1
|
Lingadharini P, Maji D. Eco-sustainable point-of-care devices: Progress in paper and fabric based electrochemical and colorimetric biosensors. Talanta 2025; 285:127397. [PMID: 39700723 DOI: 10.1016/j.talanta.2024.127397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Monitoring real-time health conditions is a rinsing demand in a pandemic prone era. Wearable Point-of-Care (POC) devices with paper and fabric-based sensors are emerging as simple, low-cost, portable, and disposable analytical tools for development of green POC devices (GPOCDs). Capabilities of passive fluid transportation, compatibility with biochemical analytes, disposability and high degree of tunability using vivid device fabrication strategies enables development of highly sensitive and economically feasible POC sensors in particularly post COVID-19 pandemic outbreak. Herein we focus mainly on development of biosensors for testing body fluids in the last 5 years using microfluidic technique through electrochemical and colorimetric principle which forms the two most competing sensing techniques providing quantitative and qualitative assessment modalities respectively and forms almost 80 % of the diagnostic platform worldwide. Present review highlights use of these popular substrates as well as various fabrication strategies for realization of GPOCDs ranging from costly and highly sophisticated photolithography to low cost, non conventional techniques like use of correction ink or marker based devices to even novel pop-up/origami induced patterning techniques. Insights into the advancements in colorimetric technique like distance, count or even text based semi-quantitative read-out modality as a on-hand diagnostic information has also been provided. Finally, future outlooks with other interdisciplinary modalities like use of novel materials, incorporation of digital tools like artificial intelligence (AI), machine learning (ML) and strategies for sensitivity and reliability improvement of future GPOCDs have also been discussed.
Collapse
Affiliation(s)
- P Lingadharini
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India
| | - Debashis Maji
- Department of Sensor and Biomedical Technology, School of Electronics Engineering (SENSE), Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
2
|
Adam H, Gopinath SCB, Krishnan H, Adam T, Fakhri MA, Salim ET, Shamsher A, Subramaniam S, Chen Y. Selective detection of alpha synuclein amyloid fibrils by faradaic and non-faradaic electrochemical impedance spectroscopic approaches. Bioelectrochemistry 2025; 161:108800. [PMID: 39241513 DOI: 10.1016/j.bioelechem.2024.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
This study utilized faradaic and non-faradaic electrochemical impedance spectroscopy to detect alpha synuclein amyloid fibrils on gold interdigitated tetraelectrodes (AuIDTE), providing valuable insights into electrochemical reactions for clinical use. AuIDE was purchased, modified with zinc oxide for increased hydrophobicity. Functionalization was conducted with hexacyanidoferrate and carbonyldiimidazole. Faradaic electrochemical impedance spectroscopy has been extensively explored in clinical diagnostics and biomedical research, providing information on the performance and stability of electrochemical biosensors. This understanding can help develop more sensitive, selective, and reliable biosensing platforms for the detection of clinically relevant analytes like biomarkers, proteins, and nucleic acids. Non-faradaic electrochemical impedance spectroscopy measures the interfacial capacitance at the electrode-electrolyte interface, eliminating the need for redox-active species and simplifying experimental setups. It has practical implications in clinical settings, like real-time detection and monitoring of biomolecules and biomarkers by tracking changes in interfacial capacitance. The limit of detection (LOD) for normal alpha synuclein in faradaic mode is 2.39-fM, The LOD for aggregated alpha synuclein detection is 1.82-fM. The LOD for non-faradaic detection of normal alpha synuclein is 2.22-fM, and the LOD for nonfaradaic detection of aggregated alpha synuclein is 2.40-fM. The proposed EIS-based AuIDTEs sensor detects alpha synuclein amyloid fibrils and it is highly sensitive.
Collapse
Affiliation(s)
- Hussaini Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602 105, Tamil Nadu, India; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Department of Technical Sciences, Western Caspian University, Baku, AZ 1075, Azerbaijan; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900 Penang, Malaysia; Department of Computer Science and Engineering, Faculty of Science and Information Technology, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka 1216, Bangladesh.
| | - Hemavathi Krishnan
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia
| | - Tijjani Adam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Faculty of Electronic Engineering & Technology, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
| | - Makram A Fakhri
- Laser and Optoelectronics Eng. Department, University of Technology-Iraq, Baghdad 10066, Iraq
| | - Evan T Salim
- Applied Science Department, University of Technology-Iraq, Baghdad 10066, Iraq
| | - A Shamsher
- Electrical Engineering Department, Seberang Perai Polytechnic, 13500 Permatang Pauh, Penang, Malaysia
| | - Sreeramanan Subramaniam
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), 01000 Kangar, Perlis, Malaysia; Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900 Penang, Malaysia; School of Biological Sciences, Universiti Sains Malaysia, Georgetown, 11800 Penang, Malaysia
| | - Yeng Chen
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
3
|
Ghanbari MH, Biesalski M, Friedrich O, Etzold BJM. Screen printed 3D microfluidic paper-based and modifier-free electroanalytical device for clozapine sensing. Analyst 2024; 149:5411-5422. [PMID: 39377284 DOI: 10.1039/d4an01136h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The increasing demand in healthcare for accessible and cost-effective analytical tools is driving the development of reliable platforms to the customization of therapy according to individual patient drug serum levels, e.g. of anti-psychotics in schizophrenia. A modifier-free microfluidic paper-based electroanalytical device (μPED) holds promise as a portable, sensitive, and affordable solution. While many studies focus on the working electrode catalysts, improvements by engineering aspects e.g. of the electrode arrangement are less reported. In our study, we demonstrate the enhanced capabilities of the 3D electrode layout of μPED compared to 2D μPED arrangements. We especially show that screen printing can be employed to prepare 3D μPEDs. We conducted a comparison of different 2D and 3D electrode arrangements utilizing cyclic voltammetry in [Fe(CN)6]3-/4-, along with square-wave voltammetry for clozapine (CLZ) sensing. Our findings reveal that the utilization of the 3D μPED leads to an increase in both the electrochemically active surface area and the electron transfer rate. Consequently, this enhancement contributes to improve sensitivity in the CLZ sensing. The 3D μPED clearly outperforms the 2D μPED arrangement in terms of signal strength. With the 3D μPED under the optimized conditions, a linear dose-response for a concentration range from 7.0 to 100 μM was achieved. The limit of detection and sensitivity was determined to be 1.47 μM and 1.69 μA μM-1 cm-2, respectively. This evaluation is conducted in the context of detection and determination of CLZ in a human blood serum sample. These findings underscore the potential of the 3D μPED for future applications in pharmacokinetic analyses and clinical tests to personalize the management of schizophrenia.
Collapse
Affiliation(s)
- Mohammad Hossein Ghanbari
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Power-To-X Technologies, 90762 Fürth, Germany.
- Technische Universität Darmstadt, Ernst-Berl-Institute for Technical Chemistry and Macromolecular Science, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| | - Markus Biesalski
- Technische Universität Darmstadt, Ernst-Berl-Institute for Technical Chemistry and Macromolecular Science, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Paul-Gordan-Str. 3, 91052, Erlangen, Germany
| | - Bastian J M Etzold
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Power-To-X Technologies, 90762 Fürth, Germany.
- Technische Universität Darmstadt, Ernst-Berl-Institute for Technical Chemistry and Macromolecular Science, Peter-Grünberg-Straße 8, 64287, Darmstadt, Germany
| |
Collapse
|
4
|
Bezinge L, Shih CJ, Richards DA, deMello AJ. Electrochemical Paper-Based Microfluidics: Harnessing Capillary Flow for Advanced Diagnostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401148. [PMID: 38801400 DOI: 10.1002/smll.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures. This account reviews recent developments in paper-based electroanalytical devices and offers perspective by revisiting key milestones in lateral flow tests and paper-based microfluidics engineering. The study highlights the benefits associated with electrochemical sensing and discusses how the detection modality can be leveraged to unlock novel functionalities. Particular focus is given to electrofluidic platforms that embed electrodes into paper for enhanced biosensing applications. Together, these innovations pave the way for diagnostic technologies that offer portability, quantitative analysis, and seamless integration with digital healthcare, all without compromising the simplicity of commercially available rapid diagnostic tests.
Collapse
Affiliation(s)
- Léonard Bezinge
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Chih-Jen Shih
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Daniel A Richards
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| | - Andrew J deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich, 8093, Switzerland
| |
Collapse
|
5
|
Kammarchedu V, Asgharian H, Zhou K, Soltan Khamsi P, Ebrahimi A. Recent advances in graphene-based electroanalytical devices for healthcare applications. NANOSCALE 2024; 16:12857-12882. [PMID: 38888429 PMCID: PMC11238565 DOI: 10.1039/d3nr06137j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Graphene, with its outstanding mechanical, electrical, and biocompatible properties, stands out as an emerging nanomaterial for healthcare applications, especially in building electroanalytical biodevices. With the rising prevalence of chronic diseases and infectious diseases, such as the COVID-19 pandemic, the demand for point-of-care testing and remote patient monitoring has never been greater. Owing to their portability, ease of manufacturing, scalability, and rapid and sensitive response, electroanalytical devices excel in these settings for improved healthcare accessibility, especially in resource-limited settings. The development of different synthesis methods yielding large-scale graphene and its derivatives with controllable properties, compatible with device manufacturing - from lithography to various printing methods - and tunable electrical, chemical, and electrochemical properties make it an attractive candidate for electroanalytical devices. This review article sheds light on how graphene-based devices can be transformative in addressing pressing healthcare needs, ranging from the fundamental understanding of biology in in vivo and ex vivo studies to early disease detection and management using in vitro assays and wearable devices. In particular, the article provides a special focus on (i) synthesis and functionalization techniques, emphasizing their suitability for scalable integration into devices, (ii) various transduction methods to design diverse electroanalytical device architectures, (iii) a myriad of applications using devices based on graphene, its derivatives, and hybrids with other nanomaterials, and (iv) emerging technologies at the intersection of device engineering and advanced data analytics. Finally, some of the major hurdles that graphene biodevices face for translation into clinical applications are discussed.
Collapse
Affiliation(s)
- Vinay Kammarchedu
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Heshmat Asgharian
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Keren Zhou
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Pouya Soltan Khamsi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Aida Ebrahimi
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
6
|
Ganesh PS, Elugoke SE, Lee SH, Kim SY, Ebenso EE. Smart and emerging point of care electrochemical sensors based on nanomaterials for SARS-CoV-2 virus detection: Towards designing a future rapid diagnostic tool. CHEMOSPHERE 2024; 352:141269. [PMID: 38307334 DOI: 10.1016/j.chemosphere.2024.141269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.
Collapse
Affiliation(s)
- Pattan Siddappa Ganesh
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Saheed Eluwale Elugoke
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa
| | - Seok-Han Lee
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea
| | - Sang-Youn Kim
- Interaction Laboratory, Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do, 330-708, Republic of Korea.
| | - Eno E Ebenso
- Centre for Material Science, College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa; Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Johannesburg 1709, South Africa.
| |
Collapse
|
7
|
Pornprom T, Phusi N, Thongdee P, Pakamwong B, Sangswan J, Kamsri P, Punkvang A, Suttisintong K, Leanpolchareanchai J, Hongmanee P, Lumjiaktase P, Jampasa S, Chailapakul O, Pungpo P. Toward the early diagnosis of tuberculosis: A gold particle-decorated graphene-modified paper-based electrochemical biosensor for Hsp16.3 detection. Talanta 2024; 267:125210. [PMID: 37717539 DOI: 10.1016/j.talanta.2023.125210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Tuberculosis (TB) currently remains a major life-threatening disease as it can be fatal if not treated properly or in a timely manner. Herein, we first describe a disposable and cost-effective paper-based electrochemical biosensor based on a gold particle-decorated carboxyl graphene (AuPs/GCOOH)-modified electrode for detecting heat shock protein (Hsp16.3), which is a specific biomarker indicating the onset of TB infection. The device pattern was first engineered to facilitate detection procedures and printed on low-cost filter paper to create hydrophobic and hydrophilic regions using a wax printing technique. Immunoassays proceeded in a half-sandwich format because it is a reagent-less approach and requires no labeling step. The fabrication of the immunosensor began with GCOOH drop casting, the electrochemical deposition of AuPs, and the establishment of a biorecognition layer against Hsp16.3 utilizing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)/N-hydroxysuccinimide (NHS)-sulfo standard chemistry. The appearance of Hsp16.3 resulted in a substantial decrease in the electrochemical signal response of the redox probe employed [Fe (CN)6]3-/4- due to the created immunocomplexes that possess insulation properties. GCOOH enables direct antibody immobilization, and AuPs enhance the electrochemical properties of the sensor. This proposed immunosensor, while requiring only a miniscule sample volume (5 μL), achieved superior performance in terms of the limit of detection, measuring at 0.01 ng/mL. Our platform was confirmed to be highly specific to Hsp16.3 and can rapidly detect TB-infected sera without necessitating any pre-enrichment (20 min), making it an alternative and particularly suitable for the early diagnosis of TB in resource-scarce countries.
Collapse
Affiliation(s)
- Thimpika Pornprom
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Naruedon Phusi
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Paptawan Thongdee
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Bongkochawan Pakamwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Jidapa Sangswan
- Department of Biological Science, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Pharit Kamsri
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Auradee Punkvang
- Division of Chemistry, Faculty of Science, Nakhon Phanom University, Nakhon Phanom 48000, Thailand
| | - Khomson Suttisintong
- National Nanotechnology Center, NSTDA, 111 Thailand Science Park, Klong Luang, Pathum Thani, 12120, Thailand
| | | | - Poonpilas Hongmanee
- Division of Clinical Microbiology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Putthapoom Lumjiaktase
- Division of Clinical Immunology, Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Sakda Jampasa
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Pornpan Pungpo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
8
|
du Plooy J, Jahed N, Iwuoha E, Pokpas K. Advances in paper-based electrochemical immunosensors: review of fabrication strategies and biomedical applications. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230940. [PMID: 38034121 PMCID: PMC10685120 DOI: 10.1098/rsos.230940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Cellulose paper-based sensing devices have shown promise in addressing the accuracy, sensitivity, selectivity, analysis time and cost of current disease diagnostic tools owing to their excellent physical and physiochemical properties, high surface-area-to-volume ratio, strong adsorption capabilities, ease of chemical functionalization for immobilization, biodegradability, biocompatibility and liquid transport by simple capillary action. This review provides a comprehensive overview of recent advancements in the field of electrochemical immunosensing for various diseases, particularly in underdeveloped regions and globally. It highlights the significant progress in fabrication techniques, fluid control, signal transduction and paper substrates, shedding light on their respective advantages and disadvantages. The primary objective of this review article is to compile recent advances in the field of electrochemical immunosensing for the early detection of diseases prevalent in underdeveloped regions and globally, including cancer biomarkers, bacteria, proteins and viruses. Herein, the critical need for new, simplistic early detection strategies to combat future disease outbreaks and prevent global pandemics is addressed. Moreover, recent advancements in fabrication techniques, including lithography, printing and electrodeposition as well as device orientation, substrate type and electrode modification, have highlighted their potential for enhancing sensitivity and accuracy.
Collapse
Affiliation(s)
- Jarid du Plooy
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Nazeem Jahed
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Keagan Pokpas
- SensorLab, Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
9
|
Uzunoglu A, Gunes Altuntas E, Huseyin Ipekci H, Ozoglu O. Two-Dimensional (2D) materials in the detection of SARS-CoV-2. Microchem J 2023; 193:108970. [PMID: 37342763 PMCID: PMC10265934 DOI: 10.1016/j.microc.2023.108970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/10/2023] [Accepted: 06/10/2023] [Indexed: 06/23/2023]
Abstract
The SARS-CoV-2 pandemic has resulted in a devastating effect on human health in the last three years. While tremendous effort has been devoted to the development of effective treatment and vaccines against SARS-CoV-2 and controlling the spread of it, collective health challenges have been encountered along with the concurrent serious economic impacts. Since the beginning of the pandemic, various detection methods like PCR-based methods, isothermal nucleic acid amplification-based (INAA) methods, serological methods or antibody tests, and evaluation of X-ray chest results have been exploited to diagnose SARS-CoV-2. PCR-based detection methods in these are considered gold standards in the current stage despite their drawbacks, including being high-cost and time-consuming procedures. Furthermore, the results obtained from the PCR tests are susceptible to sample collection methods and time. When the sample is not collected properly, obtaining a false result may be likely. The use of specialized lab equipment and the need for trained people for the experiments pose additional challenges in PCR-based testing methods. Also, similar problems are observed in other molecular and serological methods. Therefore, biosensor technologies are becoming advantageous with their quick response, high specificity and precision, and low-cost characteristics for SARS-CoV-2 detection. In this paper, we critically review the advances in the development of sensors for the detection of SARS-CoV-2 using two-dimensional (2D) materials. Since 2D materials including graphene and graphene-related materials, transition metal carbides, carbonitrides, and nitrides (MXenes), and transition metal dichalcogenides (TMDs) play key roles in the development of novel and high-performance electrochemical (bio)sensors, this review pushes the sensor technologies against SARS-CoV-2 detection forward and highlights the current trends. First, the basics of SARS-CoV-2 detection are described. Then the structure and the physicochemical properties of the 2D materials are explained, which is followed by the development of SARS-CoV-2 sensors by exploiting the exceptional properties of the 2D materials. This critical review covers most of the published papers in detail from the beginning of the outbreak.
Collapse
Affiliation(s)
- Aytekin Uzunoglu
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Evrim Gunes Altuntas
- Ankara University, Biotechnology Institute, Gumusdere Campus, 06135, Ankara, Turkey
| | - Hasan Huseyin Ipekci
- Faculty of Engineering, Metallurgical & Materials Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ozum Ozoglu
- Department of Food Engineering, Faculty of Agriculture, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
10
|
Mishra S, Aamna B, Parida S, Dan AK. Carbon-based biosensors: Next-generation diagnostic tool for target-specific detection of SARS-CoV-2 (COVID-19). TALANTA OPEN 2023; 7:100218. [PMID: 37131405 PMCID: PMC10125215 DOI: 10.1016/j.talo.2023.100218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/01/2023] [Accepted: 04/24/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) was declared a global pandemic in 2020. Having rapidly spread around the globe, with the emergence of new variants, there is a crucial need to develop diagnostic kits for its rapid detection. Since it validated accuracy and reliability, the reverse transcription polymerase chain reaction (RT-PCR) test has been declared the gold standard for disease detection. However, despite its reliability, the requirement of specialized facilities, reagents, and duration of a PCR run limits its usage for rapid detection. There is thus a continuous increase in the design and development of rapid, point-of-care (PoC), and cost-effective diagnostic kits. In this review, we discuss the potential of carbon-based biosensors for target-specific detection of coronavirus disease 19 (COVID-19) and present an overview of investigation within the timeframe of the last four years (2019-2022), which have developed novel platforms using carbon nanomaterial-based approaches for viral detection. The approaches discussed offer rapid, accurate, and cost-effective strategies for COVID-19 detection for healthcare personnel and research workers.
Collapse
Affiliation(s)
- Shivam Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| | - Bari Aamna
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| | - Sagarika Parida
- Department of Botany, School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, 752050, India
| | - Aritra Kumar Dan
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed to be University), Bhubaneswar, Odisha, 751024, India
| |
Collapse
|
11
|
Benjamin SR, de Lima F, Nascimento VAD, de Andrade GM, Oriá RB. Advancement in Paper-Based Electrochemical Biosensing and Emerging Diagnostic Methods. BIOSENSORS 2023; 13:689. [PMID: 37504088 PMCID: PMC10377443 DOI: 10.3390/bios13070689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023]
Abstract
The utilization of electrochemical detection techniques in paper-based analytical devices (PADs) has revolutionized point-of-care (POC) testing, enabling the precise and discerning measurement of a diverse array of (bio)chemical analytes. The application of electrochemical sensing and paper as a suitable substrate for point-of-care testing platforms has led to the emergence of electrochemical paper-based analytical devices (ePADs). The inherent advantages of these modified paper-based analytical devices have gained significant recognition in the POC field. In response, electrochemical biosensors assembled from paper-based materials have shown great promise for enhancing sensitivity and improving their range of use. In addition, paper-based platforms have numerous advantageous characteristics, including the self-sufficient conveyance of liquids, reduced resistance, minimal fabrication cost, and environmental friendliness. This study seeks to provide a concise summary of the present state and uses of ePADs with insightful commentary on their practicality in the field. Future developments in ePADs biosensors include developing novel paper-based systems, improving system performance with a novel biocatalyst, and combining the biosensor system with other cutting-edge tools such as machine learning and 3D printing.
Collapse
Affiliation(s)
- Stephen Rathinaraj Benjamin
- Drug Research and Development Center (NPDM), Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
| | - Fábio de Lima
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul UFMS, Campo Grande 79070-900, MS, Brazil
| | - Valter Aragão do Nascimento
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul UFMS, Campo Grande 79070-900, MS, Brazil
| | - Geanne Matos de Andrade
- Drug Research and Development Center (NPDM), Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of the Biology of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, Institute of Biomedicine, School of Medicine, Federal University of Cearà, Fortaleza 60430-270, CE, Brazil
| |
Collapse
|
12
|
Santos A, Macedo de Souza Brandão AP, Hryniewicz BM, Abreu H, Bach-Toledo L, Schuster da Silva S, Deller AE, Rogerio VZ, Baêta Rodrigues DS, Hiraiwa PM, Guimarães BG, Marchesi LF, Carvalho de Oliveira J, Gradia DF, Soares FLF, Zanchin NIT, Camargo de Oliveira C, Vidotti M. COVID-19 impedimetric biosensor based on polypyrrole nanotubes, nickel hydroxide and VHH antibody fragment: specific, sensitive, and rapid viral detection in saliva samples. MATERIALS TODAY. CHEMISTRY 2023; 30:101597. [PMID: 37284350 PMCID: PMC10236006 DOI: 10.1016/j.mtchem.2023.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
SARS-CoV-2 rapid spread required urgent, accurate, and prompt diagnosis to control the virus dissemination and pandemic management. Several sensors were developed using different biorecognition elements to obtain high specificity and sensitivity. However, the task to achieve these parameters in combination with fast detection, simplicity, and portability to identify the biorecognition element even in low concentration remains a challenge. Therefore, we developed an electrochemical biosensor based on polypyrrole nanotubes coupled via Ni(OH)2 ligation to an engineered antigen-binding fragment of heavy chain-only antibodies (VHH) termed Sb#15. Herein we report Sb#15-His6 expression, purification, and characterization of its interaction with the receptor-binding domain (RBD) of SARS-CoV-2 in addition to the construction and validation of a biosensor. The recombinant Sb#15 is correctly folded and interacts with the RBD with a dissociation constant (KD) of 27.1 ± 6.4 nmol/L. The biosensing platform was developed using polypyrrole nanotubes and Ni(OH)2, which can properly orientate the immobilization of Sb#15-His6 at the electrode surface through His-tag interaction for the sensitive SARS-CoV-2 antigen detection. The quantification limit was determined as 0.01 pg/mL using recombinant RBD, which was expressively lower than commercial monoclonal antibodies. In pre-characterized saliva, both Omicron and Delta SARS-CoV-2 were accurately detected only in positive samples, meeting all the requirements recommended by the World Health Organization for in vitro diagnostics. A low sample volume of saliva is needed to perform the detection, providing results within 15 min without further sample preparations. In summary, a new perspective allying recombinant VHHs with biosensor development and real sample detection was explored, addressing the need for accurate, rapid, and sensitive biosensors.
Collapse
Affiliation(s)
- A Santos
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A P Macedo de Souza Brandão
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - B M Hryniewicz
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - H Abreu
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, Brazil
| | - L Bach-Toledo
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
- Centro de Tecnologia da Informação Renato Archer (CTI), Rod. D. Pedro I, KM143.6, 13069-901, Campinas, SP, Brazil
| | - S Schuster da Silva
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A E Deller
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - V Z Rogerio
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - D S Baêta Rodrigues
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - P M Hiraiwa
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - B G Guimarães
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - L F Marchesi
- Grupo de Estudos em Espectroscopia de Impedância Eletroquímica (GEIS), Universidade Tecnológica Federal Do Paraná, Rua Dr. Washington Subtil Chueire, 330 - Jd. Carvalho, CEP 84017-220, Ponta Grossa, PR, Brazil
| | - J Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, Brazil
| | - D F Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, Brazil
| | - F L F Soares
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - N I T Zanchin
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - C Camargo de Oliveira
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - M Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
13
|
Park E, Choi SY, Kim J, Hildebrandt N, Lee JS, Nam JM. Nanotechnologies for the Diagnosis and Treatment of SARS-CoV-2 and Its Variants. SMALL METHODS 2023:e2300034. [PMID: 37189215 DOI: 10.1002/smtd.202300034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/30/2023] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the global coronavirus disease 2019 (COVID-19) pandemic, has caused well over 750 million infections and 6.8 million deaths. Rapid diagnosis and isolation of infected patients are the primary aims of the concerned authorities to minimize the casualties. The endeavor to mitigate the pandemic has been impeded by the emergence of newly identified genomic variants of SARS-CoV-2. Some of these variants are considered as serious threats because of their higher transmissibility and potential immune evasion, leading to reduced vaccine efficiency. Nanotechnology can play an important role in advancing both diagnosis and therapy of COVID-19. In this review, nanotechnology-based diagnostic and therapeutic strategies against SARS-CoV-2 and its variants are introduced. The biological features and functions of the virus, the mechanism of infection, and currently used approaches for diagnosis, vaccination, and therapy are discussed. Then, nanomaterial-based nucleic acid- and antigen-targeting diagnostic methods and viral activity suppression approaches that have a strong potential to advance both diagnostics and therapeutics toward control and containment of the COVID-19 pandemic are focused upon.
Collapse
Affiliation(s)
- Eunhye Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - So Young Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jin Seok Lee
- Department of Chemistry and Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
14
|
Laleh S, Ibarlucea B, Stadtmüller M, Cuniberti G, Medina-Sánchez M. Portable microfluidic impedance biosensor for SARS-CoV-2 detection. Biosens Bioelectron 2023; 236:115362. [PMID: 37300901 DOI: 10.1016/j.bios.2023.115362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023]
Abstract
Pandemics as the one we are currently facing, where fast-spreading viruses present a threat to humanity, call for simple and reliable methods to perform early diagnosis, enabling detection of very low pathogen loads even before symptoms start showing in the host. So far, standard polymerase chain reaction (PCR) is the most reliable method for doing so, but it is rather slow and needs specialized reagents and trained personnel to operate it. Additionally, it is expensive and not easily accessible. Therefore, developing miniaturized and portable sensors which perform early detection of pathogens with high reliability is necessary to not only prevent the spreading of the disease but also to monitor the effectiveness of the developed vaccines and the appearance of new pathogenic variants. Thus, in this work we develop a sensitive microfluidic impedance biosensor for the direct detection of SARS-CoV-2, towards a mobile point-of-care (POC) platform. The operational parameters are optimized with the aid of design-of-experiment (DoE), for an accurate detection of the viral antigens using electrochemical impedance spectroscopy (EIS). We perform the biodetection of buffer samples spiked with fM concentration levels and validate the biosensor in a clinical context of relevance by analyzing 15 real patient samples up to a Ct value (cycle threshold) of 27. Finally, we demonstrate the versatility of the developed platform using different settings, including a small portable potentiostat, using multiple channels for self-validation, as well as with single biosensors for a smartphone-based readout. This work contributes to the rapid and reliable diagnostics of COVID-19 and can be extended to other infectious diseases, allowing the monitoring of viral load in vaccinated and unvaccinated people to anticipate a potential relapse of the disease.
Collapse
Affiliation(s)
- Soroush Laleh
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (Leibniz IFW Dresden), 01069, Dresden, Germany; Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden, Germany.
| | | | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Dresden University of Technology, Dresden, Germany; Dresden Center for Computational Materials Science (DCMS), Dresden University of Technology, Dresden, Germany
| | - Mariana Medina-Sánchez
- Micro- and NanoBiomedical Engineering Group (MNBE), Institute for Emerging Electronic Technologies, Leibniz Institute for Solid State and Materials Research (Leibniz IFW Dresden), 01069, Dresden, Germany; Chair of Micro- and NanoSystems, Center for Molecular Bioengineering (B CUBE), Dresden University of Technology, 01062, Dresden, Germany.
| |
Collapse
|
15
|
Chen H, Hou ZY, Chen D, Li T, Wang YM, De Lima MA, Yang Y, Guo ZZ. Highly Sensitive Poly-N-isopropylacrylamide Microgel-based Electrochemical Biosensor for the Detection of SARS-COV-2 Spike Protein. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2023; 36:269-278. [PMID: 37005080 PMCID: PMC10080711 DOI: 10.3967/bes2023.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 06/19/2023]
Abstract
Objective Late 2019 witnessed the outbreak and widespread transmission of coronavirus disease 2019 (COVID-19), a new, highly contagious disease caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Consequently, considerable attention has been paid to the development of new diagnostic tools for the early detection of SARS-CoV-2. Methods In this study, a new poly-N-isopropylacrylamide microgel-based electrochemical sensor was explored to detect the SARS-CoV-2 spike protein (S protein) in human saliva. The microgel was composed of a copolymer of N-isopropylacrylamide and acrylic acid, and gold nanoparticles were encapsulated within the microgel through facile and economical fabrication. The electrochemical performance of the sensor was evaluated through differential pulse voltammetry. Results Under optimal experimental conditions, the linear range of the sensor was 10 -13-10 -9 mg/mL, whereas the detection limit was 9.55 fg/mL. Furthermore, the S protein was instilled in artificial saliva as the infected human saliva model, and the sensing platform showed satisfactory detection capability. Conclusion The sensing platform exhibited excellent specificity and sensitivity in detecting spike protein, indicating its potential application for the time-saving and inexpensive detection of SARS-CoV-2.
Collapse
Affiliation(s)
- Hao Chen
- Department of Anaesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | - Zhi Yuan Hou
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China;Department of Pharmacy, Medical College, Wuhan University of Science and Technology Wuhan 430065, Hubei, China
| | - Die Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China;Department of Pharmacy, Medical College, Wuhan University of Science and Technology Wuhan 430065, Hubei, China
| | - Ting Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China;Department of Pharmacy, Medical College, Wuhan University of Science and Technology Wuhan 430065, Hubei, China
| | - Yi Ming Wang
- School of Public Health, Medical College, Wuhan University of Science and Technology Wuhan 430065, Hubei, China
| | | | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST4 7QB, UK
| | - Zhen Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| |
Collapse
|
16
|
Hasan MR, Sharma P, Suleman S, Mukherjee S, Celik EG, Timur S, Pilloton R, Narang J. Papertronics: Marriage between Paper and Electronics Becoming a Real Scenario in Resource-Limited Settings. ACS APPLIED BIO MATERIALS 2023; 6:1368-1379. [PMID: 36926800 DOI: 10.1021/acsabm.2c01070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Integrating electronic applications with paper, placed next to or below printed images or graphics, can further expand the possible uses of paper substrates. Consuming paper as a substrate in the field of electronics can lead to significant innovations toward papertronics applications as paper comprises various advantages like being disposable, inexpensive, biodegradable, easy to handle, simple to use, and easily available. All of these advantages will definitely spur the advancement of the electronics field, but unfortunately, putting electronics on paper is not an easy task because, compared to plastics, the paper surface is not just rough but also porous. For example, in the case of lateral flow assay testing the sensor response is delayed if the pore size of the paper is enormous. This might be a disadvantage for most electrical devices printed directly on paper. Still, some methods make it compatible when fit with a rough, absorbent surface of the paper. Building electronic devices on a standard paper substrate have sparked much interest because of its lightweight, environmental friendliness, minimal cost, and simple fabrication. A slew of improvements have been achieved in recent years to make paper electronics perform better in various applications, including transistors, batteries, and displays. In addition, flexible electronics have gained much interest in human-machine interaction and wireless sensing. This review briefly examines the origins and fabrication of paper electronics and then moves on to applications and exciting possible paths for paper-based electronics.
Collapse
Affiliation(s)
- Mohd Rahil Hasan
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Pradakshina Sharma
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Shariq Suleman
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Shouvik Mukherjee
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| | - Emine Guler Celik
- Department of Bioengineering, Faculty of Engineering, Ege University, 35100 Bornova, Izmir, Turkey
| | - Suna Timur
- Department of Biochemistry, Faculty of Science, Ege University, 35100 Bornova, Izmir, Turkey.,Central Research Test and Analysis Laboratory Application and Research Center, Ege University, 35100 Bornova, Izmir, Turkey
| | - Roberto Pilloton
- CNR-IC, Area della Ricerca di RM1, Via Salaria km 29.3, Monterotondo, Rome I-00015, Italy
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard University, New Delhi 110062, India
| |
Collapse
|
17
|
Zambry NS, Awang MS, Beh KK, Hamzah HH, Bustami Y, Obande GA, Khalid MF, Ozsoz M, Manaf AA, Aziah I. A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification. LAB ON A CHIP 2023; 23:1622-1636. [PMID: 36786757 DOI: 10.1039/d2lc01159j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emergence of coronavirus disease 2019 (COVID-19) motivates continuous efforts to develop robust and accurate diagnostic tests to detect severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Detection of viral nucleic acids provides the highest sensitivity and selectivity for diagnosing early and asymptomatic infection because the human immune system may not be active at this stage. Therefore, this work aims to develop a label-free electrochemical DNA biosensor for SARS-CoV-2 detection using a printed circuit board-based gold substrate (PCBGE). The developed sensor used the nucleocapsid phosphoprotein (N) gene as a biomarker. The DNA sensor-based PCBGE was fabricated by self-assembling a thiolated single-stranded DNA (ssDNA) probe onto an Au surface, which performed as the working electrode (WE). The Au surface was then treated with 6-mercapto-1-hexanol (MCH) before detecting the target N gene to produce a well-oriented arrangement of the immobilized ssDNA chains. The successful fabrication of the biosensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and atomic force microscopy (AFM). The DNA biosensor performances were evaluated using a synthetic SARS-CoV-2 genome and 20 clinical RNA samples from healthy and infected individuals through EIS. The developed DNA biosensor can detect as low as 1 copy per μL of the N gene within 5 minutes with a LOD of 0.50 μM. Interestingly, the proposed DNA sensor could distinguish the expression of SARS-CoV-2 RNA in a patient diagnosed with COVID-19 without any amplification technique. We believe that the proposed DNA sensor platform is a promising point-of-care (POC) device for COVID-19 viral infection since it offers a rapid detection time with a simple design and workflow detection system, as well as an affordable diagnostic assay.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Khi Khim Beh
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| | - Mehmet Ozsoz
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
- Department of Biomedical Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Turkey
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Center (CEDEC), Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No. 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
18
|
Ong V, Soleimani A, Amirghasemi F, Khazaee Nejad S, Abdelmonem M, Razaviyayn M, Hosseinzadeh P, Comai L, Mousavi MPS. Impedimetric Sensing: An Emerging Tool for Combating the COVID-19 Pandemic. BIOSENSORS 2023; 13:204. [PMID: 36831970 PMCID: PMC9953732 DOI: 10.3390/bios13020204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/12/2023]
Abstract
The COVID-19 pandemic revealed a pressing need for the development of sensitive and low-cost point-of-care sensors for disease diagnosis. The current standard of care for COVID-19 is quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). This method is sensitive, but takes time, effort, and requires specialized equipment and reagents to be performed correctly. This make it unsuitable for widespread, rapid testing and causes poor individual and policy decision-making. Rapid antigen tests (RATs) are a widely used alternative that provide results quickly but have low sensitivity and are prone to false negatives, particularly in cases with lower viral burden. Electrochemical sensors have shown much promise in filling this technology gap, and impedance spectroscopy specifically has exciting potential in rapid screening of COVID-19. Due to the data-rich nature of impedance measurements performed at different frequencies, this method lends itself to machine-leaning (ML) algorithms for further data processing. This review summarizes the current state of impedance spectroscopy-based point-of-care sensors for the detection of the SARS-CoV-2 virus. This article also suggests future directions to address the technology's current limitations to move forward in this current pandemic and prepare for future outbreaks.
Collapse
Affiliation(s)
- Victor Ong
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ali Soleimani
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Farbod Amirghasemi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Sina Khazaee Nejad
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Mona Abdelmonem
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Meisam Razaviyayn
- Daniel J. Epstein Department of Industrial and Systems Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Computer Science, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Parisa Hosseinzadeh
- Knight Campus Center Department of Bioengineering, University of Oregon, Eugene, OR 97403, USA
| | - Lucio Comai
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maral P. S. Mousavi
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
19
|
Sengupta J, Hussain CM. The Emergence of Carbon Nanomaterials as Effective Nano-Avenues to Fight against COVID-19. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1068. [PMID: 36770075 PMCID: PMC9918919 DOI: 10.3390/ma16031068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
COVID-19 (Coronavirus Disease 2019), a viral respiratory ailment that was first identified in Wuhan, China, in 2019, and then expanded globally, was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The severity of the illness necessitated quick action to cease the virus's spread. The best practices to avert the infection include early detection, the use of protective clothing, the consumption of antiviral medicines, and finally the immunization of the patients through vaccination. The family of carbon nanomaterials, which includes graphene, fullerene, carbon nanotube (CNT), and carbon dot (CD), has a great deal of potential to effectively contribute to each of the main trails in the battle against the coronavirus. Consequently, the recent advances in the application of carbon nanomaterials for containing and combating the SARS-CoV-2 virus are discussed herein, along with their associated challenges and futuristic applicability.
Collapse
Affiliation(s)
- Joydip Sengupta
- Department of Electronic Science, Jogesh Chandra Chaudhuri College, Kolkata 700033, India
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
20
|
Ma C, Lu D, Gan H, Yao Z, Zhu DZ, Luo J, Fu Q, Kurup P. The critical experimental aspects for developing pathogen electrochemical biosensors: A lesson during the COVID-19 pandemic. Talanta 2022:124009. [PMCID: PMC9562616 DOI: 10.1016/j.talanta.2022.124009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Though the bitter global pandemic posed a severe public health threat, it set an unprecedented stage for different research teams to present various technologies for detecting SARS-CoV-2, providing a rare and hard-won lesson for one to comprehensively survey the core experimental aspects in developing pathogens electrochemical biosensors. Apart from collecting all the published biosensor studies, we focused on the effects and consequences of using different receptors, such as antibodies, aptamers, ACE 2, and MIPs, which are one of the core topics of developing a pathogen biosensor. In addition, we tried to find an appropriate and distinctive application scenario (e.g., wastewater-based epidemiology) to maximize the advantages of using electrochemical biosensors to detect pathogens. Based on the enormous amount of information from those published studies, features that fit and favor wastewater pathogen detection can be picked up and integrated into a specific strategy to perform quantitative measurements in wastewater samples.
Collapse
Affiliation(s)
- Chen Ma
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Dingnan Lu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author. Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Huihui Gan
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - Zhiyuan Yao
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China
| | - David Z. Zhu
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jiayue Luo
- Department of Civil and Environmental Engineering, Ningbo University, Zhejiang, China,Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Qiang Fu
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA
| | - Pradeep Kurup
- Department of Civil and Environmental Engineering, University of Massachusetts Lowell, One University Ave., Lowell, MA, 01854, USA,Corresponding author
| |
Collapse
|
21
|
Soni I, Kumar P, Jayaprakash GK, Pandith A. A Short Review Comparing Carbon-Based Electrochemical Platforms With Other Materials For Biosensing SARS-Cov-2. ChemistrySelect 2022; 7:e202202465. [PMID: 36711230 PMCID: PMC9874754 DOI: 10.1002/slct.202202465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Due to the 2019 SARS-CoV-2 outbreak, low-cost, fast, and user-friendly diagnostic kits for biosensing SARS-CoV-2 in real samples employing multiple working electrodes are in high demand. Choosing SARS-CoV-2 detecting electrodes is difficult because each has advantages and limitations. Carbon-based electrochemical sensing applications have attracted attention from the electrochemical sensing community because carbon and carbon-based materials have been a godsend for testing utilizing an electrochemical platform. Carbon working electrode electrochemical platforms are cost-effective and fast. Covid-sensors use carbon-based materials because they can be easily changed (with inorganic and organic functionalities), have quick response kinetics, and are chemically resistant. Covid-19 sensing materials include graphene and graphite. This review explains how carbon materials have been employed in N and S protein electrochemical detection. Here, we discussed a carbon-based technology for SARS-CoV-2 biosensing. We've compared carbon-based electrochemical sensing to different electrodes.
Collapse
Affiliation(s)
- Isha Soni
- Laboratory of Quantum ElectrochemistrySchool of Advanced Chemical ScienceShoolini UniversitySolan, 173229Himachal PradeshIndia
| | - Pankaj Kumar
- Laboratory of Quantum ElectrochemistrySchool of Advanced Chemical ScienceShoolini UniversitySolan, 173229Himachal PradeshIndia
| | - Gururaj Kudur Jayaprakash
- Laboratory of Quantum ElectrochemistrySchool of Advanced Chemical ScienceShoolini UniversitySolan, 173229Himachal PradeshIndia
- Department of ChemistryNitte Meenakshi Institute of Technology, Bangalore, 560064KarnatakaIndia
| | - Anup Pandith
- College of Biomedical EngineeringTaipei Medical UniversityTaipei City11031Taiwan (R.O.C
| |
Collapse
|
22
|
Erdem A, Senturk H, Yildiz E, Maral M. Impedimetric Detection Based on Label-Free Immunoassay Developed for Targeting Spike S1 Protein of SARS-CoV-2. Diagnostics (Basel) 2022; 12:1992. [PMID: 36010342 PMCID: PMC9407092 DOI: 10.3390/diagnostics12081992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
After the COVID-19 pandemic started all over the world, great importance was placed on the development of sensitive and selective bioanalytical assays for the rapid detection of the highly pathogenic SARS-CoV-2 virus causing COVID-19 disease. In this present work, an impedimetric immunosensor was developed and applied for rapid, reliable, sensitive and selective detection of the SARS-CoV-2 S1 protein. To detect the SARS-CoV-2 virus, targeting of the spike S1 protein was achieved herein by using S1 protein-specific capture antibody (Cab-S1) immobilized screen-printed electrode (SPE) in combination with the electrochemical impedance spectroscopy (EIS) technique. With the impedimetric immunosensor, the detection limit for S1 protein in buffer medium was found to be 0.23 ng/mL (equal to 23.92 amol in 8 µL sample) in the linear concentration range of S1 protein from 0.5 to 10 ng/mL. In the artificial saliva medium, it was found to be 0.09 ng/mL (equals to 9.36 amol in 8 µL sample) in the linear concentration range of S1 protein between 0.1 and 1 ng/mL. The selectivity of the impedimetric immunosensor toward S1 protein was tested against influenza hemagglutinin antigen (HA) in the buffer medium as well as in artificial saliva.
Collapse
Affiliation(s)
- Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | | | | | | |
Collapse
|
23
|
Mao S, Fu L, Yin C, Liu X, Karimi-Maleh H. The role of electrochemical biosensors in SARS-CoV-2 detection: a bibliometrics-based analysis and review. RSC Adv 2022; 12:22592-22607. [PMID: 36105989 PMCID: PMC9372877 DOI: 10.1039/d2ra04162f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 12/16/2022] Open
Abstract
The global pandemic of COVID-19, which began in late 2019, has resulted in extremely high morbidity and severe mortality worldwide, with important implications for human health, international trade, and national politics. Severe acute respiratory syndrome coronavirus (SARS-CoV-2) is the primary pathogen causing COVID-19. Analytical chemistry played an important role in this global epidemic event, and detection of SARS-CoV-2 even became a part of daily life. Analytical chemists have devoted much effort and enthusiasm to this event, and different analytical techniques have shown very rapid development. Electrochemical biosensors are highly efficient, sensitive, and cost-effective and have been used to detect many highly pathogenic viruses long before this event. However, another fact is that electrochemical biosensors are not the technology of choice for most detection applications. This review describes for the first time the role played by electrochemical biosensors in SARS-CoV-2 detection from a bibliometric perspective. This paper analyzed 254 relevant research papers up to June 2022. The contributions of different countries and institutions to this topic were analyzed. Keyword analysis was used to explore different methodological attempts of electrochemical detection techniques. More importantly, we are trying to find an answer to the question: do electrochemical biosensors have the potential to become a genuinely employable detection technology in an outbreak of infectious disease?
Collapse
Affiliation(s)
- Shudan Mao
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University Hangzhou 310021 PR China
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University Hangzhou 310018 China
| | - Chengliang Yin
- National Engineering Laboratory for Medical Big Data Application Technology, Chinese PLA General Hospital Beijing China
- Medical Big Data Research Center, Medical Innovation Research Division of PLA General Hospital Beijing China
| | - Xiaozhu Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China Xiyuan Ave 611731 Chengdu China
- Department of Chemical Engineering, Quchan University of Technology Quchan 9477177870 Iran
- Department of Chemical Sciences, University of Johannesburg Doornfontein Campus, 2028 Johannesburg 17011 South Africa
| |
Collapse
|
24
|
Ayala-Charca G, Salahandish R, Khalghollah M, Sadighbayan D, Haghayegh F, Sanati-Nezhad A, Ghafar-Zadeh E. A Low-Cost Handheld Impedimetric Biosensing System for Rapid Diagnostics of SARS-CoV-2 Infections. IEEE SENSORS JOURNAL 2022; 22:15673-15682. [PMID: 36346096 PMCID: PMC9454264 DOI: 10.1109/jsen.2022.3181580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/25/2022] [Indexed: 06/12/2023]
Abstract
Current laboratory diagnostic approaches for virus detection give reliable results, but they require a lengthy procedure, trained personnel, and expensive equipment and reagents; hence, they are not a suitable choice for home monitoring purposes. This paper addresses this challenge by developing a portable impedimetric biosensing system for the identification of COVID-19 patients. This sensing system has two main parts: a throwaway two-working electrode (2-WE) strip and a novel read-out circuit, specifically designed for simultaneous signal acquisition from both working electrodes. Highly reliable electrochemical signal tracking from multiplex immunosensors provides a potential for flexible and portable multi-biomarker detection. The electrodes' surfaces were functionalized with SARS-CoV-2 Nucleocapsid Antibody enabling the selective detection of Nucleocapsid protein (N-protein) along with self-validation in the clinical nasopharyngeal swab specimens. The proposed programmable highly sensitive impedance read-out system allows for a wide dynamic detection range, which makes the sensor capable of detecting N-protein concentrations between 0.116 and 10,000 pg/mL. This lightweight and economical read-out arrangement is an ideal prospect for being mass-produced, especially during urgent pandemic situations. Also, such an impedimetric sensing platform has the potential to be redesigned for targeting not only other infectious diseases but also other critical disorders.
Collapse
Affiliation(s)
- Giancarlo Ayala-Charca
- Biologically Inspired Sensors and ActuatorsDepartment of Electrical Engineering and Computer Science, Lassonde School of EngineeringYork UniversityTorontoONM3J1P3Canada
| | - Razieh Salahandish
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Center for Bioengineering Research and EducationUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Mahmood Khalghollah
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Department of Electrical and Software EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Deniz Sadighbayan
- Biologically Inspired Sensors and ActuatorsDepartment of Electrical Engineering and Computer Science, Lassonde School of EngineeringYork UniversityTorontoONM3J1P3Canada
| | - Fatemeh Haghayegh
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Amir Sanati-Nezhad
- BioMEMS and Bioinspired Microfluidic LaboratoryDepartment of Mechanical and Manufacturing EngineeringUniversity of CalgaryCalgaryABT2N 1N4Canada
- Center for Bioengineering Research and EducationUniversity of CalgaryCalgaryABT2N 1N4Canada
- Biomedical Engineering Graduate ProgramUniversity of CalgaryCalgaryABT2N 1N4Canada
| | - Ebrahim Ghafar-Zadeh
- Biologically Inspired Sensors and ActuatorsDepartment of Electrical Engineering and Computer Science, Lassonde School of EngineeringYork UniversityTorontoONM3J1P3Canada
| |
Collapse
|
25
|
Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
A Review on Potential Electrochemical Point-of-Care Tests Targeting Pandemic Infectious Disease Detection: COVID-19 as a Reference. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fast and accurate point-of-care testing (POCT) of infectious diseases is crucial for diminishing the pandemic miseries. To fight the pandemic coronavirus disease 2019 (COVID-19), numerous interesting electrochemical point-of-care (POC) tests have been evolved to rapidly identify the causal organism SARS-CoV-2 virus, its nucleic acid and antigens, and antibodies of the patients. Many of those electrochemical biosensors are impressive in terms of miniaturization, mass production, ease of use, and speed of test, and they could be recommended for future applications in pandemic-like circumstances. On the other hand, self-diagnosis, sensitivity, specificity, surface chemistry, electrochemical components, device configuration, portability, small analyzers, and other features of the tests can yet be improved. Therefore, this report reviews the developmental trend of electrochemical POC tests (i.e., test platforms and features) reported for the rapid diagnosis of COVID-19 and correlates any significant advancements with relevant references. POCTs incorporating microfluidic/plastic chips, paper devices, nanomaterial-aided platforms, smartphone integration, self-diagnosis, and epidemiological reporting attributes are also surfed to help with future pandemic preparedness. This review especially screens the low-cost and easily affordable setups so that management of pandemic disease becomes faster and easier. Overall, the review is a wide-ranging package for finding appropriate strategies of electrochemical POCT targeting pandemic infectious disease detection.
Collapse
|
27
|
Pola CC, Rangnekar SV, Sheets R, Szydlowska BM, Downing JR, Parate KW, Wallace SG, Tsai D, Hersam MC, Gomes CL, Claussen JC. Aerosol-jet-printed graphene electrochemical immunosensors for rapid and label-free detection of SARS-CoV-2 in saliva. 2D MATERIALS 2022; 9:035016. [PMID: 35785019 PMCID: PMC9245948 DOI: 10.1088/2053-1583/ac7339] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Rapid, inexpensive, and easy-to-use coronavirus disease 2019 (COVID-19) home tests are key tools in addition to vaccines in the world-wide fight to eliminate national and local shutdowns. However, currently available tests for SARS-CoV-2, the virus that causes COVID-19, are too expensive, painful, and irritating, or not sufficiently sensitive for routine, accurate home testing. Herein, we employ custom-formulated graphene inks and aerosol jet printing (AJP) to create a rapid electrochemical immunosensor for direct detection of SARS-CoV-2 Spike Receptor-Binding Domain (RBD) in saliva samples acquired non-invasively. This sensor demonstrated limits of detection that are considerably lower than most commercial SARS-CoV-2 antigen tests (22.91 ± 4.72 pg/mL for Spike RBD and 110.38 ± 9.00 pg/mL for Spike S1) as well as fast response time (~30 mins), which was facilitated by the functionalization of printed graphene electrodes in a single-step with SARS-CoV-2 polyclonal antibody through the carbodiimide reaction without the need for nanoparticle functionalization or secondary antibody or metallic nanoparticle labels. This immunosensor presents a wide linear sensing range from 1 to 1000 ng/mL and does not react with other coexisting influenza viruses such as H1N1 hemagglutinin. By combining high-yield graphene ink synthesis, automated printing, high antigen selectivity, and rapid testing capability, this work offers a promising alternative to current SARS-CoV-2 antigen tests.
Collapse
Affiliation(s)
- Cícero C. Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Sonal V. Rangnekar
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Robert Sheets
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Beata M. Szydlowska
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Julia R. Downing
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Kshama W. Parate
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Shay G. Wallace
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Daphne Tsai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Mark C. Hersam
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Carmen L. Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jonathan C. Claussen
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
28
|
Zambry NS, Obande GA, Khalid MF, Bustami Y, Hamzah HH, Awang MS, Aziah I, Manaf AA. Utilizing Electrochemical-Based Sensing Approaches for the Detection of SARS-CoV-2 in Clinical Samples: A Review. BIOSENSORS 2022; 12:473. [PMID: 35884276 PMCID: PMC9312918 DOI: 10.3390/bios12070473] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 05/16/2023]
Abstract
The development of precise and efficient diagnostic tools enables early treatment and proper isolation of infected individuals, hence limiting the spread of coronavirus disease 2019 (COVID-19). The standard diagnostic tests used by healthcare workers to diagnose severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection have some limitations, including longer detection time, the need for qualified individuals, and the use of sophisticated bench-top equipment, which limit their use for rapid SARS-CoV-2 assessment. Advances in sensor technology have renewed the interest in electrochemical biosensors miniaturization, which provide improved diagnostic qualities such as rapid response, simplicity of operation, portability, and readiness for on-site screening of infection. This review gives a condensed overview of the current electrochemical sensing platform strategies for SARS-CoV-2 detection in clinical samples. The fundamentals of fabricating electrochemical biosensors, such as the chosen electrode materials, electrochemical transducing techniques, and sensitive biorecognition molecules, are thoroughly discussed in this paper. Furthermore, we summarised electrochemical biosensors detection strategies and their analytical performance on diverse clinical samples, including saliva, blood, and nasopharyngeal swab. Finally, we address the employment of miniaturized electrochemical biosensors integrated with microfluidic technology in viral electrochemical biosensors, emphasizing its potential for on-site diagnostics applications.
Collapse
Affiliation(s)
- Nor Syafirah Zambry
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Godwin Attah Obande
- Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia PMB 146, Nasarawa State, Nigeria
| | - Muhammad Fazli Khalid
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Yazmin Bustami
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Hairul Hisham Hamzah
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia;
| | - Mohd Syafiq Awang
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| | - Ismail Aziah
- Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (N.S.Z.); (M.F.K.)
| | - Asrulnizam Abd Manaf
- Collaborative Microelectronic Design Excellence Centre (CEDEC), Sains@USM, Universiti Sains Malaysia, Bayan Lepas 11900, Pulau Pinang, Malaysia;
| |
Collapse
|
29
|
Tapari A, Braliou GG, Papaefthimiou M, Mavriki H, Kontou PI, Nikolopoulos GK, Bagos PG. Performance of Antigen Detection Tests for SARS-CoV-2: A Systematic Review and Meta-Analysis. Diagnostics (Basel) 2022; 12:1388. [PMID: 35741198 PMCID: PMC9221910 DOI: 10.3390/diagnostics12061388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) initiated global health care challenges such as the necessity for new diagnostic tests. Diagnosis by real-time PCR remains the gold-standard method, yet economical and technical issues prohibit its use in points of care (POC) or for repetitive tests in populations. A lot of effort has been exerted in developing, using, and validating antigen-based tests (ATs). Since individual studies focus on few methodological aspects of ATs, a comparison of different tests is needed. Herein, we perform a systematic review and meta-analysis of data from articles in PubMed, medRxiv and bioRxiv. The bivariate method for meta-analysis of diagnostic tests pooling sensitivities and specificities was used. Most of the AT types for SARS-CoV-2 were lateral flow immunoassays (LFIA), fluorescence immunoassays (FIA), and chemiluminescence enzyme immunoassays (CLEIA). We identified 235 articles containing data from 220,049 individuals. All ATs using nasopharyngeal samples show better performance than those with throat saliva (72% compared to 40%). Moreover, the rapid methods LFIA and FIA show about 10% lower sensitivity compared to the laboratory-based CLEIA method (72% compared to 82%). In addition, rapid ATs show higher sensitivity in symptomatic patients compared to asymptomatic patients, suggesting that viral load is a crucial parameter for ATs performed in POCs. Finally, all methods perform with very high specificity, reaching around 99%. LFIA tests, though with moderate sensitivity, appear as the most attractive method for use in POCs and for performing seroprevalence studies.
Collapse
Affiliation(s)
- Anastasia Tapari
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Helen Mavriki
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | - Panagiota I. Kontou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131 Lamia, Greece; (A.T.); (G.G.B.); (M.P.); (H.M.); (P.I.K.)
| |
Collapse
|
30
|
Hryniewicz BM, Volpe J, Bach-Toledo L, Kurpel KC, Deller AE, Soares AL, Nardin JM, Marchesi LF, Simas FF, Oliveira CC, Huergo L, Souto DEP, Vidotti M. Development of polypyrrole (nano)structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis. MATERIALS TODAY. CHEMISTRY 2022; 24:100817. [PMID: 35155879 PMCID: PMC8818392 DOI: 10.1016/j.mtchem.2022.100817] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 05/20/2023]
Abstract
The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity. In this work, we reported the analytical comparison of two different conducting polymers morphologies for the development of an impedimetric biosensor to monitor SARS-CoV-2 seroconversion in humans. Biosensors based on polypyrrole (PPy), synthesized in both globular and nanotubular (NT) morphology, and gold nanoparticles are reported, using a self-assembly monolayer of 3-mercaptopropionic acid and covalently linked SARS-CoV-2 Nucleocapsid protein. First, the novel hybrid materials were characterized by electron microscopy and electrochemical measurements, and the biosensor step-by-step construction was characterized by electrochemical and spectroscopic techniques. As a proof of concept, the biosensor was used for the impedimetric detection of anti-SARS-CoV-2 Nucleocapsid protein monoclonal antibodies. The results showed a linear response for different antibody concentrations, good sensibility and possibility to quantify 7.442 and 0.4 ng/mL of monoclonal antibody for PPy in the globular and NT morphology, respectively. The PPy-NTs biosensor was able to discriminate serum obtained from COVID-19 positive versus negative clinical samples and is a promising tool for COVID-19 immunodiagnostic, which can contribute to further studies concerning rapid, efficient, and reliable detections.
Collapse
Affiliation(s)
- B M Hryniewicz
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - J Volpe
- Laboratório de Espectrometria, Sensores e Biossensores, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - L Bach-Toledo
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - K C Kurpel
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A E Deller
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A L Soares
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - J M Nardin
- Hospital Erasto Gaertner, 81520-290, Curitiba, PR, Brazil
| | - L F Marchesi
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
- Universidade Tecnológica Federal Do Paraná, Av. Monteiro Lobato S/n Km 04, CEP, 84016-210, Ponta Grossa, PR, Brazil
| | - F F Simas
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - C C Oliveira
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - L Huergo
- Setor Litoral, Universidade Federal Do Paraná (UFPR), 83260-000, Matinhos, PR, Brazil
| | - D E P Souto
- Laboratório de Espectrometria, Sensores e Biossensores, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - M Vidotti
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
31
|
Soto D, Orozco J. Peptide-based simple detection of SARS-CoV-2 with electrochemical readout. Anal Chim Acta 2022; 1205:339739. [PMID: 35414399 PMCID: PMC8935448 DOI: 10.1016/j.aca.2022.339739] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022]
Abstract
Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is considered one of the worst pandemic outbreaks worldwide. This ongoing pandemic urgently requires rapid, accurate, and specific testing devices to detect the virus. We report a simple electrochemical biosensor based on a highly specific synthetic peptide to detect SARS-CoV-2 Spike protein. Unlike other reported electrochemical biosensors involving nanomaterials or complex approaches, our electrochemical platform uses screen-printed gold electrodes functionalized with the thiolated peptide, whose interaction with the Spike protein is directly followed by Electrochemical Impedance Spectroscopy. The electrochemical platform was Spike protein concentration-dependent, with high sensitivity and reproducibility and a limit of detection of 18.2 ng/mL when tested in Spike protein commercial solutions and 0.01 copies/mL in lysed SARS-CoV-2 particles. The label-free biosensor successfully detected the Spike protein in samples from infected patients straightforwardly in only 15 min. The simplicity of the proposed format combined with an on-demand designed peptide opens the path for detecting other pathogen-related antigens.
Collapse
|
32
|
Wu CC, Chiang YH, Chiang HY. A Label-Free Electrochemical Impedimetric Immunosensor with Biotinylated-Antibody for SARS-CoV-2 Nucleoprotein Detection in Saliva. BIOSENSORS 2022; 12:bios12050265. [PMID: 35624566 PMCID: PMC9138907 DOI: 10.3390/bios12050265] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 05/05/2023]
Abstract
The timely detecting of SARS-CoV-2 coronavirus antigens for infection validation is an urgent request for COVID-19 pandemic control. This study constructed label-free electrochemical impedance spectroscopy (EIS)-based immunosensors based on gold nanostructured screen-printed carbon electrodes (AuNS/SPCEs) to detect the SARS-CoV-2 nucleocapsid protein (N-protein) in saliva. Using short-chain 3-mercaptopropionic acid (MPA) as a linker to covalently bond streptavidin (SA) and bovine serum albumin (BSA) for controlling the oriented immobilization of the biotinylated anti-N-protein antibody (BioAb) can offer a greater sensitivity, a lower limit of detection (LOD), and better reproducibility of immunosensors (defined as BioAb/SA-BSA/MPA/AuNS/SPCEs) than the antibody randomly immobilized immunosensors and the long-chain 11-mercaptoundecanoic acid (MUA)-modified immunosensors (BioAb/SA-BSA/MUA/AuNS/SPCEs). The BioAb/SA-BSA/MPA/AuNS/SPCE-based immunosensors presented good linearity from 0.01 ng/mL to 100 ng/mL and a low LOD of 6 pg/mL in a phosphate buffer solution (PBS) and PBS-diluted saliva. Moreover, the immunosensor exhibited little cross-activity with other viral antigens such as MERS-CoV N-protein, influenza A N-protein, influenza B N-protein, and SARS-CoV-2 spike protein, indicating the high specificity of the immunosensors. The disposable label-free EIS-based immunosensors have promising potential in facilitating the rapid and sensitive tests of saliva-based COVID-19 diagnostics.
Collapse
Affiliation(s)
- Ching-Chou Wu
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-4-2285-1268
| | - Yu-Huan Chiang
- Department of Bio-industrial Mechatronics Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | | |
Collapse
|
33
|
Malla P, Liao HP, Liu CH, Wu WC, Sreearunothai P. Voltammetric biosensor for coronavirus spike protein using magnetic bead and screen-printed electrode for point-of-care diagnostics. Mikrochim Acta 2022; 189:168. [PMID: 35362759 PMCID: PMC8973645 DOI: 10.1007/s00604-022-05288-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/19/2022] [Indexed: 12/29/2022]
Abstract
The rapid spread of the novel human coronavirus 2019 (COVID-19) and its morbidity have created an urgent need for rapid and sensitive diagnostics. The real-time polymerase chain reaction is the gold standard for detecting the coronavirus in various types of biological specimens. However, this technique is time consuming, labor intensive, and expensive. Screen-printed electrodes (SPEs) can be used as point-of-care devices because of their low cost, sensitivity, selectivity, and ability to be miniaturized. The ability to detect the spike protein of COVID-19 in serum, urine, and saliva was developed using SPE aided by magnetic beads (MBs) and a portable potentiostat. The antibody-peroxidase-loaded MBs were the captured and catalytic units for the electrochemical assays. The MBs enable simple washing and homogenous deposition on the working electrode using a magnet. The assembly of the immunological MBs and the electrochemical system increases the measuring sensitivity and speed. The physical and electrochemical properties of the layer-by-layer modified MBs were systematically characterized. The performance of these immunosensors was evaluated using spike protein in the range 3.12-200 ng mL-1. We achieved a limit of detection of 0.20, 0.31, and 0.54 ng mL-1 in human saliva, urine, and serum, respectively. A facile electrochemical method to detect COVID-19 spike protein was developed for quick point-of-care testing.
Collapse
Affiliation(s)
- Pravanjan Malla
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| | - Hao-Ping Liao
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| | - Chi-Hsien Liu
- Department of Chemical and Materials Engineering, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, 261, Wen-Hwa First Road, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, 84, Gung-Juan Road, New Taipei City, Taiwan.
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan, Taiwan.
| | - Wei-Chi Wu
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou, 5, Fu-Hsing Street, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, 259, Wen-Hwa First Road, Taoyuan, Taiwan
| | - Paiboon Sreearunothai
- Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
34
|
Amouzadeh Tabrizi M, Acedo P. An Electrochemical Impedance Spectroscopy-Based Aptasensor for the Determination of SARS-CoV-2-RBD Using a Carbon Nanofiber-Gold Nanocomposite Modified Screen-Printed Electrode. BIOSENSORS 2022; 12:bios12030142. [PMID: 35323412 PMCID: PMC8945915 DOI: 10.3390/bios12030142] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 05/17/2023]
Abstract
Worldwide, human health is affected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Hence, the fabrication of the biosensors to diagnose SARS-CoV-2 is critical. In this paper, we report an electrochemical impedance spectroscopy (EIS)-based aptasensor for the determination of the SARS-CoV-2 receptor-binding domain (SARS-CoV-2-RBD). For this purpose, the carbon nanofibers (CNFs) were first decorated with gold nanoparticles (AuNPs). Then, the surface of the carbon-based screen-printed electrode (CSPE) was modified with the CNF-AuNP nanocomposite (CSPE/CNF-AuNP). After that, the thiol-terminal aptamer probe was immobilized on the surface of the CSPE/CNF-AuNP. The surface coverage of the aptamer was calculated to be 52.8 pmol·cm-2. The CSPE/CNF-AuNP/Aptamer was then used for the measurement of SARS-CoV-2-RBD by using the EIS method. The obtained results indicate that the signal had a linear-logarithmic relationship in the range of 0.01-64 nM with a limit of detection of 7.0 pM. The proposed aptasensor had a good selectivity to SARS-CoV-2-RBD in the presence of human serum albumin; human immunoglobulins G, A, and M, hemagglutinin, and neuraminidase. The analytical performance of the aptasensor was studied in human saliva samples. The present study indicates a practical application of the CSPE/CNF-AuNP/Aptamer for the determination of SARS-CoV-2-RBD in human saliva samples with high sensitivity and accuracy.
Collapse
|
35
|
Şen M, Azizi E, Avcı İ, Aykaç A, Ensarioğlu K, Ok İ, Yavuz GF, Güneş F. Screen printed carbon electrodes modified with 3D nanostructured materials for bioanalysis. ELECTROANAL 2022. [DOI: 10.1002/elan.202100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - İpek Avcı
- Izmir Katip Celebi Universitesi TURKEY
| | | | | | | | | | | |
Collapse
|
36
|
Singh KRB, Rathee S, Nagpure G, Singh J, Singh RP. Smart and emerging nanomaterials-based biosensor for SARS-CoV-2 detection. MATERIALS LETTERS 2022; 307:131092. [PMID: 34690389 PMCID: PMC8519812 DOI: 10.1016/j.matlet.2021.131092] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/12/2021] [Indexed: 05/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a primary cause of the COVID-19 pandemic. To date, various detection approaches are already present, and many other techniques are also being developed for the rapid and real-time detection of COVID-19 infection in the wake of this pandemic. Hence, this featured review will provide an overview of COVID-19, its biomarkers, current diagnostic techniques, and emerging smart nanomaterials-based biosensing approaches; apart from this, it will also extend some light on future perspectives of biosensing technologies for SARS-CoV-2 diagnosis.
Collapse
Affiliation(s)
- Kshitij R B Singh
- Department of Chemistry, Govt. V. Y. T. P.G. Autonomous College, Durg, Chhattisgarh (491001), India
| | - Shweta Rathee
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat, Haryana (131028), India
| | - Gunjan Nagpure
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh (484886), India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh (221005), India
| | - Ravindra Pratap Singh
- Department of Biotechnology, Faculty of Science, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh (484886), India
| |
Collapse
|
37
|
Pinheiro T, Cardoso AR, Sousa CEA, Marques AC, Tavares APM, Matos AM, Cruz MT, Moreira FTC, Martins R, Fortunato E, Sales MGF. Paper-Based Biosensors for COVID-19: A Review of Innovative Tools for Controlling the Pandemic. ACS OMEGA 2021; 6:29268-29290. [PMID: 34778604 PMCID: PMC8577188 DOI: 10.1021/acsomega.1c04012] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 05/07/2023]
Abstract
The appearance and quick spread of the new severe acute respiratory syndrome coronavirus disease, COVID-19, brought major societal challenges. Importantly, suitable medical diagnosis procedures and smooth clinical management of the disease are an emergent need, which must be anchored on novel diagnostic methods and devices. Novel molecular diagnostic tools relying on nucleic acid amplification testing have emerged globally and are the current gold standard in COVID-19 diagnosis. However, the need for widespread testing methodologies for fast, effective testing in multiple epidemiological scenarios remains a crucial step in the fight against the COVID-19 pandemic. Biosensors have previously shown the potential for cost-effective and accessible diagnostics, finding applications in settings where conventional, laboratorial techniques may not be readily employed. Paper- and cellulose-based biosensors can be particularly relevant in pandemic times, for the renewability, possibility of mass production with sustainable methodologies, and safe environmental disposal. In this review, paper-based devices and platforms targeting SARS-CoV-2 are showcased and discussed, as a means to achieve quick and low-cost PoC diagnosis, including detection methodologies for viral genomic material, viral antigen detection, and serological antibody testing. Devices targeting inflammatory markers relevant for COVID-19 are also discussed, as fast, reliable bedside diagnostic tools for patient treatment and follow-up.
Collapse
Affiliation(s)
- Tomás Pinheiro
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
| | - A. Rita Cardoso
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| | - Cristina E. A. Sousa
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
| | - Ana C. Marques
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
| | - Ana P. M. Tavares
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| | - Ana Miguel Matos
- Faculty
of Pharmacy, University of Coimbra, Pólo das Ciências
da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Chemical
Engineering Processes and Forest Products Research Center, Coimbra 3000-548, Portugal
| | - Maria Teresa Cruz
- Faculty
of Medicine, Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Polo I, 1st Floor, Coimbra 3004-504, Portugal
| | - Felismina T. C. Moreira
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
| | - Rodrigo Martins
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
| | - Elvira Fortunato
- CENIMAT
i3N, Materials Science Department, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Caparica 2829-516, Portugal
| | - M. Goreti F. Sales
- BioMark@UC,
Faculty of Sciences and Technology, University
of Coimbra R. Sílvio Lima, Pólo II, 3030-790 Coimbra, Portugal
- BioMark@ISEP,
School of Engineering, Polytechnic Institute
of Porto, R. Dr. António
Bernardino de Almeida, 431, Porto 4249-015, Portugal
- CEB,
Centre of Biological Engineering, University
of Minho, Braga 4710-057, Portugal
| |
Collapse
|
38
|
Fresco-Cala B, Rajpal S, Rudolf T, Keitel B, Groß R, Münch J, Batista AD, Mizaikoff B. Development and Characterization of Magnetic SARS-CoV-2 Peptide-Imprinted Polymers. NANOMATERIALS 2021; 11:nano11112985. [PMID: 34835749 PMCID: PMC8618860 DOI: 10.3390/nano11112985] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
The development of new methods for the rapid, sensitive, and selective detection of SARS-CoV-2 is a key factor in overcoming the global pandemic that we have been facing for over a year. In this work, we focused on the preparation of magnetic molecularly imprinted polymers (MMIPs) based on the self-polymerization of dopamine at the surface of magnetic nanoparticles (MNPs). Instead of using the whole SARS-CoV-2 virion as a template, a peptide of the viral spike protein, which is present at the viral surface, was innovatively used for the imprinting step. Thus, problems associated with the infectious nature of the virus along with its potential instability when used as a template and under the polymerization conditions were avoided. Dopamine was selected as a functional monomer following a rational computational screening approach that revealed not only a high binding energy of the dopamine–peptide complex but also multi-point interactions across the entire peptide template surface as opposed to other monomers with similar binding affinity. Moreover, variables affecting the imprinting efficiency including polymerization time and amount of peptide and dopamine were experimentally evaluated. Finally, the selectivity of the prepared MMIPs vs. other peptide sequences (i.e., from Zika virus) was evaluated, demonstrating that the developed MMIPs were only specific for the target SARS-CoV-2 peptide.
Collapse
Affiliation(s)
- Beatriz Fresco-Cala
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany; (S.R.); (T.R.); (B.K.); (B.M.)
- Correspondence: (B.F.-C.); (A.D.B.)
| | - Soumya Rajpal
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany; (S.R.); (T.R.); (B.K.); (B.M.)
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Tamara Rudolf
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany; (S.R.); (T.R.); (B.K.); (B.M.)
| | - Benedikt Keitel
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany; (S.R.); (T.R.); (B.K.); (B.M.)
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (R.G.); (J.M.)
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (R.G.); (J.M.)
| | - Alex D. Batista
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany; (S.R.); (T.R.); (B.K.); (B.M.)
- Correspondence: (B.F.-C.); (A.D.B.)
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, 89081 Ulm, Germany; (S.R.); (T.R.); (B.K.); (B.M.)
- Hahn-Schickard Institute for Microanalysis Systems, 89077 Ulm, Germany
| |
Collapse
|