1
|
Kalath H, Vishwakarma R, Banjan B, Ramakrishnan K, Koshy AJ, Raju R, Rehman N, Revikumar A. In-silico studies on evaluating the liver-protective effectiveness of a polyherbal formulation in preventing hepatocellular carcinoma progression. In Silico Pharmacol 2024; 12:109. [PMID: 39569037 PMCID: PMC11574239 DOI: 10.1007/s40203-024-00285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Liv-52, an herbal formulation consisting of seven distinct plants and Mandur Bhasma, is recognized for its hepatoprotective, anti-inflammatory, and antioxidant properties. To investigate the pharmacological potential of each phytochemical from these plants, we conducted ADMET analysis, molecular docking, and molecular dynamic simulations to identify potent molecules capable of inhibiting the interaction between Alpha-fetoprotein (AFP) and Cysteine aspartyl protease 3 (Caspase-3/CASP3). In our study, we have used molecular docking of all the compounds against AFP and filtered them on the basis of ADME properties. Among the compounds analyzed, (-) Syringaresinol from Solanum nigrum, exhibited good binding interactions with AFP, the highest binding free energy, and maintained stability throughout the simulation along with favorable drug likeness properties based on ADME and Toxicity analysis. These findings have strongly indicated that (-) Syringaresinol is a potential inhibitor of AFP, providing a promising therapeutic avenue for hepatocellular carcinoma (HCC) treatment by inhibiting the interaction between AFP and CASP3, thereby reinstating normal CASP3 activity. Further in vitro studies are imperative to validate the therapeutic efficacy of (-) Syringaresinol as an AFP inhibitor, potentially impeding the progression of HCC. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00285-2.
Collapse
Affiliation(s)
- Haritha Kalath
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Bhavya Banjan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Krishnapriya Ramakrishnan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Abel John Koshy
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, 695014 Kerala India
| |
Collapse
|
2
|
Mohammed OA, Youssef ME, Hamad RS, Abdel-Reheim MA, Saleh LA, Alamri MMS, Alharthi MH, Alfaifi J, Adam MIE, Eleragi AMS, Senbel A, Farrag AA, Rezigalla AA, El-wakeel HS, Attia MA, El-Husseiny HM, AL-Noshokaty TM, Doghish AS, Gaafar AGA, Saber S. Unlocking vinpocetine's oncostatic potential in early-stage hepatocellular carcinoma: A new approach to oncogenic modulation by a nootropic drug. PLoS One 2024; 19:e0312572. [PMID: 39480853 PMCID: PMC11527275 DOI: 10.1371/journal.pone.0312572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
The development of new drugs for the inhibition of hepatocellular carcinoma (HCC) development and progression is a critical and urgent need. The median survival rate for HCC patients remains disappointingly low. Vinpocetine is a safe nootropic agent that is often used to enhance cognitive function. The impact of vinpocetine on HCC development and progression has not been fully explored. Our main objective was to investigate the possible inhibitory role of vinpocetine in rats exposed to diethylnitrosamine. We observed that vinpocetine increased the survival rate of these rats and improved the ultrastructure of their livers. Additionally, vinpocetine reduced the liver weight index, mitigated liver oxidative stress, and improved liver function. In both in vitro and in vivo settings, vinpocetine demonstrated antiproliferative and apoptotic properties. It downregulated the expression of CCND1 and Ki-67 while exhibiting anti-BCL-2 effects and enhancing the levels of Bax and cleaved caspase-3. Vinpocetine also successfully deactivated NF-κB, STAT3, and HIF-1α, along with their associated transcription proteins, thereby exerting anti-inflammatory and anti-angiogenic role. Furthermore, vinpocetine showed promise in reducing the levels of ICAM-1 and TGF-β1 indicating its potential role in tissue remodeling. These findings strongly suggest that vinpocetine holds promise as a hepatoprotective agent by targeting a range of oncogenic proteins simultaneously. However, further approaches are needed to validate and establish causal links between our observed effects allowing for a more in-depth exploration of the mechanisms underlying vinpocetine's effects and identifying pivotal determinants of outcomes.
Collapse
Affiliation(s)
- Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Rabab S. Hamad
- Biological Sciences Department, College of Science, King Faisal University, Al Ahsa, Saudi Arabia
- Central Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef, Egypt
| | - Lobna A. Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | | | - Muffarah Hamid Alharthi
- Department of Family and Community Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Jaber Alfaifi
- Department of Child Health, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Masoud I. E. Adam
- Department of Medical Education and Internal Medicine, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Ali M. S. Eleragi
- Department of Microorganisms and Clinical Parasitology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Ahmed Senbel
- Department of Surgical Oncology, Oncology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Alshaimaa A. Farrag
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Assad Ali Rezigalla
- Department of Anatomy, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Hend S. El-wakeel
- Physiology Department, Benha Faculty of Medicine, Benha University, Qalubyia, Egypt
- Physiology Department, Al-Baha Faculty of Medicine, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohammed A. Attia
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Hussein M. El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | | | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo, Cairo, Egypt
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
3
|
Thangaraj JL, Coffey M, Lopez E, Kaufman DS. Disruption of TGF-β signaling pathway is required to mediate effective killing of hepatocellular carcinoma by human iPSC-derived NK cells. Cell Stem Cell 2024; 31:1327-1343.e5. [PMID: 38986609 PMCID: PMC11380586 DOI: 10.1016/j.stem.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/11/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. Transforming growth factor beta (TGF-β) is highly expressed in the liver tumor microenvironment and is known to inhibit immune cell activity. Here, we used human induced pluripotent stem cells (iPSCs) to produce natural killer (NK) cells engineered to mediate improved anti-HCC activity. Specifically, we produced iPSC-NK cells with either knockout TGF-β receptor 2 (TGFBR2-KO) or expression of a dominant negative (DN) form of the TGF-β receptor 2 (TGFBR2-DN) combined with chimeric antigen receptors (CARs) that target either GPC3 or AFP. The TGFBR2-KO and TGFBR2-DN iPSC-NK cells are resistant to TGF-β inhibition and improved anti-HCC activity. However, expression of anti-HCC CARs on iPSC-NK cells did not lead to effective anti-HCC activity unless there was also inhibition of TGF-β activity. Our findings demonstrate that TGF-β signaling blockade is required for effective NK cell function against HCC and potentially other malignancies that express high levels of TGF-β.
Collapse
Affiliation(s)
- Jaya Lakshmi Thangaraj
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Michael Coffey
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Edith Lopez
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dan S Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Wang W, Lin H, Liu D, Wang T, Zhu Z, Yu P, Zhang J. Ropivacaine synergizes with sorafenib to induce apoptosis of hepatocellular carcinoma cells via the IL-6/STAT3 pathway. Cancer Sci 2024; 115:2923-2930. [PMID: 39014520 PMCID: PMC11462969 DOI: 10.1111/cas.16261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/28/2024] [Accepted: 06/18/2024] [Indexed: 07/18/2024] Open
Abstract
The development of resistance in hepatocellular carcinoma (HCC) cells limits the effectiveness of sorafenib, but combination therapy with other drugs may have a positive effect. However, the effect of ropivacaine combined with sorafenib on the treatment of HCC cells and its potential regulatory mechanisms remain unclear. The proliferation and apoptosis of HCC cells treated with ropivacaine, sorafenib, and ropivacaine plus sorafenib were analyzed by cell-counting kit 8 and flow cytometry. The protein levels were measured by Western blot. The antitumor effect of ropivacaine, sorafenib, and their combination was verified by a tumor xenograft model. Ropivacaine and sorafenib markedly impeded the viability of HCC cells in a concentration-dependent manner. Compared with ropivacaine or sorafenib treatment alone, ropivacaine and sorafenib combination treatment impeded HCC cell proliferation, facilitated apoptosis, enhanced cleaved caspase-3, cleaved caspase-9, and cyclin D1 protein expression, while it reduced IL-6 and p-STAT3 expression and inhibited tumor growth in vivo. Importantly, the activation of the IL-6/STAT3 pathway could reverse the repressive or stimulative effects of ropivacaine and sorafenib on the proliferation and apoptosis in HCC cells. In summary, ropivacaine synergistically induces sorafenib-stimulated apoptosis of HCC cells via the IL-6/STAT3 pathway. Ropivacaine is a potential drug for the treatment of HCC when combined with sorafenib.
Collapse
Affiliation(s)
- Wenting Wang
- Department of AnesthesiologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Hongyun Lin
- Department of AnesthesiologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Desheng Liu
- Department of AnesthesiologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Tao Wang
- Department of AnesthesiologyThe Second Affiliated Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Zicheng Zhu
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Peng Yu
- Department of Endocrinology and MetabolismThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| | - Jing Zhang
- Department of AnesthesiologyThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxiChina
| |
Collapse
|
5
|
Liu K, Tian F, Chen X, Liu B, Tian S, Hou Y, Wang L, Han M, Peng S, Tan Y, Pan Y, Chu Z, Li J, Che L, Chen D, Wen L, Qin Z, Li X, Xiang J, Bian X, Liu Q, Ye X, Wang T, Wang B. Stabilization of TGF-β Receptor 1 by a Receptor-Associated Adaptor Dictates Feedback Activation of the TGF-β Signaling Pathway to Maintain Liver Cancer Stemness and Drug Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402327. [PMID: 38981014 PMCID: PMC11425868 DOI: 10.1002/advs.202402327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/16/2024] [Indexed: 07/11/2024]
Abstract
Dysregulation of the transforming growth factor-β (TGF-β) signaling pathway regulates cancer stem cells (CSCs) and drug sensitivity, whereas it remains largely unknown how feedback regulatory mechanisms are hijacked to fuel drug-resistant CSCs. Through a genome-wide CRISPR activation screen utilizing stem-like drug-resistant properties as a readout, the TGF-β receptor-associated binding protein 1 (TGFBRAP1) is identified as a TGF-β-inducible positive feedback regulator that governs sensitivity to tyrosine kinase inhibitors (TKIs) and promotes liver cancer stemness. By interacting with and stabilizing the TGF-β receptor type 1 (TGFBR1), TGFBRAP1 plays an important role in potentiating TGF-β signaling. Mechanistically, TGFBRAP1 competes with E3 ubiquitin ligases Smurf1/2 for binding to TGFΒR1, leading to impaired receptor poly-ubiquitination and proteasomal degradation. Moreover, hyperactive TGF-β signaling in turn up-regulates TGFBRAP1 expression in drug-resistant CSC-like cells, thereby constituting a previously uncharacterized feedback mechanism to amplify TGF-β signaling. As such, TGFBRAP1 expression is correlated with TGFΒR1 levels and TGF-β signaling activity in hepatocellular carcinoma (HCC) tissues, as well as overall survival and disease recurrence in multiple HCC cohorts. Therapeutically, blocking TGFBRAP1-mediated stabilization of TGFBR1 by selective inhibitors alleviates Regorafenib resistance via reducing CSCs. Collectively, targeting feedback machinery of TGF-β signaling pathway may be an actionable approach to mitigate drug resistance and liver cancer stemness.
Collapse
Affiliation(s)
- Kewei Liu
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life SciencesSouthwest UniversityChongqing400715P. R. China
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Fanxuan Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xu Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Biyin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Shuoran Tian
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Yongying Hou
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- Department of PathologyDaping Hospital, Army Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Lei Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Mengyi Han
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Shiying Peng
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Yuting Tan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Yuwei Pan
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
| | - Zhaole Chu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Jinyang Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Linrong Che
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Dongfeng Chen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Liangzhi Wen
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Zhongyi Qin
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xianfeng Li
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Junyu Xiang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Xiu‐wu Bian
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
| | - Qin Liu
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- School of MedicineChongqing UniversityChongqing400044P. R. China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life SciencesSouthwest UniversityChongqing400715P. R. China
| | - Tao Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
| | - Bin Wang
- Department of Gastroenterology, Chongqing Key Laboratory of Digestive Malignancies, Daping HospitalArmy Medical University (Third Military Medical University)Chongqing400042P. R. China
- Institute of Pathology and Southwest Cancer Center, and Key Laboratory of Tumor Immunopathology of Ministry of Education of China, Southwest HospitalArmy Medical University (Third Military Medical University)Chongqing400038P. R. China
- Jinfeng LaboratoryChongqing401329P. R. China
| |
Collapse
|
6
|
Chan SL, Ryoo BY, Mo F, Chan LL, Cheon J, Li L, Wong KH, Yim N, Kim H, Yoo C. Multicentre phase II trial of cabozantinib in patients with hepatocellular carcinoma after immune checkpoint inhibitor treatment. J Hepatol 2024; 81:258-264. [PMID: 38570034 DOI: 10.1016/j.jhep.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND & AIMS Prospective data on treatment after immune checkpoint inhibitor (ICI) therapy in hepatocellular carcinoma (HCC) are lacking. We conducted a phase II multicentre study on cabozantinib after ICI treatment in HCC. METHODS This is an investigator-initiated, single-arm, clinical trial involving academic centres in Hong Kong and Korea. Key eligibility criteria included diagnosis of HCC, refractoriness to prior ICI-based treatment, and Child-Pugh A liver function. A maximum of two prior lines of therapy were allowed. All patients were commenced on cabozantinib at 60 mg/day. The primary endpoint was progression-free survival (PFS). RESULTS Forty-seven patients were recruited from Oct 2020 to May 2022; 27 and 20 patients had received one and two prior therapies, respectively. Median follow-up was 11.2 months. The median PFS was 4.1 months (95% CI 3.3-5.3). The median overall survival (OS) was 9.9 months (95% CI 7.3-14.4), and the 1-year OS rate was 45.3%. Partial response and stable disease occurred in 3 (6.4%) and 36 (76.6%) patients, respectively. When used as a second-line treatment (n = 27), cabozantinib was associated with a median PFS and OS of 4.3 (95% CI 3.3-6.7) and 14.3 (95% CI 8.9-NR) months, respectively. The corresponding median PFS and OS were 4.3 (95% CI 3.3-11.0) and 14.3 (95% CI 9.0-NR) months, respectively, for those receiving ICI-based regimens with proven benefits (n = 17). The most common grade 3-4 treatment-related adverse event was thrombocytopenia (6.4%). The median dose of cabozantinib was 40 mg/day. The number of prior therapies was an independent prognosticator (one vs. two; hazard ratio = 0.37; p = 0.03). CONCLUSIONS Cabozantinib demonstrated efficacy in patients who had received prior ICI regimens; survival data for second-line cabozantinib following first-line ICI regimens provide a reference for future clinical trial design. The number of prior lines of treatment may be considered a stratification factor in randomised studies. IMPACT AND IMPLICATIONS Prospective data on systemic treatment following prior immune checkpoint inhibitor (ICI) therapy for hepatocellular carcinoma (HCC) are lacking. This phase II clinical trial provides efficacy and safety data on cabozantinib in patients who had received prior ICI-based treatment. Exploratory analyses showed that the performance of cabozantinib differed significantly when used as a second- or third-line treatment. The above data could be used as a reference for clinical practice and the design of future clinical trials on subsequent treatment lines following ICIs. CLINICALTRIALS GOV IDENTIFIER NCT04588051.
Collapse
Affiliation(s)
- Stephen L Chan
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China; Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| | - Baek-Yeol Ryoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Frankie Mo
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Landon L Chan
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jaekyung Cheon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Leung Li
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwan H Wong
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Nicole Yim
- Department of Clinical Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hyeyeong Kim
- Division of Hematology-Oncology, Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
7
|
Liu J, Xia S, Zhang B, Mohammed DM, Yang X, Zhu Y, Jiang X. Small molecule tyrosine kinase inhibitors approved for systemic therapy of advanced hepatocellular carcinoma: recent advances and future perspectives. Discov Oncol 2024; 15:259. [PMID: 38960980 PMCID: PMC11222362 DOI: 10.1007/s12672-024-01110-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Liver cancer is the sixth most commonly diagnosed cancer and the third leading cause of cancer death in the world, and hepatocellular carcinoma (HCC) is the most common form of liver cancer. More than half of the HCC patients are diagnosed at an advanced stage and often require systemic therapy. Dysregulation of the activity of receptor tyrosine kinases (RTKs) is involved in the development and progress of HCC, RTKs are therefore the potential targets for systemic therapy of advanced HCC (aHCC). Currently, a total of six small molecule tyrosine kinase inhibitors (TKIs) have been approved for aHCC, including first-line sorafenib, lenvatinib, and donafenib, and second-line regorafenib, cabozantinib, and apatinib. These TKIs improved patients survival, which are associated with disease stage, etiology, liver function, tumor burden, baseline levels of alpha-fetoprotein, and treatment history. This review focuses on the clinical outcomes of these TKIs in key clinical trials, retrospective and real-world studies and discusses the future perspectives of TKIs for aHCC, with an aim to provide up-to-date evidence for decision-making in the treatment of aHCC.
Collapse
Affiliation(s)
- Jianzhong Liu
- Clinical Laboratory, Wuhan No.7 Hospital, Zhong Nan 2nd Road, Wuhan, 430071, China
| | - Shuai Xia
- Department of Biochemistry and Molecular Biology, Jining Medical University, Jining, 272067, Shandong, China
| | - Baoyi Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Cairo, Egypt
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Yanhong Zhu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xinnong Jiang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
8
|
Marka S, Zografaki ME, Tsolomiti G, Kalliampakou KI, Tsolomitis A, Koumantou C, Smirlis D, Vassilaki N, Kintzios S. 2-(4-Nitrophenyl)isothiazol-3(2H)-one: A Promising Selective Agent against Hepatocellular Carcinoma Cells. Pharmaceuticals (Basel) 2024; 17:673. [PMID: 38931341 PMCID: PMC11206498 DOI: 10.3390/ph17060673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Liver cancer ranks among the most prevalent malignancies globally and stands as a leading cause of cancer-related mortality. Numerous isothiazolone derivatives and analogues have been synthesized and investigated for their potential as anticancer agents; however, limited data exist regarding their efficacy against liver cancer. In the present study, two nitrophenyl-isothiazolones, the 5-benzoyl-2-(4-nitrophenyl)isothiazol-3(2H)-one (IsoA) and the 2-(4-nitrophenyl)isothiazol-3(2H)-one (IsoB), were preliminarily investigated for their cytotoxicity against hepatoma human (Huh7) cells as a liver cancer model and Immortalized Human Hepatocytes (IHHs) as a model of non-cancerous hepatocytes. IsoB, derived from IsoA after removal of the benzoyl moiety, demonstrated the highest cytotoxic effect against Huh7 cells with CC50 values of 19.3 μΜ at 24 h, 16.4 μΜ at 48 h, and 16.2 μΜ at 72 h of incubation, respectively. IsoB also exhibited selective toxicity against the liver cancerous Huh7 cells compared to IHH cells, reinforcing its role as a potent and selective anticancer agent. Remarkably, the cytotoxicity of IsoB was higher when compared with the standard chemotherapeutical agent 5-fluorouracil (5-FU), which also failed to exhibit higher toxicity against the liver cancerous cell lines. Moreover, IsoB-treated Huh7 cells presented a noteworthy reduction in mitochondrial membrane potential (ΔΨm) after 48 and 72 h, while mitochondrial superoxide levels showed an increase after 24 h of incubation. The molecular mechanism of the IsoB cytotoxic effect was also investigated using RT-qPCR, revealing an apoptosis-mediated cell death along with tumor suppressor TP53 overexpression and key-oncogene MYCN downregulation.
Collapse
Affiliation(s)
- Sofia Marka
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.T.); (C.K.)
| | - Maria-Eleftheria Zografaki
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (M.-E.Z.); (K.I.K.)
| | - Georgia Tsolomiti
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.T.); (C.K.)
| | - Katerina I. Kalliampakou
- Laboratory of Molecular Biology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (M.-E.Z.); (K.I.K.)
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Athanasios Tsolomitis
- School of Chemical Engineering, National Technical University, 15772 Athens, Greece;
| | - Christina Koumantou
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.T.); (C.K.)
| | - Despina Smirlis
- Molecular Parasitology Laboratory, Microbiology Department, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Niki Vassilaki
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece;
| | - Spyros Kintzios
- Laboratory of Cell Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 11855 Athens, Greece; (G.T.); (C.K.)
| |
Collapse
|
9
|
Villalobos A, Pisanie JLD, Gandhi RT, Kokabi N. Yttrium-90 Radioembolization Dosimetry: Dose Considerations, Optimization, and Tips. Semin Intervent Radiol 2024; 41:63-78. [PMID: 38495257 PMCID: PMC10940044 DOI: 10.1055/s-0044-1779715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Affiliation(s)
- Alexander Villalobos
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Johannes L. du Pisanie
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ripal T. Gandhi
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nima Kokabi
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
10
|
Meng Y, Ye F, Nie P, Zhao Q, An L, Wang W, Qu S, Shen Z, Cao Z, Zhang X, Jiao S, Wu D, Zhou Z, Wei L. Immunosuppressive CD10 +ALPL + neutrophils promote resistance to anti-PD-1 therapy in HCC by mediating irreversible exhaustion of T cells. J Hepatol 2023; 79:1435-1449. [PMID: 37689322 DOI: 10.1016/j.jhep.2023.08.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND & AIMS Remodeling the tumor microenvironment is a critical strategy for treating advanced hepatocellular carcinoma (HCC). Yet, how distinct cell populations in the microenvironment mediate tumor resistance to immunotherapies, such as anti-PD-1, remains poorly understood. METHODS We analyzed the transcriptomic profile, at a single-cell resolution, of tumor tissues from patients with HCC scheduled to receive anti-PD-1-based immunotherapy. Our comparative analysis and experimental validation using flow cytometry and histopathological analysis uncovered a discrete subpopulation of cells associated with resistance to anti-PD-1 treatment in patients and a rat model. A TurboID-based proximity labeling approach was deployed to gain mechanistic insights into the reprogramming of the HCC microenvironment. RESULTS We identified CD10+ALPL+ neutrophils as being associated with resistance to anti-PD-1 treatment. These neutrophils exhibited a strong immunosuppressive activity by inducing an apparent "irreversible" exhaustion of T cells in terms of cell number, frequency, and gene profile. Mechanistically, CD10+ALPL+ neutrophils were induced by tumor cells, i.e., tumor-secreted NAMPT reprogrammed CD10+ALPL+ neutrophils through NTRK1, maintaining them in an immature state and inhibiting their maturation and activation. CONCLUSIONS Collectively, our results reveal a fundamental mechanism by which CD10+ALPL+ neutrophils contribute to tumor immune escape from durable anti-PD-1 treatment. These data also provide further insights into novel immunotherapy targets and possible synergistic treatment regimens. IMPACT AND IMPLICATIONS Herein, we discovered that tumor cells reprogrammed CD10+ALPL+ neutrophils to induce the "irreversible" exhaustion of T cells and hence allow tumors to escape from the intended effects of anti-PD-1 treatment. Our data provided a new theoretical basis for the elucidation of special cell populations and revealed a molecular mechanism underpinning resistance to immunotherapy. Targeting these cells alongside existing immunotherapy could be looked at as a potentially more effective therapeutic approach.
Collapse
Affiliation(s)
- Yan Meng
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China; Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Ye
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China; School of Medicine, Shanghai University, Shanghai 200444, China
| | - Pingping Nie
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiudong Zhao
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Liwei An
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuping Qu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Zhemin Shen
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Zhifa Cao
- Department of Stomatology, Shanghai Tenth People's Hospital, Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaobing Zhang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Dong Wu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
11
|
Wu Q, Wang P, Peng Q, Kang Z, Deng Y, Li J, Chen Y, Li J, Ge F. Adhesion G Protein-Coupled Receptor G2 Promotes Hepatocellular Carcinoma Progression and Serves as a Neutrophil-Related Prognostic Biomarker. Int J Mol Sci 2023; 24:16986. [PMID: 38069309 PMCID: PMC10707058 DOI: 10.3390/ijms242316986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Adhesion G protein-coupled receptor G2 (ADGRG2) is an orphan adhesion G protein-coupled receptor (GPCR), which performs a tumor-promoting role in certain cancers; however, it has not been systematically investigated in hepatocellular carcinoma (HCC). In the current study, we utilized multiple databases to analyze the expression and diagnostic and prognostic value of ADGRG2 in HCC and its correlation with immune infiltration and inflammatory factors. The function and upstream regulatory miRNA of ADGRG2 were validated through qPCR, Western blot, CCK8, wound healing, and dual luciferase assays. It turned out that ADGRG2 was significantly higher in HCC and had a poor survival rate, especially in AFP ≤ 400 ng/mL subgroups. Functional enrichment analysis suggested that ADGRG2 may be involved in cancer pathways and immune-related pathways. In vitro, siRNA-mediated ADGRG2 silencing could inhibit the proliferation and migration of Huh7 and HepG2 cells. There was a highly significant positive correlation between ADGRG2 and neutrophils. Moreover, NET-related genes were filtered and confirmed, such as ENO1 and S100A9. Meanwhile, the high expression of ADGRG2 was also accompanied by the highest number of inflammatory cytokines, chemokines, and chemokine receptors and good immunotherapy efficacy. Finally, AGDGR2 may be sensitive to two drugs (PIK-93 and NPK76-II-72-1) and can be targeted by miR-326. In conclusion, ADGRG2 may serve as a novel biomarker and drug target for HCC diagnosis, immunotherapy, and prognosis and was related to neutrophils and the inflammatory process of liver cancer development.
Collapse
Affiliation(s)
- Qian Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Pei Wang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Qihang Peng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Zhongcui Kang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Yiting Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jiayi Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Ying Chen
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Jin Li
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
12
|
Sato K, Ohira M, Imaoka Y, Imaoka K, Bekki T, Doskali M, Nakano R, Yano T, Tanaka Y, Ohdan H. The aryl hydrocarbon receptor maintains antitumor activity of liver resident natural killer cells after partial hepatectomy in C57BL/6J mice. Cancer Med 2023; 12:19821-19837. [PMID: 37747052 PMCID: PMC10587932 DOI: 10.1002/cam4.6554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Liver-resident natural killer (lr-NK) cells are distinct from conventional NK cells and exhibit higher cytotoxicity against hepatoma via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). However, the mechanism by which partial hepatectomy (PH) significantly suppresses TRAIL expression in lr-NK cells remains unclear. METHODS This study aimed to investigate the PH influence on the function and characteristics of liver-resident NK (lr-NK) cells using a PH mouse model. RESULTS Here, we report that PH alters the differentiation pattern of NK cells in the liver, and an aryl hydrocarbon receptor (AhR) molecule is involved in these changes. Treatment with the AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) inhibited the maturation of NK cells. FICZ increased the immature subtype proportion of NK cells with high TRAIL activity and decreased the mature subtype of NK cells with low TRAIL activity. Consequently, FICZ increased the expression of TRAIL and cytotoxic activity of NK cells in the liver, and this effect was confirmed even after hepatectomy. The participation of AhR promoted FoxO1 expression in the mTOR signaling pathway involved in the maturation of NK cells, resulting in TRAIL expression. CONCLUSION Our findings provide direct in-vivo evidence that partial hepatectomy affects lrNK cell activity through NK cell differentiation in the liver. Perioperative therapies using an AhR agonist to improve NK cell function may reduce the recurrence of hepatocellular carcinoma after hepatectomy.
Collapse
Affiliation(s)
- Koki Sato
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Masahiro Ohira
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
- Medical Center for Translational and Clinical Research Hiroshima University HospitalHiroshimaJapan
| | - Yuki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Kouki Imaoka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Tomoaki Bekki
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Marlen Doskali
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Ryosuke Nakano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Takuya Yano
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Yuka Tanaka
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
| |
Collapse
|
13
|
Han R, Ling C, Wang Y, Lu L. Enhancing HCC Treatment: innovatively combining HDAC2 inhibitor with PD-1/PD-L1 inhibition. Cancer Cell Int 2023; 23:203. [PMID: 37716965 PMCID: PMC10504701 DOI: 10.1186/s12935-023-03051-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/03/2023] [Indexed: 09/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy with high morbidity and mortality but lacks effective treatments thus far. Although the emergence of immune checkpoint inhibitors in recent years has shed light on the treatment of HCC, a considerable number of patients are still unable to achieve durable and ideal clinical benefits. Therefore, refining the combination of immune checkpoint inhibitors (ICIs) to enhance the therapeutic effect has become a global research hotspot. Several histone deacetylase 2 inhibitors have shown advantages in ICIs in many solid cancers, except for HCC. Additionally, the latest evidence has shown that histone deacetylase 2 inhibition can regulate PD-L1 acetylation, thereby blocking the nuclear translocation of PD-L1 and consequently enhancing the efficacy of PD-1/PD-L1 inhibitors and improving anti-cancer immunity. Moreover, our team has recently discovered a novel HDAC2 inhibitor (HDAC2i), valetric acid (VA), that possesses great potential in HCC treatment as a monotherapy. Thus, a new combination strategy, combining HDAC2 inhibitors with ICIs, has emerged with significant development value. This perspective aims to ignite enthusiasm for exploring the application of ideal HDAC2 inhibitors with solid anti-tumor efficacy in combination with immunotherapy for HCC.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China.
- Department of Chinese Medicine, Naval Medical University, Shanghai, 200433, P. R. China.
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China.
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA.
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA.
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA.
| | - Changquan Ling
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Department of Chinese Medicine, Naval Medical University, Shanghai, 200433, P. R. China
| | - Yuqian Wang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, P. R. China
- Department of Chinese Medicine, Naval Medical University, Shanghai, 200433, P. R. China
| | - Lingeng Lu
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT, 06520-8034, USA
| |
Collapse
|
14
|
Mun K, Han J, Roh P, Park J, Kim G, Hur W, Jang J, Choi J, Yoon S, You Y, Choi H, Sung P. Isolation and characterization of cancer-associated fibroblasts in the tumor microenvironment of hepatocellular carcinoma. JOURNAL OF LIVER CANCER 2023; 23:341-349. [PMID: 37488925 PMCID: PMC10565539 DOI: 10.17998/jlc.2023.04.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND/AIM Cancer-associated fibroblasts (CAFs) play an immunosuppressive role in the tumor microenvironment (TME) of human cancers; however, their characteristics and role in hepatocellular carcinoma (HCC) remain to be elucidated. METHODS Nine tumor and surrounding liver tissue samples from patients with HCC who underwent surgery were used to isolate patient-derived CAFs. Cell morphology was observed using an optical microscope after culture, and cell phenotypes were evaluated using flow cytometry and immunoblotting. Cytokines secreted by CAFs into culture medium were quantified using a multiplex cytokine assay. RESULTS CAFs were abundant in the TME of HCC and were adjacent to immune cells. After culture, the CAFs and non-tumor fibroblasts exhibited spindle shapes. We observed a robust expression of alpha-smooth muscle actin and fibroblast activation protein in CAFs, whereas alpha-fetoprotein, epithelial cell adhesion molecule, platelet/endothelial cell adhesion molecule-1, and E-cadherin were not expressed in CAFs. Furthermore, CAFs showed high secretion of various cytokines, namely C-X-C motif chemokine ligand 12, interleukin (IL)-6, IL-8, and C-C motif chemokine ligand 2. CONCLUSIONS CAFs are abundant in the TME of HCC and play a crucial role in tumor progression. These fibroblasts secrete cytokines that promote tumor growth and metastasis.
Collapse
Affiliation(s)
- Kyoungdo Mun
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
| | - Jiwon Han
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pureun Roh
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
| | - Jonggeun Park
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
| | - Gahee Kim
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, Cheongju, Korea
| | - Wonhee Hur
- Division of Chronic Viral Disease Research, Center for Emerging Virus Research, National Institute of Infectious Diseases, Cheongju, Korea
| | - Jeongwon Jang
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jongyoung Choi
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seungkew Yoon
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youngkyoung You
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hojoong Choi
- Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pilsoo Sung
- The Catholic University Liver Research Center and POSTECH-Catholic Biomedical Engineering Institute, College of Medicine, The Catholic University Korea, Seoul, Korea
- Division of Gastroenterology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
15
|
Lee S, Kang E, Lee U, Cho S. Role of pelitinib in the regulation of migration and invasion of hepatocellular carcinoma cells via inhibition of Twist1. BMC Cancer 2023; 23:703. [PMID: 37495969 PMCID: PMC10373356 DOI: 10.1186/s12885-023-11217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND Overexpression of Twist1, one of the epithelial-mesenchymal transition-transcription factors (EMT-TFs), is associated with hepatocellular carcinoma (HCC) metastasis. Pelitinib is known to be an irreversible epidermal growth factor receptor tyrosine kinase inhibitor that is used in clinical trials for colorectal and lung cancers, but the role of pelitinib in cancer metastasis has not been studied. This study aimed to investigate the anti-migration and anti-invasion activities of pelitinib in HCC cell lines. METHODS Using three HCC cell lines (Huh7, Hep3B, and SNU449 cells), the effects of pelitinib on cell cytotoxicity, invasion, and migration were determined by cell viability, wound healing, transwell invasion, and spheroid invasion assays. The activities of MMP-2 and -9 were examined through gelatin zymography. Through immunoblotting analyses, the expression levels of EMT-TFs (Snail1, Twist1, and ZEB1) and EMT-related signaling pathways such as mitogen-activated protein kinases (MAPKs) and Akt signaling pathways were measured. The activity and expression levels of target genes were analyzed by reporter assay, RT-PCR, quantitative RT-PCR, and immunoblotting analysis. Statistical analysis was performed using one-way ANOVA with Dunnett's Multiple comparison tests in Prism 3.0 to assess differences between experimental conditions. RESULTS In this study, pelitinib treatment significantly inhibited wound closure in various HCC cell lines, including Huh7, Hep3B, and SNU449. Additionally, pelitinib was found to inhibit multicellular cancer spheroid invasion and metalloprotease activities in Huh7 cells. Further investigation revealed that pelitinib treatment inhibited the migration and invasion of Huh7 cells by inducing Twist1 degradation through the inhibition of MAPK and Akt signaling pathways. We also confirmed that the inhibition of cell motility by Twist1 siRNA was similar to that observed in pelitinib-treated group. Furthermore, pelitinib treatment regulated the expression of target genes associated with EMT, as demonstrated by the upregulation of E-cadherin and downregulation of N-cadherin. CONCLUSION Based on our novel finding of pelitinib from the perspective of EMT, pelitinib has the ability to inhibit EMT activity of HCC cells via inhibition of Twist1, and this may be the potential mechanism of pelitinib on the suppression of migration and invasion of HCC cells. Therefore, pelitinib could be developed as a potential anti-cancer drug for HCC.
Collapse
Affiliation(s)
- Sewoong Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Eunjeong Kang
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Unju Lee
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sayeon Cho
- Laboratory of Molecular and Pharmacological Cell Biology, College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
16
|
Hendi Z, Asadi Sarabi P, Hay D, Vosough M. XBP1 as a novel molecular target to attenuate drug resistance in hepatocellular carcinoma. Expert Opin Ther Targets 2023; 27:1207-1215. [PMID: 38078890 DOI: 10.1080/14728222.2023.2293746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/07/2023] [Indexed: 12/31/2023]
Abstract
INTRODUCTION Despite improvements in clinical management of hepatocellular carcinoma (HCC), prognosis remains poor with a 5-year survival rate less than 40%. Drug resistance in HCC makes it challenging to treat; therefore, it is imperative to develop new therapeutic strategies. Higher expression of X-box binding protein 1 (XBP1) in tumor cells is highly correlated with poor prognosis. In tumor cells, XBP1 modulates the unfolded protein response (UPR) to restore homeostasis in endoplasmic reticulum. Targeting XBP1 could be a promising therapeutic strategy to overcome HCC resistance and improve the survival rate of patients. AREAS COVERED This review provides the recent evidence that indicates XBP1 is involved in HCC drug resistance via DNA damage response, drug inactivation, and inhibition of apoptosis. In addition, the potential roles of XBP1 in inducing resistance in HCC cells were highlighted, and we showed how its inhibition could sensitize tumor cells to controlled cell death. EXPERT OPINION Due to the diversity in molecular mechanism of multidrug-resistance, targeting one specific pathway is inadequate. XBP1 inhibition could be a potential therapeutic target to overcome verity of resistance mechanisms. The main function of this transcription factor in HCC treatment response is an attractive area for further studies and should be discussed more.
Collapse
Affiliation(s)
- Zahra Hendi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Department of Animal Biology-Cell and Developmental, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Pedram Asadi Sarabi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - David Hay
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, UK
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet and Karolinska University Hospital-Huddinge, Huddinge, Sweden
| |
Collapse
|
17
|
Huwiler A. Topical Collection: New Insights on Sphingolipids in Health and Disease. Int J Mol Sci 2023; 24:ijms24119528. [PMID: 37298478 DOI: 10.3390/ijms24119528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The last two decades have boosted research on sphingolipids as bioactive and signaling molecules [...].
Collapse
Affiliation(s)
- Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3010 Bern, Switzerland
| |
Collapse
|
18
|
Milardi G, Lleo A. Tumor-Infiltrating B Lymphocytes: Promising Immunotherapeutic Targets for Primary Liver Cancer Treatment. Cancers (Basel) 2023; 15:2182. [PMID: 37046842 PMCID: PMC10093314 DOI: 10.3390/cancers15072182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are the fourth most lethal primary cancers worldwide. Therefore, there is an urgent need for therapeutic strategies, including immune cell targeting therapies. The heterogeneity of liver cancer is partially explained by the characteristics of the tumor microenvironment (TME), where adaptive and innate immune system cells are the main components. Pioneering studies of primary liver cancers revealed that tumor-infiltrating immune cells and their dynamic interaction with cancer cells significantly impacted carcinogenesis, playing an important role in cancer immune evasion and responses to immunotherapy treatment. In particular, B cells may play a prominent role and have a controversial function in the TME. In this work, we highlight the effect of B lymphocytes as tumor infiltrates in relation to primary liver cancers and their potential prognostic value. We also present the key pathways underlying B-cell interactions within the TME, as well as the way that a comprehensive characterization of B-cell biology can be exploited to develop novel immune-based therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Milardi
- Hepatobiliary Immunopathology Labaratory, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Department of Gastroenterology, Division of Internal Medicine and Hepatology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
19
|
Han R, Li J, Hony J, Xiao Z, wang J, Yao M, Liang S, Lu L. CAXII inhibitors: Potential sensitizers for immune checkpoint inhibitors in HCC treatment. Front Immunol 2023; 14:1052657. [PMID: 37006233 PMCID: PMC10061011 DOI: 10.3389/fimmu.2023.1052657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with a lack of effective treatments particularly for the disease at an advanced stage. Even though immune checkpoint inhibitors (ICIs) have made great progress in the treatment of HCC, durable and ideal clinical benefits still cannot be achieved in plenty of patients with HCC. Therefore, novel and refined ICI-based combination therapies are still needed to enhance the therapeutic effect. The latest study has reported that the carbonic anhydrase XII inhibitor (CAXIIi), a novel type of anticancer drug, can modify the tumor immunosuppression microenvironment by affecting hypoxic/acidic metabolism and alter the functions of monocytes and macrophages by regulating the expression of C-C motif chemokine ligand 8 (CCL8). These observations shine a light on improving programmed cell death protein 1 (PD-1)/programmed cell death ligand-1 (PD-L1) immunotherapy in combination with CAXIIis. This mini-review aims to ignite enthusiasm to explore the potential application of CAXIIis in combination with immunotherapy for HCC.
Collapse
Affiliation(s)
- Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Chinese Medicine, Naval Medical University, Shanghai, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, United States
- School of Medicine, Center for Biomedical Data Science, New Haven, CT, United States
- Yale Cancer Center, Yale University, New Haven, CT, United States
- *Correspondence: Rui Han, ; Lingeng Lu,
| | - Jiayin Li
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Hony
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Chinese Medicine, Naval Medical University, Shanghai, China
| | - Zhiwei Xiao
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinghui wang
- Department of Oncology, The First Hospital Affiliated to Guizhou University of Chinese Medicine, Guiyang, China
| | - Man Yao
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Chinese Medicine, Naval Medical University, Shanghai, China
| | - Shufang Liang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Chinese Medicine, Naval Medical University, Shanghai, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, United States
- School of Medicine, Center for Biomedical Data Science, New Haven, CT, United States
- Yale Cancer Center, Yale University, New Haven, CT, United States
- *Correspondence: Rui Han, ; Lingeng Lu,
| |
Collapse
|
20
|
Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: Pathophysiological Mechanisms and New Therapeutic Strategies. Biomedicines 2023; 11:biomedicines11020468. [PMID: 36831004 PMCID: PMC9953066 DOI: 10.3390/biomedicines11020468] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the incidence of non-viral hepatocellular carcinoma (HCC) has increased dramatically, which is probably related to the increased prevalence of metabolic syndrome, together with obesity and type 2 diabetes mellitus (T2DM). Several epidemiological studies have established the association between T2DM and the incidence of HCC and have demonstrated the role of diabetes mellitus as an independent risk factor for the development of HCC. The pathophysiological mechanisms underlying the development of Non-alcoholic fatty liver disease (NAFLD) and its progression to Non-alcoholic steatohepatitis (NASH) and cirrhosis are various and involve pro-inflammatory agents, oxidative stress, apoptosis, adipokines, JNK-1 activation, increased IGF-1 activity, immunomodulation, and alteration of the gut microbiota. Moreover, these mechanisms are thought to play a significant role in the development of NAFLD-related hepatocellular carcinoma. Early diagnosis and the timely correction of risk factors are essential to prevent the onset of liver fibrosis and HCC. The purpose of this review is to summarize the current evidence on the association among obesity, NASH/NAFLD, T2DM, and HCC, with an emphasis on clinical impact. In addition, we will examine the main mechanisms underlying this complex relationship, and the promising strategies that have recently emerged for these diseases' treatments.
Collapse
|
21
|
Metastasis of Hepatocellular Carcinoma in the Pouch of Douglas Successfully Treated by Radiation Therapy: A Case Report. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010225. [PMID: 36676174 PMCID: PMC9862896 DOI: 10.3390/life13010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Metastasis of hepatocellular carcinoma (HCC) in the pouch of Douglas is relatively rare. A 65-year-old man with liver cirrhosis was admitted for detailed examination of a pelvic tumor. He had a previous history of ruptured HCC, and received emergent hemostasis with transcatheter arterial embolization followed by curative ablation. His blood tests showed an increase in des-gamma-carboxy prothrombin (DCP). Contrast-enhanced computed tomography (CE-CT) revealed a heterogeneously enhanced large pelvic tumor, but no additional tumorous lesions were detected in other organs, including the lungs, liver and abdominal lymph nodes. The colonoscopy showed compression by an extra-luminal/submucosal tumor, and computed tomography-guided percutaneous needle biopsy revealed that the pelvic tumor was metastasis of HCC. Because of the poor liver function, the solitary pelvic tumor was treated with three-dimensional conformal radiation therapy (3D-CRT). The tumor size and the DCP value were markedly decreased after radiation therapy. Nine months later, occasional mild bloody stool due to radiation proctitis was observed; however, no serious side effects occurred. Our case suggests that radiation therapy may be a therapeutic option for a solitary metastatic lesion of HCC in the pouch of Douglas.
Collapse
|
22
|
Wang J, Wu R, Sun JY, Lei F, Tan H, Lu X. An overview: Management of patients with advanced hepatocellular carcinoma. Biosci Trends 2022; 16:405-425. [PMID: 36476621 DOI: 10.5582/bst.2022.01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) has constituted a significant health burden worldwide, and patients with advanced HCC, which is stage C as defined by the Barcelona Clinic Liver Cancer staging system, have a poor overall survival of 6-8 months. Studies have indicated the significant survival benefit of treatment based on sorafenib, lenvatinib, or atezolizumab-bevacizumab with reliable safety. In addition, the combination of two or more molecularly targeted therapies (first- plus second-line) has become a hot topic recently and is now being extensively investigated in patients with advanced HCC. In addition, a few biomarkers have been investigated and found to predict drug susceptibility and prognosis, which provides an opportunity to evaluate the clinical benefits of current therapies. In addition, many therapies other than tyrosine kinase inhibitors that might have additional survival benefits when combined with other therapeutic modalities, including immunotherapy, transarterial chemoembolization, radiofrequency ablation, hepatectomy, and chemotherapy, have also been examined. This review provides an overview on the current understanding of disease management and summarizes current challenges with and future perspectives on advanced HCC.
Collapse
Affiliation(s)
- Jincheng Wang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China.,Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Rui Wu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jin-Yu Sun
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifei Lei
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
23
|
Gutiérrez-Cuevas J, Lucano-Landeros S, López-Cifuentes D, Santos A, Armendariz-Borunda J. Epidemiologic, Genetic, Pathogenic, Metabolic, Epigenetic Aspects Involved in NASH-HCC: Current Therapeutic Strategies. Cancers (Basel) 2022; 15:23. [PMID: 36612019 PMCID: PMC9818030 DOI: 10.3390/cancers15010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is the sixth most frequent cancer in the world, being the third cause of cancer-related deaths. Nonalcoholic steatohepatitis (NASH) is characterized by fatty infiltration, oxidative stress and necroinflammation of the liver, with or without fibrosis, which can progress to advanced liver fibrosis, cirrhosis and HCC. Obesity, metabolic syndrome, insulin resistance, and diabetes exacerbates the course of NASH, which elevate the risk of HCC. The growing prevalence of obesity are related with increasing incidence of NASH, which may play a growing role in HCC epidemiology worldwide. In addition, HCC initiation and progression is driven by reprogramming of metabolism, which indicates growing appreciation of metabolism in the pathogenesis of this disease. Although no specific preventive pharmacological treatments have recommended for NASH, dietary restriction and exercise are recommended. This review focuses on the molecular connections between HCC and NASH, including genetic and risk factors, highlighting the metabolic reprogramming and aberrant epigenetic alterations in the development of HCC in NASH. Current therapeutic aspects of NASH/HCC are also reviewed.
Collapse
Affiliation(s)
- Jorge Gutiérrez-Cuevas
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Silvia Lucano-Landeros
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Daniel López-Cifuentes
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, University of Guadalajara, CUCS, Guadalajara 44340, Jalisco, Mexico
- Tecnologico de Monterrey, EMCS, Campus Guadalajara, Zapopan 45201, Jalisco, Mexico
| |
Collapse
|
24
|
Stępniak J, Krawczyk-Lipiec J, Lewiński A, Karbownik-Lewińska M. Sorafenib versus Lenvatinib Causes Stronger Oxidative Damage to Membrane Lipids in Noncancerous Tissues of the Thyroid, Liver, and Kidney: Effective Protection by Melatonin and Indole-3-Propionic Acid. Biomedicines 2022; 10:biomedicines10112890. [PMID: 36428458 PMCID: PMC9687109 DOI: 10.3390/biomedicines10112890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
Sorafenib and lenvatinib are multi-targeted tyrosine kinase inhibitors which are currently approved to treat advanced hepatocellular carcinoma, renal cell carcinoma and radioiodine-refractory differentiated thyroid carcinoma. However this treatment is often limited due to common adverse events which may occur via oxidative stress. The study aims to compare sorafenib- and lenvatinib-induced oxidative damage to membrane lipids (lipid peroxidation, LPO) in homogenates of porcine noncancerous tissues of the thyroid, the liver, and the kidney and to check if it can be prevented by antioxidants melatonin and indole-3-propionic acid (IPA). Homogenates of individual tissues were incubated in the presence of sorafenib or lenvatinib (1 mM, 100 µM, 10 µM, 1 µM, 100 nM, 10 nM, 1 nM, 100 pM) together with/without melatonin (5.0 mM) or IPA (5.0 mM). The concentration of malondialdehyde + 4-hydroxyalkenals, as the LPO index, was measured spectrophotometrically. The incubation of tissue homogenates with sorafenib resulted in a concentration-dependent increase in LPO (statistically significant for concentrations of 1mM and 100 µM in the thyroid and the liver, and of 1 mM, 100 µM, and 10 µM in the kidney). The incubation of thyroid homogenates with lenvatinib did not change LPO level. In case of the liver and the kidney, lenvatinib increased LPO but only in its highest concentration of 1 mM. Melatonin and IPA reduced completely (to the level of control) sorafenib- and lenvatinib-induced LPO in all examined tissues regardless of the drug concentration. In conclusion, sorafenib comparing to lenvatinib is a stronger damaging agent of membrane lipids in noncancerous tissues of the thyroid, the liver, and the kidney. The antioxidants melatonin and IPA can be considered to be used in co-treatment with sorafenib and lenvatinib to prevent their undesirable toxicity occurring via oxidative stress.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Joanna Krawczyk-Lipiec
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej Lewiński
- Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland
| | - Małgorzata Karbownik-Lewińska
- Department of Oncological Endocrinology, Medical University of Lodz, 90-752 Lodz, Poland
- Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
- Correspondence:
| |
Collapse
|
25
|
Trans-Arterial Chemoembolization Plus Systemic Treatments for Hepatocellular Carcinoma: An Update. J Pers Med 2022; 12:jpm12111788. [PMID: 36579504 PMCID: PMC9697413 DOI: 10.3390/jpm12111788] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 02/01/2023] Open
Abstract
Recent years have seen the advent of novel treatment options for hepatocellular carcinoma (HCC). Given a strong biological rationale supporting this strategy, multiple studies have explored the role of combination treatments including locoregional plus systemic therapies to produce a synergistic effect and enhance antitumor activity. Among locoregional therapies, several clinical trials assessing trans-arterial chemoembolization (TACE) have been recently presented and published. In the current paper, we discuss available evidence and current and future research on combined TACE and systemic treatments, including antiangiogenic agents, immune checkpoint inhibitors, and immune-based combinations for HCC patients.
Collapse
|
26
|
Challenges and Future Trends of Hepatocellular Carcinoma Immunotherapy. Int J Mol Sci 2022; 23:ijms231911363. [PMID: 36232663 PMCID: PMC9570098 DOI: 10.3390/ijms231911363] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
|