Web of Science, and PsycINFO databases was conducted to identify studies investigating CD4+ Th, Th1, Th2, Th17, and T regulatory (Treg) cell counts in the peripheral blood of MDD patients and healthy controls (HCs), covering the period up to June 22, 2024. Our findings revealed that patients with MDD might exhibit higher CD4+ Th cells (SMD=0.26, 95 %CI, 0.02 to 0.50), CD4+/CD8+ cell ratios (SMD=0.51, 95 %CI, 0.14 to 0.89), Th1/Th2 cell ratios (SMD=0.15, 95 %CI, 0.01 to 0.30) and lower Th1 (SMD=-0.17, 95 %CI, -0.30 to -0.03), Th2 (SMD=-0.25, 95 %CI, -0.40 to -0.11), and Treg cells (SMD=-0.69, 95 %CI, -1.27 to -0.11). However, no significant difference was observed in terms of Th17 cells and Th17/Treg cell ratios between MDD patients and the HCs. Heterogeneity was large (I2:18.1-95.2 %), and possible sources of heterogeneity were explored (e.g., age, depression scale, country, and antidepressant use). Our findings indicate that peripheral CD4+ T cells in depressed patients exhibit features of adaptive immune dysfunction, as evidenced by increased CD4+ Th cells and CD4+/CD8+ and decreased Treg cells. These findings offer insights into the underlying mechanism of MDD.
Collapse
Affiliation(s)
- Fan Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Dongxue Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Leilei Cao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Shaojie Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Yingying Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Faliang Xie
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China
| | - Xueying Zhang
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA; Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Gengfu Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No.81 Meishan Road, Hefei, Anhui 230032, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
14
|
Lyu N, Dai Y, Wu J, Fan Y, Lyu Z, Gu J, Cheng J, Xu J. Multi-dataset identification of innovative feature genes and molecular mechanisms in keratoconus. J Cell Mol Med 2024; 28:e70079. [PMID: 39300613 PMCID: PMC11412914 DOI: 10.1111/jcmm.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024] Open
Abstract
This study aimed to identify feature genes and explore the molecular mechanisms of keratoconus (KC). We downloaded data files from NCBI GEO public database. The Limma package was used for differential expression analysis of gene profiles. Lasso regression was used to identify the feature genes. The CIBERSORT algorithm was used to infer the proportion of immune-infiltrating cells and analyse the correlation between gene expression levels and immune cells. Related transcription factors and miRNAs of key genes were predicted using the Cistrome DB and Mircode databases. Analysis of expression differences in disease genes was based on the GeneCards database. The CMap was used to analyse targeted therapeutic drugs. IHC was performed to verify the expression levels of ATOH7 and MYRF in corneas. Exactly 593 upregulated and 473 downregulated genes were identified. Lasso regression analysis identified ATOH7, DBNDD1, RNF217-AS1, ARL11, MYRF and SNORA74B as feature genes for KC. All key genes were correlated with immune infiltration and the levels of activated memory CD4+ T cells and plasma cells were significantly increased. miRNA, IRF and STAT families were correlated to feature genes. The expression levels of key genes were significantly correlated to KC-related genes. Entinostat, ochratoxin-a, diphencyprone and GSK-3-inhibitor-II were predicted as potential KC medications. The expression of MYRF was significantly higher in the KC samples, contrary to the expression of ATOH7. KC is related to both immune infiltration and genetic factors. MYRF and ATOH7 were newly identified and verified feature genes of KC.
Collapse
Affiliation(s)
- Ning Lyu
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Yiqin Dai
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Jiawen Wu
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Yidan Fan
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Zhaoyuan Lyu
- Graduate School of Transdisciplinary ArtsAkita UniversityAkitaJapan
| | - Jiayu Gu
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Jingyi Cheng
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| | - Jianjiang Xu
- Eye Institute and Department of OphthalmologyEye & ENT Hospital, Fudan UniversityShanghaiChina
- NHC Key laboratory of Myopia and Related Eye Diseases, Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical SciencesEye & ENT Hospital, Fudan UniversityShanghaiChina
- Shanghai Key Laboratory of Visual Impairment and RestorationEye & ENT Hospital, Fudan UniversityShanghaiPeople's Republic of China
| |
Collapse
|
15
|
Del Carmen Crespo Oliva C, Labrie M, Allard-Chamard H. T peripheral helper (Tph) cells, a marker of immune activation in cancer and autoimmune disorders. Clin Immunol 2024; 266:110325. [PMID: 39067677 DOI: 10.1016/j.clim.2024.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
T peripheral helper (Tph) cells are a newly discovered subtype of CD4+ T cells that have emerged as the counterpart of T follicular helper (Tfh) cells in the peripheral tissues. These two cell types share some common characteristics, such as high levels of PD1 and CXCL13 expression, but differ in the expression of transcription factors and chemokine receptors. Tph cells have been studied in relation to B cells' effector functions, including cytokines production and antibody-mediated immune responses. However, their role in the inflammatory-mediated development of malignancies remains poorly understood. Tph cells were initially identified in the synovium of rheumatoid arthritis patients and have since been found to be expanded in several autoimmune diseases. They have been linked to a worse prognosis in autoimmune conditions, but intriguingly, their presence has been correlated with better outcomes in certain types of cancer. The functions of Tph cells are still being investigated, but recent data suggests their involvement in the assembly of tertiary lymphoid structures (TLS). Furthermore, their interaction with B cells, which have been mainly described as possessing a memory phenotype, promotes their development. In this review, we explore the role of Tph cells in peripheral immune responses during cancer and autoimmune disorders.
Collapse
Affiliation(s)
- Celia Del Carmen Crespo Oliva
- Department of Medicine, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Immunology and Cell Biology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Obstetrics and Gynecology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Marilyne Labrie
- Department of Immunology and Cell Biology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Department of Obstetrics and Gynecology, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Hugues Allard-Chamard
- Department of Medicine, Cancer Research Institute, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Division of Rheumatology, Department of Medicine, Faculty of Medicine andd Health Sciences, Université de sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
16
|
Boggala M, Junaid M, Zhang E. Pneumocystis Pneumonia in Previously Undiagnosed Advanced HIV/AIDS and Importance of HIV Screening. Cureus 2024; 16:e69902. [PMID: 39439637 PMCID: PMC11494859 DOI: 10.7759/cureus.69902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
The diagnosis of human immunodeficiency virus (HIV) in its late stages, also known as acquired immunodeficiency syndrome (AIDS), leads to increased morbidity and mortality. This is mostly due to the time given for opportunistic infections to arise, which present with their own complications. In this case report, we present an otherwise healthy 38-year-old male, who presented with general systemic symptoms and was later found to have HIV and AIDS, ultimately resulting in his death during this hospital admission. This case report will discuss HIV-associated opportunistic infections, focusing more on Pneumocystis jirovecii pneumonia (PCP), and the following complications that arose during the course of this patient's hospitalization. The overarching goal of this case report is to highlight the importance of routine HIV screening in the United States in efforts to decrease mortality from AIDS-related opportunistic infections. In addition to mandating in-hospital screening, educating the public on lifestyle behaviors that can put one at risk for developing HIV is crucial to decreasing the prevalence of cases that go undiagnosed, as well as the disease itself.
Collapse
Affiliation(s)
- Mounica Boggala
- Medical School, Lincoln Memorial University - DeBusk College of Osteopathic Medicine, Knoxville, USA
- Internal Medicine, Methodist Le Bonheur Healthcare, Memphis, USA
| | - Muhammad Junaid
- Internal Medicine, Methodist Le Bonheur Healthcare, Memphis, USA
| | - Elizabeth Zhang
- Internal Medicine, Methodist Le Bonheur Healthcare, Memphis, USA
| |
Collapse
|
17
|
Li X, Tang B, Yujie O, Xu C, Yuan S. Single-cell RNA Sequencing Analysis Reveals Cancer-associated Fibroblast Signature for Prediction of Clinical Outcomes and Immunotherapy in Gastric Cancer. J Immunother 2024:00002371-990000000-00121. [PMID: 39206772 DOI: 10.1097/cji.0000000000000539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Gastric cancer (GC) is a significant worldwide health concern and is a leading cause of cancer-related mortality. Immunotherapy has arisen as a promising strategy to stimulate the patient's immune system in combating cancer cells. Nevertheless, the effectiveness of immunotherapy in individuals with gastric cancer (GC) is not yet optimal. Thus, it is crucial to discover biomarkers capable appof predicting the advantages of immunotherapy for tailored treatment. The tumor microenvironment (TME) and its constituents, including cancer-associated fibroblasts (CAFs), exert a substantial influence on immune responses and treatment outcomes. In this investigation, we utilized single-cell RNA sequencing to profile CAFs in GC and established a scoring method, referred to as the CAF score (CAFS), for the prediction of patient prognosis and response to immunotherapy. Through our analysis, we successfully identified distinct subgroups within CAFs based on CAF score (CAFS), namely CAFS-high and CAFS-low subgroups. Notably, we noted that individuals within the CAFS-high subgroup experienced a lessF favorable prognosis and displayed diminished responsiveness to immunotherapy in contrast to the CAFS low subgroup. Furthermore, we analyzed the mutation and immune characteristics of these subgroups, identifying differentially mutated genes and immune cell compositions. We established that CAFS could forecast treatment advantages in patients with gastric cancer, both for chemotherapy and immunotherapy. Its efficacy was additionally confirmed in contrast to other biomarkers, including Tumor Immune Dysfunction and Exclusion (TIDE) and Immunophenotypic Score (IPS). These findings emphasize the clinical relevance and potential utility of CAFS in guiding personalized treatment strategies for gastric cancer.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Shandong University Cancer Center
- Center for GI Cancer Diagnosis and Treatment, The Affiliated Hospital of Qingdao University, Qingdao
| | - Bo Tang
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Ouyang Yujie
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China
| | - Shuanghu Yuan
- Shandong University Cancer Center
- Department of Radiology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong
| |
Collapse
|
18
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
19
|
Li D, Zhang Z, Zhang C, Guo Q, Chen C, Peng X. Unraveling the connection between Hashimoto's Thyroiditis and non-alcoholic fatty liver disease: exploring the role of CD4 +central memory T cells through integrated genetic approaches. Endocrine 2024; 85:751-765. [PMID: 38400881 DOI: 10.1007/s12020-024-03745-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
PURPOSE Exploring the connection between Hashimoto's thyroiditis (HT) and non-alcoholic fatty liver disease (NAFLD) through integrated genetic approaches. METHODS We utilized integrated genetic approaches, such as single-cell RNA sequencing (scRNA-seq) data analysis, Mendelian Randomization (MR), colocalization analysis, cell communication, and metabolic analyses, to investigate potential correlations between HT and NAFLD. RESULTS Through the integrated analysis of scRNA-seq data from individuals with HT, NAFLD, and healthy controls, we observed an upregulation in the proportion of CD4+central memory (CD4+CM) T cells among T cells in both diseases. A total of 63 differentially expressed genes (DEGs) were identified in the CD4+CM cells after the differential analysis. By using MR, 8 DEGs (MAGI3, CSGALNACT1, CAMK4, GRIP1, TRAT1, IL7R, ERN1, and MB21D2) were identified to have a causal relationship with HT, and 4 DEGs (MAGI3, RCAN3, DOCK10, and SAMD12) had a causal relationship with NAFLD. MAGI3 was found to be causally linked to both HT and NAFLD. Therefore, MAGI3 was designated as the marker gene. Reverse MR and Steiger filtering showed no evidence of reverse causality. Colocalization analyses further indicated close links between MAGI3 and HT as well as NAFLD. Finally, based on the expression levels of MAGI3, we stratified CD4+CM cells into two subsets: MAGI3+CD4+CM cells and MAGI3-CD4+CM cells. Functional analyses revealed significant differences between the two subsets, potentially related to the progression of the two diseases. CONCLUSION This study delves into the potential connections between HT and NAFLD through integrated genetic methods. Our research reveals an elevated proportion of CD4+CM cells within T cells in both HT and NAFLD. Through MR and colocalization analysis, we identify specific genes causally linked to HT and NAFLD, such as MAGI3. Ultimately, based on MAGI3 expression levels, we categorize CD4+CM cells into MAGI3+CD4+CM cells and MAGI3-CD4+CM cells, uncovering significant differences between them through functional analyses.
Collapse
Affiliation(s)
- Dairui Li
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zeji Zhang
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Cheng Zhang
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiannan Guo
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chen Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinzhi Peng
- Department of Thyroid Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
20
|
He C, Li Y, Gan L, Lin Y, Zhang B, Ma L, Xue H. Notch signaling regulates Th17 cells differentiation through PI3K/AKT/mTORC1 pathway and involves in the thyroid injury of autoimmune thyroiditis. J Endocrinol Invest 2024; 47:1971-1986. [PMID: 38285310 DOI: 10.1007/s40618-023-02293-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/25/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE Autoimmune Thyroiditis (AIT) is the most common thyroid disease; however, there were no measures to prevent the progression of the disease. The present study attempts to identify that Notch signaling regulates the differentiation of T helper 17 (Th17) cells by activating downstream Phosphatidylinositol-3 kinase/protein kinase/mechanistic target of rapamycin complex 1 (PI3K/AKT/mTORC1) pathway participating in the thyroid injury of the experimental autoimmune thyroiditis (EAT). METHODS In vivo experiments, mice were randomly divided into 4 groups: a control group, an EAT group, and two groups with LY294002 treatment (pTg plus 25 mg/kg or 50 mg/kg LY294002, respectively). The degrees of thyroiditis were evaluated, and the percentage of Th17 cells, expression of interleukin-17A (IL-17A), and the main components of the Notch-PI3K signaling pathway were detected in different groups. In vitro experiments, two different dosages of LY294002 (25 and 50 μM) were used to intervene splenic mononuclear cells (SMCs) from EAT mice to further evaluate the regulatory effect of Notch-PI3K pathway on Th17 cells. RESULTS Our data demonstrate that the infiltration of Th17 cells and the expressions of IL-17A, Notch, hairy and split 1 (Hes1), p‑AKT (Ser473), p‑AKT (Thr308), p‑mTOR (Ser2448), S6K1, and S6K2 increased remarkably in EAT mice. After PI3K pathway was blocked, the degrees of thyroiditis were significantly alleviated, and the proportion of Th17 cells, the expression of IL-17A, and the above Notch-PI3K pathway-related molecules decreased in a dose-dependent manner. Additionally, the proportion of Th17 cells was positively correlated with the concentration of serum thyroglobulin antibody (TgAb), IL-17A, and Notch-PI3K pathway-related molecules mRNA levels. CONCLUSIONS Notch signal promotes the secretion of IL-17A from Th17 cells by regulating the downstream PI3K/AKT/mTORC1 pathway through Hes-Phosphatase and tensin homolog (PTEN) and participates in thyroid autoimmune damage, and the PI3K pathway inhibitor may play important effects on AIT by affecting Th17 cells differentiation.
Collapse
Affiliation(s)
- C He
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Li
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - L Gan
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - Y Lin
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - B Zhang
- Nanchang University Queen Mary School, Nanchang, 330031, People's Republic of China
| | - L Ma
- Department of Dermatology, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China
| | - H Xue
- Department of Endocrinology and Metabolism, Binzhou Medical University Hospital, Binzhou, 256600, People's Republic of China.
| |
Collapse
|
21
|
Zahran AM, El-Badawy OH, Mahran H, Gad E, Saad K, Morsy SG, Makboul A, Zahran ZAM, Elhoufey A, Dailah HG, Elsayh KI. Detection and characterization of autoreactive memory stem T-cells in children with acute immune thrombocytopenia. Clin Exp Med 2024; 24:158. [PMID: 39004660 PMCID: PMC11247050 DOI: 10.1007/s10238-024-01386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/28/2024] [Indexed: 07/16/2024]
Abstract
Primary immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by an isolated decrease in platelets below 100 × 109/l after the exclusion of other conditions associated with thrombocytopenia. We investigated the role of different memory T-cell subsets, including T stem cell memory (TSCM), in children diagnosed with primary ITP and its association with therapeutic duration. This case-control study included 39 pediatric patients with acute ITP admitted to the Children's Hospital at Assiut University. Using a FACSCanto flow cytometer, CD8 + and CD4 + T-lymphocytes were gated. Five different subsets were characterized in each of these cells according to CD45RO and CD45RA expression. Afterward, gating was performed based on CCR7, CD95, and CD27. Examination of the CD8 + T cells subpopulation showed that Central memory T (TCM) and CD8+ Naïve T (TN) cells were significantly lower in ITP patients than in healthy children (p < 0.0001) and (p = 0.01), respectively. In addition, CD8 + TEMRA was significantly higher in ITP children than in controls (p = 0.001). CD4 + TCM cells were significantly lower in the ITP patient group (p = 0.04). However, CD4 + TEM was significantly higher in patients than controls (p = 0.04). Our research found that ITP patients had an imbalance in the ratio of CD4+ to CD8+ T cells in the peripheral blood and that TCM cells may be involved in the pathogenetic mechanism of ITP. TCMs could help in prediction of patients with higher risk of developing ITP.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Omnia H El-Badawy
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Hayam Mahran
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Eman Gad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Khaled Saad
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Salma G Morsy
- Department of Cancer Biology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Ahmed Makboul
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | | | - Amira Elhoufey
- Department of Community Health Nursing, Alddrab University College, Jazan University, 45142, Jazan, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan, Saudi Arabia
| | - Khalid I Elsayh
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
22
|
Ioannou M, Simon MS, Borkent J, Wijkhuijs A, Berghmans R, Haarman BC, Drexhage HA. Higher T central and lower effector memory cells in bipolar disorder: A differentiation abnormality? Brain Behav Immun Health 2024; 38:100764. [PMID: 38600952 PMCID: PMC11004065 DOI: 10.1016/j.bbih.2024.100764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/04/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
The aim of this study was to elucidate the nature of T cell abnormalities in bipolar disorder (BD). With the use of multicolor flow cytometry, we first quantified the composition of the different memory and pro-inflammatory immune subpopulations in samples of 58 patients with BD and compared them to 113 healthy controls. Second, to assess if cytomegalovirus infection was related to the resulted immune subpopulation compositions in the two groups, we measured cytomegalovirus-specific antibodies in serum. Thirdly, we assessed differences between the two groups in the serum levels of the immune cell differentiation factor interleukin-7. Compared to healthy controls, patients showed significantly higher T helper-17, T regulatory and T central memory cells (CD4+ and CD8+). Besides, patients showed significantly lower CD4+ T effector memory and CD4+ T effector memory re-expressing RA cells. Cytomegalovirus infection was not related to the observed abnormalities, with the exception of T helper-17 cells. This immune subpopulation was significantly higher only in patients seropositive to cytomegalovirus infection. Finally, interleukin-7 levels were significantly lower in BD compared to healthy controls. In conclusion, the aberrant levels of T memory cell populations in BD may suggest a T cell differentiation abnormality. The role of interleukin-7 in this putative abnormality should be further investigated.
Collapse
Affiliation(s)
- Magdalini Ioannou
- Department of Psychiatry, University of Groningen and University Medical Centre Groningen, Groningen, the Netherlands
| | - Maria S. Simon
- Department of Psychiatry and Psychotherapy, Ludwig Maximilians University, Munich, Germany
| | - Jenny Borkent
- Department of Psychiatry, University of Groningen and University Medical Centre Groningen, Groningen, the Netherlands
| | - Annemarie Wijkhuijs
- Department of Immunology, Erasmus Universiteit Rotterdam and University Medical Centre Rotterdam, Rotterdam, the Netherlands
| | - Raf Berghmans
- Advanced Practical Diagnostics BV, Turnhout, Belgium
| | - Bartholomeus C.M. Haarman
- Department of Psychiatry, University of Groningen and University Medical Centre Groningen, Groningen, the Netherlands
| | - Hemmo A. Drexhage
- Department of Immunology, Erasmus Universiteit Rotterdam and University Medical Centre Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
23
|
Ren Y, Zhang H. A Mendelian randomization study investigating the causal relationships between inflammation and immunoglobulin A nephropathy. Hum Immunol 2024; 85:110830. [PMID: 38861759 DOI: 10.1016/j.humimm.2024.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/27/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Immunoglobulin A nephropathy (IgAN) is an autoimmune disease characterized by the production of galactose‑deficient IgA1 (Gd‑IgA1) and the deposition of immune complexes in the kidney. Exploring the landscape of immune dysregulation in IgAN is valuable for pathogenesis and disease treatment. We conducted Mendelian randomization (MR) to assess the causal correlations between inflammation and IgAN. METHODS Based on available genetic datasets, we investigated potential causal links between inflammation and the risk of IgAN using two-sample MR. We used genome-wide association study (GWAS) summary statistics of 5 typical inflammation markers, 41 inflammatory cytokines, and 731 immune cell signatures, accessed from the public GWAS Catalog. The primary method employed for MR analysis was Inverse Variance Weighted (IVW). To confirm consistency across results, four supplementary MR methods were also conducted: MR-Egger, Weighted Median, Weighted Mode, and Simple Mode. To assess pleiotropy, we used the MR-Egger regression intercept test and Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test. Cochrane's Q statistic was applied to evaluate heterogeneity. Additionally, the stability of the MR findings was verified through the leave-one-out sensitivity analysis. RESULTS This study revealed that interleukin-7 (IL-7) and stem cell growth factor beta (SCGF-β) were possibly associated with the risk of IgAN according to the IVW approach, with estimated odds ratios (OR) of 1.059 (95 % confidence interval [CI] 1.015 to 1.104, P = 0.008) and 1.043 (95 % CI 1.002 to 1.085, P = 0.037). Five immune traits were identified that might be linked to IgAN risk, each with P-values below 0.01, including natural killer T %T cell (OR = 1.058, 95 % CI: 1.020 to 1.097, P = 0.002), natural killer T %lymphocyte (OR = 1.055, 95 % CI: 1.016 to 1.096, P = 0.006), CD25++ CD8+ T cell %T cell (OR = 1.057, 95 % CI: 1.016 to 1.099, P = 0.006), CD3 on effector memory CD4+ T cell (OR = 1.045, 95 % CI: 1.019 to 1.071, P = 0.001), and CD3 on CD28+ CD45RA+ CD8+ T cell (OR = 1.042, 95 % CI: 1.016 to 1.068, P = 0.001). CD4 on central memory CD4+ T cell might be a protective factor for IgAN (OR = 0.922, 95 % CI: 0.875 to 0.971, P = 0.002). Moreover, IgAN may be implicated in a high risk of elevated granulocyte colony-stimulating factor (G-CSF) (OR = 1.114, 95 % CI 1.002 to 1.239, P = 0.046). CONCLUSION Our study revealed exposures among typical inflammation markers, inflammatory cytokines, and immune cell signatures that may potentially linked to IgAN risk by MR analysis. This insight may advance our understanding of the etiology of IgAN and support the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yi Ren
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Pathology and Pathophysiology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; International Center of Microvascular Medicine, Chinese Academy of Medical Sciences, Beijing, China; Department of Pathology and Pathophysiology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Sato H, Meng S, Hara T, Tsuji Y, Arao Y, Sasaki K, Kobayashi S, di Luccio E, Hirotsu T, Satoh T, Doki Y, Eguchi H, Ishii H. Tissue-Resident Memory T Cells in Gastrointestinal Cancers: Prognostic Significance and Therapeutic Implications. Biomedicines 2024; 12:1342. [PMID: 38927549 PMCID: PMC11202222 DOI: 10.3390/biomedicines12061342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal cancers, which include a variety of esophageal and colorectal malignancies, present a global health challenge and require effective treatment strategies. In the evolving field of cancer immunotherapy, tissue-resident memory T cells (Trm cells) have emerged as important players in the immune response within nonlymphoid tissues. In this review, we summarize the characteristics and functions of Trm cells and discuss their profound implications for patient outcomes in gastrointestinal cancers. Positioned strategically in peripheral tissues, Trm cells have functions beyond immune surveillance, affecting tumor progression, prognosis, and response to immunotherapy. Studies indicate that Trm cells are prognostic markers and correlate positively with enhanced survival. Their presence in the tumor microenvironment has sparked interest in their therapeutic potential, particularly with respect to immune checkpoint inhibitors, which may improve cancer treatment. Understanding how Trm cells work will not only help to prevent cancer spread through effective treatment but will also contribute to disease prevention at early stages as well as vaccine development. The role of Trm cells goes beyond just cancer, and they have potential applications in infectious and autoimmune diseases. This review provides a thorough analysis of Trm cells in gastrointestinal cancers, which may lead to personalized and effective cancer therapies.
Collapse
Affiliation(s)
- Hiromichi Sato
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Sikun Meng
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Tomoaki Hara
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yoshiko Tsuji
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Yasuko Arao
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| | - Kazuki Sasaki
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Eric di Luccio
- Hirotsu Bio Science Inc., Chiyoda-Ku, Tokyo 102-0094, Japan
| | | | - Taroh Satoh
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan
| | - Hideshi Ishii
- Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Yamadaoka 2-2, Suita 565-0871, Japan; (H.S.)
| |
Collapse
|
25
|
Chen YC, Yu HH, Hu YC, Yang YH, Lin YT, Wang LC, Chiang BL, Lee JH. Peripheral blood cells RNA-seq identifies differentially expressed gene network linked to lymphocyte subsets alterations and active lupus nephritis associated with declines in renal function. Heliyon 2024; 10:e32303. [PMID: 38912505 PMCID: PMC11190669 DOI: 10.1016/j.heliyon.2024.e32303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024] Open
Abstract
Background The aim of this study was to investigate whether quantitative changes in lymphocyte subsets and gene expression in peripheral blood (PB) cells are related to the clinical manifestations and pathogenesis of lupus nephritis (LN). Methods We enrolled 95 pediatric-onset SLE patients with renal involvement who presented with 450 clinical episodes suspicious for LN flare. Percentages of lymphocyte subsets at each episode were determined. We stratified 55 of 95 patients as high or low subset group according to the median percentage of each lymphocyte subset and the association with changes in the eGFR (ΔeGFR) were analyzed. Peripheral blood bulk RNA-seq to identify differentially expressed genes (DEGs) in 9 active LN vs. 9 inactive LN patients and the DEG-derived network was constructed by Ingenuity Pathway Analysis (IPA). Results The mean ΔeGFR of low NK-low memory CD4+ T-high naive CD4+ T group (31.01 mL/min/1.73 m2) was significantly greater than that of high NK-high memory CD4+ T-low naive CD4+ T group (11.83 mL/min/1.73 m2; P = 0.0175). Kaplan-Meier analysis showed that the median time for ΔeGFR decline to mean ΔeGFR is approximately 10 years for high NK-high memory CD4+ T-low naive CD4+ T group and approximately 5 years for low NK-low memory CD4+ T-high naive CD4+ T group (log-rank test P = 0.0294). Conclusions Our study highlighted important connections between DEG-derived network, lymphocyte subset composition, and disease status of LN and GN. A novel scoring system based on lymphocyte subset proportions effectively stratified patients into groups with differential risks for declining renal function.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Fu Jen Catholic University Hospital, New Taipei City, Taiwan, China
| | - Hsin-Hui Yu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Ya-Chiao Hu
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Yao-Hsu Yang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Yu-Tsan Lin
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Li-Chieh Wang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Bor-Luen Chiang
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, China
| | - Jyh-Hong Lee
- Department of Pediatrics, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, China
| |
Collapse
|
26
|
Chen H, Zuo H, Huang J, Liu J, Jiang L, Jiang C, Zhang S, Hu Q, Lai H, Yin B, Yang G, Mai G, Li B, Chi H. Unravelling infiltrating T-cell heterogeneity in kidney renal clear cell carcinoma: Integrative single-cell and spatial transcriptomic profiling. J Cell Mol Med 2024; 28:e18403. [PMID: 39031800 PMCID: PMC11190954 DOI: 10.1111/jcmm.18403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 07/15/2024] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) pathogenesis intricately involves immune system dynamics, particularly the role of T cells within the tumour microenvironment. Through a multifaceted approach encompassing single-cell RNA sequencing, spatial transcriptome analysis and bulk transcriptome profiling, we systematically explored the contribution of infiltrating T cells to KIRC heterogeneity. Employing high-density weighted gene co-expression network analysis (hdWGCNA), module scoring and machine learning, we identified a distinct signature of infiltrating T cell-associated genes (ITSGs). Spatial transcriptomic data were analysed using robust cell type decomposition (RCTD) to uncover spatial interactions. Further analyses included enrichment assessments, immune infiltration evaluations and drug susceptibility predictions. Experimental validation involved PCR experiments, CCK-8 assays, plate cloning assays, wound-healing assays and Transwell assays. Six subpopulations of infiltrating and proliferating T cells were identified in KIRC, with notable dynamics observed in mid- to late-stage disease progression. Spatial analysis revealed significant correlations between T cells and epithelial cells across varying distances within the tumour microenvironment. The ITSG-based prognostic model demonstrated robust predictive capabilities, implicating these genes in immune modulation and metabolic pathways and offering prognostic insights into drug sensitivity for 12 KIRC treatment agents. Experimental validation underscored the functional relevance of PPIB in KIRC cell proliferation, invasion and migration. Our study comprehensively characterizes infiltrating T-cell heterogeneity in KIRC using single-cell RNA sequencing and spatial transcriptome data. The stable prognostic model based on ITSGs unveils infiltrating T cells' prognostic potential, shedding light on the immune microenvironment and offering avenues for personalized treatment and immunotherapy.
Collapse
Affiliation(s)
- Haiqing Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Haoyuan Zuo
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
- Department of General Surgery (Hepatopancreatobiliary Surgery)Deyang People's HospitalDeyangChina
| | - Jinbang Huang
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Jie Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
- Department of General SurgeryDazhou Central HospitalDazhouChina
| | - Lai Jiang
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Chenglu Jiang
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Shengke Zhang
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Qingwen Hu
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Haotian Lai
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Bangchao Yin
- Department of PathologySixth People's Hospital of YibinYibinChina
| | - Guanhu Yang
- Department of Specialty MedicineOhio UniversityAthensOhioUSA
| | - Gang Mai
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
- Department of General Surgery (Hepatopancreatobiliary Surgery)Deyang People's HospitalDeyangChina
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| | - Hao Chi
- School of Clinical Medicine, The Affiliated HospitalSouthwest Medical UniversityLuzhouChina
| |
Collapse
|
27
|
Li Y, Ye X, Huang H, Cao R, Huang F, Chen L. Construction of a prognostic model based on memory CD4+ T cell-associated genes for lung adenocarcinoma and its applications in immunotherapy. CPT Pharmacometrics Syst Pharmacol 2024; 13:837-852. [PMID: 38594917 PMCID: PMC11098152 DOI: 10.1002/psp4.13122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/11/2024] Open
Abstract
The association between memory CD4+ T cells and cancer prognosis is increasingly recognized, but their impact on lung adenocarcinoma (LUAD) prognosis remains unclear. In this study, using the cell-type identification by estimating relative subsets of RNA transcripts algorithm, we analyzed immune cell composition and patient survival in LUAD. Weighted gene coexpression network analysis helped identify memory CD4+ T cell-associated gene modules. Combined with module genes, a five-gene LUAD prognostic risk model (HOXB7, MELTF, ABCC2, GNPNAT1, and LDHA) was constructed by regression analysis. The model was validated using the GSE31210 data set. The validation results demonstrated excellent predictive performance of the risk scoring model. Correlation analysis was conducted between the clinical information and risk scores of LUAD samples, revealing that LUAD patients with disease progression exhibited higher risk scores. Furthermore, univariate and multivariate regression analyses demonstrated the model independent prognostic capability. The constructed nomogram results demonstrated that the predictive performance of the nomogram was superior to the prognostic model and outperformed individual clinical factors. Immune landscape assessment was performed to compare different risk score groups. The results revealed a better prognosis in the low-risk group with higher immune infiltration. The low-risk group also showed potential benefits from immunotherapy. Our study proposes a memory CD4+ T cell-associated gene risk model as a reliable prognostic biomarker for personalized treatment in LUAD patients.
Collapse
Affiliation(s)
- Yong Li
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| | - Xiangli Ye
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| | - Huiqin Huang
- Fujian Provincial Key Laboratory of Medical TestingFujian Academy of Medical SciencesFuzhouChina
| | - Rongxiang Cao
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| | - Feijian Huang
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| | - Limin Chen
- Pulmonary and Critical Care MedicineFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
28
|
Huang L, Wu C, Xu D, Cui Y, Tang J. IL1RAP Exacerbates Sepsis-Induced Pulmonary and Spleen Injury Through Regulating CD4 + T Lymphocyte Differentiation. Immunol Invest 2024; 53:574-585. [PMID: 38329477 DOI: 10.1080/08820139.2024.2312898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
BACKGROUND Complex pathophysiological the specific mechanism of sepsis on CD4+ T-cell responses is less well understood. IL1 receptor accessory protein (IL1RAP) was found to be involved in activating host immune responses. METHOD Cecum ligation and puncture (CLP) was utilized to build a mouse sepsis model. The experiment was randomly divided into four groups: Sham, CLP, CLP + shNC, and CLP + shIL1RAP group. RESULTS qRT-PCR suggested mRNA levels of IL1RAP were decreased when IL1RAP was knocked down with the mRNA levels of IL-1β, NF-κB, and p38 decreased. Histopathology showed severe pathological damage with alveolar integrity lost, red blood cells in the alveoli, massive inflammatory cell infiltration, and the alveolar wall was thickening in the CLP group. The inflammatory cytokine levels of TNF-α, IL-1β, and IFN-γ were elevated in CLP mice by ELISA. The counts of CD4+ T cells were decreased in sepsis mice in peripheral blood, spleen, and BALF by flow cytometry. However, the above was blocked down when using shIL1RAP. Western blot suggested sh IL1RAP inhibited IL-1β, NF-κB, and p38 protein expressions. CONCLUSIONS We defined IL1RAP as a new target gene through NF-κB/MAPK pathways regulating CD4+ T lymphocyte differentiation mediated the progression of sepsis, which is potentially exploitable for immunotherapy.
Collapse
Affiliation(s)
- Liou Huang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Chunrong Wu
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Dan Xu
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yuhui Cui
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Sun J, Gong J, Gong L, Zhu C, Li-Yang L, Wang J, Yang Y, Zhang S, Liu S, Fu JJ, Xu P. High Manganese Content of Lipid NanoMn (LNM) by Microfluidic Technology for Enhancing Anti-Tumor Immunity. Pharmaceutics 2024; 16:556. [PMID: 38675217 PMCID: PMC11054818 DOI: 10.3390/pharmaceutics16040556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Immunotherapy is a clinically effective method for treating tumors. Manganese can activate the cGAS-STING signaling pathway and induce an anti-tumor immune response. However, its efficacy is hindered by non-specific distribution and low uptake rates. In this study, we employed microfluidic technology to design and develop an innovative preparation process, resulting in the creation of a novel manganese lipid nanoparticle (LNM). The lipid manganese nanoparticle produced in this process boasts a high manganese payload, excellent stability, the capacity for large-scale production, and high batch repeatability. LNM has effectively demonstrated the ability to activate the cGAS-STING signaling pathway, induce the production of pro-inflammatory cytokines, and inhibit tumor development. Notably, LNM does not require combination chemotherapy drugs or other immune activators. Therefore, LNM presents a safe, straightforward, and efficient strategy for anti-tumor immune activation, with the potential for scalable production.
Collapse
Affiliation(s)
- Jiawei Sun
- Department of Pharmaceutics, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China; (J.S.); (S.L.)
| | - Jingjing Gong
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Lidong Gong
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Chuanda Zhu
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Longhao Li-Yang
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Jingya Wang
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Yuanyuan Yang
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Shiming Zhang
- Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.G.); (L.G.); (C.Z.); (L.L.-Y.); (J.W.); (Y.Y.); (S.Z.)
| | - Silu Liu
- Department of Pharmaceutics, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China; (J.S.); (S.L.)
| | - Ji-Jun Fu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Pengcheng Xu
- Department of Pharmaceutics, College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China; (J.S.); (S.L.)
| |
Collapse
|
30
|
Sehic E, de Miguel Gómez L, Rabe H, Thorén E, Gudmundsdottir I, Oltean M, Akouri R, Brännström M, Hellström M. Transplantation of a bioengineered tissue patch promotes uterine repair in the sheep. Biomater Sci 2024; 12:2136-2148. [PMID: 38482883 DOI: 10.1039/d3bm01912h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Innovative bioengineering strategies utilizing extracellular matrix (ECM) based scaffolds derived from decellularized tissue offer new prospects for restoring damaged uterine tissue. Despite successful fertility restoration in small animal models, the translation to larger and more clinically relevant models have not yet been assessed. Thus, our study investigated the feasibility to use a 6 cm2 graft constructed from decellularized sheep uterine tissue, mimicking a future application to repair a uterine defect in women. Some grafts were also recellularized with fetal sheep bone marrow-derived mesenchymal stem cells (SF-MSCs). The animals were followed for six weeks post-surgery during which blood samples were collected to assess the systemic immune cell activation by fluorescence-activated cell sorting (FACS) analysis. Tissue regeneration was assessed by histology, immunohistochemistry, and gene expression analyses. There was a large intra-group variance which prompted us to implement a novel scoring system to comprehensively evaluate the regenerative outcomes. Based on the regenerative score each graft received, we focused our analysis to map potential differences that may have played a role in the success or failure of tissue repair following the transplantation therapy. Notably, three out of 15 grafts exhibited major regeneration that resembled native uterine tissue, and an additional three grafts showed substantial regenerative outcomes. For the better regenerated grafts, it was observed that the systemic T-cell subgroups were significantly different compared with the failing grafts. Hence, our data suggest that the T-cell response play an important role for determining the uterus tissue regeneration outcomes. The remarkable regeneration seen in the best-performing grafts after just six weeks following transplantation provides compelling evidence that decellularized tissue for uterine bioengineering holds great promise for clinically relevant applications.
Collapse
Affiliation(s)
- Edina Sehic
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Lucía de Miguel Gómez
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Hardis Rabe
- Unit of Biological Function, Division Materials and Production, RISE - Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden
- Institute of Biomedicine, Department of Infectious diseases, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Emy Thorén
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Ingigerdur Gudmundsdottir
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-413 45, Sweden
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
- Stockholm IVF-EUGIN, Hammarby allé 93, 120 63 Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Kvinnokliniken, Blå stråket 6, SE-405 30, Sweden.
- Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Sweden
- Unit of Biological Function, Division Materials and Production, RISE - Research Institutes of Sweden, Box 857, SE-50115 Borås, Sweden
| |
Collapse
|
31
|
Aldila D, Dhanendra RP, Khoshnaw SHA, Wijayanti Puspita J, Kamalia PZ, Shahzad M. Understanding HIV/AIDS dynamics: insights from CD4+T cells, antiretroviral treatment, and country-specific analysis. Front Public Health 2024; 12:1324858. [PMID: 38665242 PMCID: PMC11043473 DOI: 10.3389/fpubh.2024.1324858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024] Open
Abstract
In this article, we present a mathematical model for human immunodeficiency virus (HIV)/Acquired immune deficiency syndrome (AIDS), taking into account the number of CD4+T cells and antiretroviral treatment. This model is developed based on the susceptible, infected, treated, AIDS (SITA) framework, wherein the infected and treated compartments are divided based on the number of CD4+T cells. Additionally, we consider the possibility of treatment failure, which can exacerbate the condition of the treated individual. Initially, we analyze a simplified HIV/AIDS model without differentiation between the infected and treated classes. Our findings reveal that the global stability of the HIV/AIDS-free equilibrium point is contingent upon the basic reproduction number being less than one. Furthermore, a bifurcation analysis demonstrates that our simplified model consistently exhibits a transcritical bifurcation at a reproduction number equal to one. In the complete model, we elucidate how the control reproduction number determines the stability of the HIV/AIDS-free equilibrium point. To align our model with the empirical data, we estimate its parameters using prevalence data from the top four countries affected by HIV/AIDS, namely, Eswatini, Lesotho, Botswana, and South Africa. We employ numerical simulations and conduct elasticity and sensitivity analyses to examine how our model parameters influence the control reproduction number and the dynamics of each model compartment. Our findings reveal that each country displays distinct sensitivities to the model parameters, implying the need for tailored strategies depending on the target country. Autonomous simulations highlight the potential of case detection and condom use in reducing HIV/AIDS prevalence. Furthermore, we identify that the quality of condoms plays a crucial role: with higher quality condoms, a smaller proportion of infected individuals need to use them for the potential eradication of HIV/AIDS from the population. In our optimal control simulations, we assess population behavior when control interventions are treated as time-dependent variables. Our analysis demonstrates that a combination of condom use and case detection, as time-dependent variables, can significantly curtail the spread of HIV while maintaining an optimal cost of intervention. Moreover, our cost-effectiveness analysis indicates that the condom use intervention alone emerges as the most cost-effective strategy, followed by a combination of case detection and condom use, and finally, case detection as a standalone strategy.
Collapse
Affiliation(s)
- Dipo Aldila
- Department of Mathematics, Universitas Indonesia, Depok, Indonesia
| | | | | | | | | | - Muhammad Shahzad
- Department of Mathematics and Statistics, The University of Haripur, Haripur, KP, Pakistan
| |
Collapse
|
32
|
Krueger MB, Bonifacius A, Dragon AC, Santamorena MM, Nashan B, Taubert R, Kalinke U, Maecker-Kolhoff B, Blasczyk R, Eiz-Vesper B. In Vitro Profiling of Commonly Used Post-transplant Immunosuppressants Reveals Distinct Impact on Antiviral T-cell Immunity Towards CMV. Transpl Int 2024; 37:12720. [PMID: 38655204 PMCID: PMC11035762 DOI: 10.3389/ti.2024.12720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
Infectious complications, including widespread human cytomegalovirus (CMV) disease, frequently occur after hematopoietic stem cell and solid organ transplantation due to immunosuppressive treatment causing impairment of T-cell immunity. Therefore, in-depth analysis of the impact of immunosuppressants on antiviral T cells is needed. We analyzed the impact of mTOR inhibitors sirolimus (SIR/S) and everolimus (EVR/E), calcineurin inhibitor tacrolimus (TAC/T), purine synthesis inhibitor mycophenolic acid (MPA/M), glucocorticoid prednisolone (PRE/P) and common double (T+S/E/M/P) and triple (T+S/E/M+P) combinations on antiviral T-cell functionality. T-cell activation and effector molecule production upon antigenic stimulation was impaired in presence of T+P and triple combinations. SIR, EVR and MPA exclusively inhibited T-cell proliferation, TAC inhibited activation and cytokine production and PRE inhibited various aspects of T-cell functionality including cytotoxicity. This was reflected in an in vitro infection model, where elimination of CMV-infected human fibroblasts by CMV-specific T cells was reduced in presence of PRE and all triple combinations. CMV-specific memory T cells were inhibited by TAC and PRE, which was also reflected with double (T+P) and triple combinations. EBV- and SARS-CoV-2-specific T cells were similarly affected. These results highlight the need to optimize immune monitoring to identify patients who may benefit from individually tailored immunosuppression.
Collapse
Affiliation(s)
- Markus Benedikt Krueger
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Anna Christina Dragon
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Björn Nashan
- Clinic for Hepatopancreaticobiliary Surgery and Transplantation, First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Richard Taubert
- Department of Gastroenterology, Hepatology, Infectious Diseases and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Britta Maecker-Kolhoff
- German Center for Infection Research (DZIF), Braunschweig, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| |
Collapse
|
33
|
Flook M, Rojano E, Gallego-Martinez A, Escalera-Balsera A, Perez-Carpena P, Moleon MDC, Gonzalez-Aguado R, Rivero de Jesus V, Domínguez-Durán E, Frejo L, G Ranea JA, Lopez-Escamez JA. Cytokine profiling and transcriptomics in mononuclear cells define immune variants in Meniere Disease. Genes Immun 2024; 25:124-131. [PMID: 38396174 PMCID: PMC11023934 DOI: 10.1038/s41435-024-00260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024]
Abstract
Meniere Disease (MD) is a chronic inner ear disorder characterized by vertigo attacks, sensorineural hearing loss, tinnitus, and aural fullness. Extensive evidence supporting the inflammatory etiology of MD has been found, therefore, by using transcriptome analysis, we aim to describe the inflammatory variants of MD. We performed Bulk RNAseq on 45 patients with definite MD and 15 healthy controls. MD patients were classified according to their basal levels of IL-1β into 2 groups: high and low. Differentially expression analysis was performed using the ExpHunter Suite, and cell type proportion was evaluated using the estimation algorithms xCell, ABIS, and CIBERSORTx. MD patients showed 15 differentially expressed genes (DEG) compared to controls. The top DEGs include IGHG1 (p = 1.64 × 10-6) and IGLV3-21 (p = 6.28 × 10-3), supporting a role in the adaptative immune response. Cytokine profiling defines a subgroup of patients with high levels of IL-1β with up-regulation of IL6 (p = 7.65 × 10-8) and INHBA (p = 3.39 × 10-7) genes. Transcriptomic data from peripheral blood mononuclear cells support a proinflammatory subgroup of MD patients with high levels of IL6 and an increase in naïve B-cells, and memory CD8+ T cells.
Collapse
Affiliation(s)
- Marisa Flook
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- UCL Ear Institute, University College London, London, UK.
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Alvaro Gallego-Martinez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Alba Escalera-Balsera
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
| | - Patricia Perez-Carpena
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Instituto de Investigación Biosanitaria, ibs.Granada, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - M Del Carmen Moleon
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Department of Otolaryngology, Hospital Universitario San Cecilio, Granada, Spain
| | - Rocio Gonzalez-Aguado
- Department of Otorhinolaryngology, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | | | - Emilio Domínguez-Durán
- Unidad de Gestión Clínica de Otorrinolaringología, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Lidia Frejo
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Juan A G Ranea
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Malaga, Malaga, Spain
- Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Centro de Investigación Biomedica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 29029, Madrid, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), 08034, Barcelona, Spain
| | - Jose Antonio Lopez-Escamez
- Otology and Neurotology Group CTS495, Division of Otolaryngology, Department of Surgery, Instituto de Investigación Biosanitaria, ibs.GRANADA, Granada, Universidad de Granada, Granada, Spain.
- Sensorineural Pathology Programme, Centro de Investigación Biomédica en Red en Enfermedades Raras, CIBERER, Madrid, Spain.
- Meniere Disease Neuroscience Research Program, Faculty of Medicine & Health, School of Medical Sciences, The Kolling Institute, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
34
|
Zhang W, Huang H, Liu X, Zhang L, Li L, Ding Y, Xiao Y, Ali MJ, Sun H, Xiao C. scRNA-Seq: First Atlas and Cellular Landscape of Lacrimal Sac: Implications in Primary Acquired Nasolacrimal Duct Obstruction Pathogenesis. Invest Ophthalmol Vis Sci 2024; 65:38. [PMID: 38551583 PMCID: PMC10981439 DOI: 10.1167/iovs.65.3.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/10/2024] [Indexed: 04/01/2024] Open
Abstract
Purpose The aim of this study was to describe the transcriptional changes of individual cellular components in the lacrimal sac in patients with primary acquired nasolacrimal duct obstruction (PANDO) and attempt to construct the first lacrimal sac cellular atlas to elucidate the potential mechanisms that may drive the disease pathogenesis. Methods Lacrimal sac samples were obtained intra-operatively during the endoscopic dacryocystorhinostomy (EnDCR) procedure from five patients. Single-cell RNA sequencing was performed to analyze each individual cell population including epithelial and immune cells during the early inflammatory and late inflammatory phases of the disease. Results Eleven cell types were identified among 25,791 cells. T cells and B cells were the cell populations with the greatest variation in cell numbers between the two phases and were involved in immune response and epithelium migration-related pathways. The present study showed that epithelial cells highly expressed the genes of senescence-associated secretory phenotype (SASP) and were involved in influencing the inflammation, neutrophil chemotaxis, and migration during the late inflammatory stage. Enhanced activity of CXCLs-CXCRs between the epithelial cells and neutrophils was noted by the cell-cell communication analysis and is suspected to play a role in inflammation by recruiting more neutrophils. Conclusions The study presents a comprehensive single-cell landscape of the lacrimal sac cells in different phases of PANDO. The contribution of T cells, B cells, and epithelial cells to the inflammatory response, and construction of the intercellular signaling networks between the cells within the lacrimal sac has further enhanced the present understanding of the PANDO pathogenesis.
Collapse
Affiliation(s)
- Wenyue Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huan Huang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xueru Liu
- Ophthalmic Center, Xinjiang 474 Hospital, Urumqi, Xinjiang, China
| | - Leilei Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Lunhao Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yi Ding
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Hyderabad, India
| | - Hao Sun
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Caiwen Xiao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
35
|
Cao W, Cao Z, Tang L, Xu C, Fan D. Immune-mediated diseases are associated with a higher risk of ALS incidence: a prospective cohort study from the UK Biobank. Front Immunol 2024; 15:1356132. [PMID: 38504981 PMCID: PMC10948436 DOI: 10.3389/fimmu.2024.1356132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 03/21/2024] Open
Abstract
Objective The occurrence of immune-mediated diseases (IMDs) in amyotrophic lateral sclerosis (ALS) patients is widely reported. However, whether IMDs and ALS is a simple coexistence or if there exists causal relationships between the two has been a subject of great interest to researchers. Methods A total of 454,444 participants from the prospective cohort of UK Biobank were recruited to investigate the longitudinal association between IMDs and ALS. Previously any IMDs and organ specific IMDs were analyzed in relation to the following incident ALS by Cox-proportional hazard models. Subgroup analyses were performed to explore the covariates of these relationships. Results After adjusting for potential covariates, the multivariate analysis showed that any IMDs were associated with an increased risk of ALS incidence (HR:1.42, 95%CI:1.03-1.94). IMDs of the endocrine-system and the intestinal-system were associated with increased risk of ALS incidence (endocrine-system IMDs: HR:3.01, 95%CI:1.49-6.06; intestinal system IMDs: HR:2.07, 95%CI: 1.14-3.77). Subgroup analyses revealed that immune burden, including IMD duration and the severity of inflammation had specific effects on the IMD-ALS association. In participants with IMD duration≥10 years or CRP≥1.3mg/L or females, previous IMDs increased the risk of incident ALS; however, in participants with IMD duration <10 years or CRP<1.3mg/L or males, IMDs had no effect on incident ALS. Interpretation Our study provides evidence that previous any IMDs and endocrine-system and the intestinal-system specific IMDs are associated with an increased risk of developing ALS in females, but not in males.
Collapse
Affiliation(s)
- Wen Cao
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| | - Zhi Cao
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| | - Chenjie Xu
- School of Public Health, Hangzhou Normal University, Hangzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Biomarker and Translational Research in Neurodegenerative Disorders, Beijing, China
| |
Collapse
|
36
|
Escelsior A, Inuggi A, Sterlini B, Bovio A, Marenco G, Bode J, Favilla L, Tardito S, Altosole T, Pereira da Silva B, Fenoglio D, Filaci G, Amore M, Serafini G. T-cell immunophenotype correlations with cortical thickness and white matter microstructure in bipolar disorder. J Affect Disord 2024; 348:179-190. [PMID: 38154587 DOI: 10.1016/j.jad.2023.12.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND Inflammation and immunological alterations, such as T-cell and cytokine changes, are implicated in bipolar disorder (BD), with some evidence linking them to brain structural changes (e.g., cortical thickness (CT), gray matter (GM) volume and white matter (WM) microstructure). However, the connection between specific peripheral cell types, such as T-cells, and neuroimaging in BD remains scarcely investigated. AIMS OF THE STUDY This study aims to explore the link between T-cell immunophenotype and neuroradiological findings in BD. METHODS Our study investigated 43 type I BD subjects (22 depressive, 21 manic) and 26 healthy controls (HC), analyzing T lymphocyte immunophenotype and employing neuroimaging to assess CT for GM and fractional anisotropy (FA) for WM. RESULTS In lymphocyte populations, BD patients exhibited elevated CD4+ and CD4+ central memory (TCM) cells frequencies, but lower CD8+ effector memory (TEM) and terminal effector memory (TTEM) cells. Neuroimaging analysis revealed reduced CT in multiple brain regions in BD patients; and significant negative correlations between CD4 + TCM levels and CT of precuneus and fusiform gyrus. Tract-based spatial statistics (TBSS) analysis showed widespread alteration in WM microstructure in BD patients, with negative and positive correlations respectively between FA and radial diffusivity (RD) and CD4 + TCM. Additionally, positive and negative correlations were found respectively between FA and RD and the CD8 + TEM and CD8 + TTEM subsets. CONCLUSIONS Our research revealed distinct T lymphocyte changes and brain structure alterations in BD, underscoring possible immune-brain interactions, warranting further study and therapeutic exploration.
Collapse
Affiliation(s)
- Andrea Escelsior
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Alberto Inuggi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Bruno Sterlini
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Anna Bovio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Giacomo Marenco
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Juxhin Bode
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Luca Favilla
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Samuele Tardito
- Center for Cancer & Immunology Research, Children's National Hospital, 111 Michigan Ave NW (5th floor), Washington, DC 20010, United States of America.
| | | | - Beatriz Pereira da Silva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
| | - Daniela Fenoglio
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Gilberto Filaci
- Centre of Excellence for Biomedical Research and Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy; Biotherapy Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| | - Mario Amore
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| | - Gianluca Serafini
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy; Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy.
| |
Collapse
|
37
|
Ye Z, Huang T, Hu K, Zhou H, Huang L, Wang L. Genomic Profiling Reveals Immune-Related Gene Differences in Lung Cancer Patients Stratified by PD1/PDL1 Expression: Implications for Immunotherapy Efficacy. J Appl Genet 2024:10.1007/s13353-024-00841-8. [PMID: 38363451 DOI: 10.1007/s13353-024-00841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Lung cancer remains a leading cause of global cancer-related mortality, and the exploration of innovative therapeutic approaches, such as PD1/PDL1 immunotherapy, is critical. This study leverages comprehensive data from the Cancer Genome Atlas (TCGA) to investigate the differential expression of PD1/PDL1 in lung cancer patients and explores its implications. Clinical data, RNA expression, somatic mutations, and copy number variations of 1017 lung cancer patients were obtained from TCGA. Patients were categorized into high (HE) and low (LE) PD1/PDL1 expression groups based on mRNA levels. Analyses included differential gene expression, functional enrichment, protein-protein interaction networks, and mutational landscape exploration. The study identified 391 differentially expressed genes, with CD4 and PTPRC among the upregulated genes in the HE group. Although overall survival did not significantly differ between HE and LE groups, enrichment analysis revealed a strong association with immunoregulatory signaling pathways, emphasizing the relevance of PD1/PDL1 in immune response modulation. Notably, TP53 mutations were significantly correlated with high PD1/PDL1 expression. This study provides a comprehensive analysis of PD1/PDL1 expression in lung cancer, uncovering potential biomarkers and highlighting the intricate interplay between PD1/PDL1 and the immune response. The identified upregulated genes, including CD4 and PTPRC, warrant further investigation for their roles in the context of lung cancer and immunotherapy. The study underscores the importance of considering molecular heterogeneity in shaping personalized treatment strategies for lung cancer patients. Limitations, such as the retrospective nature of TCGA data, should be acknowledged.
Collapse
Affiliation(s)
- Zhifeng Ye
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Zhejiang, Hangzhou, China
| | - Ting Huang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Zhejiang, Hangzhou, China
| | - Keke Hu
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Zhejiang, Hangzhou, China
| | - HeRan Zhou
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Zhejiang, Hangzhou, China
| | - Ling Huang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Zhejiang, Hangzhou, China
| | - Lu Wang
- Hangzhou TCM Hospital of Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Zhejiang, Hangzhou, China.
| |
Collapse
|
38
|
Ramon-Luing LA, Flores-Gonzalez J, Angel García-Rojas L, Islas-Muñoz B, Volkow-Fernández P, Chavez-Galan L. Valganciclovir modulates the tumor necrosis factor axis molecules expression and CD4+ T-cell subsets in disseminated Kaposi Sarcoma patients. Clin Exp Immunol 2024; 215:190-201. [PMID: 37904542 PMCID: PMC10847826 DOI: 10.1093/cei/uxad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/20/2023] [Accepted: 10/27/2023] [Indexed: 11/01/2023] Open
Abstract
Valganciclovir (VGC) was used in a randomized clinical trial in patients with disseminated Kaposi Sarcoma/human immunodeficiency virus (DKS/HIV) as add-on therapy to evaluate the proinflammatory axis tumor necrosis factor (TNF) and its receptors (TNFRs) in T cells. Two treatment schedules were used: an experimental regime (ER) and a conventional treatment (CT). Mononuclear cells from patients with DKS/HIV were obtained at baseline (W0), 4 (W4), and 12 weeks (W12). Ten DKS/HIV patients received CT (antiretroviral therapy [cART]) and 10 ER (valganciclovir [VGC] initially, plus cART at the fourth week). HIV+ without KS and HIV- patient groups were included as controls. Correlation between T-cell subsets and HHV-8 viral load (VL) and a multivariate linear regression was performed. Data showed that DKS/HIV patients have an increased frequency of CD8+ T cells, which display a high density of CD8 expression. The ER scheme increases naïve and central memory CD4+ T cells at W4 and W12 of follow-up and induces a balanced distribution of activated CD4+ T-cell subsets. Moreover, ER decreases solTNFR2 since W4 and CT decreased the transmembrane forms of TNF axis molecules. Although CT induces a positive correlation between HHV-8 VL and TNFRs, the use of ER positively correlates with TNF and TNFRs levels through follow-up and a moderate correlation with HHV-8 VL and TNF soluble levels. In conclusion, VGC, as an add-on therapy in DKS/HIV patients, gradually modulates the activation of CD4+ T-cell subsets and the TNF/TNFRs axis, suggesting a better regulation of the inflammatory status.
Collapse
Affiliation(s)
- Lucero A Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Julio Flores-Gonzalez
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Luis Angel García-Rojas
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Beda Islas-Muñoz
- Infectious Diseases Department, Instituto Nacional de Cancerología, Mexico City, Mexico
| | | | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| |
Collapse
|
39
|
Abdalla AL, Guajardo-Contreras G, Mouland AJ. A Canadian Survey of Research on HIV-1 Latency-Where Are We Now and Where Are We Heading? Viruses 2024; 16:229. [PMID: 38400005 PMCID: PMC10891605 DOI: 10.3390/v16020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Worldwide, almost 40 million people are currently living with HIV-1. The implementation of cART inhibits HIV-1 replication and reduces viremia but fails to eliminate HIV-1 from latently infected cells. These cells are considered viral reservoirs from which HIV-1 rebounds if cART is interrupted. Several efforts have been made to identify these cells and their niches. There has been little success in diminishing the pool of latently infected cells, underscoring the urgency to continue efforts to fully understand how HIV-1 establishes and maintains a latent state. Reactivating HIV-1 expression in these cells using latency-reversing agents (LRAs) has been successful, but only in vitro. This review aims to provide a broad view of HIV-1 latency, highlighting Canadian contributions toward these aims. We will summarize the research efforts conducted in Canadian labs to understand the establishment of latently infected cells and how this informs curative strategies, by reviewing how HIV latency is established, which cells are latently infected, what methodologies have been developed to characterize them, how new compounds are discovered and evaluated as potential LRAs, and what clinical trials aim to reverse latency in people living with HIV (PLWH).
Collapse
Affiliation(s)
- Ana Luiza Abdalla
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Gabriel Guajardo-Contreras
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Andrew J. Mouland
- HIV-1 RNA Trafficking Laboratory, Lady Davis Institute at the Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (A.L.A.); (G.G.-C.)
- Department of Microbiology and Immunology, McGill University, Montreal, QC H3A 2B4, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
40
|
Huang Y, Huang X, Wei Z, Dong J, Lu J, Tang Q, Lu F, Cen Z, Wu W. CD4 +T EM cells drive the progression from acute myocarditis to dilated cardiomyopathy in CVB3-induced BALB/c mice. Int Immunopharmacol 2024; 127:111304. [PMID: 38091826 DOI: 10.1016/j.intimp.2023.111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Acute viral myocarditis can progress to chronic myocarditis leading to dilated cardiomyopathy (DCM). Persistent CD4+ T-cell-mediated autoimmunity triggered by infection plays a critical role in this progression. Increasing evidence demonstrates that effector memory CD4+T (CD4+TEM) cells, a subset of memory CD4+ T cells, are crucial pathogenic mediators of many autoimmune diseases. However, the role of CD4+TEM cells during the progression from acute viral myocarditis to DCM remains unknown. In this study, we observed an increase in CD4+TEM cells both in the periphery and the heart, and memory CD4+ T cells were the predominant sources of IL-17A and IFN-γ among inflamed heart-infiltrating CD4+ T cells during the progression from acute myocarditis to chronic myocarditis and DCM in CVB3-induced BALB/c mice. Moreover, splenic CD4+TEM cells sorted from DCM mice induced by CVB3 were found to respond to cardiac self-antigens ex vivo. Additionally, adoptive transfer experiments substantiated their pathogenic impact, inducing sustained myocardial inflammation, tissue fibrosis, cardiac injury, and impairment of cardiac systolic function in vivo. Our findings illustrate that long-lived CD4+TEM cells are important contributors to the progression from acute viral myocarditis into DCM.
Collapse
Affiliation(s)
- Yanlan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiaojing Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhe Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jingwei Dong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Quan Tang
- Cardiac Care Unit, The First People's Hospital of Nanning. Qixing Road 89, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Feiyu Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhihong Cen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
41
|
Ghanbar MI, Suresh K. Pulmonary toxicity of immune checkpoint immunotherapy. J Clin Invest 2024; 134:e170503. [PMID: 38226621 PMCID: PMC10786690 DOI: 10.1172/jci170503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Cancer remains a leading cause of mortality on a global scale. Lung cancer, specifically non-small cell lung cancer (NSCLC), is a prominent contributor to this burden. The management of NSCLC has advanced substantially in recent years, with immunotherapeutic agents, such as immune checkpoint inhibitors (ICIs), leading to improved patient outcomes. Although generally well tolerated, the administration of ICIs can result in unique side effects known as immune-related adverse events (irAEs). The occurrence of irAEs involving the lungs, specifically checkpoint inhibitor pneumonitis (CIP), can have a profound effect on both future therapy options and overall survival. Despite CIP being one of the more common serious irAEs, limited treatment options are currently available, in part due to a lack of understanding of the underlying mechanisms involved in its development. In this Review, we aim to provide an overview of the epidemiology and clinical characteristics of CIP, followed by an examination of the emerging literature on the pathobiology of this condition.
Collapse
Affiliation(s)
| | - Karthik Suresh
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, and
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Ghimire P, Kinnersley B, Karami G, Arumugam P, Houlston R, Ashkan K, Modat M, Booth TC. Radiogenomic biomarkers for immunotherapy in glioblastoma: A systematic review of magnetic resonance imaging studies. Neurooncol Adv 2024; 6:vdae055. [PMID: 38680991 PMCID: PMC11046988 DOI: 10.1093/noajnl/vdae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Background Immunotherapy is an effective "precision medicine" treatment for several cancers. Imaging signatures of the underlying genome (radiogenomics) in glioblastoma patients may serve as preoperative biomarkers of the tumor-host immune apparatus. Validated biomarkers would have the potential to stratify patients during immunotherapy clinical trials, and if trials are beneficial, facilitate personalized neo-adjuvant treatment. The increased use of whole genome sequencing data, and the advances in bioinformatics and machine learning make such developments plausible. We performed a systematic review to determine the extent of development and validation of immune-related radiogenomic biomarkers for glioblastoma. Methods A systematic review was performed following PRISMA guidelines using the PubMed, Medline, and Embase databases. Qualitative analysis was performed by incorporating the QUADAS 2 tool and CLAIM checklist. PROSPERO registered: CRD42022340968. Extracted data were insufficiently homogenous to perform a meta-analysis. Results Nine studies, all retrospective, were included. Biomarkers extracted from magnetic resonance imaging volumes of interest included apparent diffusion coefficient values, relative cerebral blood volume values, and image-derived features. These biomarkers correlated with genomic markers from tumor cells or immune cells or with patient survival. The majority of studies had a high risk of bias and applicability concerns regarding the index test performed. Conclusions Radiogenomic immune biomarkers have the potential to provide early treatment options to patients with glioblastoma. Targeted immunotherapy, stratified by these biomarkers, has the potential to allow individualized neo-adjuvant precision treatment options in clinical trials. However, there are no prospective studies validating these biomarkers, and interpretation is limited due to study bias with little evidence of generalizability.
Collapse
Affiliation(s)
- Prajwal Ghimire
- Department of Neurosurgery, Kings College Hospital NHS Foundation Trust, London, UK
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Ben Kinnersley
- Department of Oncology, University College London, London, UK
| | | | | | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, Sutton, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, Kings College Hospital NHS Foundation Trust, London, UK
| | - Marc Modat
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Thomas C Booth
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
43
|
Sisto M, Lisi S. Targeting Interleukin-17 as a Novel Treatment Option for Fibrotic Diseases. J Clin Med 2023; 13:164. [PMID: 38202170 PMCID: PMC10780256 DOI: 10.3390/jcm13010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fibrosis is the end result of persistent inflammatory responses induced by a variety of stimuli, including chronic infections, autoimmune reactions, and tissue injury. Fibrotic diseases affect all vital organs and are characterized by a high rate of morbidity and mortality in the developed world. Until recently, there were no approved antifibrotic therapies. In recent years, high levels of interleukin-17 (IL-17) have been associated with chronic inflammatory diseases with fibrotic complications that culminate in organ failure. In this review, we provide an update on the role of IL-17 in fibrotic diseases, with particular attention to the most recent lines of research in the therapeutic field represented by the epigenetic mechanisms that control IL-17 levels in fibrosis. A better knowledge of the IL-17 signaling pathway implications in fibrosis could design new strategies for therapeutic benefits.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | | |
Collapse
|
44
|
Affiliation(s)
- Juan-Manuel Anaya
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| | - Santiago Beltrán
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| |
Collapse
|
45
|
Ayass MA, Tripathi T, Zhu K, Nair RR, Melendez K, Zhang J, Fatemi S, Okyay T, Griko N, Balcha Ghelan M, Pashkov V, Abi-Mosleh L. T helper (Th) cell profiles and cytokines/chemokines in characterization, treatment, and monitoring of autoimmune diseases. Methods 2023; 220:115-125. [PMID: 37967756 DOI: 10.1016/j.ymeth.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
Autoimmune diseases (AD) consist of a spectrum of disease entities whose etiologies are very complex and still not well understood. Every individual has the potential for developing AD under appropriate conditions because the body contains lymphocytes that are potentially reactive with self-antigens. The aims of this study are to (1) explore the flow cytometry method to identify the frequency of various circulating CD4+ T helper (Th) cell-subsets, including Th1, Th2, Th9, Th17, Th17.1, and Th22; (2) In parallel, to examine multiplex ELISA method for pathogenic inflammatory cytokines/chemokines, and (3) To assess the correlation of expression of T cell-subsets with serum cytokines/chemokines and understand its clinical importance with available AD treatments. We analyzed Th17, Th17.1, Th22, Th2, Th1, and Th9 Th cell populations and compared the concentrations of 67 cytokines/chemokines in healthy as well as AD-diagnosed patients. We observed that patients with autoimmune markers had significantly elevated percentages of naïve (Th17, Th22, and Th9) as well as memory (Th17 and Th22) Th cell-subsets, along with increased concentrations of cytokines/chemokines (Eotaxin, TNFβ, and FABP4). The percentage of Th cell-subsets correlated positively or negatively with the production of cytokines/chemokines of patients diagnosed with AD. Our study demonstrates that the naïve and memory Th cell-subsets with positive correlations to cytokines/chemokines show new diagnostic markers to predict the patients' outcome, while the negative correlation of cytokines/chemokines shows the response to autoimmune therapies. Our findings of Th cell-subsets by flow cytometry and cytokines/chemokines by multiplex ELISA suggest that CCR6+ Th cell-subsets (Th17, Th17.1, Th22, and Th9) contribute to our understanding of the pathogenesis of AD and identify the new onset of AD from the autoimmune spectrum. Our findings highlight the importance of CCR6+ as a possible marker in the characterization, treatment, and monitoring of AD.
Collapse
Affiliation(s)
| | | | - Kevin Zhu
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | | | - Kristen Melendez
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | - Jin Zhang
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | | | - Tutku Okyay
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | - Natalya Griko
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | | | - Victor Pashkov
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA
| | - Lina Abi-Mosleh
- Ayass Bioscience LLC, 8501 Wade Blvd, Bldg 9, Frisco, 75034, TX, USA.
| |
Collapse
|
46
|
Corbali O, Saxena S, Patel R, Lokhande H, Chitnis T. NF-κB and STAT3 activation in CD4 T cells in pediatric MOG antibody-associated disease. J Neuroimmunol 2023; 384:578197. [PMID: 37770354 DOI: 10.1016/j.jneuroim.2023.578197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/30/2023]
Abstract
In this study, we examined CD4 T cell activation using various stimuli in pediatric MOGAD patients (n = 4, untreated remission samples) and healthy controls (n = 5), to understand how both antigen-specific and bystander mechanisms contribute to CD4 T cell activation in MOGAD. TNFα, IL6, and MOG peptide pool were found to activate NF-κB or STAT3 pathways by measuring the expression of regulators (A20, IκBα) and phosphorylated subunits (phospho-p65 and phospho-STAT3) using immunolabeling. Prednisolone reversed activation of both NF-κB and STAT3 and increased the expression of A20 and IκBα. TNFR blocking partially reversed NF-κB activation in certain CD4 T cell subsets, but did not effect STAT3 activation. We observed that activation of NF-κB and STAT3 in response to various stimuli behaves mostly same in MOGAD (remission) and HC. IL6 stimulation resulted in higher STAT3 phosphorylation in MOGAD patients at 75 min, specifically in central and effector memory CD4 T cells (with unadjusted p-values). These findings suggest the potential therapeutic targeting of NF-κB and STAT3 pathways in MOGAD. Further investigation is needed to validate the significance of extended STAT3 phosphorylation and its correlation with IL6 receptor blocker treatment response.
Collapse
Affiliation(s)
- Osman Corbali
- Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shrishti Saxena
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rohit Patel
- Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Hrishikesh Lokhande
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tanuja Chitnis
- Harvard Medical School, Boston, MA, USA; Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
47
|
Jing C, Fu R, Liu X, Zang G, Zhu X, Wang C, Zhang W. A comprehensive cuproptosis score and associated gene signatures reveal prognostic and immunological features of idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1268141. [PMID: 38035073 PMCID: PMC10682708 DOI: 10.3389/fimmu.2023.1268141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Cuproptosis, the most recently identified and regulated cell death, depends on copper ions in vivo. Copper regulates the pathogenesis of Idiopathic pulmonary fibrosis (IPF), but the mechanism of action underlying cuproptosis in IPF remains unclear. Methods We identified three cuproptosis patterns based on ten cuproptosis-related genes using unsupervised consensus clustering. We quantified these patterns using a PCA algorithm to construct a cuproptosis score. ssGSEA and the Cibersort algorithm assessed the immune profile of IPF patients. GSEA and GSVA were used to analyze the functional differences in different molecular patterns. Drug susceptibility prediction based on cuproptosis scores and meaningful gene markers was eventually screened in combination with external public data sets,in vitro experiments and our cases. Results Of the three types of cuproptosis-related clusters identified in the study, patients in the clusterA, geneclusterB, and score-high groups showed improved prognoses. Moreover, each cluster exhibited differential immune characteristics, with the subtype showing a poorer prognosis associated with an immune overreaction. Cuproptosis score can be an independent risk factor for predicting the prognosis of IPF patients. GSEA showed a significant functional correlation between the score and cuproptosis. The genes AKAP9, ANK3, C6orf106, LYRM7, and MBNL1, were identified as prognostic-related signatures in IPF patients. The functional role of immune regulation in IPF was further explored by correlating essential genes with immune factors. Also, the nomogram constructed by cumulative information from gene markers and cuproptosis score showed reliable clinical application. Conclusions Cuproptosis patterns differ significantly in the prognosis and immune characteristics of IPF patients. The cuproptosis score and five gene signatures can provide a reliable reference in the prognosis and diagnosis of IPF.
Collapse
Affiliation(s)
- Chuanqing Jing
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Fu
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Guodong Zang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Xue Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Can Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| |
Collapse
|
48
|
Mone K, Reddy J. The knowns and unknowns of cardiac autoimmunity in viral myocarditis. Rev Med Virol 2023; 33:e2478. [PMID: 37658748 DOI: 10.1002/rmv.2478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Myocarditis can result from various infectious and non-infectious causes that can lead to dilated cardiomyopathy (DCM) and heart failure. Among the infectious causes, viruses are commonly suspected. But the challenge is our inability to demonstrate infectious viral particles during clinical presentations, partly because by that point, the viruses would have damaged the tissues and be cleared by the immune system. Therefore, viral signatures such as viral nucleic acids and virus-reactive antibodies may be the only readouts pointing to viruses as potential primary triggers of DCM. Thus, it becomes hard to explain persistent inflammatory infiltrates that might occur in individuals affected with chronic myocarditis/DCM manifesting myocardial dysfunctions. In these circumstances, autoimmunity is suspected, and antibodies to various autoantigens have been demonstrated, suggesting that immune therapies to suppress the autoimmune responses may be necessary. From this perspective, we endeavoured to determine whether or not the known viral causes are associated with development of autoimmune responses to cardiac antigens that include both cardiotropic and non-cardiotropic viruses. If so, what their nature and significance are in developing chronic myocarditis resulting from viruses as primary triggers.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
49
|
Rezazadeh F, Ramos N, Saliganan AD, Al-Hallak N, Chen K, Mohamad B, Wiesend WN, Viola NT. Detection of IL12/23p40 via PET Visualizes Inflammatory Bowel Disease. J Nucl Med 2023; 64:1806-1814. [PMID: 37474270 PMCID: PMC10626378 DOI: 10.2967/jnumed.123.265649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
Inflammatory bowel disease (IBD), which includes both Crohn disease and ulcerative colitis, is a relapsing inflammatory disease of the gastrointestinal tract. Long-term chronic inflammatory conditions elevate the patient's risk of colorectal cancer (CRC). Currently, diagnosis requires endoscopy with biopsy. This procedure is invasive and requires a bowel-preparatory regimen, adding to patient burden. Interleukin 12 (IL12) and interleukin 23 (IL23) play key roles in inflammation, especially in the pathogenesis of IBD, and are established therapeutic targets. We propose that imaging of IL12/23 and its p40 subunit in IBD via immuno-PET potentially provides a new noninvasive diagnostic approach. Methods: Our aim was to investigate the potential of immuno-PET to image inflammation in a chemically induced mouse model of colitis using dextran sodium sulfate by targeting IL12/23p40 with a 89Zr-radiolabeled anti-IL12/23p40 antibody. Results: High uptake of the IL12/23p40 immuno-PET agent was exhibited by dextran sodium sulfate-administered mice, and this uptake correlated with increased IL12/23p40 present in the sera. Competitive binding studies confirmed the specificity of the radiotracer for IL12/23p40 in the gastrointestinal tract. Conclusion: These promising results demonstrate the utility of this radiotracer as an imaging biomarker of IBD. Moreover, IL12/23p40 immuno-PET can potentially guide treatment decisions for IBD management.
Collapse
Affiliation(s)
- Farzaneh Rezazadeh
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Nicholas Ramos
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Allen-Dexter Saliganan
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Najeeb Al-Hallak
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | - Kang Chen
- Departments of Obstetrics and Gynecology, Wayne State University, Detroit, Michigan
| | - Bashar Mohamad
- Department of Gastroenterology, Wayne State University, Detroit, Michigan; and
| | - Wendy N Wiesend
- Department of Anatomic Pathology, Corewell Health William Beaumont University Hospital, Royal Oak, Michigan
| | - Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan;
| |
Collapse
|
50
|
Qi X, Li Z, Han J, Liu W, Xia P, Cai X, Liu X, Liu X, Zhang J, Yu P. Multifaceted roles of T cells in obesity and obesity-related complications: A narrative review. Obes Rev 2023; 24:e13621. [PMID: 37583087 DOI: 10.1111/obr.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/18/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Obesity is characterized by chronic low-grade inflammatory responses in the adipose tissue, accompanied by pronounced insulin resistance and metabolic anomalies. It affects almost all body organs and eventually leads to diseases such as fatty liver disease, type 2 diabetes mellitus, and atherosclerosis. Recently, T cells have emerged as interesting therapeutic targets because the dysfunction of T cells and their cytokines in the adipose tissue is implicated in obesity-induced inflammation and their complicated onset. Although several recent narrative reviews have provided a brief overview of related evidence in this area, they have mainly focused on either obesity-associated T cell metabolism or modulation of T cell activation in obesity. Moreover, at present, no published review has reported on the multifaceted roles of T cells in obesity and obesity-related complications, even though there has been a significant increase in studies on this topic since 2019. Therefore, this narrative review aims to comprehensively summarize current advances in the mechanistic roles of T cells in the development of obesity and its related complications. Further, we aim to discuss relevant drugs for weight loss as well as the contradictory role of T cells in the same disease so as to highlight key findings regarding this topic and provide a valid basis for future treatment strategies.
Collapse
Affiliation(s)
- Xinrui Qi
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jiashu Han
- MD Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenqing Liu
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia Cai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao Liu
- Department of Cardiology, The Second Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|