1
|
Németh A, Vitai V, Kelemen K, Teutsch B, Szabó B, Gerber G, Varga G, Fazekas R, Hegyi P, Borbély J. Comparison of fit and trueness of single-unit and short-span fixed dental restorations fabricated by additive and subtractive manufacturing-A systematic review and meta-analysis. J Dent 2025; 153:105527. [PMID: 39706323 DOI: 10.1016/j.jdent.2024.105527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
OBJECTIVES Numerous studies have been conducted on the adaptation of dental restorations fabricated by additive (AM) and subtractive manufacturing (SM); however, the results are conflicting. This systematic review and meta-analysis aimed to evaluate the fit and trueness of fixed restorations made by AM compared to SM. DATA Studies investigating internal fit, marginal fit, and trueness of fixed prostheses were involved. SOURCES The protocol was registered in PROSPERO (registration number CRD42022323090). An electronic search was performed with a predefined search query across four medical databases on the 6th of September 2023. STUDY SELECTION A total of 57 eligible studies were included and sub-grouped by material type (metals, ceramics, acrylic resins, composites). The outcomes were specified as internal fit, marginal fit, and trueness expressed in micrometer (µm). Further subgrouping was based on measurement area: axial, occlusal, and marginal. When we analyzed marginal fit, there were no statistically significant differences between the two techniques in any of the subgroups. The measurement of internal fit metal and ceramic restorations provided no significant differences. However, milled acrylic resin restorations showed a significantly higher occlusal gap compared to 3D printed prostheses with 39.12 µm (95 % CI: 12.44; 65.79). In the case of trueness, a statistically significant difference was observed between ceramic AM and SM restorations with -47.76 µm (95 % CI: -95.51; -0.00). QUIN and GRADE Pro tools were used to evaluate the risk of bias and certainty of evidence. CONCLUSION Fixed restorations manufactured with additive manufacturing are valid alternatives to subtractive manufacturing in the digital workflow. CLINICAL SIGNIFICANCE Additive manufacturing is an accurate and cost-effective manufacturing method of digital workflow, especially for metal and resin fixed restorations. Once the challenges in ceramics manufacturing are addressed, AM will show more significant promise in the field.
Collapse
Affiliation(s)
- Anna Németh
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Viktória Vitai
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Kata Kelemen
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Brigitta Teutsch
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Radiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Bence Szabó
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Gábor Gerber
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary
| | - Gábor Varga
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Oral Biology, Semmelweis University, Budapest, Hungary
| | - Réka Fazekas
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Restorative Dentistry and Endodontics, Semmelweis University, Budapest, Hungary
| | - Péter Hegyi
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Institute of Pancreatic Diseases, Semmelweis University, Budapest 1083, Hungary
| | - Judit Borbély
- Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Department of Prosthodontics, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
2
|
Demirel M, Diken Türksayar AA, Donmez MB, Schimmel M, Yilmaz B. Evaluation of the fabrication trueness and internal fit of additively manufactured two-piece zirconia abutments with different build orientations compared to subtractively manufactured abutments. J Dent 2025; 153:105470. [PMID: 39566714 DOI: 10.1016/j.jdent.2024.105470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/22/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024] Open
Abstract
OBJECTIVE To evaluate the effect of build orientation on the fabrication trueness and fit of additively manufactured 2-piece zirconia abutments when compared with those manufactured subtractively in 3 mol% and 4 mol% yttria-stabilized zirconia (3Y-TZP and 4Y-TZP). METHODS A titanium-base (Ti-base) abutment was digitized with a scan body and an industrial scanner to design a 2-piece zirconia abutment with a 50 µm cement gap. This design was used to manufacture zirconia abutments additively in different orientations (0-degree, AM-0; 15-degree, AM-15; 30-degree, AM-30; 45-degree, AM-45; 180-degree, AM-180) and subtractively from 3Y-TZP and 4Y-TZP (SM-3 and SM-4) (n=5). An intraoral scanner was used to digitize all abutments, when they were seated on the Ti-base, and only the Ti-base. Abutments' trueness (overall, external, intaglio, and marginal) was analyzed with the root mean square (RMS) method, and their fit was assessed with the triple-scan protocol. Data were analyzed with 1-way analysis of variance and Tamhane's T2 tests (α = 0.05). RESULTS SM-3 abutments had the lowest overall and external RMS (P ≤ 0.023). SM-3 and SM-4 abutments mostly had lower intaglio and AM-0 abutments mostly had lower gingival RMS (P ≤ 0.013). Except for AM-0 and SM-3 (P ≥ 0.930), SM-4 abutments had the lowest average gaps (P ≤ 0.041). CONCLUSIONS SM-3 abutments mostly had higher fabrication trueness, while AM-0 abutments had trueness similar to or higher than the other additively manufactured abutments. AM-0, SM-3, and SM-4 abutments had similar fit with average gaps lower than 50 µm.
Collapse
Affiliation(s)
- Münir Demirel
- Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul, Turkey
| | | | - Mustafa Borga Donmez
- Department of Prosthodontics, Faculty of Dentistry, Biruni University, Istanbul, Turkey; Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| | - Martin Schimmel
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Gerodontology and Removable Prosthodontics, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Burak Yilmaz
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, Bern, Switzerland; Department of Restorative Preventive and Pediatric Dentistry, School of Dental Medicine, University of Bern, Bern, Switzerland; Division of Restorative and Prosthetic Dentistry, The Ohio State University College of Dentistry, OH, USA
| |
Collapse
|
3
|
Noh M, Lee H, Lee W, Kim J, Kim J. Evaluation of Internal and Marginal Accuracy (Trueness and Precision) of Laminates Using DLP Printing and Milling Methods. Biomimetics (Basel) 2025; 10:67. [PMID: 39851783 PMCID: PMC11761881 DOI: 10.3390/biomimetics10010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025] Open
Abstract
This study evaluated the internal and marginal accuracy (trueness and precision) of zirconia laminate veneers fabricated using the DLP printing and milling method, employing 3D analysis software program. The maxillary central incisor tooth of a typodont model was prepared by a dentist and scanned using a desktop scanner. An anatomical zirconia laminate was designed using computer-aided design (CAD) software and saved in a standard tessellation language (STL) format. Thirty zirconia laminates were manufactured using a milling machine (MLL group) and a DLP printer (PTL group). All the specimens were scanned, and their internal and marginal areas were edited accordingly. The root-mean-square value was used to assess the accuracy of the internal and marginal areas of the zirconia laminates. Statistical significance was evaluated using the Mann-Whitney U test. Statistically significant differences were found in RMS values for both groups in the internal and marginal areas (p < 0.001 and p = 0.034, respectively). The MLL and PTL groups differed significantly in terms of precision (p = 0.017), but not at the margin (p = 0.361). DLP-printed zirconia laminates demonstrated stable and consistent performance, making the technique a reliable option for producing esthetic prostheses.
Collapse
Affiliation(s)
- Mijun Noh
- Department of Healthcare Sciences, Faculty of Dental Laboratory Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (M.N.); (H.L.)
| | - Habin Lee
- Department of Healthcare Sciences, Faculty of Dental Laboratory Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (M.N.); (H.L.)
| | - Wansun Lee
- Department of Dental Technology, Graduate School, Bucheon University, 25 56th Street, Bucheon 14632, Republic of Korea;
| | - Jaehong Kim
- Department of Dental Laboratory Science, College of Health Science, Catholic University of Pusan, 57 Oryundae-ro, Geumjeong-gu, Busan 46252, Republic of Korea;
| | - Jihwan Kim
- Department of Healthcare Sciences, Faculty of Dental Laboratory Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; (M.N.); (H.L.)
| |
Collapse
|
4
|
Kobayashi H, Rues S, Tasaka A, Rammelsberg P, Yamashita S, Schwindling FS. Influence of wall thickness on the fracture resistance of hollow zirconia artificial teeth fabricated by 3D zirconia printing. J Prosthodont Res 2025:JPR_D_24_00166. [PMID: 39756868 DOI: 10.2186/jpr.jpr_d_24_00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
PURPOSE To determine the effect of wall thickness on the fracture load of hollow-structured zirconia teeth fabricated using 3D printing. METHODS The geometry of an artificial ceramic tooth (mandibular right first molar) was copied and modified. The final test group design yielded wall thicknesses of 0.30, 0.50, 0.75, and 1.00 mm. Twenty zirconia specimens from each group were fabricated using a 3D printer. Artificial teeth were divided into subgroups of teeth that remained hollow (hollow teeth) or were filled with resin (filled teeth). Fracture load tests were performed, and each artificial tooth was examined using a digital microscope. Analysis of variance was used to compare the fracture resistance of the artificial zirconia teeth among the conditions, followed by pairwise Tukey's tests. T-tests were used to compare the fracture resistance between the hollow and filled teeth within the test groups. RESULTS The fracture resistance of artificial zirconia teeth decreased significantly (P < 0.001) with decreasing wall thickness. The mean fracture load reached ≥500 N for wall thicknesses of 0.75 mm and 1.00 mm. Resin filling of crowns significantly improved the fracture load of very thin walls. Microscopy revealed that most occlusal surfaces of the hollow teeth were completely fractured, whereas all the fracture surfaces of the filled teeth were incompletely fractured. CONCLUSIONS Artificial zirconia teeth offer sufficient fracture resistance for clinical use when the wall thickness is ≥0.75 mm, regardless of the presence of resin filling.
Collapse
Affiliation(s)
- Hiro Kobayashi
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Stefan Rues
- Department of Prosthodontics, Heidelberg University Hospital, Heidelberg, Germany
| | - Akinori Tasaka
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Peter Rammelsberg
- Department of Prosthodontics, Heidelberg University Hospital, Heidelberg, Germany
| | - Shuichiro Yamashita
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | | |
Collapse
|
5
|
Khwanpuang N, Suphachartwong C, Klaisiri A, Leelaponglit S, Angkananuwat C, Krajangta N. Accuracy, Reproducibility, and Gaps in Different Angulations of 3D-Printed versus Milled Hybrid Ceramic Crown. Eur J Dent 2024. [PMID: 39750518 DOI: 10.1055/s-0044-1795116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVES This article compared the accuracy, reproducibility, and gap of crowns resulting from variations in print angulation of three-dimensional (3D)-printed VarseoSmile Crownplus (VS) and milled resin-ceramic hybrid materials (Cerasmart 270, CS, and Enamic, E). MATERIALS AND METHODS A total of 60 specimens, consisting of VS printed at four different angulations (30, 45, 60, and 90 degrees), along with CS and E were investigated. External and internal accuracy and reproducibility were measured with the 3D deviation analysis. External and internal gaps were measured with the silicone replica technique. The results were analyzed using Welch's one-way analysis of variance with Dunnett T3 post hoc comparison at p ≤ 0.05. RESULTS Across all groups, external and internal accuracy were 0.55 to 20.02 μm and external and internal reproducibility were 0.05 to 0.69 μm. Overall external accuracy was not significant (p = 0.063), whereas significance was noted in overall internal accuracy and reproducibility among groups (p < 0.001). External and internal gaps were 33.76 to 93.11 μm. Statistically significant differences were found in internal and external gaps among groups (p < 0.001), with milled crowns demonstrating larger internal and smaller external gaps than 3D-printed crowns. Within the 3D-printed group, statistically, 90-degree angles exhibited the smallest external and internal gaps. CONCLUSION Both milled and 3D-printed methods achieved clinically acceptable accuracy, reproducibility, and gap dimensions, offering viable options for hybrid ceramic crown restoration. Among 3D-printed crowns, the 90-degree printing angle group exhibited satisfactory accuracy and reproducibility, alongside the best internal and external fit.
Collapse
Affiliation(s)
- Nadaprapai Khwanpuang
- Division of Restorative Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Chayaporn Suphachartwong
- Division of Restorative Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Awiruth Klaisiri
- Division of Restorative Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Restorative and Esthetic Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Seelassaya Leelaponglit
- Division of Restorative Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Restorative and Esthetic Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Chayanit Angkananuwat
- Division of Prosthodontic Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Nantawan Krajangta
- Division of Restorative Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Restorative and Esthetic Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
6
|
Roffmann O, Stiesch M, Hurschler C, Greuling A. Automatic adjustment of dental crowns using Laplacian mesh editing. J Mech Behav Biomed Mater 2024; 163:106878. [PMID: 39724830 DOI: 10.1016/j.jmbbm.2024.106878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Currently, the restoration of missing teeth by means of dental implants is a common treatment method in dentistry. Ensuring optimal contact between teeth (occlusion) when designing the occlusal surface of an implant-supported crown is crucial for the patient. Although there are various occlusal concepts and guidelines for achieving optimised occlusion, adapting an occlusal surface is challenging. The contact points must be established in certain areas of the occlusal surface without impairing the aesthetics of the teeth and the masticatory function. A computer-aided, automated modelling approach can assist in the design process and can reduce the reliance on manual labour. This study aimed to develop a modelling approach that enables the automatic adaptation of an occlusal surface to specific occlusal concepts while preserving the natural appearance. In this study, the occlusal surface of an implant-supported crown based on a scanned first right mandibular molar was adopted. Nominal contact points were determined based on occlusal concepts by Ramfjord and Ash (RA) and Thomas (T). The shape of the occlusal surface was then adapted concerning the desired contact points using Laplacian mesh editing. The modification results were validated for different forces and crown materials (3Y-TZP and PMMA) using a finite element contact analysis. The contact analysis results showed that locations with high compressive stresses correspond with the locations of the nominal contact points. The reaction forces were more evenly distributed in PMMA crowns, due to the lower Young's modulus of PMMA compared to 3Y-TZP. Furthermore, the occlusal scheme with fewer contact points (RA) showed higher maximum reaction forces per contact area. The presented method enables the automated adaptation of an (implant-supported) crown to specific occlusal schemes, proving to be valuable in dental CAD.
Collapse
Affiliation(s)
- Oliver Roffmann
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedic Surgery, Hannover Medical School, Anna-von-Borries-Str. 1-7, 30625, Hannover, Germany
| | - Andreas Greuling
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
7
|
Alghauli MA, Alqutaibi AY, Wille S, Kern M. The physical-mechanical properties of 3D-printed versus conventional milled zirconia for dental clinical applications: A systematic review with meta-analysis. J Mech Behav Biomed Mater 2024; 156:106601. [PMID: 38810545 DOI: 10.1016/j.jmbbm.2024.106601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/12/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
AIM OF STUDY This systematic review aimed to compare the physical-mechanical properties of 3D-printed (additively manufactured (AM)) zirconia compared to conventionally milled (subtractive manufactured: SM) zirconia specimens. MATERIALS AND METHODS A thorough search of Internet databases was conducted up to September 2023. The search retrieved studies that evaluated AM zirconia specimens and restorations regarding the physical-mechanical properties and mechanical behavior of zirconia. The main topic focused on 3Y-TZP. However, records of 4YSZ and 5YSZ were also included to gather more comprehensive evidence on additively manufactured zirconia ceramic. The quality of studies was assessed using the ROB2 tool, Newcastle Ottawa scale, and the Modified Consort Statement. Of 1736 records, 57 were assessed for eligibility, and 38 records were included in this review, only two clinical trials meet the inclusion criteria and 36 records were laboratory studies. There were no signs of mechanical complications and wear to antagonists with short-term clinical observation. SM thin specimens ≤1.5 mm showed statistically significant higher flexural strength than AM zirconia (p ≤ 0.01), while thicker specimens showed comparable outcomes (p > 0.5). The fracture resistance of dental restorations was dependent on the aging protocol, restoration type, and thickness. The bond strength of veneering ceramic to zirconia core was comparable. CONCLUSIONS The results pooled from two short-term clinical trials showed no signs of mechanical or biological complications of additively manufactured 3Y-TZP zirconia crowns. The flexural strength might depend on the specimens' thickness, but it showed promising results to be used in clinical applications, taking into account the printing technique and orientation, material composition (yttria content), solid loading, and sintering parameters. 3D-printed restorations fracture resistance improved when adhered to human teeth. The veneering ceramic bond was comparable to milled zirconia specimens. Long-term RCTs are recommended to confirm the mechanical behavior of 3D-printed restorations.
Collapse
Affiliation(s)
- Mohammed Ahmed Alghauli
- Department of Prosthodontic, Propaedeutic and Dental Materials, Faculty of Dentistry, Kiel University, Kiel, Germany; Department of Prosthodontics, Faculty of Dentistry, Ibb University, Ibb, Yemen.
| | - Ahmed Yaseen Alqutaibi
- Department of Prosthodontics, Faculty of Dentistry, Ibb University, Ibb, Yemen; Department of Substitutive Dental Science, College of Dentistry, Taibah University, Al-Madinah, Saudi Arabia
| | - Sebastian Wille
- Department of Prosthodontic, Propaedeutic and Dental Materials, Faculty of Dentistry, Kiel University, Kiel, Germany
| | - Matthias Kern
- Department of Prosthodontic, Propaedeutic and Dental Materials, Faculty of Dentistry, Kiel University, Kiel, Germany
| |
Collapse
|
8
|
Alghauli MA, Alqutaibi AY. 3D-printed intracoronal restorations, occlusal and laminate veneers: Clinical relevance, properties, and behavior compared to milled restorations; a systematic review and meta-analysis. J ESTHET RESTOR DENT 2024; 36:1153-1170. [PMID: 38551205 DOI: 10.1111/jerd.13228] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 03/13/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVES To assess the feasibility of producing 3D-printed intracoronal restorations, thin and ultrathin veneers, and to compare their mechanical behavior, accuracy, biological, and stain susceptibility to the currently applied milled restorations. MATERIALS AND METHODS The databases were comprehensively searched for relevant records up to January 2024 without language restrictions. All studies that assessed 3D-printed partial coverage restorations including inlays, onlays, laminate, and occlusal veneers were retrieved. RESULTS The web search yielded a total of 1142 records, with 8 additional records added from websites at a later stage. Only 17 records were ultimately included in the review. The included records compared 3D-printed; alumina-based- and zirconia ceramics, lithium disilicate ceramics, polymer infiltrated ceramics, polyetheretherketone (PEEK), resin composites, and acrylic resins to their CNC milled analogs. The pooled data indicated that it is possible to produce ultrathin restorations with a thickness of less than 0.2 mm. 3D-printed laminate veneers and intracoronal restorations exhibited superior trueness, as well as better marginal and internal fit compared to milled restorations (p < 0.05). However, it should be noted that the choice of materials and preparation design may influence these outcomes. In terms of cost, the initial investment and production expenses associated with 3D printing were significantly lower than those of CNC milling technology. Additionally, 3D printing was also shown to be more time-efficient. CONCLUSIONS Using additive manufacturing technology to produce restorations with a thickness ranging from 0.1 to 0.2 mm is indeed feasible. The high accuracy of these restorations, contributes to their ability to resist caries progression, surpassing the minimum clinical threshold load of failure by a significant margin and reliable adhesion. However, before 3D-printed resin restorations can be widely adopted for clinical applications, further improvements are needed, particularly in terms of reducing their susceptibility to stains. CLINICAL SIGNIFICANCE 3D-printed intracoronal restorations and veneers are more time and cost-efficient, more accurate, and could provide a considerable alternative to the currently applied CNC milling. Some limitations still accompany the resin materials, but this could be overcome by further development of the materials and printing technology.
Collapse
Affiliation(s)
| | - Ahmed Yaseen Alqutaibi
- Department of Prosthodontics, College of Dentistry, Ibb University, Ibb, Yemen
- Department of Prosthodontics, Faculty of Dentistry, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
9
|
Silva SEGD, Silva NRD, Santos JVDN, Moreira FGDG, Özcan M, Souza RODAE. Accuracy, adaptation and margin quality of monolithic zirconia crowns fabricated by 3D printing versus subtractive manufacturing technique: A systematic review and meta-analysis of in vitro studies. J Dent 2024; 147:105089. [PMID: 38772449 DOI: 10.1016/j.jdent.2024.105089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/28/2024] [Accepted: 05/18/2024] [Indexed: 05/23/2024] Open
Abstract
OBJECTIVE The purpose of this systematic review and meta-analysis was to evaluate the accuracy (trueness and precision), marginal and internal adaptation, and margin quality of zirconia crowns made by additive manufacturing compared to subtractive manufacturing technology. METHODS The investigation adhered to the PRISMA-ScR guidelines for systematic reviews and was registered at the Prospero database (n°CRD42023452927). Four electronic databases, including PubMed, Scopus, Embase, and Web of Science and manual search was conducted to find relevant studies published until September 2023. In vitro studies that assessed the trueness and precision, marginal and internal adaptation, and margin quality of printed crowns compared to milled ones were included. Studies on crowns over implants, pontics, temporary restorations, laminates, or exclusively experimental materials were excluded. RESULTS A total of 9 studies were included in the descriptive reporting and 7 for meta-analysis. The global meta-analysis of the trueness (P<0.74,I2=90 %) and the margin quality (P<0.61,I2=0 %) indicated no significant difference between the root mean square of printed and milled zirconia crowns. The subgroup analysis for the printing system showed a significant effect (P<0.01). The meta-analysis of the crown areas indicated no significant difference in most of the areas, except for the marginal (favoring milled crowns) and axial (favoring printed crowns) areas. For precision and adaptation, both methods showed a clinically acceptable level. CONCLUSIONS Additive manufacturing technology produces crowns with trueness and margin quality comparable to subtractive manufacturing. Both techniques have demonstrated the ability to produce crowns with precision levels, internal discrepancy, and marginal fit within clinically acceptable limits. CLINICAL SIGNIFICANCE 3D printing emerges as a promising and potentially applicable alternative method for manufacturing zirconia crowns, as it shows trueness and margin quality comparable to restorations produced by the subtractive method.
Collapse
Affiliation(s)
- Sarah Emille Gomes da Silva
- Federal University of Rio Grande do Norte (UFRN), Department of Dentistry, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Nathalia Ramos da Silva
- Federal University of Rio Grande do Norte (UFRN), Department of Dentistry, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - João Vitor do Nascimento Santos
- Federal University of Rio Grande do Norte (UFRN), Department of Dentistry, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Fernanda Gurgel de Gois Moreira
- Federal University of Rio Grande do Norte (UFRN), Department of Dentistry, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil
| | - Mutlu Özcan
- University of Zurich, Clinic for Masticatory Disorders and Dental Biomaterials, Center for Dental Medicine, Zentrum für Zahnmedizin, Plattenstrasse, 11, 8032 Zurich, Switzerland
| | - Rodrigo Othávio de Assunção E Souza
- Federal University of Rio Grande do Norte (UFRN), Department of Dentistry, Av. Salgado Filho, 1787, Lagoa Nova, Natal, RN, CEP 59056-000, Brazil.
| |
Collapse
|
10
|
Kobayashi H, Schwindling FS, Tasaka A, Rammelsberg P, Yamashita S, Rues S. Effect of wall thickness on shape accuracy of hollow zirconia artificial teeth fabricated by a 3D printer. J Prosthodont Res 2024:JPR_D_23_00300. [PMID: 39034113 DOI: 10.2186/jpr.jpr_d_23_00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
PURPOSE This study aimed to analyze how the wall thickness of 3D-printed hollow zirconia teeth affects shape accuracy. METHODS Datasets with measurement points were created for different artificial teeth resembling the mandibular right first molar (Geomagic Design X, 3D Systems). Reference distances were 9.8 mm for mesio-distal direction (M-D), 10.9 mm for bucco-lingual direction (B-L), 7.0 mm for MB-BB and DB-BB, and 4.5 mm for ML-LB and DL-LB. The outer geometry was identical for all artificial teeth with wall thicknesses of 0.30, 0.50, 0.75, and 1.00 mm. Twenty zirconia teeth were fabricated using a 3D printer (CeraFab 7500 Dental, Lithoz) for each group and sintered before support removal. After performing analog distance measurements using a micrometer screw, the digital distance measurements and angular deviations between measurement points on 3D scans were analyzed. Possible effects were investigated using nonparametric ANOVA, followed by Tukey's honest significant difference (HSD) test for multiple comparisons. RESULTS The shape accuracy was acceptable for artificial teeth with wall thicknesses of ≥0.5 mm. The largest distance deviation was observed for a wall thickness of 0.3 mm. In particular, DB-BB showed a median deviation of >56.2 µm, which is significantly larger than that for other test groups, ranging from 7.4-9.5 µm (P < 0.05). In most cases, angular deviations were the largest for teeth with 0.3-mm wall thickness (11.6°) and remained below 5.0° for the other test groups. CONCLUSIONS Acceptable accuracy was obtained for artificial teeth with wall thicknesses of at least 0.5 mm.
Collapse
Affiliation(s)
- Hiro Kobayashi
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | | | - Akinori Tasaka
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Peter Rammelsberg
- Department of Prosthodontics, Heidelberg University Hospital, Heidelberg, Germany
| | - Shuichiro Yamashita
- Department of Removable Partial Prosthodontics, Tokyo Dental College, Tokyo, Japan
| | - Stefan Rues
- Department of Prosthodontics, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
11
|
Zhu H, Jiang J, Wang Y, Wang S, He Y, He F. Additive manufacturing of dental ceramics in prosthodontics: The status quo and the future. J Prosthodont Res 2024; 68:380-399. [PMID: 38346729 DOI: 10.2186/jpr.jpr_d_23_00119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
PURPOSE This review aims to summarize the available technologies, material categories, and prosthodontic applications of additive manufacturing (AM) dental ceramics, evaluate the achievable accuracy and mechanical properties in comparison with current mainstream computer-aided design/computer-aided manufacturing (CAD/CAM) subtractive manufacturing (SM) methods, and discuss future prospects and directions. STUDY SELECTION This paper is based on the latest reviews, state-of-the-art research, and existing ISO standards on AM technologies and prosthodontic applications of dental ceramics. PubMed, Web of Science, and ScienceDirect were amongst the sources searched for narrative reviews. RESULTS Relatively few AM technologies are available and their applications are limited to crowns and fixed partial dentures. Although the accuracy and strength of AM dental ceramics are comparable to those of SM, they have the limitations of relatively inferior curved surface accuracy and low strength reliability. Furthermore, functionally graded additive manufacturing (FGAM), a potential direction for AM, enables the realization of biomimetic structures, such as natural teeth; however, specific studies are currently lacking. CONCLUSIONS AM dental ceramics are not sufficiently developed for large-scale clinical applications. However, with additional research, it may be possible for AM to replace SM as the mainstream manufacturing technology for ceramic restorations.
Collapse
Affiliation(s)
- Han Zhu
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| | - Jimin Jiang
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| | - Yujie Wang
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| | - Sijie Wang
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, PR China
| | - Fuming He
- Department of Periodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, PR China
| |
Collapse
|
12
|
Chen G, Zhang J, He J, Li Y, Li C, Lin Z, Wu H, Zhou L. The application of 3D printing in dentistry: A bibliometric analysis from 2012 to 2023. J Prosthet Dent 2024:S0022-3913(24)00418-9. [PMID: 38955600 DOI: 10.1016/j.prosdent.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024]
Abstract
STATEMENT OF PROBLEM Three-dimensional (3D) printing has had extensive applications across dentistry, but a comprehensive bibliometric analysis relating to the application of 3D printing in dentistry is lacking. PURPOSE The purpose of this study was to conduct a comprehensive bibliometric analysis of the scientific literature concerning the application of 3D printing in dentistry from 2012 to 2023. MATERIAL AND METHODS The literature search was conducted in the Web of Science Core Collection Database. The retrieved literature data were downloaded as plain text file in "full record and cited references" format, with software programs (VOSviewer, CiteSpace, Biblioshiny, RStudio, Carrot2, and Microsoft Excel) used for bibliometric analysis and quantitative assessment. RESULTS The bibliometric analysis incorporated 1911 publications. Revilla-León, Marta was the most productive author. Zurich University had the highest number of publications and citations. The United States dominated the research landscape with the highest publication volume and H-index. The Journal of Prosthetic Dentistry was the leading journal in both publication volume and citation frequency. Co-occurrence analysis of keyword and co-cited analysis of reference indicated a robust research environment, characterized by a strong focus on the pursuit of accuracy in dental restorative solutions, biocompatibility of materials, and clinical applications. CONCLUSIONS Research on 3D printing in the field of dentistry continues to grow. Collaborations with leading organizations and countries have been established, with Revilla-León, Marta et al playing a pivotal role. Top journals represented included the Journal of Prosthetic Dentistry and Dental Materials. Main research domain resided in prosthodontics and implantology. Hot research topics included improvements in accuracy, dental materials, and clinical applications centered on implant guide design.
Collapse
Affiliation(s)
- Guangwei Chen
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Jingkun Zhang
- Master's student, Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Jianfeng He
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Yongqi Li
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Chengwei Li
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Zhiyan Lin
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Huilin Wu
- Master's student, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China
| | - Libin Zhou
- Associate Professor, Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, PR China.
| |
Collapse
|
13
|
Mosaddad SA, Peláez J, Panadero RA, Ghodsi S, Akhlaghian M, Suárez MJ. Do 3D-printed and milled tooth-supported complete monolithic zirconia crowns differ in accuracy and fit? A systematic review and meta-analysis of in vitro studies. J Prosthet Dent 2024:S0022-3913(24)00283-X. [PMID: 38772783 DOI: 10.1016/j.prosdent.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/23/2024]
Abstract
STATEMENT OF PROBLEM Additive (3-dimensional printing) and subtractive (milling) methods are digital approaches to fabricating zirconia restorations. Comparisons of their resultant fabrication accuracy and restoration fit are lacking. PURPOSE The purpose of this systematic review and meta-analysis was to evaluate the accuracy and fit of monolithic zirconia crowns fabricated by 3-dimensional printing and milling. MATERIAL AND METHODS The PubMed (Medline), Scopus, Embase, Web of Science, Cochrane Library, and Google Scholar databases were searched up to August 2023. Eligible records were included, and the standardized mean difference (SMD) analyzed 4 outcomes: marginal fit, intaglio fit, trueness, and precision. Publication bias was analyzed with Trim-and-fill, the Egger regression test, and Begg funnel plot. Methodological quality was rated using the QUIN tool. RESULTS A total of 15 publications were found eligible out of the initial 6539 records. The 3-dimensional printing group demonstrated a lower marginal fit (SMD=1.46, 95% CI=[0.67, 2.26], P<.001; I2=83%, P<.001) and trueness (SMD=0.69, 95% CI=[0.20, 1.18], P=.006; I2=88%, P<.001) and a significantly higher precision (SMD=-2.19, 95% CI=[-2.90, -1.48], P<.001; I2=56%, P=.045). The intaglio fit did not differ significantly across the study groups (SMD=0.77, 95% CI=[-0.22, 1.77], P=.127; I2=87%, P<.001). CONCLUSIONS Given the high degree of heterogeneity, it can be cautiously concluded that while 3-dimensional printing led to greater precision, the outcomes of the 2 accuracy and adaptation parameters most crucial to the longevity of the restorations-trueness and marginal fit-showed the superiority of the milling technique.
Collapse
Affiliation(s)
- Seyed Ali Mosaddad
- Researcher, Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain; and Adjunct Faculty Member, Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesús Peláez
- Adjunct Professor, Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.
| | - Rubén Agustín Panadero
- Professor, Department of Stomatology, Faculty of Medicine and Dentistry, Valencia University, Valencia, Spain
| | - Safoura Ghodsi
- Associate Professor, Dental Research Center, Dentistry Research Institute, Department of Prosthodontics, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Akhlaghian
- Assistant Professor, Department of Prosthodontics, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - María J Suárez
- Professor, Department of Conservative Dentistry and Bucofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
14
|
Cameron AB, Choi JJE, Ip A, Lyons N, Yaparathna N, Dehaghani AE, Feih S. Assessment of the trueness of additively manufactured mol3% zirconia crowns at different printing orientations with an industrial and desktop 3D printer compared to subtractive manufacturing. J Dent 2024; 144:104942. [PMID: 38494044 DOI: 10.1016/j.jdent.2024.104942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024] Open
Abstract
OBJECTIVES This study endeavours to investigate the effect of printing orientation on the trueness of additively manufactured molar zirconia crowns. The areal surface roughness and the characteristics of the marginal regions of the crowns were also considered. METHODS Twelve molar crowns were manufactured at 0°, 45°, and, 90° printing orientations in a Lithoz and AON zirconia printer, respectively. Twelve milled crowns were used as a comparison. Samples were scanned and analysed in metrology software to determine the trueness of the groups. Regions of interest were defined as the margins, intaglio surface and contact points. Areal surface roughness and print layer thickness were further analysed using a confocal laser scanning microscope. RESULTS The results indicate that there are clear differences between the investigated desktop (AON) and industrial (Lithoz) 3D printer. The 45° Lithoz group is the only sample group showing no significantly different results in trueness for all regions analysed compared to the milled group. Areal surface roughness analysis indicates that the print layers in the marginal regions are within clinically tolerable limits and surface characteristics. CONCLUSIONS The printing orientation for zirconia crowns is critical to trueness, and differences are evident between different AM apparatuses. Considerations for design and orientation between different apparatuses should therefore be considered when utilising direct additive manufacturing processes. The areal surface roughness of the marginal regions is within acceptable clinical limits for all manufacturing processes and print orientations considered. CLINICAL SIGNIFICANCE The materials and apparatuses for additive manufacturing of zirconia crowns are now clinically acceptable from the perspective of the trueness of a final crown for critical functional surfaces and areal surface roughness of the marginal regions.
Collapse
Affiliation(s)
- Andrew B Cameron
- School of Medicine and Dentistry, Griffith University, Southport, Queensland, 4222, Australia; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute, Griffith University, Southport, Queensland, 4222, Australia.
| | - Joanne Jung Eun Choi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | | | - Nathan Lyons
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute, Griffith University, Southport, Queensland, 4222, Australia; Queensland College of Art, Griffith University, Southport, Queensland, 4222, Australia
| | - Navodika Yaparathna
- School of Medicine and Dentistry, Griffith University, Southport, Queensland, 4222, Australia
| | - Ali Ebrahimzadeh Dehaghani
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute, Griffith University, Southport, Queensland, 4222, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Southport, Queensland, 4222, Australia
| | - Stefanie Feih
- Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute, Griffith University, Southport, Queensland, 4222, Australia; School of Engineering and Built Environment, Griffith University, Southport, Queensland, 4222, Australia; Advanced Design and Prototyping Technologies (ADaPT) Institute, Griffith University, Southport, Queensland, 4222, Australia
| |
Collapse
|
15
|
Toksoy D, Önöral Ö. Influence of glazing and aging on the marginal, axial, axio-occlusal, and occlusal fit of 3-unit monolithic zirconia restorations fabricated using additive and subtractive techniques. J Prosthet Dent 2024; 131:658.e1-658.e9. [PMID: 38342643 DOI: 10.1016/j.prosdent.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/13/2024]
Abstract
STATEMENT OF PROBLEM Studies are sparse on how glazing and aging influence the fit of additively fabricated monolithic zirconia restorations. PURPOSE The purpose of this in vitro study was to assess the effect of glazing and aging on the fit of 3-unit monolithic zirconia restorations fabricated using different techniques. MATERIAL AND METHODS A total of 32 monolithic zirconia restorations were fabricated for a typodont model by using 4 distinct techniques (subtractive fabrication [SF], stereolithography [SLA], digital light processing [DLP], and lithography-based ceramic manufacturing [LCM]). The silicone replica approach was adopted to measure the discrepancy values for premolar and molar abutments after sintering, glazing, and 1 year of aging. The silicone replicas were sliced into mesiodistal and buccopalatal cross-sections, and digital micrographs of the cross-sections were made with a ×80 stereomicroscope. An inherent measuring program was run to record the discrepancy values (µm). Repeated-measures 2-way ANOVAs with the Bonferroni post hoc test were used to statistically analyze the acquired data. (α=.05). RESULTS From the repeated measures 2-way ANOVAs, both the glazing×fabrication technique and the aging×fabrication technique interactions were not statistically significant (P>.05). Glazing significantly influenced premolar abutment marginal (P=.022) and occlusal (P=.007) discrepancy values, as well as molar abutment marginal discrepancy values (P=.047). Aging had a statistically significant effect on premolar abutment marginal (P=.008) and occlusal (P=.011) discrepancy values, as well as molar abutment occlusal discrepancy values (P=.039). In both the glazing and aging data, for all areas of interest, statistically significant differences were detected among the fabrication techniques (P<.05). The LCM group had the lowest discrepancy values, followed by the SLA, SF, and DLP groups. CONCLUSIONS The LCM and SLA groups outperformed the other groups in terms of fit accuracy. The glazing and aging procedures altered the discrepancy values. The marginal discrepancy values of all groups were below the threshold of clinical acceptability (<120 µm).
Collapse
Affiliation(s)
- Dilem Toksoy
- Research Assistant, Department of Prosthetic Dentistry, Faculty of Dentistry, Near East University, Nicosia, North Cyprus
| | - Özay Önöral
- Associate Professor, Department of Prosthetic Dentistry, Faculty of Dentistry, Near East University, Nicosia, North Cyprus.
| |
Collapse
|
16
|
Farag E, Sabet A, Ebeid K, El Sergany O. Build angle effect on 3D-printed dental crowns marginal fit using digital light-processing and stereo-lithography technology: an in vitro study. BMC Oral Health 2024; 24:73. [PMID: 38212816 PMCID: PMC10785357 DOI: 10.1186/s12903-024-03851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The effect of 3D printing technology and build angle on the marginal fit of printed crowns is unclear. The objective of this research was to use digital light processing (DLP) and stereo-lithography (SLA)-based 3D printing to construct single restorations with varied build angles and to analyze the crowns' marginal fit. METHODS A prepared resin first molar was scanned utilizing an optical scanner. Three build orientations were used to construct the specimens: 0, 45, and 90º. DLP and SLA technology were used to produce the casting patterns. A digital microscope was used to measure the marginal gaps. The effect of build orientation was statistically analyzed by using Two-way ANOVA followed by pair-wise Tukey test. RESULTS Two-way ANOVA revealed a significant effect of printer technology and build angle on the marginal discrepancy of 3D printed crowns (p < 0.001). One-way ANOVA revealed that SLA printers (55.6 [± 13.59]) showed significantly better mean [± SD] marginal discrepancy in µm than DLP printers (72 [± 13.67]) (p < 0.001). Regarding build angle, one-way ANOVA revealed significant differences between the different angles. Tukeys post-hoc test revealed that 0° (48.5 [± 9.04]) had the significantly smallest marginal discrepancy followed by 45° (62.5 [± 8.05]) then 90° (80.5 [± 8.99]) (p < 0.001). CONCLUSION The build orientation affects the marginal discrepancy of single crowns manufactured utilizing DLP and SLA.
Collapse
Affiliation(s)
- Engy Farag
- Department of Fixed Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| | - Ahmed Sabet
- Department of Fixed Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
- Department of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, Organization of African Unity Street, Cairo, Egypt
| | - Kamal Ebeid
- Department of Fixed Prosthodontics, Faculty of Dentistry, Ain Shams University, Organization of African Unity Street, Cairo, Egypt.
| | - Omar El Sergany
- Department of Fixed Prosthodontics, Faculty of Dentistry, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
17
|
Frąckiewicz W, Szymlet P, Jedliński M, Światłowska-Bajzert M, Sobolewska E. Mechanical characteristics of zirconia produced additively by 3D printing in dentistry - A systematic review with meta-analysis of novel reports. Dent Mater 2024; 40:124-138. [PMID: 37940500 DOI: 10.1016/j.dental.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
OBJECTIVES This study was aimed at comparing the mechanical parameters of ceramics made using the addition and subtraction technique. METHODS A search was performed on four search engines on 5th April 2023. Quality assessment was performed using study type-specific scales. Where possible, a meta-analysis was performed. SOURCES Data were extracted from four search engines: PubMed, PubMed Central, Embase, Web of Science, Scopus. STUDY SELECTION The search strategy identified 686 potential articles. 19 papers were subject to qualitative analysis, and data from 11 papers were meta-analysed. The included studies were of high or medium quality. All included papers were in-vitro studies. No clinical trials were found in the literature. SIGNIFICANCE Ceramics made in the additive technology in terms of mechanical parameters can compete with ceramics made in the milling technology. There are no clinical studies yet that would indicate the use of this type of material for permanent restorations in patients. Studies presented in the literature vary greatly in terms of study design and reporting of results. The research did not receive external funding.
Collapse
Affiliation(s)
- Wojciech Frąckiewicz
- Department of Dental Prosthetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.
| | - Paweł Szymlet
- Department of Dental Prosthetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Maciej Jedliński
- Department of Interdisciplinary Dentistry, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Małgorzata Światłowska-Bajzert
- Department of Dental Prosthetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Ewa Sobolewska
- Department of Dental Prosthetics, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
18
|
Su G, Zhang Y, Jin C, Zhang Q, Lu J, Liu Z, Wang Q, Zhang X, Ma J. 3D printed zirconia used as dental materials: a critical review. J Biol Eng 2023; 17:78. [PMID: 38129905 PMCID: PMC10740276 DOI: 10.1186/s13036-023-00396-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
In view of its high mechanical performance, outstanding aesthetic qualities, and biological stability, zirconia has been widely used in the fields of dentistry. Due to its potential to produce suitable advanced configurations and structures for a number of medical applications, especially personalized created devices, ceramic additive manufacturing (AM) has been attracting a great deal of attention in recent years. AM zirconia hews out infinite possibilities that are otherwise barely possible with traditional processes thanks to its freedom and efficiency. In the review, AM zirconia's physical and adhesive characteristics, accuracy, biocompatibility, as well as their clinical applications have been reviewed. Here, we highlight the accuracy and biocompatibility of 3D printed zirconia. Also, current obstacles and a forecast of AM zirconia for its development and improvement have been covered. In summary, this review offers a description of the basic characteristics of AM zirconia materials intended for oral medicine. Furthermore, it provides a generally novel and fundamental basis for the utilization of 3D printed zirconia in dentistry.
Collapse
Affiliation(s)
- Guanyu Su
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Yushi Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Chunyu Jin
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Qiyue Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Jiarui Lu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Zengqian Liu
- Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China
| | - Xue Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| | - Jia Ma
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, No. 117 Nanjing North Street, Shenyang, 110001, China.
| |
Collapse
|
19
|
Unnadkat A, Kirby L, Kulanthaivel S, Rysavy O, Tsujimoto A, Song X, Teixeira EC. The Effect of Sintering on Zirconia Manufactured via Suspension-Enclosing Projection Stereolithography for Dental Applications: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2023; 17:14. [PMID: 38203868 PMCID: PMC10779720 DOI: 10.3390/ma17010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Zirconia is a widely used material in the dental industry due to its excellent mechanical and aesthetic properties. Recently, a new 3D printing process called suspension-enclosing projection stereolithography (SEPS) was introduced to fabricate zirconia dental restorations. However, the effect of the sintering time and temperature on the properties of zirconia produced via SEPS has not been fully investigated. METHODS Zirconia slurries were prepared with varying percentages of zirconia powders and 3D printing resins, and 5Y-TZP (5 mol% yttria-stabilized zirconia) (n = 40) and 3Y-TZP (3 mol% yttria-stabilized zirconia) (n = 40) bar specimens were fabricated via SEPS manufacturing. The specimens were sintered at different temperatures and dwell times, and their flexural strength, density, and phase composition were measured. The viscosity of the slurries was also measured. Statistical analysis was performed using Welch's ANOVA and Kruskal-Wallis tests to evaluate the impact of the sintering conditions. RESULTS Significant differences in flexural strength (p < 0.01) were observed between the 5Y-TZP samples, with those sintered at 1530 °C for 120 min showing an average strength of 268.34 ± 44.66 MPa, compared to 174.16 ± 42.29 MPa for those sintered at 1450 °C for 120 min. In terms of density, significant differences (p < 0.01) were noted for the 3Y-TZP specimens, with an average density of 6.66 ± 0.49 g/cm3 for samples sintered at 1530 °C for 120 min, versus 5.75 ± 0.55 g/cm3 for those sintered at 1530 °C for 10 min. X-ray diffraction confirmed the presence of a predominantly tetragonal phase in both materials. CONCLUSIONS Zirconia printed via SEPS manufacturing can be sintered at a higher temperature with shorter dwell times, thereby producing high density samples. Different sintering conditions can be used to fully sinter 3D-printed zirconia for potential dental applications.
Collapse
Affiliation(s)
- Amit Unnadkat
- Department of General Dentistry, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Levi Kirby
- Department of Industrial and Systems Engineering, The University of Iowa College of Engineering, Iowa City, IA 52242, USA
| | - Senthilguru Kulanthaivel
- Department of Operative Dentistry, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA; (S.K.); (A.T.)
| | - Oscar Rysavy
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA
- Department of Biostatistics, The University of Iowa College of Public Health, Iowa City, IA 52242, USA
| | - Akimasa Tsujimoto
- Department of Operative Dentistry, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA; (S.K.); (A.T.)
- Department of Operative Dentistry, Aichi Gakuin University School of Dentistry, Chikusa-ku, Nagoya 464-8651, Aichi, Japan
- Department of General Dentistry, Creighton University School of Dentistry, Omaha, NE 68102, USA
| | - Xuan Song
- Department of Industrial and Systems Engineering, The University of Iowa College of Engineering, Iowa City, IA 52242, USA
| | - Erica C. Teixeira
- Department of Operative Dentistry, The University of Iowa College of Dentistry and Dental Clinics, Iowa City, IA 52242, USA; (S.K.); (A.T.)
| |
Collapse
|
20
|
Dewan H. Clinical Effectiveness of 3D-Milled and 3D-Printed Zirconia Prosthesis-A Systematic Review and Meta-Analysis. Biomimetics (Basel) 2023; 8:394. [PMID: 37754145 PMCID: PMC10526775 DOI: 10.3390/biomimetics8050394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Additive manufacturing (three-dimensional (3D) printing) has become a leading manufacturing technique in dentistry due to its various advantages. However, its potential applications for dental ceramics are still being explored. Zirconia, among ceramics, has increasing popularity and applications in dentistry mostly due to its excellent properties. Although subtractive manufacturing (3D milling) is considered the most advanced technology for the fabrication of zirconia restorations, certain disadvantages are associated with it. METHODS A systematic review was piloted to compare the clinical performance of zirconium crowns that were fabricated using three-dimensional (3D) milling and 3D printing. A meta-analysis was performed, and studies published up to November 2022 were identified. The terms searched were "Zirconium crowns", "3D printing", "CAD/CAM" (Computer-Aided Design and Computer-Aided Manufacturing), "Milling", "dental crowns", and "3D milling". The characteristics that were compared were the year in which the study was published, study design, age of the patient, country, the number of crowns, the type of crown fabrication, marginal integrity, caries status, and outcomes. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to structure this systematic review. Out of eleven hundred and fifty titles identified after a primary search, nine articles were included in the quantitative analysis. The research question based on PICO/PECO (Participant, Intervention/exposure, Comparison, and Outcome) was "Do 3D-printed and milled (P) zirconia crowns and FDPs (I) have a better survival rate (O) when conventional prosthesis is also an option (C)"? The data collected were tabulated and compared, and the risk of bias and meta-analysis were later performed. Only nine articles (clinical research) were selected for the study. Since there were no clinical studies on the 3D printing of zirconium crowns, six in vitro studies were considered for the comparison. Zirconium crowns in the milling group had an average minimum follow-up of 6 months. RESULTS A moderate risk of bias was found, and survival was significant. A high heterogeneity level was noted among the studies. Marginal integrity, periodontal status, and survival rate were high. Linear regression depicted no statistical correlation between the type of cement used and the survival rate. CONCLUSIONS It can be concluded that the milled crowns had a higher performance and satisfactory clinical survival.
Collapse
Affiliation(s)
- Harisha Dewan
- Department of Prosthetic Dental Sciences, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
21
|
Prpic V, Spehar F, Stajdohar D, Bjelica R, Cimic S, Par M. Mechanical Properties of 3D-Printed Occlusal Splint Materials. Dent J (Basel) 2023; 11:199. [PMID: 37623295 PMCID: PMC10453325 DOI: 10.3390/dj11080199] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Data regarding the mechanical properties of three-dimensionally (3D) printed materials for occlusal splint manufacturing are scarce. The aim of the present study was to evaluate the flexural strength and surface hardness of modern 3D-printed occlusal splint materials and compare them with two control groups, namely, milled and conventional cold-polymerized occlusal splint materials. A total of 140 rectangular specimens were manufactured for the present study. The specimens were prepared in accordance with the International Organization for Standardization standards (ISO 20795-1:2013). Five 3D-printed (NextDent Ortho Rigid, Dental LT Clear, Dentona Flexisplint, Cosmos Bite Splint, and ProArt Print Splint), one milled (ProArt CAD Splint), and one cold-polymerized (ProBase Cold) occlusal splint materials were used to determine flexural strength and surface hardness values. The three-point flexure test was used for the determination of flexural strength values, while Vickers hardness was measured to determine surface hardness. Ten specimens (n = 10) of each material were tested using these procedures. One-way ANOVA and Tukey's post-hoc test were used to analyze the obtained results (α = 0.05). The values of flexural strength ranged from 46.1 ± 8.2 MPa to 106 ± 8.3 MPa. The Vickers hardness values ranged from 4.9 ± 0.5 VHN to 20.6 ± 1.3 VHN. Significant differences were found among the tested materials (p < 0.0001). The milled and cold-polymerized materials yielded higher values for both flexural strength (only one 3D-printed resin had comparable results to cold-polymerized acrylics) and surface hardness. There are differences in the mechanical properties of the various tested occlusal splint materials. The flexural strength of most of the 3D-printed materials and their surface hardness values are still inferior when compared to the milled or cold-polymerized materials.
Collapse
Affiliation(s)
- Vladimir Prpic
- Department of Fixed Prosthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Filipa Spehar
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (F.S.); (D.S.)
| | - Dominik Stajdohar
- School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia; (F.S.); (D.S.)
| | - Roko Bjelica
- Department of Oral Surgery, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Samir Cimic
- Department of Removable Prosthodontics, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| |
Collapse
|
22
|
Igreţ A, Rotar RN, Ille C, Topală F, Jivănescu A. Marginal fit of milled versus different 3D-printed materials for provisional fixed dental prostheses: an in vitro comparative study. Med Pharm Rep 2023; 96:298-304. [PMID: 37577020 PMCID: PMC10419681 DOI: 10.15386/mpr-2588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Provisional dental prostheses are used as interim restorations to help patients perform oral functions between the time of tooth preparation and the placement of the final restoration. A provisional dental prosthesis should protect the abutment from pulpal and gingival aggressions, adapt correctly to keep healthy gingival tissues, be durable, and have a low price. The purpose of this in vitro study was to compare the marginal adaptation of different types of provisional fixed dental prostheses (PFDP), fabricated using 3D printing technology versus the milling (computer-aided manufacturing [CAM]) technique. Method Two resin teeth (second premolar and second molar) on a typodont were prepared for three-unit provisional fixed dental prostheses. Thirty models were 3D-printed after a digital model was created using an intraoral scanner. Then, 30 provisional fixed dental prostheses (PFDPs) were made from a variety of materials using a digital design of a 3-unit PFDP and STL files delivered to a milling machine and a 3D printer, respectively. Ten PFDP were milled (CAM), and two sets of ten each, were fabricated with 3D printing technology (stereolithography), using two different materials. All restorations were analyzed under a microscope, and marginal gap was then measured using the software Image J. Results The milled group presented the best marginal gap values (ranging from 86 to 108 μm) and a median value of 93 μm, followed by GC group with (110-251 μm) with a median value of 205 μm and the PR group with median value of 316.5 μm. Conclusion According to the findings of this in vitro study, the milling (CAM) technique and SLA technology provides acceptable marginal fit values to fabricate provisional fixed partial dentures.
Collapse
Affiliation(s)
- Anca Igreţ
- Department of Prosthodontics, Faculty of Dentistry, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Raul Nicolae Rotar
- Department of Prosthodontics, Faculty of Dentistry, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
- TADERP Research Center, UMFVBT, Timişoara, Romania
| | - Codruţa Ille
- Department of Prosthodontics, Faculty of Dentistry, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
- TADERP Research Center, UMFVBT, Timişoara, Romania
| | - Florin Topală
- Department of Prosthodontics, Faculty of Dentistry, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
| | - Anca Jivănescu
- Department of Prosthodontics, Faculty of Dentistry, Victor Babeş University of Medicine and Pharmacy, Timişoara, Romania
- TADERP Research Center, UMFVBT, Timişoara, Romania
| |
Collapse
|
23
|
Branco AC, Colaço R, Figueiredo-Pina CG, Serro AP. Recent Advances on 3D-Printed Zirconia-Based Dental Materials: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1860. [PMID: 36902976 PMCID: PMC10004380 DOI: 10.3390/ma16051860] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Zirconia-based materials are widely used in dentistry due to their biocompatibility and suitable mechanical and tribological behavior. Although commonly processed by subtractive manufacturing (SM), alternative techniques are being explored to reduce material waste, energy consumption and production time. 3D printing has received increasing interest for this purpose. This systematic review intends to gather information on the state of the art of additive manufacturing (AM) of zirconia-based materials for dental applications. As far as the authors know, this is the first time that a comparative analysis of these materials' properties has been performed. It was performed following the PRISMA guidelines and using PubMed, Scopus and Web of Science databases to select studies that met the defined criteria without restrictions on publication year. Stereolithography (SLA) and digital light processing (DLP) were the techniques most focused on in the literature and the ones that led to most promising outcomes. However, other techniques, such as robocasting (RC) and material jetting (MJ), have also led to good results. In all cases, the main concerns are centered on dimensional accuracy, resolution, and insufficient mechanical strength of the pieces. Despite the struggles inherent to the different 3D printing techniques, the commitment to adapt materials, procedures and workflows to these digital technologies is remarkable. Overall, the research on this topic can be seen as a disruptive technological progress with a wide range of application possibilities.
Collapse
Affiliation(s)
- Ana Catarina Branco
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia, Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Estefanilha, 2910-761 Setúbal, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Rogério Colaço
- Departamento de Engenharia Mecânica, Instituto de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Célio Gabriel Figueiredo-Pina
- Centro de Desenvolvimento de Produto e Transferência de Tecnologia, Department of Mechanical Engineering, Escola Superior de Tecnologia de Setúbal, Instituto Politécnico de Setúbal, Estefanilha, 2910-761 Setúbal, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
- Center of Physics and Engineering of Advanced Materials, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural (CQE), Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
24
|
Jung JM, Kim GN, Koh YH, Kim HE. Manufacturing and Characterization of Dental Crowns Made of 5-mol% Yttria Stabilized Zirconia by Digital Light Processing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1447. [PMID: 36837076 PMCID: PMC9963883 DOI: 10.3390/ma16041447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
We herein report manufacturing of dental crowns made of 5-mol% yttria partially stabilized zirconia (5Y-PSZ) with desired mechanical properties, optical translucency and dimensional accuracy using digital light processing (DLP). To this end, all processing parameters were carefully controlled and optimized. First, 5Y-PSZ particles with a bimodal distribution were prepared via calcination of as-received granules and subsequent ball-milling and then used to formulate 5Y-PSZ suspensions with a high solid loading of 50 vol% required for high densification after sintering. Dispersant content was also optimized. To provide high dimensional accuracy, initial dimensions of dental crowns for 3D printing were precisely determined by considering increase and decrease in dimensions during photopolymerization and sintering, respectively. Photopolymerization time was also optimized for a given layer thickness of 50 μm to ensure good bonding between layers. A multi-step debinding schedule with a slow heating rate was employed to avoid formation of any defects. After sintering at 1500 °C for 2 h, 5Y-PSZ could be almost fully densified without noticeable defects within layers and at interfaces between layers. They had high relative densities (99.03 ± 0.39%) with a high cubic phase content (59.1%). These characteristics allowed for achievement of reasonably high mechanical properties (flexural strength = 625.4 ± 75.5 MPa and Weibull modulus = 7.9) and % transmittance (31.4 ± 0.7%). In addition, 5Y-PSZ dental crowns showed excellent dimensional accuracy (root mean square (RMS) for marginal discrepancy = 44.4 ± 10.8 μm and RMS for internal gap = 22.8 ± 1.6 μm) evaluated by the 3D scanning technique.
Collapse
Affiliation(s)
- Jae-Min Jung
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gyu-Nam Kim
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young-Hag Koh
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul 02841, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hyoun-Ee Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|