1
|
Marinho Y, Villarreal ES, Loya O, Oliveira SD. Mechanisms of lung endothelial cell injury and survival in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 2024; 327:L972-L983. [PMID: 39406383 PMCID: PMC11684956 DOI: 10.1152/ajplung.00208.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 12/06/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, chronic, and incurable inflammatory pulmonary vascular disease characterized by significant sex bias and largely unexplored microbial-associated molecular mechanisms that may influence its development and sex prevalence across various subgroups. PAH can be subclassified as idiopathic, heritable, or associated with conditions such as connective tissue diseases, congenital heart defects, liver disease, infections, and chronic exposure to drugs or toxins. During PAH progression, lung vascular endothelial cells (ECs) undergo dramatic morphofunctional transformations in response to acute and chronic inflammation. These transformations include the appearance and expansion of abnormal vascular cell phenotypes such as those derived from apoptosis-resistant cell growth and endothelial-to-mesenchymal transition (EndoMT). Compelling evidence indicates that these endothelial phenotypes seem to be triggered by chronic lung vascular injury and dysfunction, often characterized by reduced secretion of vasoactive molecules like nitric oxide (NO) and exacerbated response to vasoconstrictors such as Endothelin-1 (ET-1), both long-term known contributors of PAH pathogenesis. This review sheds light on the mechanisms of EC dysfunction, apoptosis, and EndoMT in PAH, aiming to unravel the intricate interactions between ECs, pathogens, and other cell types that drive the onset and progression of this devastating disease. Ultimately, we hope to provide an overview of the complex functions of lung vascular ECs in PAH, inspiring novel therapeutic strategies that target these dysfunctional cells to improve the treatment landscape for PAH, particularly in the face of current and emerging global pathogenic threats.
Collapse
Affiliation(s)
- Ygor Marinho
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Elizabeth S Villarreal
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Omar Loya
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| | - Suellen D Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Kaur G, Sohanur Rahman M, Shaikh S, Panda K, Chinnapaiyan S, Santiago Estevez M, Xia L, Unwalla H, Rahman I. Emerging roles of senolytics/senomorphics in HIV-related co-morbidities. Biochem Pharmacol 2024; 228:116179. [PMID: 38556028 PMCID: PMC11410549 DOI: 10.1016/j.bcp.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Human immunodeficiency virus (HIV) is known to cause cellular senescence and inflammation among infected individuals. While the traditional antiretroviral therapies (ART) have allowed the once fatal infection to be managed effectively, the quality of life of HIV patients on prolonged ART use is still inferior. Most of these individuals suffer from life-threatening comorbidities like chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and diabetes, to name a few. Interestingly, cellular senescence is known to play a critical role in the pathophysiology of these comorbidities as well. It is therefore important to understand the role of cellular senescence in the disease progression and co-morbidity development in HIV-infected individuals. In this respect, use of senolytic/senomorphic drugs as combination therapy with ART would be beneficial for HIV patients. This review provides a critical analysis of the current literature to determine the potential and efficacy of using senolytics/senotherapeutics in managing HIV infection, latency, and associated co-morbidities in humans. The various classes of senolytics have been studied in detail to focus on their potential to combat against HIV infections and associated pathologies with advancing age.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Md Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Maria Santiago Estevez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Li Xia
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
3
|
Capeau J, Lagathu C, Ngono Ayissi K, Fève B, Béréziat V. HIV and adipose tissue: A long history linked to therapeutic classes of antiretrovirals. ANNALES D'ENDOCRINOLOGIE 2024; 85:255-258. [PMID: 38871510 DOI: 10.1016/j.ando.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
HIV infection has been controlled only since the introduction of triple therapy in 1996, combining, as antiretroviral agents, two nucleoside reverse transcriptase inhibitors (NRTIs) and one protease inhibitor (PI). However, among the NRTIs, the thymidine analogues stavudine and zidovudine led to lipoatrophy, either generalized or associated with visceral fat hypertrophy and buffalo hump. These molecules also increased insulin resistance and the prevalence of diabetes. They were replaced by other NRTIs or non-NRTIs (NNRTIs) that were considered to be free of adipose tissue (AT) toxicity. More recently, the NRTI tenofovir disoproxyfumarate (TDF) and the NNRTI efavirenz have been associated with inhibition of fat gain but not with clear lipoatrophy. Otherwise, the use of PIs led to a phenotype of trunk fat hypertrophy associated with cardiometabolic complications. To avoid their adverse effects, PIs have recently been replaced by a new class of antiretrovirals, the integrase inhibitors (INSTIs), which are well tolerated and effective in controlling HIV. However, this class has been associated with global weight gain, which may be important and concerning for some people living with HIV (PWH). Also, in the NRTI class, TDF has often been replaced by tenofovir alafenamide (TAF) due to bone and renal toxicities, and TAF has been associated with global fat gain. The cardiometabolic consequences of INTIs and TAF are primarily related to the associated weight gain. In the global obesogenic worldwide context, PWH are gaining weight as well in relation to poor health life conditions. Taking in charge obesity uses the same strategies as those used in the general population.
Collapse
Affiliation(s)
- Jacqueline Capeau
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Inserm UMR_S938, Sorbonne université, 75012 Paris, France; Sorbonne Université, INSERM, ANRS-MIE, Sidaction, France.
| | - Claire Lagathu
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Inserm UMR_S938, Sorbonne université, 75012 Paris, France
| | - Kenza Ngono Ayissi
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Inserm UMR_S938, Sorbonne université, 75012 Paris, France
| | - Bruno Fève
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Inserm UMR_S938, Sorbonne université, 75012 Paris, France; Department of Endocrinology, PRISIS, AP-HP, Saint-Antoine Hospital, 75012 Paris, France
| | - Véronique Béréziat
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Inserm UMR_S938, Sorbonne université, 75012 Paris, France
| |
Collapse
|
4
|
Schuermans N, El Chehadeh S, Hemelsoet D, Gautheron J, Vantyghem MC, Nouioua S, Tazir M, Vigouroux C, Auclair M, Bogaert E, Dufour S, Okawa F, Hilbert P, Van Doninck N, Taquet MC, Rosseel T, De Clercq G, Debackere E, Van Haverbeke C, Cherif FR, Urtizberea JA, Chanson JB, Funalot B, Authier FJ, Kaya S, Terryn W, Callens S, Depypere B, Van Dorpe J, Poppe B, Impens F, Mizushima N, Depienne C, Jéru I, Dermaut B. Loss of phospholipase PLAAT3 causes a mixed lipodystrophic and neurological syndrome due to impaired PPARγ signaling. Nat Genet 2023; 55:1929-1940. [PMID: 37919452 DOI: 10.1038/s41588-023-01535-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 09/16/2023] [Indexed: 11/04/2023]
Abstract
Phospholipase A/acyltransferase 3 (PLAAT3) is a phospholipid-modifying enzyme predominantly expressed in neural and white adipose tissue (WAT). It is a potential drug target for metabolic syndrome, as Plaat3 deficiency in mice protects against diet-induced obesity. We identified seven patients from four unrelated consanguineous families, with homozygous loss-of-function variants in PLAAT3, who presented with a lipodystrophy syndrome with loss of fat varying from partial to generalized and associated with metabolic complications, as well as variable neurological features including demyelinating neuropathy and intellectual disability. Multi-omics analysis of mouse Plaat3-/- and patient-derived WAT showed enrichment of arachidonic acid-containing membrane phospholipids and a strong decrease in the signaling of peroxisome proliferator-activated receptor gamma (PPARγ), the master regulator of adipocyte differentiation. Accordingly, CRISPR-Cas9-mediated PLAAT3 inactivation in human adipose stem cells induced insulin resistance, altered adipocyte differentiation with decreased lipid droplet formation and reduced the expression of adipogenic and mature adipocyte markers, including PPARγ. These findings establish PLAAT3 deficiency as a hereditary lipodystrophy syndrome with neurological manifestations, caused by a PPARγ-dependent defect in WAT differentiation and function.
Collapse
Affiliation(s)
- Nika Schuermans
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Salima El Chehadeh
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
- Laboratoire de Génétique Médicale, UMRS_1112, Institut de Génétique Médicale d'Alsace (IGMA), Université de Strasbourg et INSERM, Strasbourg, France
| | | | - Jérémie Gautheron
- Sorbonne Université, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Marie-Christine Vantyghem
- Endocrinology, Diabetology, Metabolism Department, National Competence Centre for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Lille University Hospital, Lille, France
- University of Lille, INSERM U1190, European Genomic Institute for Diabetes, Lille, France
| | - Sonia Nouioua
- Department of Neurology of the EHS of Cherchell, University Centre of Blida, Tipaza, Algeria
- NeuroSciences Research Laboratory, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
| | - Meriem Tazir
- NeuroSciences Research Laboratory, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
- Department of Neurology, CHU Algiers (Mustapha Pacha Hospital), Algiers, Algeria
| | - Corinne Vigouroux
- Sorbonne Université, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Diabetology and Reproductive Endocrinology, and Department of Molecular Biology and Genetics, Paris, France
| | - Martine Auclair
- Sorbonne Université, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Diabetology and Reproductive Endocrinology, and Department of Molecular Biology and Genetics, Paris, France
| | - Elke Bogaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Sara Dufour
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Fumiya Okawa
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Pascale Hilbert
- Department of Molecular and Cellular Biology, Institute of Pathology and Genetics, Charleroi, Belgium
| | - Nike Van Doninck
- Department of Endocrinology and Diabetology, General Hospital VITAZ, Sint-Niklaas, Belgium
| | - Marie-Caroline Taquet
- Department of Internal Medicine and Nutrition, Hopitaux Universitaires Strasbourg, Strasbourg, France
| | - Toon Rosseel
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Griet De Clercq
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elke Debackere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | | | - Ferroudja Ramdane Cherif
- Department of Neurology of the EHS of Cherchell, University Centre of Blida, Tipaza, Algeria
- NeuroSciences Research Laboratory, University of Algiers Benyoucef Benkhedda, Algiers, Algeria
| | | | - Jean-Baptiste Chanson
- Service de Neurologie et Centre de Référence Neuromusculaire Nord/Est/Ile de France, Hôpital de Hautepierre, Strasbourg, France
| | - Benoit Funalot
- Department of Medical Genetics, Hôpital Henri Mondor, Université Paris-Est-Créteil, Créteil, France
- INSERM UMR955, Team Relaix, Faculty of Medicine, Créteil, France
| | - François-Jérôme Authier
- INSERM UMR955, Team Relaix, Faculty of Medicine, Créteil, France
- Centre Expert de Pathologie Neuromusculaire/Histologie, Département de Pathologie, Hôpital Henri Mondor, Université Paris-Est-Créteil, Créteil, France
| | - Sabine Kaya
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Wim Terryn
- Department of Nephrology, Jan Yperman Hospital, Ieper, Belgium
| | - Steven Callens
- Department of General Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bernard Depypere
- Department of Plastic and Reconstructive Surgery, Ghent University Hospital, Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Bruce Poppe
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Francis Impens
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, Bunkyo, Japan
| | - Christel Depienne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, CNRS-UMR7104, Université de Strasbourg, Strasbourg, France
- Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Isabelle Jéru
- Sorbonne Université, INSERM UMRS_938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Department of Medical Genetics, DMU BioGeM, Sorbonne Université, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Bart Dermaut
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Premeaux TA, Ndhlovu LC. Decrypting biological hallmarks of aging in people with HIV. Curr Opin HIV AIDS 2023:01222929-990000000-00054. [PMID: 37421383 DOI: 10.1097/coh.0000000000000810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW HIV infection adds further complexity to the heterogenous process of aging. In this focused review, we examine and discuss recent advances to better elucidate mechanisms of biological aging perturbed and accelerated in the context of HIV, particularly among those with viral suppression through the benefits of antiretroviral therapy (ART). New hypotheses from these studies are poised to provide an improved understanding of multifaceted pathways that converge and likely form the basis for effective interventions toward successful aging. RECENT FINDINGS Evidence to date suggests multiple mechanisms of biological aging impact people living with HIV (PLWH). Recent literature delves and expands on how epigenetic alterations, telomere attrition, mitochondrial perturbations, and intercellular communications may underpin accelerated or accentuated aging phenotypes and the disproportionate prevalence of age-related complications among PLWH. Although most hallmarks of aging are likely exacerbated in the setting of HIV, ongoing research efforts are providing new insight on the collective impact these conserved pathways may have in the aging disease processes. SUMMARY New knowledge on underlying molecular disease mechanisms impacting people aging with HIV are reviewed. Also examined are studies that may facilitate the development and implementation of effective therapeutics and guidance on improving geriatric HIV clinical care.
Collapse
Affiliation(s)
- Thomas A Premeaux
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
6
|
Endres K, Friedland K. Talk to Me-Interplay between Mitochondria and Microbiota in Aging. Int J Mol Sci 2023; 24:10818. [PMID: 37445995 DOI: 10.3390/ijms241310818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The existence of mitochondria in eukaryotic host cells as a remnant of former microbial organisms has been widely accepted, as has their fundamental role in several diseases and physiological aging. In recent years, it has become clear that the health, aging, and life span of multicellular hosts are also highly dependent on the still-residing microbiota, e.g., those within the intestinal system. Due to the common evolutionary origin of mitochondria and these microbial commensals, it is intriguing to investigate if there might be a crosstalk based on preserved common properties. In the light of rising knowledge on the gut-brain axis, such crosstalk might severely affect brain homeostasis in aging, as neuronal tissue has a high energy demand and low tolerance for according functional decline. In this review, we summarize what is known about the impact of both mitochondria and the microbiome on the host's aging process and what is known about the aging of both entities. For a long time, bacteria were assumed to be immortal; however, recent evidence indicates their aging and similar observations have been made for mitochondria. Finally, we present pathways by which mitochondria are affected by microbiota and give information about therapeutic anti-aging approaches that are based on current knowledge.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University, 55131 Mainz, Germany
| | - Kristina Friedland
- Department of Pharmacology and Toxicology, Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
| |
Collapse
|
7
|
Kannan M, Sil S, Oladapo A, Thangaraj A, Periyasamy P, Buch S. HIV-1 Tat-mediated microglial ferroptosis involves the miR-204–ACSL4 signaling axis. Redox Biol 2023; 62:102689. [PMID: 37023693 PMCID: PMC10106521 DOI: 10.1016/j.redox.2023.102689] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/04/2023] Open
Abstract
This study was focused on exploring the role of the HIV-1 Tat protein in mediating microglial ferroptosis. Exposure of mouse primary microglial cells (mPMs) to HIV-1 Tat protein resulted in induction of ferroptosis, which was characterized by increased expression of Acyl-CoA synthetase long-chain family member 4 (ACSL4), in turn, leading to increased generation of oxidized phosphatidylethanolamine, elevated levels of lipid peroxidation, upregulated labile iron pool (LIP) and ferritin heavy chain-1 (FTH1), decreased glutathione peroxidase-4 and mitochondrial outer membrane rupture. Also, inhibition of ferroptosis by ferrostatin-1 (Fer-1) or deferoxamine (DFO) treatment suppressed ferroptosis-related changes in mPMs. Similarly, the knockdown of ACSL4 by gene silencing also inhibited ferroptosis induced by HIV-1 Tat. Furthermore, increased lipid peroxidation resulted in increased release of proinflammatory cytokines, such as TNFα, IL6, and IL1β and microglial activation. Pretreatment of mPMs with Fer-1 or DFO further blocked HIV-1 Tat-mediated microglial activation in vitro and reduced the expression and release of proinflammatory cytokines. We identified miR-204 as an upstream modulator of ACSL4, which was downregulated in mPMs exposed to HIV-1 Tat. Transient transfection of mPMs with miR-204 mimics reduced the expression of ACSL4 while inhibiting HIV-1 Tat-mediated ferroptosis and the release of proinflammatory cytokines. These in vitro findings were further validated in HIV-1 transgenic rats as well as HIV + ve human brain samples. Overall, this study underscores a novel mechanism(s) underlying HIV-1 Tat-mediated ferroptosis and microglial activation involving miR-204-ACSL4 signaling.
Collapse
|
8
|
Schmitt CA, Tchkonia T, Niedernhofer LJ, Robbins PD, Kirkland JL, Lee S. COVID-19 and cellular senescence. Nat Rev Immunol 2023; 23:251-263. [PMID: 36198912 PMCID: PMC9533263 DOI: 10.1038/s41577-022-00785-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/15/2022]
Abstract
The clinical severity of coronavirus disease 2019 (COVID-19) is largely determined by host factors. Recent advances point to cellular senescence, an ageing-related switch in cellular state, as a critical regulator of SARS-CoV-2-evoked hyperinflammation. SARS-CoV-2, like other viruses, can induce senescence and exacerbates the senescence-associated secretory phenotype (SASP), which is comprised largely of pro-inflammatory, extracellular matrix-degrading, complement-activating and pro-coagulatory factors secreted by senescent cells. These effects are enhanced in elderly individuals who have an increased proportion of pre-existing senescent cells in their tissues. SASP factors can contribute to a 'cytokine storm', tissue-destructive immune cell infiltration, endothelialitis (endotheliitis), fibrosis and microthrombosis. SASP-driven spreading of cellular senescence uncouples tissue injury from direct SARS-CoV-2-inflicted cellular damage in a paracrine fashion and can further amplify the SASP by increasing the burden of senescent cells. Preclinical and early clinical studies indicate that targeted elimination of senescent cells may offer a novel therapeutic opportunity to attenuate clinical deterioration in COVID-19 and improve resilience following infection with SARS-CoV-2 or other pathogens.
Collapse
Affiliation(s)
- Clemens A Schmitt
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
- Kepler University Hospital, Department of Hematology and Oncology, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), Partner site Berlin, Berlin, Germany.
| | - Tamar Tchkonia
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism and the Department of Biochemistry, Molecular Biology, and Biochemistry, University of Minnesota, Minneapolis, MN, USA
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Soyoung Lee
- Charité-Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumour Immunology, and Molekulares Krebsforschungszentrum-MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Faculty of Medicine, Johannes Kepler University, Linz, Austria.
| |
Collapse
|
9
|
Grabar S, Potard V, Piroth L, Abgrall S, Bernard L, Allavena C, Caby F, de Truchis P, Duvivier C, Enel P, Katlama C, Khuong MA, Launay O, Matheron S, Melica G, Melliez H, Meynard JL, Pavie J, Slama L, Bregigeon S, Tattevin P, Capeau J, Costagliola D. Striking differences in weight gain after cART initiation depending on early or advanced presentation: results from the ANRS CO4 FHDH cohort. J Antimicrob Chemother 2023; 78:757-768. [PMID: 36683307 DOI: 10.1093/jac/dkad007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Many studies have reported weight gain in ART-naive people living with HIV (PWH) initiating an integrase strand-transfer inhibitor-based regimen. We studied the impact of early or advanced presentation and that of individual drugs in PWH initiating combined ART (cART) between 2012 and 2018. METHODS From the French Hospital Database HIV cohort, we assessed factors associated with a weight gain ≥10%, weight change after cART initiation or BMI increase ≥5 kg/m2 up to 30 months. The analyses were conducted overall, and among PWH with early (primary infection or CD4 >350/mm3 and viral load <100 000 copies/mL, without AIDS) and advanced presentation (AIDS or CD4 <200/mm3, not during primary infection). RESULTS At 30 months, 34.5% (95% CI: 33.5-35.6) of the 12 773 PWH had a weight gain ≥10%, with 20.9% (95% CI: 19.6-22.2) among the 5794 with early presentation and 63.1% (95% CI: 60.9-65.3) among the 3106 with advanced presentation. Weight gain was 2.8 kg (95% CI: 2.0-3.7) for those with early presentation and 9.7 kg (95% CI: 8.4-11.1) for those with advanced presentation. Most weight gain occurred in the first 12 months. Underweight and obese PWH were at significantly higher risk of a BMI increase ≥5 kg/m2 than normal-weight PWH. Results differed within classes and by outcome. Raltegravir and dolutegravir were consistently associated with greater weight gain than the other third agents. Tenofovir alafenamide was also associated with higher weight gain than tenofovir disoproxil or abacavir. CONCLUSIONS After initiating cART, PWH with early presentation exhibited a small weight gain, whereas it was large among those with advanced presentation. The choice of ART should account for the risk of weight gain, especially for PWH who present with advanced disease and/or are obese.
Collapse
Affiliation(s)
- Sophie Grabar
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital St Antoine, F75012, Paris, France
| | - Valérie Potard
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F75013, Paris, France
| | - Lionel Piroth
- Infectious Diseases Department, CHU Dijon, and Inserm CIC 1432 Université de Bourgogne, Dijon, France
| | - Sophie Abgrall
- AP-HP, Hôpital Béclère, Service de Médecine Interne, Clamart, and Université Paris-Saclay, CESP INSERM U1018, Le Kremlin-Bicêtre, France
| | | | - Clotilde Allavena
- Infectious Diseases Department, INSERM EA1413, CHU de Nantes, Nantes, France
| | - Fabienne Caby
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F75013, Paris, France.,Unité VIH-IST, Service d'Immuno-Hematologie, Hôpital Victor Dupouy, Argenteuil, France
| | - Pierre de Truchis
- AP-HP Hôpital Raymond Poincaré, Université Paris-Saclay, Garches, France
| | - Claudine Duvivier
- AP-HP, Hôpital Necker-Enfants Malades, Service de Maladies Infectieuses et Tropicales, Centre d'Infectiologie Necker-Pasteur, Paris, France.,IHU Imagine, Paris, France.,Institut Cochin-CNRS 8104-INSERM U1016, Université Paris Cité, Paris, France.,Institut Pasteur, Centre Médical de l'Institut Pasteur, Paris, France
| | - Patricia Enel
- Assistance Publique-Hôpitaux de Marseille, Public Health Department, Marseille, and Aix-Marseille University, CEReSS, Health Service Research and Quality of Life Center, Marseille, France
| | - Christine Katlama
- AP-HP, Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, and AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Odile Launay
- Université Paris-Cité, AP-HP, Hôpital Cochin, INSERM, CIC 1417, Paris, France
| | - Sophie Matheron
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat-Claude Bernard, GHU Paris Nord, AP-HP, Paris, France
| | - Giovanna Melica
- Clinical Immunology and Infectious Diseases Department, Henri Mondor Hospital, Creteil, France
| | - Hugues Melliez
- Médecine Interne, Hôpital Riaumont, 62 800, Liévin, France
| | - Jean-Luc Meynard
- AP-HP, Department of Infectious Diseases, Saint-Antoine Hospital, Paris, France
| | - Juliette Pavie
- Department of Immunology and Infectious Diseases, AP-HP Hôtel-Dieu, Paris, France
| | - Laurence Slama
- Infectious Diseases Unit, Hôtel Dieu Hospital, APHP, Paris, France
| | - Sylvie Bregigeon
- Aix-Marseille Université, APHM, Hôpital Sainte-Marguerite, Marseille, France
| | - Pierre Tattevin
- Maladies Infectieuses et Réanimation Médicale, Hôpital Pontchaillou, Centre Hospitalo-Universitaire, Rennes, France
| | - Jacqueline Capeau
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), Institute of Cardiometabolism and Nutrition (ICAN), F75012, Paris, France
| | - Dominique Costagliola
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, F75013, Paris, France
| |
Collapse
|
10
|
Molecular Mechanisms to Target Cellular Senescence in Aging and Disease. Cells 2022; 11:cells11233732. [PMID: 36496992 PMCID: PMC9737399 DOI: 10.3390/cells11233732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Cellular senescence is a state of irreversible cell cycle arrest in response to several stressors, including DNA damage, increased cellular oxidative stress, telomere shortening, oncogene activation, and a deep epigenetic remodeling [...].
Collapse
|
11
|
Valyaeva AA, Tikhomirova MA, Potashnikova DM, Bogomazova AN, Snigiryova GP, Penin AA, Logacheva MD, Arifulin EA, Shmakova AA, Germini D, Kachalova AI, Saidova AA, Zharikova AA, Musinova YR, Mironov AA, Vassetzky YS, Sheval EV. Ectopic expression of HIV-1 Tat modifies gene expression in cultured B cells: implications for the development of B-cell lymphomas in HIV-1-infected patients. PeerJ 2022; 10:e13986. [PMID: 36275462 PMCID: PMC9586123 DOI: 10.7717/peerj.13986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
An increased frequency of B-cell lymphomas is observed in human immunodeficiency virus-1 (HIV-1)-infected patients, although HIV-1 does not infect B cells. Development of B-cell lymphomas may be potentially due to the action of the HIV-1 Tat protein, which is actively released from HIV-1-infected cells, on uninfected B cells. The exact mechanism of Tat-induced B-cell lymphomagenesis has not yet been precisely identified. Here, we ectopically expressed either Tat or its TatC22G mutant devoid of transactivation activity in the RPMI 8866 lymphoblastoid B cell line and performed a genome-wide analysis of host gene expression. Stable expression of both Tat and TatC22G led to substantial modifications of the host transcriptome, including pronounced changes in antiviral response and cell cycle pathways. We did not find any strong action of Tat on cell proliferation, but during prolonged culturing, Tat-expressing cells were displaced by non-expressing cells, indicating that Tat expression slightly inhibited cell growth. We also found an increased frequency of chromosome aberrations in cells expressing Tat. Thus, Tat can modify gene expression in cultured B cells, leading to subtle modifications in cellular growth and chromosome instability, which could promote lymphomagenesis over time.
Collapse
Affiliation(s)
- Anna A. Valyaeva
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria A. Tikhomirova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Daria M. Potashnikova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexandra N. Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Maria D. Logacheva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Eugene A. Arifulin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A. Shmakova
- Koltzov Institute of Developmental Biology, Moscow, Russia,UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Diego Germini
- UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Anastasia I. Kachalova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Aleena A. Saidova
- Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, Russia
| | - Anastasia A. Zharikova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Yana R. Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Koltzov Institute of Developmental Biology, Moscow, Russia
| | - Andrey A. Mironov
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Institute for Information Transmission Problems, Moscow, Russia
| | - Yegor S. Vassetzky
- Koltzov Institute of Developmental Biology, Moscow, Russia,UMR9018 (CNRS – Institut Gustave Roussy – Université Paris Saclay), Centre National de Recherche Scientifique, Villejuif, France, France
| | - Eugene V. Sheval
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia,Department of Cell Biology and Histology, School of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Prolonged Antiretroviral Treatment Induces Adipose Tissue Remodelling Associated with Mild Inflammation in SIV-Infected Macaques. Cells 2022; 11:cells11193104. [PMID: 36231066 PMCID: PMC9561982 DOI: 10.3390/cells11193104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022] Open
Abstract
During chronic SIV/HIV infection, adipose tissue (AT) is the target of both antiretroviral treatment (ART) and the virus. AT might subsequently contribute to the low-grade systemic inflammation observed in patients on ART. To evaluate the inflammatory profile of AT during chronic SIV/HIV infection, we assayed subcutaneous and visceral abdominal AT from non-infected (SIV−, control), ART-naïve SIV-infected (SIV+) and ART-controlled SIV-infected (SIV+ART+) cynomolgus macaques for the mRNA expression of genes coding for factors related to inflammation. Significant differences were observed only when comparing the SIV+ART+ group with the SIV+ and/or SIV− groups. ART-treated infection impacted the metabolic fraction (with elevated expression of PPARγ and CEBPα), the extracellular matrix (with elevated expression of COL1A2 and HIF-1α), and the inflammatory profile. Both pro- and anti-inflammatory signatures were detected in AT, with greater mRNA expression of anti-inflammatory markers (adiponectin and CD163) and markers associated with inflammation (TNF-α, Mx1, CCL5 and CX3CL1). There were no intergroup differences in other markers (IL-6 and MCP-1). In conclusion, we observed marked differences in the immune and metabolic profiles of AT in the context of an ART-treated, chronic SIV infection; these differences were related more to ART than to SIV infection per se.
Collapse
|
13
|
Abstract
OBJECTIVE Both obesity and HIV infection are characterized by a state of chronic inflammation associated with increased morbidity and mortality. This review aims to assess the available literature on immune dysregulation in obesity and people with HIV infection (PWH). DESIGN A systematic review of peer-reviewed literature. METHODS We conducted a systematic literature search of PubMed, Embase, Scopus, and international conference abstracts for articles on the epidemiology of obesity in the general population and in PWH and the pathogenesis of obesity with a focus on inflammation and immune activation. RESULTS Of the 631 articles selected after title review, 490 met the inclusion criteria and 90 were included in the final selection. The selected studies highlight the increasing prevalence of obesity in PWH and a substantial role for antiretroviral treatment (ART) in its development. Pathogenesis of obesity and its associated inflammation derives from disturbances in adipose tissue (AT) immune function, focused on T-cell and macrophage function, with a switch to pro-inflammatory immune phenotype and resulting increases in pro-inflammatory chemokines, which contribute to the development of metabolic syndrome. Although dysregulation of these pathways is seen in both obesity and HIV, there remains a lack of human studies on AT inflammation in HIV. CONCLUSION Obesity is an emerging comorbidity in PWH, with a substantial overlap in immune dysregulation patterns seen in both conditions. How this immune dysfunction impacts on development of metabolic complications for both obesity and HIV infection, and whether targeting of AT-derived inflammation will improve outcomes in PWH requires further study.
Collapse
|
14
|
Ngono Ayissi K, Gorwood J, Le Pelletier L, Bourgeois C, Beaupère C, Auclair M, Foresti R, Motterlini R, Atlan M, Barrail-Tran A, Le Grand R, Desjardins D, Fève B, Lambotte O, Capeau J, Béréziat V, Lagathu C. Inhibition of Adipose Tissue Beiging by HIV Integrase Inhibitors, Dolutegravir and Bictegravir, Is Associated with Adipocyte Hypertrophy, Hypoxia, Elevated Fibrosis, and Insulin Resistance in Simian Adipose Tissue and Human Adipocytes. Cells 2022; 11:cells11111841. [PMID: 35681536 PMCID: PMC9180037 DOI: 10.3390/cells11111841] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 06/02/2022] [Indexed: 01/13/2023] Open
Abstract
For people living with HIV, treatment with integrase-strand-transfer-inhibitors (INSTIs) can promote adipose tissue (AT) gain. We previously demonstrated that INSTIs can induce hypertrophy and fibrosis in AT of macaques and humans. By promoting energy expenditure, the emergence of beige adipocytes in white AT (beiging) could play an important role by limiting excess lipid storage and associated adipocyte dysfunction. We hypothesized that INSTIs could alter AT via beiging inhibition. Fibrosis and gene expression were measured in subcutaneous (SCAT) and visceral AT (VAT) from SIV-infected, dolutegravir-treated (SIVART) macaques. Beiging capacity was assessed in human adipose stromal cells (ASCs) undergoing differentiation and being exposed to dolutegravir, bictegravir, or raltegravir. Expression of beige markers, such as positive-regulatory-domain-containing-16 (PRDM16), were lower in AT of SIVART as compared to control macaques, whereas fibrosis-related genes were higher. Dolutegravir and bictegravir inhibited beige differentiation in ASCs, as shown by lower expression of beige markers and lower cell respiration. INSTIs also induced a hypertrophic insulin-resistant state associated with a pro-fibrotic phenotype. Our results indicate that adipocyte hypertrophy induced by INSTIs is involved via hypoxia (revealed by a greater hypoxia-inducible-factor-1-alpha gene expression) in fat fibrosis, beiging inhibition, and thus (via positive feedback), probably, further hypertrophy and associated insulin resistance.
Collapse
Affiliation(s)
- Kenza Ngono Ayissi
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Jennifer Gorwood
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Laura Le Pelletier
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Christine Bourgeois
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
| | - Carine Beaupère
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Martine Auclair
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Roberta Foresti
- INSERM UMR_S955, IMRB, Université Paris-Est Créteil, 94000 Créteil, France; (R.F.); (R.M.)
| | - Roberto Motterlini
- INSERM UMR_S955, IMRB, Université Paris-Est Créteil, 94000 Créteil, France; (R.F.); (R.M.)
| | - Michael Atlan
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
- Service de Chirurgie Plastique et Esthétique, Hôpital Tenon, AP-HP, 75020 Paris, France
| | - Aurélie Barrail-Tran
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
| | - Roger Le Grand
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
| | - Delphine Desjardins
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
| | - Bruno Fève
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
- Service d’Endocrinologie, Diabétologie et Reproduction, Hôpital Saint-Antoine, CRMR, PRISIS, AP-HP, 75012 Paris, France
| | - Olivier Lambotte
- UMR1184 Inserm, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris Saclay, 92032 Fontenay-aux-Roses, France; (C.B.); (A.B.-T.); (R.L.G.); (D.D.); (O.L.)
- Service de Médecine Interne et Immunologie Clinique, Hôpital Bicêtre, AP-HP, 94270 Kremlin-Bicêtre, France
| | - Jacqueline Capeau
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
| | - Véronique Béréziat
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
- Correspondence: (V.B.); (C.L.)
| | - Claire Lagathu
- Inserm UMR_S938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-Métabolisme et Nutrition (ICAN), Sorbonne Université, 75012 Paris, France; (K.N.A.); (J.G.); (L.L.P.); (C.B.); (M.A.); (M.A.); (B.F.); (J.C.)
- Correspondence: (V.B.); (C.L.)
| |
Collapse
|
15
|
Le Pelletier L, Mantecon M, Gorwood J, Auclair M, Foresti R, Motterlini R, Laforge M, Atlan M, Fève B, Capeau J, Lagathu C, Bereziat V. Metformin alleviates stress-induced cellular senescence of aging human adipose stromal cells and the ensuing adipocyte dysfunction. eLife 2021; 10:62635. [PMID: 34544550 PMCID: PMC8526089 DOI: 10.7554/elife.62635] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
Aging is associated with central fat redistribution and insulin resistance. To identify age-related adipose features, we evaluated the senescence and adipogenic potential of adipose-derived stromal cells (ASCs) from abdominal subcutaneous fat obtained from healthy normal-weight young (<25 years) or older women (>60 years). Increased cell passages of young-donor ASCs (in vitro aging) resulted in senescence but not oxidative stress. ASC-derived adipocytes presented impaired adipogenesis but no early mitochondrial dysfunction. Conversely, aged-donor ASCs at early passages displayed oxidative stress and mild senescence. ASC-derived adipocytes exhibited oxidative stress, and early mitochondrial dysfunction but adipogenesis was preserved. In vitro aging of aged-donor ASCs resulted in further increased senescence, mitochondrial dysfunction, oxidative stress, and severe adipocyte dysfunction. When in vitro aged young-donor ASCs were treated with metformin, no alteration was alleviated. Conversely, metformin treatment of aged-donor ASCs decreased oxidative stress and mitochondrial dysfunction resulting in decreased senescence. Metformin's prevention of oxidative stress and of the resulting senescence improved the cells' adipogenic capacity and insulin sensitivity. This effect was mediated by the activation of AMP-activated protein kinase as revealed by its specific inhibition and activation. Overall, aging ASC-derived adipocytes presented impaired adipogenesis and insulin sensitivity. Targeting stress-induced senescence of ASCs with metformin may improve age-related adipose tissue dysfunction.
Collapse
Affiliation(s)
- Laura Le Pelletier
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Matthieu Mantecon
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Jennifer Gorwood
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Martine Auclair
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | | | | | - Mireille Laforge
- CNRS, INSERM UMRS_1124, Faculté des sciences fondamentales et biomédicales, Université de Paris, Paris, France
| | - Michael Atlan
- AP-HP, Tenon Hospital, Department of Plastic Surgery, Paris, France
| | - Bruno Fève
- AP-HP, Saint-Antoine Hospital, Department of Endocrinology, PRISIS, Paris, France
| | - Jacqueline Capeau
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Claire Lagathu
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Veronique Bereziat
- Sorbonne Université, Inserm UMR_S 938, Centre de Recherche Saint-Antoine (CRSA), RHU CARMMA, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| |
Collapse
|
16
|
Bourgeois C, Gorwood J, Olivo A, Le Pelletier L, Capeau J, Lambotte O, Béréziat V, Lagathu C. Contribution of Adipose Tissue to the Chronic Immune Activation and Inflammation Associated With HIV Infection and Its Treatment. Front Immunol 2021; 12:670566. [PMID: 34220817 PMCID: PMC8250865 DOI: 10.3389/fimmu.2021.670566] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
White adipose tissue (AT) contributes significantly to inflammation – especially in the context of obesity. Several of AT’s intrinsic features favor its key role in local and systemic inflammation: (i) large distribution throughout the body, (ii) major endocrine activity, and (iii) presence of metabolic and immune cells in close proximity. In obesity, the concomitant pro-inflammatory signals produced by immune cells, adipocytes and adipose stem cells help to drive local inflammation in a vicious circle. Although the secretion of adipokines by AT is a prime contributor to systemic inflammation, the lipotoxicity associated with AT dysfunction might also be involved and could affect distant organs. In HIV-infected patients, the AT is targeted by both HIV infection and antiretroviral therapy (ART). During the primary phase of infection, the virus targets AT directly (by infecting AT CD4 T cells) and indirectly (via viral protein release, inflammatory signals, and gut disruption). The initiation of ART drastically changes the picture: ART reduces viral load, restores (at least partially) the CD4 T cell count, and dampens inflammatory processes on the whole-body level but also within the AT. However, ART induces AT dysfunction and metabolic side effects, which are highly dependent on the individual molecules and the combination used. First generation thymidine reverse transcriptase inhibitors predominantly target mitochondrial DNA and induce oxidative stress and adipocyte death. Protease inhibitors predominantly affect metabolic pathways (affecting adipogenesis and adipocyte homeostasis) resulting in insulin resistance. Recently marketed integrase strand transfer inhibitors induce both adipocyte adipogenesis, hypertrophy and fibrosis. It is challenging to distinguish between the respective effects of viral persistence, persistent immune defects and ART toxicity on the inflammatory profile present in ART-controlled HIV-infected patients. The host metabolic status, the size of the pre-established viral reservoir, the quality of the immune restoration, and the natural ageing with associated comorbidities may mitigate and/or reinforce the contribution of antiretrovirals (ARVs) toxicity to the development of low-grade inflammation in HIV-infected patients. Protecting AT functions appears highly relevant in ART-controlled HIV-infected patients. It requires lifestyle habits improvement in the absence of effective anti-inflammatory treatment. Besides, reducing ART toxicities remains a crucial therapeutic goal.
Collapse
Affiliation(s)
- Christine Bourgeois
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Jennifer Gorwood
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Anaelle Olivo
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France
| | - Laura Le Pelletier
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Jacqueline Capeau
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Olivier Lambotte
- CEA - Université Paris Saclay - INSERM U1184, Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, Fontenay-aux-Roses, France.,AP-HP, Groupe Hospitalier Universitaire Paris Saclay, Hôpital Bicêtre, Service de Médecine Interne et Immunologie Clinique, Le Kremlin-Bicêtre, France
| | - Véronique Béréziat
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| | - Claire Lagathu
- Sorbonne Université, INSERM UMR_S 938, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire de Cardio-métabolisme et Nutrition (ICAN), FRM EQU201903007868, Paris, France
| |
Collapse
|
17
|
Capeau J, Lagathu C, Béréziat V, Fève B. Recent data on adipose tissue, insulin resistance, diabetes and dyslipidaemia in antiretroviral therapy controlled HIV-infected persons. Curr Opin HIV AIDS 2021; 16:141-147. [PMID: 33783403 DOI: 10.1097/coh.0000000000000674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW Increased total body fat with truncal redistribution is common in antiretroviral therapy (ART)-controlled persons living with HIV(PLWH), leading to insulin resistance, prediabetes/diabetes and dyslipidaemia. We address these topics here. RECENT FINDINGS Most antiretrovirals are associated with gain in trunk fat, including visceral adipose tissue (VAT). Protease-inhibitors could inhibit white fat ability to dissipate energy (i.e. beiging) favouring fat gain. Expansion of VAT is associated with a pro-inflammatory profile linked to the tryptophan-kynurenine pathway and CD4+ subtypes. ART-associated increased adipose tissue (AT) quantity leads to decreased AT density, insulin resistance and dyslipidaemia that could be improved by lifestyle modifications.PLWH present high level of insulin resistance, regardless of their treatment, and a higher prevalence of prediabetes, but not diabetes, than noninfected persons. Otherwise, HbA1c values appear inaccurate to diagnose prediabetes/diabetes in PLWH.ART-related-dyslipidaemia is characterized by elevated LDL-C and/or high triglycerides and reduced HDL-C. Whereas treatment with protease inhibitors generally results in worsened lipid values, treatment with integrase-strand-transfer-inhibitors is associated with a better profile. Tenofovir-alafenamide is associated with higher lipid levels than tenofovir-disoproxil-fumarate. Treatment of LDL-C-dyslipidaemia could benefit, in statin-insufficiently controlled patients, from the class of proprotein-convertase-subtilsin-kenin-type-9 (PCSK-9) inhibitors. SUMMARY Lifestyle modifications are mandatory to reduce fat and improve dysglycaemia/dyslipidaemia. New drugs can efficiently control diabetes and LDL-C-dyslipidaemia.
Collapse
Affiliation(s)
- Jacqueline Capeau
- Sorbonne Université-Inserm, Faculty of Medicine, Centre de Recherche Saint-Antoine (CRSA), UMR_S938, ICAN
| | - Claire Lagathu
- Sorbonne Université-Inserm, Faculty of Medicine, Centre de Recherche Saint-Antoine (CRSA), UMR_S938, ICAN
| | - Véronique Béréziat
- Sorbonne Université-Inserm, Faculty of Medicine, Centre de Recherche Saint-Antoine (CRSA), UMR_S938, ICAN
| | - Bruno Fève
- Sorbonne Université-Inserm, Faculty of Medicine, Centre de Recherche Saint-Antoine (CRSA), UMR_S938, ICAN
- Department of Endocrinology, CRMR Prisis, Saint-Antoine Hospital, GH APHP-Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Duggan MR, Mohseni Ahooyi T, Parikh V, Khalili K. Neuromodulation of BAG co-chaperones by HIV-1 viral proteins and H 2O 2: implications for HIV-associated neurological disorders. Cell Death Discov 2021; 7:60. [PMID: 33771978 PMCID: PMC7997901 DOI: 10.1038/s41420-021-00424-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/04/2021] [Accepted: 01/30/2021] [Indexed: 11/08/2022] Open
Abstract
Despite increasing numbers of aged individuals living with HIV, the mechanisms underlying HIV-associated neurological disorders (HANDs) remain elusive. As HIV-1 pathogenesis and aging are characterized by oxidative stress as well as altered protein quality control (PQC), reactive oxygen species (ROS) themselves might constitute a molecular mediator of neuronal PQC by modulating BCL-2 associated athanogene (BAG) family members. Present results reveal H2O2 replicated and exacerbated a reduction in neuronal BAG3 induced by the expression of HIV-1 viral proteins (i.e., Tat and Nef), while also causing an upregulation of BAG1. Such a reciprocal regulation of BAG3 and BAG1 levels was also indicated in two animal models of HIV, the doxycycline-inducible Tat (iTat) and the Tg26 mouse. Inhibiting oxidative stress via antioxidants in primary culture was capable of partially preserving neuronal BAG3 levels as well as electrophysiological functioning otherwise altered by HIV-1 viral proteins. Current findings indicate HIV-1 viral proteins and H2O2 may mediate neuronal PQC by exerting synergistic effects on complementary BAG family members, and suggest novel therapeutic targets for the aging HIV-1 population.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
- Department of Psychology, College of Liberal Arts at Temple University, 1701 N 13th Street, 9th Floor, Philadelphia, PA, 19122, USA
| | - Taha Mohseni Ahooyi
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA
| | - Vinay Parikh
- Department of Psychology, College of Liberal Arts at Temple University, 1701 N 13th Street, 9th Floor, Philadelphia, PA, 19122, USA
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple University, 3500 N. Broad Street, 7th Floor, Philadelphia, PA, 19140, USA.
| |
Collapse
|
19
|
Seoane R, Vidal S, Bouzaher YH, El Motiam A, Rivas C. The Interaction of Viruses with the Cellular Senescence Response. BIOLOGY 2020; 9:E455. [PMID: 33317104 PMCID: PMC7764305 DOI: 10.3390/biology9120455] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/07/2020] [Indexed: 01/10/2023]
Abstract
Cellular senescence is viewed as a mechanism to prevent malignant transformation, but when it is chronic, as occurs in age-related diseases, it may have adverse effects on cancer. Therefore, targeting senescent cells is a novel therapeutic strategy against senescence-associated diseases. In addition to its role in cancer protection, cellular senescence is also considered a mechanism to control virus replication. Both interferon treatment and some viral infections can trigger cellular senescence as a way to restrict virus replication. However, activation of the cellular senescence program is linked to the alteration of different pathways, which can be exploited by some viruses to improve their replication. It is, therefore, important to understand the potential impact of senolytic agents on viral propagation. Here we focus on the relationship between virus and cellular senescence and the reported effects of senolytic compounds on virus replication.
Collapse
Affiliation(s)
- Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidad de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (R.S.); (S.V.); (Y.H.B.); (A.E.M.)
- Centro Nacional de Biotecnología (CNB), CSIC, 28049 Madrid, Spain
| |
Collapse
|
20
|
Thurman M, Johnson S, Acharya A, Pallikkuth S, Mahesh M, Byrareddy SN. Biomarkers of Activation and Inflammation to Track Disparity in Chronological and Physiological Age of People Living With HIV on Combination Antiretroviral Therapy. Front Immunol 2020; 11:583934. [PMID: 33162998 PMCID: PMC7581935 DOI: 10.3389/fimmu.2020.583934] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
With advancement, prompt use, and increasing accessibility of antiretroviral therapy, people with HIV are living longer and have comparable lifespans to those negative for HIV. However, people living with HIV experience tradeoffs with quality of life often developing age-associated co-morbid conditions such as cancers, cardiovascular diseases, or neurodegeneration due to chronic immune activation and inflammation. This creates a discrepancy in chronological and physiological age, with HIV-infected individuals appearing older than they are, and in some contexts ART-associated toxicity exacerbates this gap. The complexity of the accelerated aging process in the context of HIV-infection highlights the need for greater understanding of biomarkers involved. In this review, we discuss markers identified in different anatomical sites of the body including periphery, brain, and gut, as well as markers related to DNA that may serve as reliable predictors of accelerated aging in HIV infected individuals as it relates to inflammatory state and immune activation.
Collapse
Affiliation(s)
- Michellie Thurman
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Samuel Johnson
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Arpan Acharya
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL, United States
| | - Mohan Mahesh
- Southwest National Primate Research Institute, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Siddappa N Byrareddy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|