1
|
Zheng T, Tan W, Zheng LM. Porous Metal Phosphonate Frameworks: Construction and Physical Properties. Acc Chem Res 2024; 57:2973-2984. [PMID: 39370784 DOI: 10.1021/acs.accounts.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
ConspectusPorous metal phosphonate frameworks (PMPFs) as a subclass of metal-organic frameworks (MOFs) have promising applications in the fields of gas adsorption and separation, ion exchange and storage, catalysis, sensing, etc. Compared to the typical carboxylate-based MOFs, PMPFs exhibit higher thermal and water stability due to the strong coordination ability of the phosphonate ligands. Despite their robust frameworks, PMPFs account for less than 0.51% of the porous MOFs reported so far. This is because metal phosphonates are highly susceptible to the formation of dense layered or pillared-layered structures, and they precipitate easily and are difficult to crystallize. There is a tendency to use phosphonate ligands containing multiple phosphonate groups and large organic spacers to prevent the formation of dense structures and generate open frameworks with permanent porosity. Thus, many PMPFs are composed of chains or clusters of inorganic metal phosphonates interconnected by organic spacers. Using this feature, a wide range of metal ions and organic components can be selected, and their physical properties can be modulated. However, limited by the small number of PMPFs, there are still relatively few studies on the physical properties of PMPFs, some of which merely remain in the description of the phenomena and lack in-depth elaboration of the structure-property relationship. In this Account, we review the strategies for constructing PMPFs and their physical properties, primarily based on our own research. The construction strategies are categorized according to the number (n = 1-4) of phosphonate groups in the ligand. The physical properties include proton conduction, electrical conduction, magnetism, and photoluminescence properties. Proton conductivity of PMPFs can be enhanced by increasing the proton carrier concentration and mobility. The former can be achieved by adding acidic groups such as -POH and/or introducing acidic guests in the hydrophilic channels. The latter can be attained by introducing conjugate acid-base pairs or elevating the temperature. Semiconducting PMPFs, on the other hand, can be obtained by constructing highly conjugated networks of coordination bonds or introducing large conjugated organic linkers π-π stacked in the lattice. In the case of magnetic PMPFs, long-range magnetic ordering occurs at very low temperatures due to very weak magnetic exchange couplings propagated via O-P-O and/or O(P) units. However, lanthanide compounds may be interesting candidates for single-molecule magnets because of the strong single-ion magnetic anisotropy arising from the spin-orbit coupling and large magnetic moments of lanthanide ions. The luminescent properties of PMPFs depend on the metal ions and/or organic ligands. Emissive PMPFs containing lanthanides and/or uranyl ions are promising for sensing and photonic applications. We conclude with an outlook on the opportunities and challenges for the future development of this promising field.
Collapse
Affiliation(s)
- Tao Zheng
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou 215400, China
| | - Wenzhuo Tan
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Suzhou 215400, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Salcedo I, Bazaga-García M, Pérez Colodrero RM, Vílchez-Cózar Á, Cañamero-Cebrián F, Olivera Pastor P, Zaręba JK, Cabeza A. Structural Landscape and Proton Conduction of Lanthanide 5-(Dihydroxyphosphoryl)isophthalates. CRYSTAL GROWTH & DESIGN 2024; 24:7910-7918. [PMID: 39372600 PMCID: PMC11450753 DOI: 10.1021/acs.cgd.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024]
Abstract
Metal phosphonate-carboxylate compounds represent a promising class of materials for proton conduction applications. This study investigates the structural, thermal, and proton conduction properties of three groups of lanthanide-based compounds derived from 5-(dihydroxyphosphoryl)isophthalic acid (PiPhtA). The crystal structures, solved ab initio from X-ray powder diffraction data, reveal that groups Ln-I, Ln[O3P-C6H3(COO)(COOH)(H2O)2] (Ln = La, Pr), and Ln-II, Ln2{[O3P-C6H3(COO)(COOH)]2(H2O)4}·2H2O (Ln = La, Pr, Eu), exhibit three-dimensional frameworks, while group Ln-III, Ln[O3P-C6H3(COO)(COOH)(H2O)] (Ln = Yb), adopts a layered structure with unbonded carboxylic groups oriented toward the interlayer region. All compounds feature carboxylic groups and coordinating water molecules. Impedance measurements demonstrate that these materials exhibit water-mediated proton conductivity, initially following a vehicle-type proton-transfer mechanism. Upon exposure to ammonia vapors from a 14 or 28% aqueous solution, compounds from groups II and III adsorb ammonia and water, leading to an enhancement in proton conductivity consistent with a Grotthuss-type proton-transfer mechanism. Notably, group II of the studied compounds undergoes the formation of a new expanded phase through the internal reaction of carboxylic groups with ammonia, coexisting with the as-synthesized phase. This postsynthetic modification results in a significant increase in proton conductivity, from approximately ∼5 × 10-6 to ∼10-4 S·cm-1 at 80 °C and 95% relative humidity (RH), attributed to a mixed intrinsic/extrinsic contribution. Remarkably, the NH3(28%)-exposed Yb-III compound achieves an enhancement in proton conductivity, reaching ∼ 5 × 10-3 S·cm-1 at 80 °C and 95% RH, primarily through an extrinsic contribution.
Collapse
Affiliation(s)
- Inés
R. Salcedo
- Servicios
Centrales de Apoyo a la Investigación, Universidad de Málaga, Málaga 29071, Spain
| | - Montse Bazaga-García
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | | | - Álvaro Vílchez-Cózar
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | | | - Pascual Olivera Pastor
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | - Jan K. Zaręba
- Institute
of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław 50-370, Poland
| | - Aurelio Cabeza
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| |
Collapse
|
3
|
Teng Q, Gao R, Bao SS, Zheng LM. Cu 12-cluster-based metal-organic framework as a metastable intermediate in the formation of a layered copper phosphonate. Chem Commun (Camb) 2024; 60:7765-7768. [PMID: 38973675 DOI: 10.1039/d4cc00550c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The solvothermal reaction of CuSO4·5H2O and a chiral R-pempH2 ligand (molar ratio 6 : 1) first forms the metastable intermediate [Cu24(OH)20(R-pempH)8(SO4)10(H2O)10.5]·35H2O (1), followed by the formation of the stable phase [Cu2(OH)(R-pempH)(SO4)(H2O)]·H2O (2). Compound 1 displays a novel 3D open-framework structure containing Cu12 cluster nodes and sulfate links, which can be converted to the layered compound 2. We also investigated the photothermal effects of both compounds.
Collapse
Affiliation(s)
- Qian Teng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Ran Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
4
|
Zakzak K, Semenescu AD, Moacă EA, Predescu I, Drăghici G, Vlaia L, Vlaia V, Borcan F, Dehelean CA. Comprehensive Biosafety Profile of Carbomer-Based Hydrogel Formulations Incorporating Phosphorus Derivatives. Gels 2024; 10:477. [PMID: 39057500 PMCID: PMC11276259 DOI: 10.3390/gels10070477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Determining the safety of a newly developed experimental product is a crucial condition for its medical use, especially for clinical trials. In this regard, four hydrogel-type formulations were manufactured, all of which were based on carbomer (Blank-CP940) and encapsulated with caffeine (CAF-CP940), phosphorus derivatives (phenyl phosphinic (CAF-S1-CP940) and 2-carboxyethyl phenyl phosphinic acids (CAF-S2-CP940)). The main aim of this research was to provide a comprehensive outline of the biosafety profile of the above-mentioned hydrogels. The complex in vitro screening (cell viability, cytotoxicity, morphological changes in response to exposure, and changes in nuclei morphology) on two types of healthy skin cell lines (HaCaT-human keratinocytes and JB6 Cl 41-5a-murine epidermal cells) exhibited a good biosafety profile when both cell lines were treated for 24 h with 150 μg/mL of each hydrogel. A comprehensive analysis of the hydrogel's impact on the genetic profile of HaCaT cells sustains the in vitro experiments. The biosafety profile was completed with the in vivo and in ovo assays. The outcome revealed that the developed hydrogels exerted good biocompatibility after topical application on BALB/c nude mice's skin. It also revealed a lack of toxicity after exposure to the hen's chicken embryo. Further investigations are needed, regarding the in vitro and in vivo therapeutic efficacy and safety for long-term use and potential clinical translatability.
Collapse
Affiliation(s)
- Khaled Zakzak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (K.Z.); (L.V.)
| | - Alexandra-Denisa Semenescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Iasmina Predescu
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
| | - George Drăghici
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Lavinia Vlaia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (K.Z.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Vicenţiu Vlaia
- Formulation and Technology of Drugs Research Center, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department of Organic Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Florin Borcan
- Department of Analytical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Cristina-Adriana Dehelean
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.-D.S.); (I.P.); (G.D.); (C.-A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Khaled Z, Ilia G, Watz C, Macașoi I, Drăghici G, Simulescu V, Merghes PE, Varan NI, Dehelean CA, Vlaia L, Sima L. The Biological Impact of Some Phosphonic and Phosphinic Acid Derivatives on Human Osteosarcoma. Curr Issues Mol Biol 2024; 46:4815-4831. [PMID: 38785558 PMCID: PMC11120618 DOI: 10.3390/cimb46050290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Osteosarcoma malignancy currently represents a major health problem; therefore, the need for new therapy approaches is of great interest. In this regard, the current study aims to evaluate the anti-neoplastic potential of a newly developed phosphinic acid derivative (2-carboxyethylphenylphosphinic acid) and, subsequently, to outline its pharmaco-toxicological profile by employing two different in vitro human cell cultures (keratinocytes-HaCaT-and osteosarcoma SAOS-2 cells), employing different techniques (MTT assay, cell morphology assessment, LDH assay, Hoechst staining and RT-PCR). Additionally, the results obtained are compared with three commercially available phosphorus-containing compounds (P1, P2, P3). The results recorded for the newly developed compound (P4) revealed good biocompatibility (cell viability of 77%) when concentrations up to 5 mM were used on HaCaT cells for 24 h. Also, the HaCaT cultures showed no significant morphological alterations or gene modulation, thus achieving a biosafety profile even superior to some of the commercial products tested herein. Moreover, in terms of anti-osteosarcoma activity, 2-carboxyethylphenylphosphinic acid expressed promising activity on SAOS-2 monolayers, the cells showing viability of only 55%, as well as apoptosis features and important gene expression modulation, especially Bid downregulation. Therefore, the newly developed compound should be considered a promising candidate for further in vitro and in vivo research related to osteosarcoma therapy.
Collapse
Affiliation(s)
- Zakzak Khaled
- Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (Z.K.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Gheorghe Ilia
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University Timisoara, 16 Pestalozzi Street, 300115 Timisoara, Romania; (G.I.); (V.S.)
| | - Claudia Watz
- Department of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy of Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.M.); (G.D.); (C.A.D.)
| | - Ioana Macașoi
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.M.); (G.D.); (C.A.D.)
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - George Drăghici
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.M.); (G.D.); (C.A.D.)
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Vasile Simulescu
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University Timisoara, 16 Pestalozzi Street, 300115 Timisoara, Romania; (G.I.); (V.S.)
| | - Petru Eugen Merghes
- Department of Physical Education and Sport, “King Mihai I” University of Life Sciences from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (P.E.M.); (N.I.V.)
| | - Narcis Ion Varan
- Department of Physical Education and Sport, “King Mihai I” University of Life Sciences from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (P.E.M.); (N.I.V.)
| | - Cristina Adriana Dehelean
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (I.M.); (G.D.); (C.A.D.)
- Department of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Lavinia Vlaia
- Pharmaceutical Technology, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (Z.K.); (L.V.)
- Formulation and Technology of Drugs Research Center, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania
| | - Laurențiu Sima
- Department of Surgery I, “Victor Babeş” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| |
Collapse
|
6
|
Melo BAV, Gregório Junior DF, de Oliveira MT, de Jesus Trindade F, van de Streek J, Ferreira FF, Brochsztain S. Synthesis and Characterization of Two Novel Naphthalenediimide/Zinc Phosphonate Crystalline Materials Precipitated from Different Solvents. ACS OMEGA 2024; 9:1748-1756. [PMID: 38222663 PMCID: PMC10785331 DOI: 10.1021/acsomega.3c08345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Hybrid naphthalenediimide/zinc phosphonate materials (NDI/Zn) were prepared by mixing solutions of N,N'-bis(2-phosphonoethyl)-1,4,5,8-naphthalenediimide (PNDI) and zinc nitrate, resulting in the precipitation of the desired compounds. Samples precipitated from water and N,N-dimethylformamide (DMF) were produced. The obtained samples had the expected elemental composition, and the presence of naphthalenediimides (NDI) was ascertained by infrared and UV-visible spectroscopy. All the samples were crystalline, according to powder X-ray diffraction. Nitrogen adsorption isotherms showed the presence of porosity in the NDI/Zn samples. Mesopores with a diameter = 4.1 nm were present in the sample from DMF, with total pore volume reaching 0.13 cm3/g.
Collapse
Affiliation(s)
- Barbra
Poly-Anna Vera Melo
- Center
for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, 09280-560 Santo André, Brazil
| | | | - Matheus Troilo de Oliveira
- Center
for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, 09280-560 Santo André, Brazil
| | - Fabiane de Jesus Trindade
- Center
for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, 09280-560 Santo André, Brazil
| | | | - Fabio Furlan Ferreira
- Center
for Natural Sciences and Humanities, Federal
University of ABC, 09280-560 Santo André, Brazil
| | - Sergio Brochsztain
- Center
for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, 09280-560 Santo André, Brazil
| |
Collapse
|
7
|
Huynh RPS, Evans DR, Lian JX, Spasyuk D, Siahrostrami S, Shimizu GKH. Creating Order in Ultrastable Phosphonate Metal-Organic Frameworks via Isolable Hydrogen-Bonded Intermediates. J Am Chem Soc 2023; 145:21263-21272. [PMID: 37738111 DOI: 10.1021/jacs.3c05279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The stability presented by trivalent metal-organic frameworks (MOFs) makes them an attractive class of materials. With phosphonate-based ligands, crystallization is a challenge, as there are significantly more binding motifs that can be adopted due to the extra oxygen tether compared to carboxylate counterparts and the self-assembly processes are less reversible. Despite this, we have reported charge-assisted hydrogen-bonded metal-organic frameworks (HMOFs) consisting of [Cr(H2O)6]3+ and phosphonate ligands, which were crystallographically characterized. We sought to use these HMOFs as a crystalline intermediate to synthesize ordered Cr(III)-phosphonate MOFs. This can be done by dehydrating the HMOF to remove the aquo ligands around the Cr(III) center, forcing metal-phosphonate coordination. Herein, a new porous HMOF, H-CALF-50, is synthesized and then dehydrated to yield the MOF CALF-50. CALF-50 is ordered, although it is not single crystalline. It does, however, have exceptional stability, maintaining crystallinity and surface area after boiling in water for 3 weeks and soaking in 14.5 M H3PO4 for 24 h and 9 M HCl for 72 h. Computational methods are used to study the HMOF to MOF transformation and give insight into the nature of the structure and the degree of heterogeneity.
Collapse
Affiliation(s)
- Racheal P S Huynh
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David R Evans
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jian Xiang Lian
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Denis Spasyuk
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Samira Siahrostrami
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
8
|
Ondrušová S, Bůžek D, Kloda M, Rohlíček J, Adamec S, Pospíšil M, Janoš P, Demel J, Hynek J. Linker-Functionalized Phosphinate Metal-Organic Frameworks: Adsorbents for the Removal of Emerging Pollutants. Inorg Chem 2023; 62:15479-15489. [PMID: 37682020 PMCID: PMC10523435 DOI: 10.1021/acs.inorgchem.3c01810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 09/09/2023]
Abstract
Metal-organic frameworks (MOFs) are attracting increasing attention as adsorbents of contaminants of emerging concern that are difficult to remove by conventional processes. This paper examines how functional groups covering the pore walls of phosphinate-based MOFs affect the adsorption of specific pharmaceutical pollutants (diclofenac, cephalexin, and sulfamethoxazole) and their hydrolytic stability. New structures, isoreticular to the phosphinate MOF ICR-7, are presented. The phenyl ring facing the pore wall of the presented MOFs is modified with dimethylamino groups (ICR-8) and ethyl carboxylate groups (ICR-14). These functionalized MOFs were obtained from two newly synthesized phosphinate linkers containing the respective functional groups. The presence of additional functional groups resulted in higher affinity toward the tested pollutants compared to ICR-7 or activated carbon. However, this modification also comes with a reduced adsorption capacity. Importantly, the introduction of the functional groups enhanced the hydrolytic stability of the MOFs.
Collapse
Affiliation(s)
- Soňa Ondrušová
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
- Department
of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 128
40, Czech Republic
| | - Daniel Bůžek
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
- Department
of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, Ústí nad Labem 400 96, Czech Republic
| | - Matouš Kloda
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
| | - Jan Rohlíček
- Institute
of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, Prague 182 21, Czech Republic
| | - Slavomír Adamec
- Department
of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, Ústí nad Labem 400 96, Czech Republic
| | - Miroslav Pospíšil
- Department
of Chemical Physics and Optics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 121
16, Czech Republic
| | - Pavel Janoš
- Department
of Environmental Chemistry and Technology, Faculty of Environment, Jan Evangelista Purkyně University in Ústí
nad Labem, Pasteurova
3632/15, Ústí nad Labem 400 96, Czech Republic
| | - Jan Demel
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
| | - Jan Hynek
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, Řež 250 68, Czech Republic
| |
Collapse
|
9
|
Shekurov RP, Khrizanforov MN, Bezkishko IA, Ivshin KA, Zagidullin AA, Lazareva AA, Kataeva ON, Miluykov VA. Influence of the Substituent's Size in the Phosphinate Group on the Conformational Possibilities of Ferrocenylbisphosphinic Acids in the Design of Coordination Polymers and Metal-Organic Frameworks. Int J Mol Sci 2023; 24:14087. [PMID: 37762396 PMCID: PMC10531850 DOI: 10.3390/ijms241814087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This paper illustrates how the size and type of substituent R in the phosphinate group of ferrocenyl bisphosphinic acids can affect conformational possibilities and coordination packing. It also demonstrates that H-phosphinate plays a key role in variational mobility, while Me- or Ph- substituents of the phosphinate group can only lead to 0D complexes or 1D coordination polymer. Overall, this paper provides valuable insights into the design and construction of coordination polymers based on ferrocene-contained linkers. It sheds light on how different reaction conditions and substituents can affect conformational possibilities and coordination packing, which could have significant implications for developing new polymers with unique properties.
Collapse
Affiliation(s)
- Ruslan P. Shekurov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
| | - Mikhail N. Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Ilya A. Bezkishko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
| | - Kamil A. Ivshin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
| | - Almaz A. Zagidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| | - Anna A. Lazareva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Olga N. Kataeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
- A.M. Butlerov Chemistry Institute, Kazan Federal University, 420008 Kazan, Russia
| | - Vasili A. Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 420088 Kazan, Russia; (R.P.S.); (I.A.B.); (K.A.I.); (A.A.Z.); (A.A.L.); (O.N.K.); (V.A.M.)
| |
Collapse
|
10
|
Qi S, Xiong S, Xiong L, Li H, Liu B, Liu Y, Xiong K, Yan H, Lv K, Liu H, Hu S. Crystalline versus Amorphous: High-Performance Hafnium Phosphonate Framework for the Separation of Uranium and Transuranium Elements. Inorg Chem 2023. [PMID: 37413971 DOI: 10.1021/acs.inorgchem.3c01458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Metal phosphonate frameworks (MPFs) consisting of tetravalent metal ions and aryl-phosphonate ligands feature a large affinity for actinides and excellent stabilities in harsh aqueous environments. However, it remains elusive how the crystallinity of MPFs influences their performance in actinide separation. To this end, we prepared a new category of porous, ultrastable MPF with different crystallinities for uranyl and transuranium separation. The results demonstrated that crystalline MPF was generally a better adsorbent for uranyl than the amorphous counterpart and ranked as the top-performing one for uranyl and plutonium in strong acidic solutions. A plausible uranyl sequestration mechanism was unveiled by using powder X-ray diffraction in tandem with vibrational spectroscopy, thermogravimetry, and elemental analysis.
Collapse
Affiliation(s)
- Songzhu Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026 Hefei, China
| | - Shunshun Xiong
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Liangping Xiong
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Hao Li
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Boyu Liu
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Yi Liu
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Ke Xiong
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Heng Yan
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Kai Lv
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| | - Hewen Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026 Hefei, China
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry (INPC), China Academy of Engineering Physics (CAEP), Mianyang, 621900 Sichuan, China
| |
Collapse
|
11
|
Glavinović M, Perras JH, Gelfand BS, Lin JB, Spasyuk DM, Zhou W, Shimizu GKH. Microporous Metal-Phosphonates with a Novel Orthogonalized Linker and Complementary Guests: Insights for Trivalent Metal Complexes from Divalent Metal Complexes. Chemistry 2023; 29:e202203835. [PMID: 36581566 DOI: 10.1002/chem.202203835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The reliable self-assembly of microporous metal-phosphonate materials remains a longstanding challenge. This stems from, generally, more coordination modes for the functional group allowing more dense structures, and stronger bonding driving less crystalline products. Here, a novel orthogonalized aryl-phosphonate linker, 1,3,5-tris(4'-phosphono-2',6'-dimethylphenyl) benzene (H6 L3) has been used to direct formation of open frameworks. The peripheral aryl rings of H6 L3 are orthogonalized relative to the central aromatic ring giving a tri-cleft conformation of the linker in which small aromatic molecules can readily associate. When coordinated to magnesium ions, a series of porous crystalline metal-organic, and hydrogen-bonded metal-organic frameworks (MOFs, HMOFs) are formed (CALF-41 (Mg), HCALF-42 (Mg), -43 (Mg)). While most metal-organic frameworks are tailored based on choice of metal and linker, here, the network structures are highly dependent on the inclusion and structure of the guest aromatic compounds. Larger guests, and a higher stoichiometry of metal, result in increased solvation of the metal ion, resulting in networks with connectivities increasingly involving hydrogen-bonds rather than direct phosphonate coordination. Upon thermal activation and aromatic template removal, the materials exhibit surface areas ranging from 400-600 m2 /g. Self-assembly in the absence of aromatic guests yields mixtures of phases, frequently co-producing a dense 3-fold interpenetrated structure (1). Interestingly, a series of both more porous (530-900 m2 /g), and more robust solids is formed by complexing with trivalent metal ions (Al, Ga, In) with aromatic guest; however, these are only attainable as microcrystalline powders. The polyprotic nature of phosphonate linkers enables structural analogy to the divalent analogues and these are identified as CALF-41 analogues. Finally, insights to the structural transformations during metal ion desolvation in this family are gained by considering a pair of structurally related Co materials, whose hydrogen-bonded (HCALF-44 (Co)) and desolvated (CALF-44 (Co)) coordination bonded networks were fully structurally characterized.
Collapse
Affiliation(s)
- Martin Glavinović
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Justin H Perras
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jian-Bin Lin
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Denis M Spasyuk
- Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Wen Zhou
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
12
|
Donnadio A, Paul G, Barbalinardo M, Ambrogi V, Pettinacci G, Posati T, Bisio C, Vivani R, Nocchetti M. Immobilization of Alendronate on Zirconium Phosphate Nanoplatelets. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:742. [PMID: 36839110 PMCID: PMC9965588 DOI: 10.3390/nano13040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Different amounts of sodium-alendronate (ALN) were loaded into layered zirconium phosphates of alpha and gamma type (αZP and γZP) by means of topotactic exchange reactions of phosphate with ALN. In order to extend the exchange process to the less accessible interlayer regions, ALN solutions were contacted with colloidal dispersions of the layered solids previously exfoliated in single sheets by means of intercalation reaction of propylamine (for αZP) or acetone (for γZP). The ALN loading degree was determined by liquid P-nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP), and it was reported as ALN/Zr molar ratios (Rs). The maximum R obtained for γZP was 0.34, while αZP was able to load a higher amount of ALN, reaching Rs equal to 1. The synthesized compounds were characterized by X-ray powder diffractometry, scanning electron microscopy (SEM), solid-state NMR, and infrared spectroscopy. The way the grafted organo-phosphonate groups were bonded to the layers of the host structure was suggested. The effect of ZP derivatives was assessed on cell proliferation, and the results showed that after 7 days of incubation, none of the samples showed a decrease in cell proliferation.
Collapse
Affiliation(s)
- Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturati, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Geo Paul
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | | | - Valeria Ambrogi
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
| | - Gabriele Pettinacci
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
| | | | - Chiara Bisio
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
- CNR-Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturati, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturati, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
13
|
Steinke F, Hernandéz LG, Shearan SJI, Pohlmann M, Taddei M, Kolb U, Stock N. Synthesis and Structure Evolution in Metal Carbazole Diphosphonates Followed by Electron Diffraction. Inorg Chem 2023; 62:35-42. [PMID: 36346925 PMCID: PMC10170509 DOI: 10.1021/acs.inorgchem.2c02599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To access porous metal phosphonates, a new V-shaped, rigid, and sterically demanding diphosphonic acid, namely 3,6-diphosphono-9H-carbazole (H4L), was designed and employed in a high-throughput investigation. Screening of different metal salts and subsequent optimization studies resulted in the isolation of two porous metal phosphonates [Cu2(H2O)2(L)]·2H2O (CAU-37) and [Zn6.75(H2O)1.5(HL)2.5(L)1.5]·8H2O (CAU-57). Structure determination was accomplished by electron diffraction and the dehydration behavior of CAU-37 was followed in situ. A rare case of intralayer water de-/adsorption in CAU-37 was found which leads to a cell volume change of 11.9%. Rod-shaped inorganic building units (IBUs) are connected to layers and structural flexibility is due to "accordion-like" structural changes within the layers. In contrast, in CAU-57 a layered IBU is found, which usually results in the formation of dense structures. Due to the shape and rigidity of the linker, the interconnection of the IBUs results in the formation of pores. Water sorption measurements in combination with powder X-ray diffraction data confirmed the reversibility under structural retention.
Collapse
Affiliation(s)
- Felix Steinke
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Laura Gemmrich Hernandéz
- Centre for High Resolution Electron Microscopy (EMC-M), Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Stephen J I Shearan
- Energy Safety Research Institute, Swansea University, Fabian Way, Swansea SA1 8EN, U.K
| | - Maxi Pohlmann
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Marco Taddei
- Energy Safety Research Institute, Swansea University, Fabian Way, Swansea SA1 8EN, U.K.,Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Ute Kolb
- Centre for High Resolution Electron Microscopy (EMC-M), Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Norbert Stock
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.,Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
14
|
Shekurov RP, Khrizanforov MN, Zagidullin AA, Zinnatullin AL, Kholin KV, Ivshin KA, Gerasimova TP, Sirazieva AR, Kataeva ON, Vagizov FG, Miluykov VA. The Phosphinate Group in the Formation of 2D Coordination Polymer with Sm(III) Nodes: X-ray Structural, Electrochemical and Mössbauer Study. Int J Mol Sci 2022; 23:ijms232415569. [PMID: 36555210 PMCID: PMC9779182 DOI: 10.3390/ijms232415569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
A coordination polymer has been synthesized using ferrocene-based ligand-bearing phosphinic groups of 1,1'-ferrocene-diyl-bis(H-phosphinic acid)), and samarium (III). The coordination polymer's structure was studied by both single-crystal and powder XRD, TG, IR, and Raman analyses. For the first time, the Mössbauer effect studies were performed on ferrocenyl phosphinate and the polymer based on it. Additionally, the obtained polymer was studied by the method of cyclic and differential pulse voltammetry. It is shown that it has the most positive potential known among ferrocenyl phosphinate-based coordination polymers and metal-organic frameworks. Using the values of the oxidation potential, the polymer was oxidized and the ESR method verified the oxidized Fe(III) form in the solid state. Additionally, the effect of the size of the phosphorus atom substituent of the phosphinate group on the dimension of the resulting coordination compounds is shown.
Collapse
Affiliation(s)
- Ruslan P. Shekurov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Mikhail N. Khrizanforov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
- A.M. Butlerov Chemistry Institute of the Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
- Correspondence:
| | - Almaz A. Zagidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Almaz L. Zinnatullin
- Institute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russia
| | - Kirill V. Kholin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
- Department of Physics, Kazan National Research Technological University, 68 Karl Marx Street, 420015 Kazan, Russia
| | - Kamil A. Ivshin
- A.M. Butlerov Chemistry Institute of the Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| | - Tatiana P. Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Aisylu R. Sirazieva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Olga N. Kataeva
- A.M. Butlerov Chemistry Institute of the Kazan Federal University, Kremlevskaya Str. 18, 420008 Kazan, Russia
| | - Farit G. Vagizov
- Institute of Physics, Kazan Federal University, Kremlevskaya str. 18, 420008 Kazan, Russia
| | - Vasili A. Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| |
Collapse
|
15
|
Tholen P, Peeples CA, Ayhan MM, Wagner L, Thomas H, Imbrasas P, Zorlu Y, Baretzky C, Reineke S, Hanna G, Yücesan G. Tuning Structural and Optical Properties of Porphyrin-based Hydrogen-Bonded Organic Frameworks by Metal Insertion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204578. [PMID: 36287102 DOI: 10.1002/smll.202204578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Herein, a simple way of tuning the optical and structural properties of porphyrin-based hydrogen-bonded organic frameworks (HOFs) is reported. By inserting transition metal ions into the porphyrin cores of GTUB-5 (p-H8 -TPPA (5,10,15,20-Tetrakis[p-phenylphosphonic acid] HOF), the authors show that it is possible to generate HOFs with different band gaps, photoluminescence (PL) life times, and textural properties. The band gaps of the resulting HOFs (viz., Cu-, Ni-, Pd-, and Zn-GTUB-5) are measured by diffuse reflectance and PL spectroscopy, as well as calculated via DFT, and the PL lifetimes are measured. Across the series, the band gaps vary over a narrow range from 1.37 to 1.62 eV, while the PL lifetimes vary over a wide range from 2.3 to 83 ns. These differences ultimately arise from metal-induced structural changes, viz., changes in the metal-to-nitrogen distances, number of hydrogen bonds, and pore volumes. DFT reveals that the band gaps of Cu-, Zn-, and Pd- GTUB-5 are governed by highest occupied/lowest unoccupied crystal orbitals (HOCO/LUCO) composed of π- orbitals on the porphyrin linkers, while that of Ni-GTUB-5 is governed by a HOCO and LUCO composed of Ni dorbitals. Overall, our findings show that metal-insertion can be used to optimize HOFs for optoelectronics and small-molecule capture applications.
Collapse
Affiliation(s)
- Patrik Tholen
- Institute for Food Chemistry and Toxicology, Germany, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Craig A Peeples
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Mehmet M Ayhan
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Lukas Wagner
- Physics of Solar Energy Conversion Group, Department of Physics, Philipps-University Marburg, Renthof 7, 35032, Marburg, Germany
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
| | - Heidi Thomas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Straße 61, 01062, Dresden, Germany
| | - Paulius Imbrasas
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Straße 61, 01062, Dresden, Germany
| | - Yunus Zorlu
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Clemens Baretzky
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
| | - Sebastian Reineke
- Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstraße 2, 79110, Freiburg, Germany
| | - Gabriel Hanna
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Dr., Edmonton, Alberta, T6G 2G2, Canada
| | - Gündoğ Yücesan
- Institute for Food Chemistry and Toxicology, Germany, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
- Institute für Anorganische Chemie und Structurchemie, Heinrich Heine Universität Düsseldorf, Universitätstr. 1, 40225, Düsseldorf, Germany
| |
Collapse
|
16
|
Ondrušová S, Kloda M, Rohlíček J, Taddei M, Zaręba JK, Demel J. Exploring the Isoreticular Continuum between Phosphonate- and Phosphinate-Based Metal–Organic Frameworks. Inorg Chem 2022; 61:18990-18997. [DOI: 10.1021/acs.inorgchem.2c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Soňa Ondrušová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic
- Faculty of Science Charles University, 128 00 Praha 2, Czech Republic
| | - Matouš Kloda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic
| | - Jan Rohlíček
- Department of Structure Analysis, Institute of Physics, Czech Academy of Sciences, Prague 18221, Czech Republic
| | - Marco Taddei
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via Giuseppe Moruzzi, 13, Pisa 56124, Italy
| | - Jan K. Zaręba
- Institute of Advanced Materials, Wrocław University of Science and Technology, Wybrzeże, Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Jan Demel
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Řež, Czech Republic
| |
Collapse
|
17
|
Shearan SJI, Andreoli E, Taddei M. An alternative C–P cross-coupling route for the synthesis of novel V-shaped aryldiphosphonic acids. Beilstein J Org Chem 2022; 18:1518-1523. [DOI: 10.3762/bjoc.18.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
The synthesis of phosphonate esters is a topic of interest for various fields, including the preparation of phosphonic acids to be employed as organic linkers for the construction of metal phosphonate materials. We report an alternative method that requires no solvent and involves a different order of addition of reactants to perform the transition-metal-catalyzed C–P cross-coupling reaction, often referred to as the Tavs reaction, employing NiCl2 as a pre-catalyst in the phosphonylation of aryl bromide substrates using triisopropyl phosphite. This new method was employed in the synthesis of three novel aryl diphosphonate esters which were subsequently transformed to phosphonic acids through silylation and hydrolysis.
Collapse
|
18
|
Steinke F, Otto T, Ito S, Wöhlbrandt S, Stock N. Isostructural Family of Rare‐Earth MOFs Synthesized from 1,1,2,2‐Tetrakis(4‐phosphonophenyl)ethylene. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Felix Steinke
- Institute of Inorganic Chemistry Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Tobias Otto
- Institute of Inorganic Chemistry Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Sho Ito
- Rigaku Corporation 3-9-12 Matsubara-cho, Akishima Tokyo 196-8666 Japan
| | - Stephan Wöhlbrandt
- Institute of Inorganic Chemistry Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Norbert Stock
- Institute of Inorganic Chemistry Christian-Albrechts-Universität zu Kiel Max-Eyth-Str. 2 24118 Kiel Germany
- Kiel Nano, Surface and Interface Science KiNSIS Christian-Albrechts-Universität zu Kiel Christian-Albrechts-Platz 4 24118 Kiel Germany
| |
Collapse
|
19
|
Vassaki M, Lazarou S, Turhanen P, Choquesillo-Lazarte D, Demadis KD. Drug-Inclusive Inorganic–Organic Hybrid Systems for the Controlled Release of the Osteoporosis Drug Zoledronate. Molecules 2022; 27:molecules27196212. [PMID: 36234745 PMCID: PMC9572319 DOI: 10.3390/molecules27196212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Bisphosphonates (BPs) are common pharmaceutical treatments used for calcium- and bone-related disorders, the principal one being osteoporosis. Their antiresorptive action is related to their high affinity for hydroxyapatite, the main inorganic substituent of bone. On the other hand, the phosphonate groups on their backbone make them excellent ligands for metal ions. The combination of these properties finds potential application in the utilization of such systems as controlled drug release systems (CRSs). In this work, the third generation BP drug zoledronate (ZOL) was combined with alkaline earth metal ions (e.g., Sr2+ and Ba2+) in an effort to synthesize new materials. These metal–ZOL compounds can operate as CRSs when exposed to appropriate experimental conditions, such as the low pH of the human stomach, thus releasing the active drug ZOL. CRS networks containing Sr2+ or Ba2 and ZOL were physicochemically and structurally characterized and were evaluated for their ability to release the free ZOL drug during an acid-driven hydrolysis process. Various release and kinetic parameters were determined, such as initial rates and release plateau values. Based on the drug release results of this study, there was an attempt to correlate the ZOL release efficiency with the structural features of these CRSs.
Collapse
Affiliation(s)
- Maria Vassaki
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Savvina Lazarou
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
| | - Petri Turhanen
- School of Pharmacy, University of Eastern Finland, Biocenter Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | | | - Konstantinos D. Demadis
- Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, 71003 Heraklion, Greece
- Correspondence:
| |
Collapse
|
20
|
Shekh A, Mombeni Goodajdar B, Asghariganjeh MR. Three-Component Solvent-Free Synthesis of 3, 4-Dihydropyrimidones and Thiones by Iron-Phosphonate Nanoparticle. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1948875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Asma Shekh
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | | | | |
Collapse
|
21
|
Mixed-ligated cobalt phosphonates showing slow magnetic relaxation and spin-flop behavior. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Wen GH, Zou Q, Xu K, Huang XD, Bao SS, Chen XT, Ouyang Z, Wang Z, Zheng LM. Layered Uranyl Phosphonates Encapsulating Co(II)/Mn(II)/Zn(II) Ions: Exfoliation into Nanosheets and Its Impact on Magnetic and Luminescent Properties. Chemistry 2022; 28:e202200721. [PMID: 35570193 DOI: 10.1002/chem.202200721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 01/17/2023]
Abstract
Layered heterometallic 5f-3d uranyl phosphonates can exhibit unique luminescent and/or magnetic properties, but the fabrication and properties of their 2D counterparts have not been investigated. Herein we report three heterobimetallic uranyl phosphonates, namely, [(UO2 )3 M(2-pmbH)4 (H2 O)4 ] ⋅ 2H2 O [MU, M=Co(II), CoU; Mn(II), MnU; Zn(II), ZnU; 2-pmbH3 =2-(phosphonomethyl)benzoic acid]. They are isostructural and display two-dimensional layered structures where the M(II) centers are encapsulated inside the windows generated by the diamagnetic uranyl phosphonate layer. Each M(II) has an octahedral geometry filled with four water molecules in the equatorial positions and two phosphonate oxygen atoms in the axial positions. The uranium atoms adopt UO7 pentagonal bipyramidal and UO6 square bipyramidal geometries. The lattice and coordination water molecules can be released by thermal treatment and reabsorbed in a reversible manner, accompanied with changes of magnetic dynamics. Interestingly, the bulk samples of MU can be exfoliated in acetone via freezing and thawing processes forming nanosheets with single-layer or two-layer thickness (MU-ns). Magnetic studies revealed that the CoU and MnU systems exhibited field-induced slow magnetization relaxation at low temperature. Compared with crystalline CoU, the magnetic relaxation of the CoU-ns aggregates is significantly accelerated. Moreover, photoluminescence measured at 77 K showed slight red-shift of the five characteristic uranyl emission bands for ZnU-ns in comparison with those of the crystalline ZnU. This work gives the first examples of 2D materials based on 5f-3d heterometallic uranyl phosphonates and illustrates the impact of dimension reduction on their magnetic/optical properties.
Collapse
Affiliation(s)
- Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Qian Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
23
|
Rautenberg M, Bhattacharya B, Das C, Emmerling F. Mechanochemical Synthesis of Phosphonate-Based Proton Conducting Metal-Organic Frameworks. Inorg Chem 2022; 61:10801-10809. [PMID: 35776665 DOI: 10.1021/acs.inorgchem.2c01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water-stable metal-organic frameworks (MOFs) with proton-conducting behavior have attracted great attention as promising materials for proton-exchange membrane fuel cells. Herein, we report the mechanochemical gram-scale synthesis of three new mixed-ligand phosphonate-based MOFs, {Co(H2PhDPA)(4,4'-bipy)(H2O)·2H2O}n (BAM-1), {Fe(H2PhDPA)(4,4'-bipy) (H2O)·2H2O}n (BAM-2), and {Cu(H2PhDPA)(dpe)2(H2O)2·2H2O}n (BAM-3) [where H2PhDPA = phenylene diphosphonate, 4,4'-bipy = 4,4'-bipyridine, and dpe = 1,2-di(4-pyridyl)ethylene]. Single-crystal X-ray diffraction measurements revealed that BAM-1 and BAM-2 are isostructural and possess a three-dimensional (3D) network structure comprising one-dimensional (1D) channels filled with guest water molecules. Instead, BAM-3 displays a 1D network structure extended into a 3D supramolecular structure through hydrogen-bonding and π-π interactions. In all three structures, guest water molecules are interconnected with the uncoordinated acidic hydroxyl groups of the phosphonate moieties and coordinated water molecules by means of extended hydrogen-bonding interactions. BAM-1 and BAM-2 showed a gradual increase in proton conductivity with increasing temperature and reached 4.9 × 10-5 and 4.4 × 10-5 S cm-1 at 90 °C and 98% relative humidity (RH). The highest proton conductivity recorded for BAM-3 was 1.4 × 10-5 S cm-1 at 50 °C and 98% RH. Upon further heating, BAM-3 undergoes dehydration followed by a phase transition to another crystalline form which largely affects its performance. All compounds exhibited a proton hopping (Grotthuss model) mechanism, as suggested by their low activation energy.
Collapse
Affiliation(s)
- Max Rautenberg
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin 12489, Germany
| | - Biswajit Bhattacharya
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany
| | - Chayanika Das
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany
| | - Franziska Emmerling
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, Berlin 12489, Germany.,Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, Berlin 12489, Germany
| |
Collapse
|
24
|
Agafonov MA, Alexandrov EV, Artyukhova NA, Bekmukhamedov GE, Blatov VA, Butova VV, Gayfulin YM, Garibyan AA, Gafurov ZN, Gorbunova YG, Gordeeva LG, Gruzdev MS, Gusev AN, Denisov GL, Dybtsev DN, Enakieva YY, Kagilev AA, Kantyukov AO, Kiskin MA, Kovalenko KA, Kolker AM, Kolokolov DI, Litvinova YM, Lysova AA, Maksimchuk NV, Mironov YV, Nelyubina YV, Novikov VV, Ovcharenko VI, Piskunov AV, Polyukhov DM, Polyakov VA, Ponomareva VG, Poryvaev AS, Romanenko GV, Soldatov AV, Solovyeva MV, Stepanov AG, Terekhova IV, Trofimova OY, Fedin VP, Fedin MV, Kholdeeva OA, Tsivadze AY, Chervonova UV, Cherevko AI, Shul′gin VF, Shutova ES, Yakhvarov DG. METAL-ORGANIC FRAMEWORKS IN RUSSIA: FROM THE SYNTHESIS AND STRUCTURE TO FUNCTIONAL PROPERTIES AND MATERIALS. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622050018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
25
|
Glavinović M, Perras JH, Gelfand BS, Lin J, Shimizu GKH. Orthogonalization of Polyaryl Linkers as a Route to More Porous Phosphonate Metal‐Organic Frameworks. Chemistry 2022; 28:e202200874. [DOI: 10.1002/chem.202200874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Martin Glavinović
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - Justin H. Perras
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - Benjamin S. Gelfand
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - Jian‐Bin Lin
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| | - George K. H. Shimizu
- Department of Chemistry University of Calgary 2500 University Drive NW Calgary AB T2N 1N4 Canada
| |
Collapse
|
26
|
Kloda M, Plecháček T, Ondrušová S, Brázda P, Chalupský P, Rohlíček J, Demel J, Hynek J. Phosphinate MOFs Formed from Tetratopic Ligands as Proton-Conductive Materials. Inorg Chem 2022; 61:7506-7512. [PMID: 35512292 DOI: 10.1021/acs.inorgchem.2c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) are attracting attention as potential proton conductors. There are two main advantages of MOFs in this application: the possibility of rational design and tuning of the properties and clear conduction pathways given by their crystalline structure. We hereby present two new MOF structures, ICR-10 and ICR-11, based on tetratopic phosphinate ligands. The structures of both MOFs were determined by 3D electron diffraction. They both crystallize in the P3̅ space group and contain arrays of parallel linear pores lined with hydrophilic noncoordinated phosphinate groups. This, together with the adsorbed water molecules, facilitates proton transfer via the Grotthuss mechanism, leading to a proton conductivity of up to 4.26 × 10-4 S cm-1 for ICR-11. The presented study demonstrates the high potential of phosphinate MOFs for the fabrication of proton conductors.
Collapse
Affiliation(s)
- Matouš Kloda
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Tomáš Plecháček
- Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Soňa Ondrušová
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Petr Brázda
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Praha, Czech Republic
| | - Petr Chalupský
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Jan Rohlíček
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21 Praha, Czech Republic
| | - Jan Demel
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Husinec-Řež, Czech Republic
| | - Jan Hynek
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Husinec-Řež, Czech Republic
| |
Collapse
|
27
|
Vílchez-Cózar Á, Armakola E, Gjika M, Visa A, Bazaga-García M, Olivera-Pastor P, Choquesillo-Lazarte D, Marrero-López D, Cabeza A, P. Colodrero RM, Demadis KD. Exploiting the Multifunctionality of M 2+/Imidazole-Etidronates for Proton Conductivity (Zn 2+) and Electrocatalysis (Co 2+, Ni 2+) toward the HER, OER, and ORR. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11273-11287. [PMID: 35192337 PMCID: PMC8915163 DOI: 10.1021/acsami.1c21876] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
This work deals with the synthesis and characterization of one-dimensional (1D) imidazole-containing etidronates, [M2(ETID)(Im)3]·nH2O (M = Co2+ and Ni2+; n = 0, 1, 3) and [Zn2(ETID)2(H2O)2](Im)2, as well as the corresponding Co2+/Ni2+ solid solutions, to evaluate their properties as multipurpose materials for energy conversion processes. Depending on the water content, metal ions in the isostructural Co2+ and Ni2+ derivatives are octahedrally coordinated (n = 3) or consist of octahedral together with dimeric trigonal bipyramidal (n = 1) or square pyramidal (n = 0) environments. The imidazole molecule acts as a ligand (Co2+, Ni2+ derivatives) or charge-compensating protonated species (Zn2+ derivative). For the latter, the proton conductivity is determined to be ∼6 × 10-4 S·cm-1 at 80 °C and 95% relative humidity (RH). By pyrolyzing in 5%H2-Ar at 700-850 °C, core-shell electrocatalysts consisting of Co2+-, Ni2+-phosphides or Co2+/Ni2+-phosphide solid solution particles embedded in a N-doped carbon graphitic matrix are obtained, which exhibit improved catalytic performances compared to the non-N-doped carbon materials. Co2+ phosphides consist of CoP and Co2P in variable proportions according to the used precursor and pyrolytic conditions. However, the Ni2+ phosphide is composed of Ni2P exclusively at high temperatures. Exploration of the electrochemical activity of these metal phosphides toward the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) reveals that the anhydrous Co2(ETID)(Im)3 pyrolyzed at 800 °C (CoP/Co2P = 80/20 wt %) is the most active trifunctional electrocatalyst, with good integrated capabilities as an anode for overall water splitting (cell voltage of 1.61 V) and potential application in Zn-air batteries. This solid also displays a moderate activity for the HER with an overpotential of 156 mV and a Tafel slope of 79.7 mV·dec-1 in 0.5 M H2SO4. Ni2+- and Co2+/Ni2+-phosphide solid solutions show lower electrochemical performances, which are correlated with the formation of less active crystalline phases.
Collapse
Affiliation(s)
- Álvaro Vílchez-Cózar
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | - Eirini Armakola
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Crete GR-71003, Greece
| | - Maria Gjika
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Crete GR-71003, Greece
| | - Aurelia Visa
- Romanian
Academy, “Coriolan Dragulescu”, Institute of Chemistry, Timisoara 300223, Romania
| | - Montse Bazaga-García
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | - Pascual Olivera-Pastor
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | | | - David Marrero-López
- Departamento
de Física Aplicada I, Universidad
de Málaga, Campus
Teatinos s/n, Málaga 29071, Spain
| | - Aurelio Cabeza
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | - Rosario M. P. Colodrero
- Departamento
de Química Inorgánica, Universidad
de Málaga, Campus Teatinos s/n, Málaga 29071, Spain
| | - Konstantinos D. Demadis
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Crete GR-71003, Greece
| |
Collapse
|
28
|
Wen GH, Chen XM, Xu K, Xie X, Bao SS, Zheng LM. Uranyl phosphonates: crystalline materials and nanosheets for temperature sensing. Dalton Trans 2021; 50:17129-17139. [PMID: 34779803 DOI: 10.1039/d1dt02977k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrathin nanosheets of luminescent metal-organic frameworks or coordination polymers have been widely used for sensing ions, solvents and biomolecules but, as far as we are aware, not yet used for temperature sensing. Herein we report two luminescent uranyl phosphonates based on 2-(phosphonomethyl)benzoic acid (2-pmbH3), namely (UO2)(2-pmbH2)2 (1) and (H3O)[(UO2)2(2-pmb)(2-pmbH)] (2). The former has a supramolecular layer structure, composed of chains of corner-sharing {UO6} octahedra and {PO3C} tetrahedra which are connected by hydrogen bonds between phosphonate and carboxylic groups. Compound 2 possesses a unique 2D anionic framework structure, where the inorganic uranyl phosphonate chains made up of {UO7} and {PO3C} polyhedra are cross-linked by 2-pmb3- ligands. The carboxylic groups of 2-pmbH2- ligands are pendant on the two sides of the layers and form hydrogen bonds between the layers. Both compounds can be exfoliated in acetone via a top-down freeze-thaw method, resulting in nanosheets of two-layer thickness. Interestingly, the photoluminescence (PL) of 1 and 2 is highly temperature sensitive. Variable temperature PL studies revealed that compounds 1 and 2 can be used as thermometers in the temperature ranges 120-300 K and 100-280 K, respectively. By doping the nanosheets into polymer matrix, 1-ns@PMMA and 2-ns@PMMA were prepared. The PL intensity of 1-ns@PMMA is insensitive to temperature, unlike that of the bulk sample. While 2-ns@PMMA exhibits similar temperature-dependent luminescence behaviour to its bulk counterpart, thereby enabling its potential application as a thermometer in the temperature range 100-280 K.
Collapse
Affiliation(s)
- Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Xiu-Mei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
29
|
Steinke F, Javed A, Wöhlbrandt S, Tiemann M, Stock N. New isoreticular phosphonate MOFs based on a tetratopic linker. Dalton Trans 2021; 50:13572-13579. [PMID: 34515279 DOI: 10.1039/d1dt02610k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The tetratopic linker 1,1,2,2-tetrakis(4-phosphonophenyl)ethylene (H8TPPE) was used to synthesize the three new porous metal-organic frameworks of composition [M2(H2O)2(H2TPPE)]·xH2O (M = Al3+, Ga3+, Fe3+), denoted as M-CAU-53 under hydrothermal reaction conditions, using the corresponding metal nitrates as starting materials. The crystal structures of the compounds were determined ab initio from powder X-ray diffraction data, revealing small structural differences. Proton conductivity measurements were carried out, indicating different conductivity mechanisms. The differences in proton conductivity could be linked to the individual structures. In addition, a thorough characterization via thermogravimetry, elemental analysis, IR-spectroscopy as well as N2- and H2O-sorption is given.
Collapse
Affiliation(s)
- Felix Steinke
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany.
| | - Ali Javed
- Department of Chemistry, Paderborn University, Paderborn, Germany
| | - Stephan Wöhlbrandt
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany.
| | - Michael Tiemann
- Department of Chemistry, Paderborn University, Paderborn, Germany
| | - Norbert Stock
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Straße 2, D-24118 Kiel, Germany.
| |
Collapse
|
30
|
A three-component copper phosphonate complex as a sensor platform for sensitive Cd2+ and Zn2+ ion detection in water via fluorescence enhancement. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Lv XW, Weng CC, Zhu YP, Yuan ZY. Nanoporous Metal Phosphonate Hybrid Materials as a Novel Platform for Emerging Applications: A Critical Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005304. [PMID: 33605008 DOI: 10.1002/smll.202005304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/15/2020] [Indexed: 06/12/2023]
Abstract
Nanoporous metal phosphonates are propelling the rapid development of emerging energy storage, catalysis, environmental intervention, and biology, the performances of which touch many fundamental aspects of portable electronics, convenient transportation, and sustainable energy conversion systems. Recent years have witnessed tremendous research breakthroughs in these fields in terms of the fascinating pore properties, the structural periodicity, and versatile skeletons of porous metal phosphonates. This review presents recent milestones of porous metal phosphonate research, from the diversified synthesis strategies for controllable pore structures, to several important applications including adsorption and separation, energy conversion and storage, heterogeneous catalysis, membrane engineering, and biomaterials. Highlights of porous structure design for metal phosphonates are described throughout the review and the current challenges and perspectives for future research in this field are discussed at the end. The aim is to provide some guidance for the rational preparation of porous metal phosphonate materials and promote further applications to meet the urgent demands in emerging applications.
Collapse
Affiliation(s)
- Xian-Wei Lv
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chen-Chen Weng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yun-Pei Zhu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Zhong-Yong Yuan
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), National Institute for Advanced Materials, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China
| |
Collapse
|
32
|
Zou Q, Bao SS, Huang XD, Wen GH, Jia JG, Wu LQ, Zheng LM. Cobalt(II)-dianthracene Frameworks: Assembly, Exfoliation and Properties. Chem Asian J 2021; 16:1456-1465. [PMID: 33861508 DOI: 10.1002/asia.202100283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks containing responsive organic linkers are attractive for potential applications in sensors and molecular devices. Herein we report three cobalt(II) phosphonates incorporating responsive dianthracene linkers, namely, Co2 (amp2 H2 )2 (H2 O)4 ⋅ 6H2 O (MDAF-1), Co2 (amp2 )(H2 O)4 ⋅ 2H2 O (MDAF-2) and Co(amp2 H2 ) ⋅ 2H2 O ⋅ 0.5DMF (MDAF-3), where amp2 H4 is pre-photodimerized 9-anthrylmethylphosphonic acid. MDAF-1 shows a layer structure in which dinuclear Co2 (PO3 H)2 units are inter-connected by dianthracene ligands. In MDAF-2 and MDAF-3, inorganic chains of corner-sharing {CoO4 } (or {CoO6 }) and {PO3 C} are cross-linked by dianthracene ligands into 3D frameworks. All compounds underwent thermo-induced phase transitions, first the de-solvation and then the de-dimerization of dianthracene (as well as the release of the remaining solvent molecules for MDAF-2 and -3), associated with magnetic changes. MDAF-1 can be exfoliated into single-layer nanosheets in water which show light-triggered luminescent changes.
Collapse
Affiliation(s)
- Qian Zou
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Lan-Qing Wu
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
33
|
Bazaga-García M, Vílchez-Cózar Á, Maranescu B, Olivera-Pastor P, Marganovici M, Ilia G, Cabeza Díaz A, Visa A, Colodrero RMP. Synthesis and electrochemical properties of metal(ii)-carboxyethylphenylphosphinates. Dalton Trans 2021; 50:6539-6548. [PMID: 33890594 DOI: 10.1039/d1dt00104c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein the synthesis, structural characterization and electrocatalytic properties of three new coordination polymers, resulting from the combination of divalent metal (Ca2+, Cd2+ or Co2+) salts with (2-carboxyethyl)(phenyl)phosphinic acid. In addition to the usual hydrothermal procedure, the Co2+ derivative could also be prepared by microwave-assisted synthesis, in much shorter times. The crystal structures were solved by ab initio calculations, from powder diffraction data. Compounds MII[O2P(CH2CH2COOH)(C6H5)]2 {M = Cd (1) or Ca (2)} crystallize in the monoclinic system and display a layered topology, with the phenyl groups pointing toward the interlayer space in a interdigitated fashion. Compound Co2[(O2P(CH2CH2COO)(C6H5)(H2O)]2·2H2O (3) presents a 1D structure composed of zig-zag chains, formed by edge-sharing cobalt octahedra, with the phenyl groups pointing outside. Packing of these chains is favored by hydrogen bond interactions via lattice water molecules. In addition, H-bonds along the chains are established with the participation of the water molecules and the hydrophilic groups from the ligand. However, the solid exhibits a low proton conductivity, attributed to the isolation of the hydrophilic regions caused by the arrangement of hydrophobic phenyl groups. Preliminary studies on the electrocatalytic performance for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have been conducted for compound 3 and its pyrolytic derivatives, which were previously thoroughly characterized. By comparison, another Co2+ phosphinate, 4, obtained by microwave-assisted synthesis, but with distinct stoichiometry and a known structure was also tested. For the OER, the best performance was achieved with a derivative of 3, prepared by heating this compound in N2 at 200 °C. This derivative showed overpotential (339 mV, at a current density of 10 mA cm-2) and Tafel slope (51.7 mV dec-1) values comparable to those of other Co2+ related materials.
Collapse
Affiliation(s)
- Montse Bazaga-García
- Dpo Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 29071-Málaga, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Salcedo I, Colodrero RMP, Bazaga-García M, López-González M, del Río C, Xanthopoulos K, Demadis KD, Hix GB, Furasova AD, Choquesillo-Lazarte D, Olivera-Pastor P, Cabeza A. Phase Transformation Dynamics in Sulfate-Loaded Lanthanide Triphosphonates. Proton Conductivity and Application as Fillers in PEMFCs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15279-15291. [PMID: 33764728 PMCID: PMC8610370 DOI: 10.1021/acsami.1c01441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Phase transformation dynamics and proton conduction properties are reported for cationic layer-featured coordination polymers derived from the combination of lanthanide ions (Ln3+) with nitrilo-tris(methylenephosphonic acid) (H6NMP) in the presence of sulfate ions. Two families of materials are isolated and structurally characterized, i.e., [Ln2(H4NMP)2(H2O)4](HSO4)2·nH2O (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb; n = 4-5, Series I) and [Ln(H5NMP)]SO4·2H2O (Ln = Pr, Nd, Eu, Gd, Tb; Series II). Eu/Tb bimetallic solid solutions are also prepared for photoluminescence studies. Members of families I and II display high proton conductivity (10-3 and 10-2 S·cm-1 at 80 °C and 95% relative humidity) and are studied as fillers for Nafion-based composite membranes in PEMFCs, under operating conditions. Composite membranes exhibit higher power and current densities than the pristine Nafion membrane working in the range of 70-90 °C and 100% relative humidity and with similar proton conductivity.
Collapse
Affiliation(s)
- Inés
R. Salcedo
- Departamento
de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos s/n, Málaga-29071, Spain
| | - Rosario M. P. Colodrero
- Departamento
de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos s/n, Málaga-29071, Spain
| | - Montse Bazaga-García
- Departamento
de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos s/n, Málaga-29071, Spain
| | - M. López-González
- Instituto
de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, Madrid-28006, Spain
| | - Carmen del Río
- Instituto
de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, Madrid-28006, Spain
| | - Konstantinos Xanthopoulos
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Heraklion, Crete, GR-71003, Greece
| | - Konstantinos D. Demadis
- Crystal
Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Heraklion, Crete, GR-71003, Greece
| | - Gary B. Hix
- School of
Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, United Kingdom
| | | | - Duane Choquesillo-Lazarte
- Laboratorio
de Estudios Cristalográficos, IACT
(CSIC-UGR), Avda. de
las Palmeras 4, 18100 Armilla, Granada , Spain
| | - Pascual Olivera-Pastor
- Departamento
de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos s/n, Málaga-29071, Spain
| | - Aurelio Cabeza
- Departamento
de Química Inorgánica, Cristalografía y Mineralogía, Universidad de Málaga, Campus de Teatinos s/n, Málaga-29071, Spain
| |
Collapse
|
35
|
Kloda M, Ondrušová S, Lang K, Demel J. Phosphinic acids as building units in materials chemistry. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
36
|
Enakieva YY, Zhigileva EA, Fitch AN, Chernyshev VV, Stenina IA, Yaroslavtsev AB, Sinelshchikova AA, Kovalenko KA, Gorbunova YG, Tsivadze AY. Proton conductivity as a function of the metal center in porphyrinylphosphonate-based MOFs. Dalton Trans 2021; 50:6549-6560. [PMID: 33890610 DOI: 10.1039/d1dt00612f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational design of metal-organic frameworks (MOFs) is highly important for the development of new proton conductors. Porphyrinylphosphonate-based MOFs, providing the directed tuning of physical and chemical properties of materials through the modification of a macrocycle, are potentially high-conducting systems. In this work the synthesis and characterization of novel anionic Zn-containing MOF based on palladium(ii) meso-tetrakis(3-(phosphonatophenyl))porphyrinate, IPCE-2Pd, are reported. Moreover, the proton-conductive properties and structures of two anionic Zn-containing MOFs based on previously described nickel(ii) and novel palladium(ii) porphyrinylphosphonates, IPCE-2M (M = Ni(ii) or Pd(ii)), are compared in details. The high proton conductivity of 1.0 × 10-2 S cm-1 at 75 °C and 95% relative humidity (RH) is revealed for IPCE-2Ni, while IPCE-2Pd exhibits higher hydrolytic and thermal stability of the material (up to 420 °C) simultaneously maintaining a comparable value of conductivity (8.11 × 10-3 S cm-1 at 95 °C and 95% RH). The nature of the porphyrin metal center is responsible for the features of crystal structure of materials, obtained under identical reaction conditions. The structures of IPCE-2Pd and its dehydrated derivative IPCE-2Pd-HT are determined from the synchrotron powder diffraction data. The presence of phosphonic groups in compared materials IPCE-2M affords a high concentration of proton carriers that together with the sorption of water molecules leads to a high proton conductivity.
Collapse
Affiliation(s)
- Yulia Yu Enakieva
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation.
| | - Ekaterina A Zhigileva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow, 119991, Russian Federation
| | - Andrew N Fitch
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble CEDEX 9, France
| | - Vladimir V Chernyshev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation. and Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow, 119991, Russian Federation
| | - Irina A Stenina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation
| | - Andrey B Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation
| | - Anna A Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation.
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation. and Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation. and Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation
| |
Collapse
|
37
|
Advances and Challenges in the Creation of Porous Metal Phosphonates. MATERIALS 2020; 13:ma13235366. [PMID: 33256025 PMCID: PMC7734583 DOI: 10.3390/ma13235366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 01/02/2023]
Abstract
In the expansive world of porous hybrid materials, a category of materials that has been rather less explored than others and is gaining attention in development is the porous metal phosphonates. They offer promising features towards applications which demand control over the inorganic–organic network and interface, which is critical for adsorption, catalysis and functional devices and technology. The need to establish a rationale for new synthesis approaches to make these materials in a controlled manner is by itself an important motivation for material chemists. In this review, we highlight the various synthetic strategies exploited, discussing various metal phosphonate systems and how they influence the properties of porous metal phosphonates. We discuss porous metal phosphonate systems based on transition metals with an emphasis on addressing challenges with tetravalent metals. Finally, this review provides a brief description of some key areas of application that are ideally suited for porous metal phosphonates.
Collapse
|
38
|
Ayhan MM, Bayraktar C, Yu KB, Hanna G, Yazaydin AO, Zorlu Y, Yücesan G. A Nanotubular Metal-Organic Framework with a Narrow Bandgap from Extended Conjugation*. Chemistry 2020; 26:14813-14816. [PMID: 32500561 PMCID: PMC7756393 DOI: 10.1002/chem.202001917] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/03/2020] [Indexed: 11/29/2022]
Abstract
A one-dimensional nanotubular metal-organic framework (MOF) [Ni(Cu-H4 TPPA)]⋅2 (CH3 )2 NH2 + (H8 TPPA=5,10,15,20-tetrakis[p-phenylphosphonic acid] porphyrin) constructed by using the arylphosphonic acid H8 TPPA is reported. The structure of this MOF, known as GTUB-4, was solved by using single-crystal X-ray diffraction and its geometric accessible surface area was calculated to be 1102 m2 g-1 , making it the phosphonate MOF with the highest reported surface area. Due to the extended conjugation of its porphyrin core, GTUB-4 possesses narrow indirect and direct bandgaps (1.9 eV and 2.16 eV, respectively) in the semiconductor regime. Thermogravimetric analysis suggests that GTUB-4 is thermally stable up to 400 °C. Owing to its high surface area, low bandgap, and high thermal stability, GTUB-4 could find applications as electrodes in supercapacitors.
Collapse
Affiliation(s)
- M. Menaf Ayhan
- Department of ChemistryFaculty of ScienceGebze Technical University41400GebzeKocaeli (Turkey
| | - Ceyda Bayraktar
- Department of ChemistryFaculty of ScienceGebze Technical University41400GebzeKocaeli (Turkey
| | - Kai Bin Yu
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Gabriel Hanna
- University of AlbertaDepartment of Chemistry116 St. and 85 Ave.EdmontonAlbertaT6G 2R3Canada
| | - A. Ozgur Yazaydin
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Yunus Zorlu
- Department of ChemistryFaculty of ScienceGebze Technical University41400GebzeKocaeli (Turkey
| | - Gündoğ Yücesan
- Technische Universität BerlinDepartment of Food Chemistry and ToxicologyGustav-Meyer-Allee 2513355BerlinGermany
| |
Collapse
|
39
|
Wöhlbrandt S, Meier C, Reinsch H, Svensson Grape E, Inge AK, Stock N. A Tetratopic Phosphonic Acid for the Synthesis of Permanently Porous MOFs: Reactor Size-Dependent Product Formation and Crystal Structure Elucidation via Three-Dimensional Electron Diffraction. Inorg Chem 2020; 59:13343-13352. [PMID: 32869998 DOI: 10.1021/acs.inorgchem.0c01703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following the strategy of installing porosity in coordination polymers predefined by linker geometry, we employed the new tetratopic linker molecule 1,1,2,2-tetrakis[4-phosphonophenyl]ethylene (H8TPPE) for the synthesis of new porous metal phosphonates. A high-throughput study was carried out using Ni2+ and Co2+ as metal ions, and a very strong influence of the reactor size on the product formation is observed while maintaining the same reaction parameters. Using small autoclaves (V = 250 μL), single crystals of isostructural mononuclear complexes of the composition [Ni(H3DPBP)2(H2O)4] (1) and [Co(H3DPBP)2(H2O)4] (2) are formed. They contain the linker molecule H4DPBP (4,4'-diphosphonobenzophenone), which is formed in situ by oxidation of H8TPPE. Using autoclaves with a volume of V = 2 mL, two new 3D metal-organic frameworks (MOFs) of composition [Ni2(H4TPPE)(H2O)6]·4H2O (CAU-46) and [Co2(H4TPPE)(H2O)4]·3H2O (CAU-47) were isolated in bulk quantities, and their crystal structures were determined from three-dimensional electron diffraction (3D ED) and powder X-ray diffraction data. Using even larger autoclaves (V = 30 mL), another 3D MOF of the composition [Co2(H4TPPE)]·6H2O (Co-CAU-48) was obtained, and a structure model was established via 3D ED measurements. Remarkably, the isostructural compound [Ni2(H4TPPE)]·9H2O (Ni-CAU-48) is only obtained indirectly, i.e., via thermal activation of CAU-46. As the chosen linker geometry leads to the formation of MOFs, topological analyses were carried out, highlighting the different connectivities observed in the three frameworks. Porosity of the compounds was proven via water sorption experiments, resulting in uptakes of 126 mg/g (CAU-46), 105 mg/g (CAU-47), 210 mg/g (Ni-CAU-48), and 109 mg/g (Co-CAU-48).
Collapse
Affiliation(s)
- Stephan Wöhlbrandt
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Christoph Meier
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Helge Reinsch
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Norbert Stock
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
40
|
Sung HL, Hu ZJ, Chen CY, Wu JY. Thermally stable dinuclear Co(II) and Zn(II) complexes of tetra-phosphonate and 2,2′-bipyridine. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119750] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Goedderz D, Schäfer T, Klitsch J, Weber L, Weber B, Fuhr O, Buntkowsky G, Schönberger F, Döring M. Coordination Compounds of 9,10-Dihydro-9-oxa-10-phosphaphenanthrene-10-Oxide (DOPO) Ligands: Extremely High Thermostability and Ligand Oxidation in the Solid State. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Daniela Goedderz
- Fraunhofer Institute for Structural Durability and System Reliability LBF; Schlossgartenstraße 6 64289 Darmstadt Germany
- Ernst-Berl Institute for Chemical Engineering and Macromolecular Science; Technische Universität Darmstadt; Alarich-Weiss-Straße 4 64287 Darmstadt Germany
| | - Timmy Schäfer
- Eduard-Zintl Institute for Inorganic and Physical Chemistry; Technische Universität Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Johannes Klitsch
- Fraunhofer Institute for Structural Durability and System Reliability LBF; Schlossgartenstraße 6 64289 Darmstadt Germany
| | - Lais Weber
- Fraunhofer Institute for Structural Durability and System Reliability LBF; Schlossgartenstraße 6 64289 Darmstadt Germany
| | - Bettina Weber
- Henkel AG & Co. KGaA; Henkel Teroson Straße 57 40191 Düsseldorf Germany
| | - Olaf Fuhr
- Institute of Nanotechnology (INT); Karlsruhe Nano Micro Facility (KNMF); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Inorganic and Physical Chemistry; Technische Universität Darmstadt; Alarich-Weiss-Straße 8 64287 Darmstadt Germany
| | - Frank Schönberger
- Fraunhofer Institute for Structural Durability and System Reliability LBF; Schlossgartenstraße 6 64289 Darmstadt Germany
| | - Manfred Döring
- Fraunhofer Institute for Structural Durability and System Reliability LBF; Schlossgartenstraße 6 64289 Darmstadt Germany
| |
Collapse
|
42
|
Tholen P, Peeples CA, Schaper R, Bayraktar C, Erkal TS, Ayhan MM, Çoşut B, Beckmann J, Yazaydin AO, Wark M, Hanna G, Zorlu Y, Yücesan G. Semiconductive microporous hydrogen-bonded organophosphonic acid frameworks. Nat Commun 2020; 11:3180. [PMID: 32576877 PMCID: PMC7311548 DOI: 10.1038/s41467-020-16977-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Herein, we report a semiconductive, proton-conductive, microporous hydrogen-bonded organic framework (HOF) derived from phenylphosphonic acid and 5,10,15,20-tetrakis[p-phenylphosphonic acid] porphyrin (GTUB5). The structure of GTUB5 was characterized using single crystal X-ray diffraction. A narrow band gap of 1.56 eV was extracted from a UV-Vis spectrum of pure GTUB5 crystals, in excellent agreement with the 1.65 eV band gap obtained from DFT calculations. The same band gap was also measured for GTUB5 in DMSO. The proton conductivity of GTUB5 was measured to be 3.00 × 10-6 S cm-1 at 75 °C and 75% relative humidity. The surface area was estimated to be 422 m2 g-1 from grand canonical Monte Carlo simulations. XRD showed that GTUB5 is thermally stable under relative humidities of up to 90% at 90 °C. These findings pave the way for a new family of organic, microporous, and semiconducting materials with high surface areas and high thermal stabilities.
Collapse
Affiliation(s)
- Patrik Tholen
- Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Craig A Peeples
- University of Alberta, 116 St. and 85 Ave., Edmonton, AB, T6G 2R3, Canada
| | - Raoul Schaper
- Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Ceyda Bayraktar
- Gebze Technical University, Kimya Bölümü, 41400, Gebze-Kocaeli, Turkey
| | | | | | - Bünyemin Çoşut
- Gebze Technical University, Kimya Bölümü, 41400, Gebze-Kocaeli, Turkey
| | - Jens Beckmann
- Universität Bremen, Leobener Str. 7, 28359, Bremen, Germany
| | - A Ozgur Yazaydin
- University College London, Torrington Place, London, WC1E 7JE, UK
| | - Michael Wark
- Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129, Oldenburg, Germany
| | - Gabriel Hanna
- University of Alberta, 116 St. and 85 Ave., Edmonton, AB, T6G 2R3, Canada
| | - Yunus Zorlu
- Gebze Technical University, Kimya Bölümü, 41400, Gebze-Kocaeli, Turkey.
| | - Gündoğ Yücesan
- Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany.
| |
Collapse
|
43
|
Siemensmeyer K, Peeples CA, Tholen P, Schmitt FJ, Çoşut B, Hanna G, Yücesan G. Phosphonate Metal-Organic Frameworks: A Novel Family of Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000474. [PMID: 32374449 DOI: 10.1002/adma.202000474] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/21/2020] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Herein, the first semiconducting and magnetic phosphonate metal-organic framework (MOF), TUB75, is reported, which contains a 1D inorganic building unit composed of a zigzag chain of corner-sharing copper dimers. The solid-state UV-vis spectrum of TUB75 reveals the existence of a narrow bandgap of 1.4 eV, which agrees well with the density functional theory (DFT)-calculated bandgap of 1.77 eV. Single-crystal conductivity measurements for different orientations of the individual crystals yield a range of conductances from 10-3 to 103 S m-1 at room temperature, pointing to the directional nature of the electrical conductivity in TUB75. Magnetization measurements show that TUB75 is composed of antiferromagnetically coupled copper dimer chains. Due to their rich structural chemistry and exceptionally high thermal/chemical stabilities, phosphonate MOFs like TUB75 may open new vistas in engineerable electrodes for supercapacitors.
Collapse
|
44
|
Shekurov R, Khrizanforov M, Islamov D, Gerasimova T, Zagidullin A, Budnikova Y, Miluykov V. Synthesis, crystal structure and electrochemical properties of poly(cadmium 1,1′-ferrocenediyl-bis(H-phosphinate)). J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
|
46
|
Beaubras F, Rueff JM, Perez O, Veillon F, Caignaert V, Lohier JF, Cardin J, Rogez G, Jestin C, Couthon H, Jaffrès PA. M(H 2O)(PO 3C 10H 6OH)·(H 2O) 0.5 (M = Co, Mn, Zn, Cu): a new series of layered metallophosphonate compounds obtained from 6-hydroxy-2-naphthylphosphonic acid. Dalton Trans 2020; 49:3877-3891. [PMID: 31859323 DOI: 10.1039/c9dt03947c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Four new metallophosphonates M(H2O)(PO3C10H6OH)·(H2O)0.5 (M = Mn, Co, Cu, Zn) were obtained as single crystal and polycrystalline powders by hydrothermal synthesis from the precursors 6-hydroxy-2-naphthylphosphonic acid and the corresponding metal salts. These analogous hybrids crystalized in the space group P121/c1 in a lamellar structure. Their layered structures consisted of inorganic [M(H2O)(PO3C)] layers stacked with organic bilayers of 6-hydroxy-2-naphthyl moieties "HO-C10H6" and free water molecules. Their structures were determined by single crystal X-ray diffraction and confirmed by powder X-ray diffraction and Le Bail refinement for the powder sample. The removal of water upon heating at 250 °C was studied by thermogravimetric analysis and temperature-dependent powder X-ray diffraction. Their magnetic properties were studied by SQUID magnetometry and show antiferromagnetic behavior for the Co analogue and the occurrence of a canted antiferromagnetic order at TN = 12.2 K for the Mn analogue. The Cu compound displayed an unprecedented ferromagnetic behavior. Their absorption and luminescence properties were investigated and revealed that the ligand and the compounds displayed a common behavior below a wavelength of 400 nm. Specific absorption bands were found in the compounds with Co2+ and Cu2+ at 539 nm and 849 nm, respectively. Moreover, particular luminescence bands were found for the compounds with Mn2+, Co2+ and Zn2+ at 598 nm, 551 nm and 530 and 611 nm, respectively.
Collapse
Affiliation(s)
- Félicien Beaubras
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, CRISMAT, 6 Bd Maréchal Juin, 14050 Caen Cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu SB, Bao SS, Zheng LM. Polar layered coordination polymers incorporating triazacyclononane-triphosphonate metalloligands. Dalton Trans 2020; 49:3758-3765. [PMID: 31761912 DOI: 10.1039/c9dt03858b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reactions of metalloligands MIII(notpH3) (M = Fe, Co and notpH6 = 1,4,7-triazacyclononane-1,4,7-triyl-tris(methylenephosphonic acid)) with Zn(OAc)2 under hydrothermal conditions resulted in new metal phosphonates Zn2Fe(notp)Cl(H2O) (1) and ZnCo(notpH)(H2O)·2H2O (2). They crystallize in polar space groups P63 (for 1) and Pca21 (for 2), respectively, and exhibit layer structures in which the inorganic layers are separated by the organic groups of the notp ligands. However, the layer topologies of the two compounds are quite different. In 1, the layer contains 6-membered rings composed of one {FeN3O3} octahedron, one {Zn1O3Cl}, one {Zn2O4} and three {PO3C} tetrahedra via corner-sharing connections, while in 2, the layer contains 10-membered rings composed of two {CoO3N3} octahedra, three {ZnO4} and five {PO3C} tetrahedra via vertex-sharing connections. Dielectric measurements on single crystals of 2 confirmed the presence of high dielectric anisotropy. Proton conductivity measurements revealed that the proton conduction is more favourable in 2 due to the presence of a continuous hydrogen bond network in this compound.
Collapse
Affiliation(s)
- Sheng-Bo Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | | | | |
Collapse
|
48
|
|
49
|
Barbee D, Barron AR. Scalable synthesis of multi-substituted aryl-phosphonates: Exploring the limits of isoretical expansion and the synthesis of new triazene-based phosphonates. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2019.1673750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Derek Barbee
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Andrew R. Barron
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
- Energy Safety Research Institute, Swansea University, Swansea, UK
| |
Collapse
|
50
|
Wöhlbrandt S, Igeska A, Svensson Grape E, Øien-Ødegaard S, Ken Inge A, Stock N. Permanent porosity and role of sulfonate groups in coordination networks constructed from a new polyfunctional phosphonato-sulfonate linker molecule. Dalton Trans 2020; 49:2724-2733. [PMID: 32052807 DOI: 10.1039/c9dt04571f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The new linker molecule (H2O3PCH2)2N-CH2C6H4SO3H, (4-{[bis(phosphonomethyl)amino]methyl}benzene-sulfonic acid, H5L), bearing both phosphonic and sulfonic acid groups, was employed for the synthesis of new coordination polymers (CPs). Four new CPs of composition [Mg(H3L)(H2O)2]·H2O (1), [Mg2(HL)(H2O)6]·2H2O (2), [Ba(H3L)(H2O)]·H2O (3) and [Pb2(HL)]·H2O (4), were discovered using high-throughput methods and all structures were determined by single-crystal X-ray diffraction (SCXRD). With increasing ionic radius of the metal ion, an increase in coordination number from CN = 6 (Mg2+) to CN = 9 (Ba2+) and an increase in the dimensionality of the network from 1D to 3D is observed. This is reflected in the composition of the IBU and the number of metal ions that are connected by each linker molecule, i.e. from three in 1 to ten in 4. The connection of the IBUs leads to 1D and 2D structures in 1 and 2 with non-coordinating sulfonate groups, while 3 and 4 crystallise in MOF-type structures and coordination of the sulfonate groups is observed. The compounds exhibit thermal stabilities between 200 (2) and 345 °C (4) as proven by variable temperature powder X-ray diffraction (VT-PXRD) measurements. Title compound 4 contains micropores of 4 × 2 Å and reversible H2O uptake of 50 mg g-1 was demonstrated by vapour sorption measurements, making it the first porous metal phosphonatosulfonate. Detailed characterisation, i.e. CHNS and TG analysis as well as NMR and IR spectroscopy measurements confirm the phase purity of the title compounds.
Collapse
Affiliation(s)
- Stephan Wöhlbrandt
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
| | - Angela Igeska
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | | | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Norbert Stock
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany.
| |
Collapse
|