1
|
Köpsel M, Kostka T, Niesen S, Winterhalter P, Esatbeyoglu T. Influence of fractionation of polyphenols by membrane chromatography on antioxidant, antimicrobial and proliferation-inhibiting effects of red fruit juices. Food Chem 2025; 463:141216. [PMID: 39357108 DOI: 10.1016/j.foodchem.2024.141216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/01/2024] [Accepted: 09/08/2024] [Indexed: 10/04/2024]
Abstract
Interest in fruit juice extracts as nutraceuticals is constantly increasing due to their health-beneficial properties, mainly caused by polyphenols. However, the correlation between the various effects of fruit juice extracts and their individual composition, including anthocyanins and copigments, is unknown. Therefore, in the present study, eight red fruit juice extracts were prepared using XAD-7 column chromatography, followed by fractionation and identification of the different compounds as well as characterization of their health-promoting effects. The fruit juice extract of pomegranate, chokeberry, and cranberry showed the highest antimicrobial potential against food-borne pathogens. The highest antioxidant and cell proliferation-inhibiting potential was also found in the pomegranate extract. It can be assumed that pomegranate extracts, which are rich in copigments, especially hydrolyzable tannins, are suitable natural antioxidants and antimicrobial agents. Pomegranate extracts could be used as nutraceuticals or natural preservatives.
Collapse
Affiliation(s)
- Magdalena Köpsel
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Tina Kostka
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, RPTU Kaiserslautern-Landau, Erwin-Schrödinger-Strasse 52, 67663 Kaiserslautern, Germany.
| | - Sonja Niesen
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany.
| | - Peter Winterhalter
- Institute of Food Chemistry, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany.
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Nair A, Singh R, Gautam N, Saxena S, Mittal S, Shah S, Talegaonkar S. Multifaceted role of phytoconstituents based nano drug delivery systems in combating TNBC: A paradigm shift from chemical to natural. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9207-9226. [PMID: 38953968 DOI: 10.1007/s00210-024-03234-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Triple negative breast cancer is considered to be a malignancy of grave concern with limited routes of treatment due to the absence of specific breast cancer markers and ambiguity of other potential drug targets. Poor prognosis and inadequate survival rates have prompted further research into the understanding of the molecular pathophysiology and targeting of the disease. To overcome the recurrence and resistance mechanisms of the TNBC cells, various approaches have been devised, and are being continuously evaluated to enhance their efficacy and safety. Chemo-Adjuvant therapy is one such treatment modality being employed to improve the efficiency of standard chemotherapy. Combining chemo-adjuvant therapy with other upcoming approaches of cancer therapeutics such as phytoconstituents and nanotechnology has yielded promising results in the direction of improving the prognosis of TNBC. Numerous nanoformulations have been proven to substantially enhance the specificity and cellular uptake of drugs by cancer cells, thus reducing the possibility of unintended systemic side effects within cancer patients. While phytoconstituents offer a wide variety of beneficial active constituents useful in cancer therapeutics, most favorable outcomes have been observed within the scope of polyphenols, isoquinoline alkaloids and isothiocyanates. With an enhanced understanding of the molecular mechanisms of TNBC and the advent of newer targeting technologies and novel phytochemicals of medicinal importance, a new era of cancer theranostic treatments can be explored. This review hopes to instantiate the current body of research regarding the role of certain phytoconstituents and their potential nanoformulations in targeting specific TNBC pathways for treatment and diagnostic purposes.
Collapse
Affiliation(s)
- Anandita Nair
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Roshni Singh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Namrata Gautam
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Shilpi Saxena
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India
| | - Saurabh Mittal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, U.P, Noida, 201303, India.
| | - Sadia Shah
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, 226003, India.
| | - Sushama Talegaonkar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi 17, Delhi, India.
| |
Collapse
|
3
|
Rigillo G, Baini G, Bruni R, Puja G, Miraldi E, Pani L, Tascedda F, Biagi M. Red Yeast Rice or Lovastatin? A Comparative Evaluation of Safety and Efficacy Through a Multifaceted Approach. Phytother Res 2024. [PMID: 39511729 DOI: 10.1002/ptr.8371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 11/15/2024]
Abstract
The increasing use of red yeast rice (RYR) as a natural supplement to manage blood cholesterol levels is driven by its active compound, monacolin K (MK), which is chemically identical to the statin drug lovastatin (LOV). Despite its growing popularity, concerns persists regarding the safety and efficacy of RYR compared to pure statins. This study aimed to evaluate the phytochemical composition, pharmacological effects, and safety profile of various RYR samples in comparison with LOV. RYR samples with different MK content were analyzed using HPLC-DAD to quantify monacolins and other bioactive compounds. The inhibitory activity on HMG-CoA reductase was assessed through an enzymatic assay, while pharmacokinetic properties were predicted using in vitro simulated digestion and in silico models. In vitro cytotoxicity was evaluated in intestinal, hepatic, renal, and skeletal muscle cell models. Additionally, the transcriptional levels of muscle damage-related target genes were evaluated by qRT-PCR in skeletal muscle cells treated with a selection of RYR samples. Significant variability in the phytochemical composition of RYR samples was observed, particularly in the content of secondary monacolins, triterpenes, and polyphenols. The RYR phytocomplex exhibited superior inhibition of HMG-CoA reductase activity compared to isolated LOV, suggesting synergistic effects between secondary monacolins and other compounds. Molecular insights revealed that RYR samples had a lower impact on muscle cells than LOV, as reflected also by cell viability. These findings suggest that RYR could serve as a safe alternative to purified statins. However, further research is needed to fully elucidate the mechanisms behind the synergistic activity of the phytocomplex and to firmly establish the clinical efficacy of this natural product.
Collapse
Affiliation(s)
- Giovanna Rigillo
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Renato Bruni
- Department of Food and Drug, University of Parma, Italy
| | - Giulia Puja
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena, Italy
| | - Luca Pani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, Florida, USA
| | - Fabio Tascedda
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- CIB, Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Marco Biagi
- Department of Food and Drug, University of Parma, Italy
| |
Collapse
|
4
|
Grabarczyk M, Justyńska W, Czpakowska J, Smolińska E, Bielenin A, Glabinski A, Szpakowski P. Role of Plant Phytochemicals: Resveratrol, Curcumin, Luteolin and Quercetin in Demyelination, Neurodegeneration, and Epilepsy. Antioxidants (Basel) 2024; 13:1364. [PMID: 39594506 PMCID: PMC11591432 DOI: 10.3390/antiox13111364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Polyphenols are an important group of biologically active compounds present in almost all food sources of plant origin and are primarily known for their anti-inflammatory and antioxidative capabilities. Numerous studies have indicated their broad spectrum of pharmacological properties and correlations between their increased supply in the human diet and lower prevalence of various disorders. The positive effects of polyphenols application are mostly discussed in terms of cardiovascular system well-being. However, in recent years, they have also increasingly mentioned as prophylactic and therapeutic factors in the context of neurological diseases, being able to suppress the progression of such disorders and soothe accompanying symptoms. Among over 8000 various compounds, that have been identified, the most widely examined comprise resveratrol, curcumin, luteolin and quercetin. This review focuses on in vitro assessments, animal models and clinical trials, reflecting the most actual state of knowledge, of mentioned polyphenols' medicinal capabilities in epilepsy, demyelinating and neurodegenerative diseases of the central nervous system.
Collapse
Affiliation(s)
- Mikołaj Grabarczyk
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Weronika Justyńska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Joanna Czpakowska
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Ewa Smolińska
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Aleksandra Bielenin
- Medical Faculty, Medical University of Lodz, 90-419 Lodz, Poland; (M.G.); (W.J.); (E.S.); (A.B.)
| | - Andrzej Glabinski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| | - Piotr Szpakowski
- Department of Neurology and Stroke, Medical University of Lodz, Zeromskiego 113 Street, 90-549 Lodz, Poland; (J.C.)
| |
Collapse
|
5
|
Chew HSJ, Soong RY, Teo YQJ, Flølo TN, Chong B, Yong CL, Ang SH, Ho Y, Chew NWS, So JBY, Shabbir A. Anthropometric and cardiometabolic effects of polyphenols in people with overweight and obesity: an umbrella review. Nutr Rev 2024; 82:1556-1593. [PMID: 38213191 DOI: 10.1093/nutrit/nuad163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024] Open
Abstract
CONTEXT Polyphenols are plant-based compounds with potential anti-inflammatory, antioxidant, and anti-obesogenic properties. However, their effects on health outcomes remain unclear. OBJECTIVE To evaluate the effects of polyphenols on anthropometric and cardiometabolic markers. DATA SOURCES Six electronic databases-namely, EMBASE, CINAHL, PubMed, Scopus, The Cochrane Library (reviews only), and Web of Science-were searched for relevant systematic reviews with meta-analyses (SRMAs). DATA EXTRACTION Three reviewers performed the data extraction via a data-extraction Microsoft Excel spreadsheet. DATA ANALYSIS An umbrella review and meta-analysis of existing SRMAs was conducted. Eighteen SRMAs published from 2015 to 2023, representing 445 primary studies and 838 unique effect sizes, were identified. Meta-analyses were conducted using random-effects models with general inverse variance. Polyphenol-containing foods were found to significantly improve weight (-0.36 kg; 95% confidence interval [CI]: -0.62, 0.77 kg; P < 0.01, I2 = 64.9%), body mass index (-0.25 kg/m2; 95% CI: -0.34, -0.17 kg/m2; P < 0.001, I2 = 82.4%), waist circumference (-0.74 cm; 95% CI: -1.34, -0.15 cm; P < 0.01, I2 = 99.3%), low-density-lipoprotein cholesterol (-1.75 mg/dL; 95% CI: -2.56, -0.94; P < 0.001, I2 = 98.6%), total cholesterol (-1.23 mg/dL; 95% CI: -2.00, -0.46; P = 0.002, I2 = 94.6%), systolic blood pressure (-1.77 mmHg; 95% CI: -1.77, -0.93 mmHg; P < 0.001, I2 = 72.4%), diastolic blood pressure (-1.45 mmHg; 95% CI: -2.09, -0.80 mmHg; P < 0.001, I2 = 61.0%), fat percentage (-0.70%; 95% CI: -1.03, -0.36%; P < 0.001, I2 = 52.6%), fasting blood glucose (-0.18 mg/dL; 95% CI: -0.35, -0.01 mg/dL; P = 0.04, I2 = 62.0%), and C-reactive protein (CRP; including high-sensitivity-CRP [hs-CRP]) (-0.2972 mg/dL; 95% CI: -0.52, -0.08 mg/dL; P = 0.01, I2 = 87.9%). No significant changes were found for high-density-lipoprotein cholesterol (-0.12 mg/dL; 95% CI: -1.44, 0.69; P = 0.67, I2 = 89.4%) and triglycerides (-1.29 mg/dL; 95% CI: -2.74, 0.16; P = 0.08, I2 = 85.4%). Between-study heterogeneity could be explained by polyphenol subclass differences. CONCLUSION The findings of this umbrella review support the beneficial effects of polyphenols on anthropometric and metabolic markers, but discretion is warranted to determine the clinical significance of the magnitude of the biomarker improvements. SYSTEMATIC REVIEW REGISTRATION International Prospective Register of Systematic Reviews no. CRD42023420206.
Collapse
Affiliation(s)
- Han Shi Jocelyn Chew
- Alice Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rou Yi Soong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yu Qing Jolene Teo
- University of Medicine and Health Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tone Nygaard Flølo
- Department of Nursing and Health Promotion, Oslo Metropolitan University, Oslo, Norway
- Department of Surgery, Voss Hospital, Haukeland University Hospital, Voss, Norway
| | - Bryan Chong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Cai Ling Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shi Han Ang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yishen Ho
- Department of Food Science and Technology, National University of Singapore, Singapore
| | | | | | - Asim Shabbir
- Department of Surgery, National University Hospital, Singapore
| |
Collapse
|
6
|
Wójciak M, Paduch R, Drozdowski P, Żuk M, Wójciak W, Tyszczuk-Rotko K, Feldo M, Sowa I. Ultra-Performance Liquid Chromatography and Mass Spectrometry Characterization, and Antioxidant, Protective, and Anti-Inflammatory Activity, of the Polyphenolic Fraction from Ocimum basilicum. Molecules 2024; 29:5043. [PMID: 39519685 PMCID: PMC11547609 DOI: 10.3390/molecules29215043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Ocimum basilicum is a valuable plant widely consumed worldwide and considered a rich source of polyphenols. This study examined the impact of the polyphenolic fraction isolated from basil (ObF) on human normal colon epithelial cells and human colorectal adenocarcinoma cells, evaluating its anti-inflammatory and protective activity against oxidative stress. The phytochemical characterization of the fraction was performed using ultra-performance liquid chromatography (UPLC) with a photodiode detector (DAD) and mass spectrometry (MS). UPLC-DAD-MS revealed that ObF predominantly contains caffeic acid derivatives, with rosmarinic acid and chicoric acid being the most abundant. The fraction demonstrated high antioxidant potential, as shown by DPPH assays, along with significant reducing power (FRAP). Furthermore, it prevented the depletion of antioxidant enzymes, including superoxide dismutase and catalase, and decreased malonylodialdehyde (MDA) in induced oxidative stress condition. Additionally, it exhibited a significant protective effect against H2O2-induced cytotoxicity in human normal colon epithelial cells. Although it had no impact on the viability of adenocarcinoma cells, it significantly reduced IL-1β levels in the neoplastic microenvironment. Our study demonstrated that basil polyphenols provide significant health benefits due to their antioxidant and protective activities.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ż.); (W.W.); (I.S.)
| | - Roman Paduch
- Department of Virology and Immunology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland
| | - Piotr Drozdowski
- Department of Plastic Surgery, Specialist Medical Centre, 57-320 Polanica-Zdrój, Poland;
| | - Magdalena Żuk
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ż.); (W.W.); (I.S.)
| | - Weronika Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ż.); (W.W.); (I.S.)
| | - Katarzyna Tyszczuk-Rotko
- Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University in Lublin, 20-031 Lublin, Poland;
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, 20-081 Lublin, Poland;
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.Ż.); (W.W.); (I.S.)
| |
Collapse
|
7
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
8
|
Li Y, Xu Y, Le Sayec M, Kamarunzaman NNZ, Wu H, Hu J, Li S, Gibson R, Rodriguez-Mateos A. Development of a food frequency questionnaire for the estimation of dietary (poly)phenol intake. Food Funct 2024; 15:10414-10433. [PMID: 39320369 DOI: 10.1039/d4fo03546a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Background: (Poly)phenol intake has been associated with reduced risk of non-communicable diseases in epidemiological studies. However, there are currently no dietary assessment tools specifically developed to estimate (poly)phenol intake in the UK population. Objectives: This study aimed to develop a novel food frequency questionnaire (FFQ) to capture the dietary (poly)phenol intake in the UK and assess its relative validity with 7 day diet diaries (7DDs) and plasma and urine (poly)phenol metabolites. Methods: The KCL (poly)phenol FFQ (KP-FFQ) was developed based on the existing EPIC (European Prospective Investigation into Diet and Cancer)-Norfolk FFQ, which has been validated for energy and nutrient intake estimation in the UK population. Participants aged 18-29 years (n = 255) completed both the KP-FFQ and the EPIC-Norfolk FFQ. In a subgroup (n = 60), 7DD, spot urine, and fasting plasma samples were collected. An in-house (poly)phenol database was used to estimate (poly)phenol intake from FFQs and 7DDs. Plasma and urinary (poly)phenol metabolite levels were analysed using a validated ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry method. The agreements between (poly)phenol intake estimated using the KP-FFQ, EPIC-Norfolk FFQ and 7DDs, as well as plasma and urinary biomarkers, were evaluated by intraclass correlation coefficients (ICC), weighted kappa, quartile cross-classification, and Spearman's correlations, and the associations were investigated using linear regression models adjusting for energy intake and multiple testing (false discovery rate (FDR) < 0.05). Results: The mean (standard deviation, SD) of total (poly)phenol intake estimated from KP-FFQs was 1366.5 (1151.7) mg d-1. Fair agreements were observed between ten (poly)phenol groups estimated from KP-FFQs and 7DDs (kappa: 0.41-0.73), including total (poly)phenol intake (kappa = 0.45), while the agreements for the rest of the 17 classes and subclasses were poor (kappa: 0.07-0.39). Strong positive associations with KP-FFQ were found in ten (poly)phenols estimated from 7DDs, including dihydroflavonols, theaflavins, thearubigins, flavones, isoflavonoids, ellagitannins, hydroxyphenylacetic acids, total stilbenes, resveratrol, and tyrosols with stdBeta ranged from 0.61 (95% confidence interval CI: 0.42 to 0.81) to 0.95 (95% CI: 0.86 to 1.03) (all FDR adjusted p < 0.05). KP-FFQs estimated (poly)phenol intake exhibited positive associations with 76 urinary metabolites (stdBeta: 0.28 (95% CI: 0.07-0.49) to 0.81 (0.62-1.00)) and 19 plasma metabolites (stdBeta: 0.40 (0.17-0.62)-0.83 (0.64-1.02)) (all FDR p < 0.05). The agreement between KP-FFQs and the EPIC-Norfolk FFQs was moderate (ICC 0.51-0.69) for all (poly)phenol subclasses after adjusting for energy intake. Compared with the EPIC-Norfolk FFQs estimated (poly)phenol intake, stronger and more agreements and associations were found in KP-FFQs estimated (poly)phenol with 7DDs and biomarkers. Conclusion: (Poly)phenol intake estimated from KP-FFQ exhibited fair agreements and moderate to strong associations with 7DDs and biomarkers, indicating the novel questionnaire may be a promising tool to assess dietary (poly)phenol intake.
Collapse
Affiliation(s)
- Yong Li
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Yifan Xu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Melanie Le Sayec
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Nur Najiah Zaidani Kamarunzaman
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Haonan Wu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Shan Li
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Rachel Gibson
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
9
|
Vento M, Della Croce CM, Bellani L, Tassi EL, Echeverria MC, Giorgetti L. Effect of Sprouting, Fermentation and Cooking on Antioxidant Content and Total Antioxidant Activity in Quinoa and Amaranth. Int J Mol Sci 2024; 25:10972. [PMID: 39456755 PMCID: PMC11507448 DOI: 10.3390/ijms252010972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
The study of different processing techniques, such as sprouting, cooking and fermentation, can help to develop new products for human health. In this work, raw, cooked and fermented seeds and germinated seeds of Chenopodium quinoa Willd. var. Tunkahuan and Amaranthus caudatus L. var. Alegrìa were compared for the content of antioxidant molecules, total antioxidant capacity and mineral elements. Fermentation was induced spontaneously, with the yeast Saccharomyces cerevisiae, with the bacterium Lactobacillus plantarum and with both microorganisms, for 24 and 48 h. The increase in antioxidant molecules and antioxidant activity was induced by germination, by 24 h of spontaneous fermentation (polyphenols and flavonoids) and by 24 h of L. plantarum fermentation (total antioxidant activity) for both species. Germinated seeds of the two plants showed higher values in respect to seeds of macroelements and microelements. No genotoxic but rather protective effects were determined for seed and germinated seed extracts using the D7 strain of S. cerevisiae, a good tool for the evaluation of protection from oxidative damage induced by radical oxygen species (ROS) in cells and tissues. Therefore, the two varieties could be very suitable for their use in human diet and in supplements, especially as germinated seeds or as fermented foods.
Collapse
Affiliation(s)
- Martina Vento
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| | - Clara Maria Della Croce
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| | - Lorenza Bellani
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Eliana Lanfranca Tassi
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council, 56124 Pisa, Italy;
| | - Maria Cristina Echeverria
- eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador;
| | - Lucia Giorgetti
- Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, 56124 Pisa, Italy; (M.V.); (C.M.D.C.)
| |
Collapse
|
10
|
Boccardi V, Tagliafico L, Persia A, Page E, Ottaviani S, Cremonini AL, Borgarelli C, Pisciotta L, Mecocci P, Nencioni A, Monacelli F. The Potential Effects of Red Wine and Its Components on Neurocognitive Disorders: A Narrative Review. Nutrients 2024; 16:3431. [PMID: 39458427 PMCID: PMC11510231 DOI: 10.3390/nu16203431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The aging population is associated with a net increase in the incidence and prevalence of chronic-degenerative diseases, particularly neurocognitive disorders. Therefore, the identification of preventative strategies to restrain the burden of such chronic conditions is of key relevance. Red wine and its components have accumulated evidence regarding their positive effects in terms of neurological pathologies associated with neurocognitive symptoms. METHODS Based on this background, the present narrative review aims to summarize the state-of-the-art evidence on the effects of red wine and its components on neurocognitive disorders in both preclinical and clinical settings. RESULTS The main findings highlight a protective effect of wine polyphenols present in red wine on dementia in different preclinical models of cognitive decline. The current translational clinical evidence remains uncertain, especially considering the risk-to-benefit ratio of alcohol consumption on brain health. CONCLUSIONS Given the overall health risks associated with red wine consumption and consistent with the prevailing guidelines in the literature, there is insufficient evidence to support light-to-moderate red wine consumption as an effective strategy for preventing these diseases. However, the largely preclinical findings on polyphenols derived from red wine remain of significant interest in this context.
Collapse
Affiliation(s)
- Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
| | - Luca Tagliafico
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Angelica Persia
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
| | - Elena Page
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Silvia Ottaviani
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | | | | | - Livia Pisciotta
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, 06123 Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
11
|
Miraldi E, Baini G, Biagi M, Cappellucci G, Giordano A, Vaccaro F, Bertelli AAE. Wine, Polyphenols, and the Matrix Effect: Is Alcohol Always the Same? Int J Mol Sci 2024; 25:9796. [PMID: 39337284 PMCID: PMC11432751 DOI: 10.3390/ijms25189796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
While the number of publications on wine and health is steadily increasing, ranging from a molecular level to epidemiological studies, often with contradictory results, little attention has been given to a holistic approach to research, starting from the molecular level to arrive at pharmacological and medical conclusions. In this review, some unusual concepts are considered, such as the phytocomplex, the vehicle, and the Matrix effect. The concept of the phytocomplex is discussed, specifically the biological activities of Tyrosol, Hydroxytyrosol, and Resveratrol; indeed, the interactions among different molecules in herbal matrices provide a specific response. This is often markedly different from the response evoked by single constituents in the modulation of microbial populations in the gut, in intestinal stability and bioaccessibility, and, obviously, in inducing biological responses. Among the many alcoholic beverages which contain these molecules, wine has the most peculiar Matrix effect, which can heavily influence the bioavailability of the phytocomplex obtained by the fermentation processes that produce this beverage. Wine's Matrix effect plays an instrumental role in improving the beneficial compounds' bioavailability and/or in inhibiting alcohol metabolites' carcinogenicity. Underestimation of the wine Matrix effect could lead to deceiving results, as in the case of dealcoholized wine or wine-compound-based nutritional supplements; alternatively, this can occur in the emphasis of a single component's toxic activity, in this case, alcohol, ignoring the specific molecular-level protective action of other compounds (polyphenols) that are present in the same matrix. The dark side of the Matrix effect is also discussed. This review confirms the research recommendations made by the WHO Scientific Group, which suggests it is important "to investigate the possible protective effects of ingredients other than alcohol in alcoholic beverages", considering that most recent studies seem not only relevant but also capable of directing future research towards innovative points of view that have so far been too neglected.
Collapse
Affiliation(s)
- Elisabetta Miraldi
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Giulia Baini
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Marco Biagi
- Department of Food and Drug, University of Parma, 43121 Parma, Italy
| | - Giorgio Cappellucci
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alessandro Giordano
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Federica Vaccaro
- Department of Physical Sciences, Earth and Environment, University of Siena, 53100 Siena, Italy
| | - Alberto A E Bertelli
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| |
Collapse
|
12
|
Menichetti G, Barabási AL, Loscalzo J. Decoding the Foodome: Molecular Networks Connecting Diet and Health. Annu Rev Nutr 2024; 44:257-288. [PMID: 39207880 DOI: 10.1146/annurev-nutr-062322-030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Diet, a modifiable risk factor, plays a pivotal role in most diseases, from cardiovascular disease to type 2 diabetes mellitus, cancer, and obesity. However, our understanding of the mechanistic role of the chemical compounds found in food remains incomplete. In this review, we explore the "dark matter" of nutrition, going beyond the macro- and micronutrients documented by national databases to unveil the exceptional chemical diversity of food composition. We also discuss the need to explore the impact of each compound in the presence of associated chemicals and relevant food sources and describe the tools that will allow us to do so. Finally, we discuss the role of network medicine in understanding the mechanism of action of each food molecule. Overall, we illustrate the important role of network science and artificial intelligence in our ability to reveal nutrition's multifaceted role in health and disease.
Collapse
Affiliation(s)
- Giulia Menichetti
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Harvard Data Science Initiative, Harvard University, Boston, Massachusetts, USA
| | - Albert-László Barabási
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
- Network Science Institute and Department of Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Joseph Loscalzo
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
13
|
Sardarabadi H, Darvishi MH, Zohrab F, Javadi H. Nanophytomedicine: A promising practical approach in phytotherapy. Phytother Res 2024; 38:3607-3644. [PMID: 38725270 DOI: 10.1002/ptr.8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 07/12/2024]
Abstract
The long and rich history of herbal therapeutic nutrients is fascinating. It is incredible to think about how ancient civilizations used plants and herbs to treat various ailments and diseases. One group of bioactive phytochemicals that has gained significant attention recently is dietary polyphenols. These compounds are commonly found in a variety of fruits, vegetables, spices, nuts, drinks, legumes, and grains. Despite their incredible therapeutic properties, one challenge with polyphenols is their poor water solubility, stability, and bioavailability. This means that they are not easily absorbed by the body when consumed in essential diets. Because of structural complexity, polyphenols with high molecular weight cannot be absorbed in the small intestine and after arriving in the colon, they are metabolized by gut microbiota. However, researchers are constantly working on finding solutions to enhance the bioavailability and absorption of these compounds. This study aims to address this issue by applying nanotechnology approaches to overcome the challenges of the therapeutic application of dietary polyphenols. This combination of nanotechnology and phytochemicals could cause a completely new field called nanophytomedicine or herbal nanomedicine.
Collapse
Affiliation(s)
- Hadi Sardarabadi
- Department of Physiology and Pharmacology, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zohrab
- Department of Medical Science, Qom Branch, Islamic Azad University, Qom, Iran
| | - Hamidreza Javadi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Quintieri L, Caputo L, Nicolotti O. Recent Advances in the Discovery of Novel Drugs on Natural Molecules. Biomedicines 2024; 12:1254. [PMID: 38927461 PMCID: PMC11200856 DOI: 10.3390/biomedicines12061254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Natural products (NPs) are always a promising source of novel drugs for tackling unsolved diseases [...].
Collapse
Affiliation(s)
- Laura Quintieri
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Leonardo Caputo
- Institute of Sciences of Food Production, National Research Council (CNR), Via G. Amendola, 122/O, 70126 Bari, Italy;
| | - Orazio Nicolotti
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Via E. Orabona, 4, 70125 Bari, Italy;
| |
Collapse
|
15
|
Abiola JO, Oluyemi AA, Idowu OT, Oyinloye OM, Ubah CS, Owolabi OV, Somade OT, Onikanni SA, Ajiboye BO, Osunsanmi FO, Nash O, Omotuyi OI, Oyinloye BE. Potential Role of Phytochemicals as Glucagon-like Peptide 1 Receptor (GLP-1R) Agonists in the Treatment of Diabetes Mellitus. Pharmaceuticals (Basel) 2024; 17:736. [PMID: 38931402 PMCID: PMC11206448 DOI: 10.3390/ph17060736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Currently, there is no known cure for diabetes. Different pharmaceutical therapies have been approved for the management of type 2 diabetes mellitus (T2DM), some are in clinical trials and they have been classified according to their route or mechanism of action. Insulin types, sulfonylureas, biguanides, alpha-glucosidase inhibitors, thiazolidinediones, meglitinides, sodium-glucose cotransporter type 2 inhibitors, and incretin-dependent therapies (glucagon-like peptide-1 receptor agonists: GLP-1R, and dipeptidyl peptidase 4 inhibitors: DPP-4). Although some of the currently available drugs are effective in the management of T2DM, the side effects resulting from prolonged use of these drugs remain a serious challenge. GLP-1R agonists are currently the preferred medications to include when oral metformin alone is insufficient to manage T2DM. Medicinal plants now play prominent roles in the management of various diseases globally because they are readily available and affordable as well as having limited and transient side effects. Recently, studies have reported the ability of phytochemicals to activate glucagon-like peptide-1 receptor (GLP-1R), acting as an agonist just like the GLP-1R agonist with beneficial effects in the management of T2DM. Consequently, we propose that careful exploration of phytochemicals for the development of novel therapeutic candidates as GLP-1R agonists will be a welcome breakthrough in the management of T2DM and the co-morbidities associated with T2DM.
Collapse
Affiliation(s)
- Julianah Ore Abiola
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Ayoola Abidemi Oluyemi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Olajumoke Tolulope Idowu
- Industrial Chemistry Unit, Department of Chemical Sciences, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatoyin Mary Oyinloye
- Department of Mathematics, Science and Technology Education, Faculty of Education, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Chukwudi Sunday Ubah
- Department of Epidemiology and Biostatistics, College of Public Health, Temple University, Philadelphia, PA 19121, USA
| | - Olutunmise Victoria Owolabi
- Medical Biochemistry Unit, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Oluwatobi T. Somade
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta 111101, Nigeria
| | - Sunday Amos Onikanni
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University Oye-Ekiti, Oye-Ekiti 371104, Nigeria
| | - Foluso Oluwagbemiga Osunsanmi
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| | - Oyekanmi Nash
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja 09004, Nigeria
| | - Olaposi Idowu Omotuyi
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Department of Pharmacology and Toxicology, College of Pharmacy, Afe Babalola University, Ado-Ekiti 360001, Nigeria
| | - Babatunji Emmanuel Oyinloye
- Phytomedicine, Biochemical Toxicology and Biotechnology Research Laboratories, Department of Biochemistry, College of Sciences, Afe Babalola University, Ado-Ekiti 360001, Nigeria; (J.O.A.)
- Institute of Drug Research and Development, S.E. Bogoro Center, Afe Babalola University, Ado-Ekiti 360001, Nigeria
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, Kwadlangezwa 3886, South Africa
| |
Collapse
|
16
|
Ayipo YO, Chong CF, Abdulameed HT, Mordi MN. Bioactive alkaloidal and phenolic phytochemicals as promising epidrugs for diabetes mellitus 2: A review of recent development. Fitoterapia 2024; 175:105922. [PMID: 38552806 DOI: 10.1016/j.fitote.2024.105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/16/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Type 2 diabetes (T2D) remains a major chronic metabolic disorder affecting hundreds of millions of the global population, mostly among adults, engendering high rates of morbidity and mortality. It is characterized by complex aetiologies including insulin deficiency and resistance, and hyperglycemia, and these significantly constitute therapeutic challenges. Several pathways have been implicated in its pathophysiology and treatment including the epigenetic regulatory mechanism, notably, deoxyribonucleic acid (DNA) methylation/demethylation, histone modification, non-coding ribonucleic acid (ncRNA) modulation and other relevant pathways. Many studies have recently documented the implications of phytochemicals on the aforementioned biomarkers in the pathogenesis and treatment of T2D. In this review, the cellular and molecular mechanisms of the epigenetic effects of some bioactive alkaloidal and phenolic phytochemicals as potential therapeutic alternatives for T2D have been overviewed from the recent literature (2019-2024). From the survey, the natural product-based compounds, C1-C32 were curated as potent epigenetic modulators for T2D. Their cellular and molecular mechanisms of anti-T2D activities with relevant epigenetic biomarkers were revealed. Although, more comprehensive experimental analyses are observably required for validating their activity and toxicological indices. Thus, perspectives and challenges were enumerated for such demanding future translational studies. The review reveals advances in scientific efforts towards reversing the global trend of T2D through epigenetic phytotherapeutics.
Collapse
Affiliation(s)
- Yusuf Oloruntoyin Ayipo
- Department of Chemistry and Industrial Chemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria; Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| | - Chien Fung Chong
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Hassan Taiye Abdulameed
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia; Department of Biochemistry, Kwara State University, P. M. B., 1530, Malete, Ilorin, Nigeria
| | - Mohd Nizam Mordi
- Centre for Drug Research, Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| |
Collapse
|
17
|
Ye X, Zhang M, Gong Z, Jiao W, Li L, Dong M, Xiang T, Feng N, Wu Q. Inhibition of polyphenols on Maillard reaction products and their induction of related diseases: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155589. [PMID: 38608487 DOI: 10.1016/j.phymed.2024.155589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Food products undergo a pronounced Maillard reaction (MR) during the cooking process, leading to the generation of substantial quantities of Maillard reaction products (MRPs). Within this category, advanced glycation end products (AGEs), acrylamide (AA), and heterocyclic amines (HAs) have been implicated as potential risk factors associated with the development of diseases. PURPOSE To explore the effects of polyphenols, a class of bioactive compounds found in plants, on the inhibition of MRPs and related diseases. Previous research has mainly focused on their interactions with proteins and their effects on the gastrointestinal tract and other diseases, while fewer studies have examined their inhibitory effects on MRPs. The aim is to offer a scientific reference for future research investigating the inhibitory role of polyphenols in the MR. METHODS The databases PubMed, Embase, Web of Science and The Cochrane Library were searched for appropriate research. RESULTS Polyphenols have the potential to inhibit the formation of harmful MRPs and prevent related diseases. The inhibition of MRPs by polyphenols primarily occurs through the following mechanisms: trapping α-dicarbonyl compounds, scavenging free radicals, chelating metal ions, and preserving protein structure. Simultaneously, polyphenols exhibit the ability to impede the onset and progression of related diseases such as diabetes, atherosclerosis, cancer, and Alzheimer's disease through diverse pathways. CONCLUSION This review presents that inhibition of polyphenols on Maillard reaction products and their induction of related diseases. Further research is imperative to enhance our comprehension of additional pathways affected by polyphenols and to fully uncover their potential application value in inhibiting MRPs.
Collapse
Affiliation(s)
- Xurui Ye
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Mengyun Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zihao Gong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Weiting Jiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China.
| | - Liangchao Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Mingyu Dong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Tianyu Xiang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Nianjie Feng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| | - Qian Wu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratoy of Industrial Microbiology, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, 430068, Hubei, China.
| |
Collapse
|
18
|
Chen C, Wang X, Chen W, Liu Q, Wang L. Encapsulation of phenolic acids within food-grade carriers systems: a systematic review. Crit Rev Food Sci Nutr 2024:1-20. [PMID: 38764436 DOI: 10.1080/10408398.2024.2350616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Phenolic acids are natural compounds with potential therapeutic effects against various diseases. However, their incorporation into food and pharmaceutical products is limited by challenges such as instability, low solubility, and reduced bioavailability. This systematic review summarizes recent advances in phenolic acid encapsulation using food-grade carrier systems, focusing on proteins, lipids, and polysaccharides. Encapsulation efficiency, release behavior, and bioavailability are examined, as well as the potential health benefits of encapsulated phenolic acids in food products. Strategies to address limitations of current encapsulation systems are also proposed. Encapsulation has emerged as a promising method to enhance the stability and bioavailability of phenolic acids in food products, and various encapsulation technologies have been developed for this purpose. The use of proteins, lipids, and carbohydrates as carriers in food-grade encapsulation systems remains a common approach, but it is associated with certain limitations. Future research on phenolic acid encapsulation should focus on developing environmentally friendly, organic solvent-free, low-energy, scalable, and stable encapsulation systems, as well as co-encapsulation methods that combine multiple phenolic acids or phenolic acids with other bioactive substances to produce synergistic effects.
Collapse
Affiliation(s)
- Chao Chen
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| | - Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenqi Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qin Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lifeng Wang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing, Jiangsu, China
| |
Collapse
|
19
|
Wu Y, Liu Y, Jia Y, Zhang H, Ren F. Formation and Application of Starch-Polyphenol Complexes: Influencing Factors and Rapid Screening Based on Chemometrics. Foods 2024; 13:1557. [PMID: 38790857 PMCID: PMC11121577 DOI: 10.3390/foods13101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Understanding the nuanced interplay between plant polyphenols and starch could have significant implications. For example, it could lead to the development of tailor-made starches for specific applications, from bakinag and brewing to pharmaceuticals and bioplastics. In addition, this knowledge could contribute to the formulation of functional foods with lower glycemic indexes or improved nutrient delivery. Variations in the complexes can be attributed to differences in molecular weight, structure, and even the content of the polyphenols. In addition, the unique structural characteristics of starches, such as amylose/amylopectin ratio and crystalline density, also contribute to the observed effects. Processing conditions and methods will always alter the formation of complexes. As the type of starch/polyphenol can have a significant impact on the formation of the complex, the selection of suitable botanical sources of starch/polyphenols has become a focus. Spectroscopy coupled with chemometrics is a convenient and accurate method for rapidly identifying starches/polyphenols and screening for the desired botanical source. Understanding these relationships is crucial for optimizing starch-based systems in various applications, from food technology to pharmaceutical formulations.
Collapse
Affiliation(s)
- Yingying Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yanan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Yuanqiang Jia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huijuan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China; (Y.W.); (Y.L.); (Y.J.); (H.Z.)
- Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
20
|
Žagar T, Frlan R, Kočevar Glavač N. Using Subcritical Water to Obtain Polyphenol-Rich Extracts with Antimicrobial Properties. Antibiotics (Basel) 2024; 13:334. [PMID: 38667010 PMCID: PMC11047479 DOI: 10.3390/antibiotics13040334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
The use of green extraction methods that meet the criteria of sustainable and environmentally friendly technologies has been increasing in recent decades due to their many benefits. In this respect, extracts obtained using subcritical water are also gaining increased attention because of their potential antioxidant and antimicrobial properties. Their antimicrobial activity is mainly due to the presence of various polyphenolic compounds. Although the exact mechanism of the antibacterial action of polyphenolic compounds has not yet been fully investigated and described, polyphenols are known to affect the bacterial cell at several cellular levels; among other things, they cause changes and ruptures in the cell membranes of the bacterial cell, affect the inactivation of bacterial enzymes and damage bacterial DNA. The difference in the strength of the antimicrobial activity of the extracts is most likely a result of differences in their lipophilicity and in the number and position of hydroxyl groups and double bonds in the chemical structure of polyphenols. By changing the extraction conditions, especially the temperature, during subcritical water extraction, we affect the solubility of the compounds we want to extract. In general, as the temperature increases, the solubility of polyphenolic compounds also increases, and the reduction of the surface tension of subcritical water at higher temperatures also enables faster dissolution of polyphenolic compounds. Different bacterial strains have different sensitivity to different extracts. However, extracts obtained with subcritical water extraction demonstrate strong antimicrobial activity compared to extracts obtained with conventional methods.
Collapse
Affiliation(s)
- Tjaša Žagar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Rok Frlan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| | - Nina Kočevar Glavač
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia;
| |
Collapse
|
21
|
Alu'datt MH, Rababah T, Al-U'datt DGF, Gammoh S, Alkandari S, Allafi A, Alrosan M, Kubow S, Al-Rashdan HK. Designing novel industrial and functional foods using the bioactive compounds from Nigella sativa L. (black cumin): Biochemical and biological prospects toward health implications. J Food Sci 2024; 89:1865-1893. [PMID: 38407314 DOI: 10.1111/1750-3841.16981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Nigella sativa is one of the nutraceuticals that has gained popularity and studied extensively in recent decades as it is considered a safe medicinal plant for use as a dietary supplement. N. sativa contains a wide variety of bioactive substances, which include polyphenols, volatile oils (thymoquinone and p-cymene), proteins, and peptides. The biological attributes of N. sativa include antioxidant, antimicrobial, antifungal, anti-inflammatory, anticancer, antidiabetic, antihypertensive, hypolipidemic, and antioxidant activities, which have potential applications for the prevention of a variety of chronic diseases. In the food industry, N. sativa improves the sensory qualities, shelf life, strength, and freshness of foods, such as bread, pizza, biscuits, cookies, and cakes. This review discusses the industrial use of N. sativa, which includes processing technologies to enhance its health-promoting properties as well as the isolation of nutraceutical components.
Collapse
Affiliation(s)
- Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Taha Rababah
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Sharifa Alkandari
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ahmed Allafi
- Department of Food Science and Nutrition, College of Life Sciences, Kuwait University, Kuwait City, Kuwait
| | - Mohammad Alrosan
- Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | - Stan Kubow
- School of Dietetics and Human Nutrition, McGill University, Montreal, Quebec, Canada
| | - Haneen K Al-Rashdan
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
22
|
Rai T, Kaushik N, Malviya R, Sharma PK. A review on marine source as anticancer agents. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:415-451. [PMID: 37675579 DOI: 10.1080/10286020.2023.2249825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023]
Abstract
This review investigates the potential of natural compounds obtained from marine sources for the treatment of cancer. The oceans are believed to contain physiologically active compounds, such as alkaloids, nucleosides, macrolides, and polyketides, which have shown promising effects in slowing human tumor cells both in vivo and in vitro. Various marine species, including algae, mollusks, actinomycetes, fungi, sponges, and soft corals, have been studied for their bioactive metabolites with diverse chemical structures. The review explores the therapeutic potential of various marine-derived substances and discusses their possible applications in cancer treatment.
Collapse
Affiliation(s)
- Tamanna Rai
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Niranjan Kaushik
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Gautam Budh Nagar, Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
23
|
Adamczyk-Szabela D, Wolf WM. The Influence of Copper and Zinc on Photosynthesis and Phenolic Levels in Basil ( Ocimum basilicum L.), Borage ( Borago officinalis L.), Common Nettle ( Urtica dioica L.) and Peppermint ( Mentha piperita L.). Int J Mol Sci 2024; 25:3612. [PMID: 38612424 PMCID: PMC11011574 DOI: 10.3390/ijms25073612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
This work is aimed at relationships which govern zinc and copper uptake by four popular medicinal herbs: basil (Ocimum basilicum L.), borage (Borago officinalis L.), common nettle (Urtica dioica L.) and peppermint (Mentha piperita L.). They are often grown in soils with significant copper or zinc levels. Herbs were cultivated by a pot method in controlled conditions. Manganese, iron, copper and zinc concentrations were determined by High-Resolution Continuum Source Flame Atomic Absorption Spectrometry. The efficiency of photosynthesis was estimated by measuring the chlorophyll content, water use efficiency, net photosynthesis, intercellular CO2, stomatal conductance, and transpiration rate. Phenolic compounds were determined by the Folin-Ciocalteu method. Analysis of variance showed that herbs grown in soil treated with copper exhibited a lower iron content in roots, while manganese behaved in the opposite way. The only exception was borage, where a decrease in the manganese content in roots was observed. Both copper and zinc supplementations increased the total content of phenolics, while the highest increases were observed for common nettle and basil. Peppermint and borage responded less to supplementation. In the majority of samples, zinc and copper did not significantly affect the photosynthesis. Herbal extracts from common nettle and basil had unique antioxidant properties and may be good free radical scavengers.
Collapse
Affiliation(s)
- Dorota Adamczyk-Szabela
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland;
| | | |
Collapse
|
24
|
Pheiffer C, Riedel S, Dias S, Adam S. Gestational Diabetes and the Gut Microbiota: Fibre and Polyphenol Supplementation as a Therapeutic Strategy. Microorganisms 2024; 12:633. [PMID: 38674578 PMCID: PMC11051981 DOI: 10.3390/microorganisms12040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is an escalating public health concern due to its association with short- and long-term adverse maternal and child health outcomes. Dysbiosis of microbiota within the gastrointestinal tract has been linked to the development of GDM. Modification of microbiota dysbiosis through dietary adjustments has attracted considerable attention as adjunct strategies to improve metabolic disease. Diets high in fibre and polyphenol content are associated with increased gut microbiota alpha diversity, reduced inflammation and oxidative processes and improved intestinal barrier function. This review explores the potential of fibre and polyphenol supplementation to prevent GDM by investigating their impact on gut microbiota composition and function.
Collapse
Affiliation(s)
- Carmen Pheiffer
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Sylvia Riedel
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
- Centre for Cardio-Metabolic Research in Africa (CARMA), Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg, Cape Town 7505, South Africa
| | - Stephanie Dias
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council, Tygerberg, Cape Town 7505, South Africa; (S.R.); (S.D.)
| | - Sumaiya Adam
- Department of Obstetrics and Gynaecology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa;
- Diabetes Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
25
|
Ferreira C, Vieira P, Sá H, Malva J, Castelo-Branco M, Reis F, Viana S. Polyphenols: immunonutrients tipping the balance of immunometabolism in chronic diseases. Front Immunol 2024; 15:1360065. [PMID: 38558823 PMCID: PMC10978763 DOI: 10.3389/fimmu.2024.1360065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Mounting evidence progressively appreciates the vital interplay between immunity and metabolism in a wide array of immunometabolic chronic disorders, both autoimmune and non-autoimmune mediated. The immune system regulates the functioning of cellular metabolism within organs like the brain, pancreas and/or adipose tissue by sensing and adapting to fluctuations in the microenvironment's nutrients, thereby reshaping metabolic pathways that greatly impact a pro- or anti-inflammatory immunophenotype. While it is agreed that the immune system relies on an adequate nutritional status to function properly, we are only just starting to understand how the supply of single or combined nutrients, all of them termed immunonutrients, can steer immune cells towards a less inflamed, tolerogenic immunophenotype. Polyphenols, a class of secondary metabolites abundant in Mediterranean foods, are pharmacologically active natural products with outstanding immunomodulatory actions. Upon binding to a range of receptors highly expressed in immune cells (e.g. AhR, RAR, RLR), they act in immunometabolic pathways through a mitochondria-centered multi-modal approach. First, polyphenols activate nutrient sensing via stress-response pathways, essential for immune responses. Second, they regulate mammalian target of rapamycin (mTOR)/AMP-activated protein kinase (AMPK) balance in immune cells and are well-tolerated caloric restriction mimetics. Third, polyphenols interfere with the assembly of NLR family pyrin domain containing 3 (NLRP3) in endoplasmic reticulum-mitochondria contact sites, inhibiting its activation while improving mitochondrial biogenesis and autophagosome-lysosome fusion. Finally, polyphenols impact chromatin remodeling and coordinates both epigenetic and metabolic reprogramming. This work moves beyond the well-documented antioxidant properties of polyphenols, offering new insights into the multifaceted nature of these compounds. It proposes a mechanistical appraisal on the regulatory pathways through which polyphenols modulate the immune response, thereby alleviating chronic low-grade inflammation. Furthermore, it draws parallels between pharmacological interventions and polyphenol-based immunonutrition in their modes of immunomodulation across a wide spectrum of socioeconomically impactful immunometabolic diseases such as Multiple Sclerosis, Diabetes (type 1 and 2) or even Alzheimer's disease. Lastly, it discusses the existing challenges that thwart the translation of polyphenols-based immunonutritional interventions into long-term clinical studies. Overcoming these limitations will undoubtedly pave the way for improving precision nutrition protocols and provide personalized guidance on tailored polyphenol-based immunonutrition plans.
Collapse
Affiliation(s)
- Carolina Ferreira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Pedro Vieira
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Helena Sá
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Institute of Immunology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal
| | - João Malva
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT)/Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Sofia Viana
- Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| |
Collapse
|
26
|
Lee JH, Ko YB, Choi YM, Kim J, Cho HD, Choi H, Song HY, Han JM, Cha GH, Lee YH, Kim JM, Kim WS, Byun EB, Yuk JM. CM1, a Chrysin Derivative, Protects from Endotoxin-Induced Lethal Shock by Regulating the Excessive Activation of Inflammatory Responses. Nutrients 2024; 16:641. [PMID: 38474770 DOI: 10.3390/nu16050641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a leading cause of death worldwide, is a harmful inflammatory condition that is primarily caused by an endotoxin released by Gram-negative bacteria. Effective targeted therapeutic strategies for sepsis are lacking. In this study, using an in vitro and in vivo mouse model, we demonstrated that CM1, a derivative of the natural polyphenol chrysin, exerts an anti-inflammatory effect by inducing the expression of the ubiquitin-editing protein TNFAIP3 and the NAD-dependent deacetylase sirtuin 1 (SIRT1). Interestingly, CM1 attenuated the Toll-like receptor 4 (TLR4)-induced production of inflammatory cytokines by inhibiting the extracellular-signal-regulated kinase (ERK)/MAPK and nuclear factor kappa B (NF-κB) signalling pathways. In addition, CM1 induced the expression of TNFAIP3 and SIRT1 on TLR4-stimulated primary macrophages; however, the anti-inflammatory effect of CM1 was abolished by the siRNA-mediated silencing of TNFAPI3 or by the genetic or pharmacologic inhibition of SIRT1. Importantly, intravenous administration of CM1 resulted in decreased susceptibility to endotoxin-induced sepsis, thereby attenuating the production of pro-inflammatory cytokines and neutrophil infiltration into the lung compared to control mice. Collectively, these findings demonstrate that CM1 has therapeutic potential for diverse inflammatory diseases, including sepsis.
Collapse
Affiliation(s)
- Jae-Hyung Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Young-Bok Ko
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Obstetrics & Gynecology, Chungnam National University Hospital, Daejeon 35015, Republic of Korea
| | - Yong-Min Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jinju Kim
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hwan-Doo Cho
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hyeonil Choi
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Ha-Yeon Song
- Korea Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Jeong-Moo Han
- Korea Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Guang-Ho Cha
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Young-Ha Lee
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jin-Man Kim
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Woo-Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Eui-Baek Byun
- Korea Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Jeonbuk, Republic of Korea
| | - Jae-Min Yuk
- Department of Infection Biology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
27
|
Belfiore E, Di Prima G, Angellotti G, Panzarella V, De Caro V. Plant-Derived Polyphenols to Prevent and Treat Oral Mucositis Induced by Chemo- and Radiotherapy in Head and Neck Cancers Management. Cancers (Basel) 2024; 16:260. [PMID: 38254751 PMCID: PMC10813700 DOI: 10.3390/cancers16020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Oral Mucositis (OM) is the most common side effect due to chemotherapy and radiotherapy, which are the conventional treatment options for head and neck cancers. OM is a severe inflammatory condition characterized by multifactorial etiopathogenesis. It further negatively affects patients' quality of life by severe impairment of normal oral functions. Consequently, it is mandatory to identify new effective therapeutic approaches to both prevent and treat OM while also avoiding any recurrence. Polyphenols recently attracted the interest of the scientific community due to their low toxicity and wide range of biological activities making them ideal candidates for several applications in the odontostomatological field, particularly against OM. This review collects the in vivo studies and the clinical trials conducted over the past 13 years evaluating the preventive and curative effects of several polyphenolic compounds towards chemo- and radiotherapy-induced OM, both when administered alone or as a plant-extracted phytocomplex. The literature fully confirms the usefulness of these molecules, thus opening the possibility of their clinical application. However, polyphenol limitations (e.g., unfavourable physicochemical properties and susceptibility to degradation) have emerged. Consequently, the interest of the scientific community should be focused on developing innovative delivery systems able to stabilize polyphenols, thus facilitating topical administration and maximizing their efficacy.
Collapse
Affiliation(s)
- Elena Belfiore
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Giulia Di Prima
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| | - Giuseppe Angellotti
- Institute of Nanostructured Materials, National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy;
| | - Vera Panzarella
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Via L. Giuffrè 5, 90127 Palermo, Italy; (E.B.); (V.P.)
| | - Viviana De Caro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi 32, 90123 Palermo, Italy;
| |
Collapse
|
28
|
Dwevedi D, Srivastava A. Molecular Mechanisms of Polyphenols in Management of Skin Aging. Curr Aging Sci 2024; 17:180-188. [PMID: 39248031 DOI: 10.2174/0118746098287130240212085507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 09/10/2024]
Abstract
The natural process of skin aging is influenced by a variety of factors, including oxidative stress, inflammation, collagen degradation, and UV radiation exposure. The potential of polyphenols in controlling skin aging has been the subject of much investigation throughout the years. Due to their complex molecular pathways, polyphenols, a broad class of bioactive substances present in large quantities in plants, have emerged as attractive candidates for skin anti-aging therapies. This review aims to provide a comprehensive overview of the molecular mechanisms through which polyphenols exert their anti-aging effects on the skin. Various chemical mechanisms contribute to reducing skin aging signs and maintaining a vibrant appearance. These mechanisms include UV protection, moisturization, hydration, stimulation of collagen synthesis, antioxidant activity, and anti-inflammatory actions. These mechanisms work together to reduce signs of aging and keep the skin looking youthful. Polyphenols, with their antioxidant properties, are particularly noteworthy. They can neutralize free radicals, lessening oxidative stress that might otherwise cause collagen breakdown and DNA damage. The anti-inflammatory effects of polyphenols are explored, focusing on their ability to suppress pro-inflammatory cytokines and enzymes, thereby alleviating inflammation and its detrimental effects on the skin. Understanding these mechanisms can guide future research and development, leading to the development of innovative polyphenol-based strategies for maintaining healthy skin.
Collapse
Affiliation(s)
- Deepti Dwevedi
- Department of Pharmacy, Dr. Ram Manohar Lohia Avadh University, Faizabad, Ayodhya District, Uttar Pardesh, India
| | - Ankur Srivastava
- Department of Pharmacy, Dr. Ram Manohar Lohia Avadh University, Faizabad, Ayodhya District, Uttar Pardesh, India
| |
Collapse
|
29
|
Dey S, Raychaudhuri SS. Selenium biofortification improves bioactive composition and antioxidant status in Plantago ovata Forsk., a medicinal plant. Genes Environ 2023; 45:38. [PMID: 38111072 PMCID: PMC10729483 DOI: 10.1186/s41021-023-00293-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Selenium (Se) is an essential micronutrient for humans, but its deficiency as well as toxicity affects large number of people worldwide. Plantago ovata, a commercially important medicinal plant, is mainly cultivated in western regions of India, where elevated levels of Se have been found in soil. Thus, we evaluated the potential of Se biofortification in P. ovata via phytoremediation and its effect on the bioactive composition. RESULTS The results showed a significant alteration in various morphological and physiological parameters in a dose-dependent manner. The 10 µM Se dose improved seedling height, biomass and total chlorophyll content. There was a gradual increase in total Se content, with highest accumulation of 457.65 µg/g FW at 500 µM Se treatment. Se positively affected the antioxidative metabolism which was measured from the change in total antioxidant capacity, radical scavenging activity and Metallothionein 2 expression. Increasing levels of Se also affected the PAL activity, total polyphenol and flavonoid content. Caffeic acid, Coumaric acid and Rutin were found to be the most abundant phenolic compounds. CONCLUSIONS Low levels of selenium (below 50 µM) can successfully improve Se accumulation and elicit production of various polyphenols without hampering plant growth. Thus, Se fortification of P. ovata seedlings via phytoremediation appears to be a feasible and efficient way to enhance its nutraceutical value in dietary products.
Collapse
Affiliation(s)
- Sankalan Dey
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700009, India
| | - Sarmistha Sen Raychaudhuri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, APC Road, Kolkata, 700009, India.
| |
Collapse
|
30
|
Mendoza-Sarmiento D, Mistades EV, Hill AM. Effect of Pigmented Rice Consumption on Cardiometabolic Risk Factors: A Systematic Review of Randomized Controlled Trials. Curr Nutr Rep 2023; 12:797-812. [PMID: 37676476 PMCID: PMC10766681 DOI: 10.1007/s13668-023-00496-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE OF REVIEW Dietary patterns that include polyphenols may help manage cardiometabolic risk factors. Pigmented rice contains phenolic acids and flavonoids that contribute to its antioxidant properties. This review examined the effect of polyphenol-containing pigmented rice on antioxidant status, lipid profile, glucose/insulin, blood pressure, and weight among adults. Four electronic databases including PubMed, ProQuest, EBSCOhost, and Google Scholar were systematically searched for relevant articles published in English since 2000, using PRISMA guidelines (PROSPERO registration: CRD42022358132). Two-staged screening resulted in the inclusion of seventeen (seven acute, ten chronic) randomized controlled trials. A random effects model was conducted on cardiometabolic outcomes reported in at least three studies. RECENT FINDINGS Acute intake increased plasma antioxidant activity and lowered postprandial glucose and insulin levels. Chronic consumption was associated with reductions in fasting glucose (WMD: -1.60 mg/dL; 95% CI:-3.05,-0.14, p = 0.03, k = 5, n = 349), weight (WMD: -0.23 kg, 95% CI: -0.44, -0.02, p = 0.03, k = 3, n = 182), and diastolic blood pressure (WMD: -1.39 mmHg, 95% CI: -2.21, -0.56, p = 0.001, k = 3, n = 185). No effect on total cholesterol, low-density lipoprotein, high-density lipoprotein, triglycerides, body mass index, and systolic blood pressure was found. The consumption of pigmented rice may improve cardiometabolic risk factors. However, the small number of studies and differences in study design, including participants' health status, form of rice utilized, and duration of intervention, support the need for more high-quality trials to further investigate these findings.
Collapse
Affiliation(s)
- Diane Mendoza-Sarmiento
- Graduate School, University of Santo Tomas, Manila, Philippines
- Nutrition and Dietetics Department, College of Education, University of Santo Tomas, Manila, Philippines
| | - Emmanuele V Mistades
- Nutrition and Dietetics Department, College of Education, University of Santo Tomas, Manila, Philippines
| | - Alison M Hill
- Clinical and Health Sciences, Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, Australia.
| |
Collapse
|
31
|
Cuffaro D, Digiacomo M, Macchia M. Dietary Bioactive Compounds: Implications for Oxidative Stress and Inflammation. Nutrients 2023; 15:4966. [PMID: 38068824 PMCID: PMC10707977 DOI: 10.3390/nu15234966] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nowadays, it has been amply demonstrated how an appropriate diet and lifestyle are essential for preserving wellbeing and preventing illnesses [...].
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Maria Digiacomo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| | - Marco Macchia
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (D.C.); (M.M.)
- Interdepartmental Research Center “Nutraceuticals and Food for Health”, University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
32
|
Wang T, Zheng Z, Deng L, Li W, Yuan Y, Zhang M, Sun G, He S, Wang J, Wang Z, Xiong B. Effect of Natural Variation and Rootstock on Fruit Quality and Volatile Organic Compounds of ' Kiyomi tangor' ( Citrus reticulata Blanco) Citrus. Int J Mol Sci 2023; 24:16810. [PMID: 38069133 PMCID: PMC10706780 DOI: 10.3390/ijms242316810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
In this study, we compared the fruit quality and color of 'Kiyomi' (WT) and its mutant (MT) grafted on Ziyang xiangcheng (Cj) (WT/Cj, MT/Cj), and the MT grafted on Trifoliate orange (Pt) (MT/Pt). The differences in sugar, organic acid, flavonoids, phenols, and volatile substances of the three materials were also analyzed by high performance liquid chromatography (HPLC) and headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The results showed significant differences in the appearance of WT/Cj, MT/Cj, and MT/Pt. MT/Pt, compared to WT/Cj, MT/Cj, had lower sugar, acid, phenol and flavonoid contents in the pulp. However, MT/Pt pulp was higher in vitamin C (VC), and the peel had significantly higher total phenol and flavonoid contents. In terms of pulp, WT/Cj had the greatest diversity of volatile organic compounds (VOCs). 4-methyl-1-pentanol was significantly higher in MT/Cj pulp, while MT/Pt pulp had a unique octanoic acid, methyl ester. VOCs were more diverse in the peels of the three materials. β-Myrcene and valencen were significantly higher in MT/Cj peels. In contrast, 16 unique VOCs were detected in MT/Pt, and D-limonene content was significantly higher than in WT/Cj and MT/Cj. The results suggest Trifoliate orange is a suitable rootstock for MT.
Collapse
Affiliation(s)
- Tie Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhendong Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijun Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Weijia Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ya Yuan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Siya He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Xiong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
33
|
Pappoe JA, Mongson O, Amuah CLY, Opoku-Ansah J, Adueming POW, Boateng R, Eghan MJ, Sackey SS, Anyidoho EK, Huzortey AA, Anderson B, Vowotor MK, Teye E. Classification of Organic and Conventional Cocoa Beans Using Laser-Induced Fluorescence Spectroscopy Combined with Chemometric Techniques. J Fluoresc 2023:10.1007/s10895-023-03499-3. [PMID: 37971609 DOI: 10.1007/s10895-023-03499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
The craving for organic cocoa beans has resulted in fraudulent practices such as mislabeling, adulteration, all known as food fraud, prompting the international cocoa market to call for the authenticity of organic cocoa beans before export. In this study, we proposed robust models using laser-induced fluorescence (LIF) and chemometric techniques for rapid classification of cocoa beans as either organic or conventional. The LIF measurements were conducted on cocoa beans harvested from organic and conventional farms. From the results, conventional cocoa beans exhibited a higher fluorescence intensity compared to organic ones. In addition, a general peak wavelength shift was observed when the cocoa beans were excited using a 445 nm laser source. These results highlight distinct characteristics that can be used to differentiate between organic and conventional cocoa beans. Identical compounds were found in the fluorescence spectra of both the organic and conventional ones. With preprocessed fluorescence spectra data and utilizing principal component analysis, classification models such as Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), Neural Network (NN) and Random Forest (RF) models were employed. LDA and NN models yielded 100.0% classification accuracy for both training and validation sets, while 99.0% classification accuracy was achieved in the training and validation sets using SVM and RF models. The results demonstrate that employing a combination of LIF and either LDA or NN can be a reliable and efficient technique to classify authentic cocoa beans as either organic or conventional. This technique can play a vital role in maintaining integrity and preventing fraudulent practices in the cocoa bean supply chain.
Collapse
Affiliation(s)
- Justice Allotey Pappoe
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Space Environment, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, Alexandria, Egypt
| | - Olivia Mongson
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Charles Lloyd Yeboah Amuah
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Jerry Opoku-Ansah
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Peter Osei-Wusu Adueming
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Rabbi Boateng
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Moses Jojo Eghan
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Sonko Sackey
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | - Andrew Atiogbe Huzortey
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Benjamin Anderson
- Laser and Fibre Optics Centre, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Michael Kwame Vowotor
- Department of Physics, School of Physical Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ernest Teye
- Department of Agricultural Engineering, School of Agriculture, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
34
|
Wang Z, Zhou D, Liu D, Zhu B. Food-grade encapsulated polyphenols: recent advances as novel additives in foodstuffs. Crit Rev Food Sci Nutr 2023; 63:11545-11560. [PMID: 35776082 DOI: 10.1080/10408398.2022.2094338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A growing inclination among consumers toward the consumption of natural products has propelled the usage of natural compounds as novel additives. Polyphenols are among the most popular candidates of natural food additives with multiple functionalities and bioactivities but are limited by instability. In this regard, a series of food-grade encapsulated polyphenols has been tailored for incorporating into food formulations as novel additives, which could better satisfy the complicated industry processing. This review seeks to present the most recent discussions regarding their application status in diverse foodstuffs as novel additives, involving functionalities, action mechanisms, and relevant encapsulation technologies. The scientific findings confirm that such novel additives show positive effects on physicochemical, sensory, and nutritional properties as well as the shelf life of diverse food matrices. However, poor heat resistance is still the major defect that restricts their application in thermal processes. Future research should focus on the evaluation of the compatibility and applicability of encapsulated polyphenols in real food processes as well as track and deepen their molecular action mechanisms in the context of complex foodstuffs. Innovation of existing encapsulation technologies should also be concerned in the future to bridge the gap between lab and scale-up production.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- National Engineering Research Center of Seafood, Dalian, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Hangzhou, Zhejiang, China
- Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou, China
| | - Beiwei Zhu
- National Engineering Research Center of Seafood, Dalian, China
- College of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
35
|
Balta V, Đikić D, Landeka Jurčević I, Odeh D, Oršolić N, Ferara N, Dilber D, Dragičević P, Dragović-Uzelac V. The Effect of a High-Protein Diet Supplemented with Blackthorn Flower Extract on Polyphenol Bioavailability and Antioxidant Status in the Organs of C57BL/6 Mice. Nutrients 2023; 15:4066. [PMID: 37764849 PMCID: PMC10535945 DOI: 10.3390/nu15184066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The health benefits of polyphenols are based on their bioavailability, which is why a significant portion of research focuses on factors that affect their bioavailability. Previous studies suggest that the intake of polyphenols along with macronutrients in food represents one of the key factors influencing the bioavailability of polyphenols and, consequently, their biological activity in the organism. Since polyphenols in the human diet are mainly consumed in food together with macronutrients, this study investigated the in vivo absorption, metabolism, and distribution of polyphenolic compounds from the water extract of blackthorn flower (Prunus spinosa L.) in combination with a protein-enriched diet in the organs (small intestine, liver, kidney) of C57BL/6 mice. The bioaccumulation of polyphenol molecules, biologically available maximum concentrations of individual groups of polyphenol molecules, and their effect on the oxidative/antioxidative status of organs were also examined. The results of this study indicate increased bioabsorption and bioavailability of flavan-3-ols (EC, EGCG) and reduced absorption kinetics of certain polyphenols from the groups of flavonols, flavones, and phenolic acids in the organs of C57BL/6 mice after intragastric administration of the water extract of blackthorn flower (Prunus spinosa L.) in combination with a diet enriched with whey proteins. Furthermore, subchronic intake of polyphenols from the water extract of blackthorn flower (Prunus spinosa L.) in combination with a diet enriched with whey proteins induces the synthesis of total glutathione (tGSH) in the liver and superoxide dismutase (SOD) in the liver and small intestine. The results of this study suggest potential applications in the development of functional foods aimed at achieving the optimal health status of the organism and the possibility of reducing the risk of oxidative stress-related disease.
Collapse
Affiliation(s)
- Vedran Balta
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Domagoj Đikić
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Irena Landeka Jurčević
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.L.J.); (V.D.-U.)
| | - Dyana Odeh
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Nada Oršolić
- Faculty of Science, University of Zagreb, Rooseveltov Trg 6, 10000 Zagreb, Croatia; (D.Đ.); (D.O.); (N.O.)
| | - Nikola Ferara
- Department of Dermatovenereology, University Hospital Centre Sestre Milosrdnice, Vinogradska Cesta 29, 10000 Zagreb, Croatia;
| | - Dario Dilber
- Magdalena Clinic for Cardiovascular Diseases, Ljudevita Gaja 2, 49217 Krapinske Toplice, Croatia;
| | - Petar Dragičević
- University Hospital Centre Zagreb, 12 Kišpatićeva St, 10000 Zagreb, Croatia;
| | - Verica Dragović-Uzelac
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia; (I.L.J.); (V.D.-U.)
| |
Collapse
|
36
|
Xu Y, Li Z, Wang Y, Li C, Zhang M, Chen H, Chen W, Zhong Q, Pei J, Chen W, Haenen GRMM, Moalin M. Unraveling the Antioxidant Activity of 2R, 3R-dihydroquercetin. Int J Mol Sci 2023; 24:14220. [PMID: 37762525 PMCID: PMC10532074 DOI: 10.3390/ijms241814220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
It has been reported that in an oxidative environment, the flavonoid 2R,3R-dihydroquercetin (2R,3R-DHQ) oxidizes into a product that rearranges to form quercetin. As quercetin is a very potent antioxidant, much better than 2R,3R-DHQ, this would be an intriguing form of targeting the antioxidant quercetin. The aim of the present study is to further elaborate on this targeting. We can confirm the previous observation that 2R,3R-DHQ is oxidized by horseradish peroxidase (HRP), with H2O2 as the oxidant. However, HPLC analysis revealed that no quercetin was formed, but instead an unstable oxidation product. The inclusion of glutathione (GSH) during the oxidation process resulted in the formation of a 2R,3R-DHQ-GSH adduct, as was identified using HPLC with IT-TOF/MS detection. GSH adducts appeared on the B-ring of the 2R,3R-DHQ quinone, indicating that during oxidation, the B-ring is oxidized from a catechol to form a quinone group. Ascorbate could reduce the quinone back to 2R,3R-DHQ. No 2S,3R-DHQ was detected after the reduction by ascorbate, indicating that a possible epimerization of 2R,3R-DHQ quinone to 2S,3R-DHQ quinone does not occur. The fact that no epimerization of the oxidized product of 2R,3R-DHQ is observed, and that GSH adducts the oxidized product of 2R,3R-DHQ on the B-ring, led us to conclude that the redox-modulating activity of 2R,3R-DHQ quinone resides in its B-ring. This could be confirmed by chemical calculation. Apparently, the administration of 2R,3R-DHQ in an oxidative environment does not result in 'biotargeting' quercetin.
Collapse
Affiliation(s)
- Yaping Xu
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (Y.X.); (H.C.); (W.C.); (Q.Z.); (J.P.)
| | - Zhengwen Li
- School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610106, China;
| | - Yue Wang
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.R.M.M.H.)
| | - Chujie Li
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.R.M.M.H.)
| | - Ming Zhang
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (Y.X.); (H.C.); (W.C.); (Q.Z.); (J.P.)
| | - Haiming Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (Y.X.); (H.C.); (W.C.); (Q.Z.); (J.P.)
| | - Wenxue Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (Y.X.); (H.C.); (W.C.); (Q.Z.); (J.P.)
| | - Qiuping Zhong
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (Y.X.); (H.C.); (W.C.); (Q.Z.); (J.P.)
| | - Jianfei Pei
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (Y.X.); (H.C.); (W.C.); (Q.Z.); (J.P.)
| | - Weijun Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou 570228, China; (Y.X.); (H.C.); (W.C.); (Q.Z.); (J.P.)
| | - Guido R. M. M. Haenen
- Department of Pharmacology and Personalized Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Cardiovascular Research Institute Maastricht (CARIM), Faculty of Health, Medicine and Life Sciences, Maastricht University, 6200 MD Maastricht, The Netherlands; (Y.W.); (C.L.); (G.R.M.M.H.)
| | - Mohamed Moalin
- Research Centre Material Sciences, Zuyd University of Applied Science, 6400 AN Heerlen, The Netherlands;
| |
Collapse
|
37
|
Nicolescu A, Babotă M, Barros L, Rocchetti G, Lucini L, Tanase C, Mocan A, Bunea CI, Crișan G. Bioaccessibility and bioactive potential of different phytochemical classes from nutraceuticals and functional foods. Front Nutr 2023; 10:1184535. [PMID: 37575331 PMCID: PMC10415696 DOI: 10.3389/fnut.2023.1184535] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Nutraceuticals and functional foods are composed of especially complex matrices, with polyphenols, carotenoids, minerals, and vitamins, among others, being the main classes of phytochemicals involved in their bioactivities. Despite their wide use, further investigations are needed to certify the proper release of these phytochemicals into the gastrointestinal medium, where the bioaccessibility assay is one of the most frequently used method. The aim of this review was to gather and describe different methods that can be used to assess the bioaccessibility of nutraceuticals and functional foods, along with the most important factors that can impact this process. The link between simulated digestion testing of phytochemicals and their in vitro bioactivity is also discussed, with a special focus on the potential of developing nutraceuticals and functional foods from simple plant materials. The bioactive potential of certain classes of phytochemicals from nutraceuticals and functional foods is susceptible to different variations during the bioaccessibility assessment, with different factors contributing to this variability, namely the chemical composition and the nature of the matrix. Regardless of the high number of studies, the current methodology fails to assume correlations between bioaccessibility and bioactivity, and the findings of this review indicate a necessity for updated and standardized protocols.
Collapse
Affiliation(s)
- Alexandru Nicolescu
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Mihai Babotă
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Lillian Barros
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado Para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Gabriele Rocchetti
- Department of Animal Science, Food and Nutrition, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mures, Târgu Mures, Romania
| | - Andrei Mocan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Claudiu I. Bunea
- Viticulture and Oenology Department, Advanced Horticultural Research Institute of Transylvania, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Gianina Crișan
- Department of Pharmaceutical Botany, “Iuliu Hațieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
38
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
39
|
La Rosa G, Lonardo MS, Cacciapuoti N, Muscariello E, Guida B, Faraonio R, Santillo M, Damiano S. Dietary Polyphenols, Microbiome, and Multiple Sclerosis: From Molecular Anti-Inflammatory and Neuroprotective Mechanisms to Clinical Evidence. Int J Mol Sci 2023; 24:ijms24087247. [PMID: 37108412 PMCID: PMC10138565 DOI: 10.3390/ijms24087247] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Multiple sclerosis (MS) is a multifactorial, immune-mediated disease caused by complex gene-environment interactions. Dietary factors modulating the inflammatory status through the control of the metabolic and inflammatory pathways and the composition of commensal gut microbiota, are among the main environmental factors involved in the pathogenesis of MS. There is no etiological therapy for MS and the drugs currently used, often accompanied by major side effects, are represented by immunomodulatory substances capable of modifying the course of the disease. For this reason, nowadays, more attention is paid to alternative therapies with natural substances with anti-inflammatory and antioxidant effects, as adjuvants of classical therapies. Among natural substances with beneficial effects on human health, polyphenols are assuming an increasing interest due to their powerful antioxidant, anti-inflammatory, and neuroprotective effects. Beneficial properties of polyphenols on the CNS are achieved through direct effects depending on their ability to cross the blood-brain barrier and indirect effects exerted in part via interaction with the microbiota. The aim of this review is to examine the literature about the molecular mechanism underlying the protective effects of polyphenols in MS achieved by experiments conducted in vitro and in animal models of the disease. Significant data have been accumulated for resveratrol, curcumin, luteolin, quercetin, and hydroxytyrosol, and therefore we will focus on the results obtained with these polyphenols. Clinical evidence for the use of polyphenols as adjuvant therapy in MS is restricted to a smaller number of substances, mainly curcumin and epigallocatechin gallate. In the last part of the review, a clinical trial studying the effects of these polyphenols in MS patients will also be revised.
Collapse
Affiliation(s)
- Giuliana La Rosa
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Maria Serena Lonardo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Nunzia Cacciapuoti
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Espedita Muscariello
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Bruna Guida
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Raffaella Faraonio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Mariarosaria Santillo
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| | - Simona Damiano
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli "Federico II", 80131 Naples, Italy
| |
Collapse
|
40
|
Umego EC, Barry-Ryan C. Review of the valorization initiatives of brewing and distilling by-products. Crit Rev Food Sci Nutr 2023; 64:8231-8247. [PMID: 37039081 DOI: 10.1080/10408398.2023.2198012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
Beer and spirits are two of the most consumed alcoholic beverages in the world, and their production generates enormous amounts of by-product materials. This ranges from spent grain, spent yeast, spent kieselguhr, trub, carbon dioxide, pot ale, and distilled gin spent botanicals. The present circular economy dynamics and increased awareness on resource use for enhanced sustainable production practices have driven changes and innovations in the management practices and utilization of these by-products. These include food product development, functional food applications, biotechnological applications, and bioactive compounds extraction. As a result, the brewing and distilling sector of the food and drinks industry is beginning to see a shift from conventional uses of by-products such as animal feed to more innovative applications. This review paper therefore explored some of these valorization initiatives and the current state of the art.
Collapse
Affiliation(s)
- Ekene Christopher Umego
- School of Food Science and Environmental Health & Environmental Sustainability and Health Institute (ESHI), Technological University Dublin City Campus, Dublin 7, Ireland
| | - Catherine Barry-Ryan
- School of Food Science and Environmental Health & Environmental Sustainability and Health Institute (ESHI), Technological University Dublin City Campus, Dublin 7, Ireland
| |
Collapse
|
41
|
Antunes Filho S, dos Santos MS, dos Santos OAL, Backx BP, Soran ML, Opriş O, Lung I, Stegarescu A, Bououdina M. Biosynthesis of Nanoparticles Using Plant Extracts and Essential Oils. Molecules 2023; 28:molecules28073060. [PMID: 37049821 PMCID: PMC10095647 DOI: 10.3390/molecules28073060] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Plant extracts and essential oils have a wide variety of molecules with potential application in different fields such as medicine, the food industry, and cosmetics. Furthermore, these plant derivatives are widely interested in human and animal health, including potent antitumor, antifungal, anti-inflammatory, and bactericidal activity. Given this diversity, different methodologies were needed to optimize the extraction, purification, and characterization of each class of biomolecules. In addition, these plant products can still be used in the synthesis of nanomaterials to reduce the undesirable effects of conventional synthesis routes based on hazardous/toxic chemical reagents and associate the properties of nanomaterials with those present in extracts and essential oils. Vegetable oils and extracts are chemically complex, and although they are already used in the synthesis of nanomaterials, limited studies have examined which molecules are effectively acting in the synthesis and stabilization of these nanostructures. Similarly, few studies have investigated whether the molecules coating the nanomaterials derived from these extracts and essential oils would bring benefits or somehow reduce their potential activity. This synergistic effect presents a promising field to be further explored. Thus, in this review article, we conducted a comprehensive review addressing the main groups of molecules present in plant extracts and essential oils, their extraction capacity, and available methodologies for their characterization. Moreover, we highlighted the potential of these plant products in the synthesis of different metallic nanomaterials and their antimicrobial capacity. Furthermore, we correlated the extract’s role in antimicrobial activity, considering the potential synergy between molecules from the plant product and the different metallic forms associated with nanomaterials.
Collapse
|
42
|
Tobin I, Zhang G. Regulation of Host Defense Peptide Synthesis by Polyphenols. Antibiotics (Basel) 2023; 12:660. [PMID: 37107022 PMCID: PMC10135163 DOI: 10.3390/antibiotics12040660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of antimicrobial resistance has created an urgent need for antibiotic-alternative strategies for disease control and prevention. Host defense peptides (HDPs), which have both antimicrobial and immunomodulatory properties, are an important component of the innate immune system. A host-directed approach to stimulate the synthesis of endogenous HDPs has emerged as a promising solution to treat infections with a minimum risk for developing antimicrobial resistance. Among a diverse group of compounds that have been identified as inducers of HDP synthesis are polyphenols, which are naturally occurring secondary metabolites of plants characterized by the presence of multiple phenol units. In addition to their well-known antioxidant and anti-inflammatory activities, a variety of polyphenols have been shown to stimulate HDP synthesis across animal species. This review summarizes both the in vitro and in vivo evidence of polyphenols regulating HDP synthesis. The mechanisms by which polyphenols induce HDP gene expression are also discussed. Natural polyphenols warrant further investigation as potential antibiotic alternatives for the control and prevention of infectious diseases.
Collapse
Affiliation(s)
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA;
| |
Collapse
|
43
|
Difonzo G, Antonino C, Squeo G, Caponio F, Faccia M. Application of Agri-Food By-Products in Cheesemaking. Antioxidants (Basel) 2023; 12:antiox12030660. [PMID: 36978908 PMCID: PMC10045188 DOI: 10.3390/antiox12030660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Agri-food companies produce large quantities of plant by-products that in many instances contain functional bioactive compounds. This review summarizes the main applications of agro-industrial by-products in cheesemaking, considering their bioactivities and functional properties. Polyphenol-rich by-products increase antioxidant and antimicrobial activity in cheeses, positively impacting their shelf life. Contrasting results have been obtained regarding the color and sensory properties of enriched cheeses depending on the selected by-products and on the technology adopted for the extract preparation. Furthermore, functional compounds in cheeses perform a prebiotic function and their bioavailability improves human health. Overall, the use of agri-food by-products in cheese formulation can offer benefits for agri-food chain sustainability and consumer health.
Collapse
|
44
|
Toyama Y, Fujita Y, Toshima S, Hirano T, Yamasaki M, Kunitake H. Comparison of Proanthocyanidin Content in Rabbiteye Blueberry ( Vaccinium virgatum Aiton) Leaves and the Promotion of Apoptosis against HL-60 Promyelocytic Leukemia Cells Using 'Kunisato 35 Gou' Leaf Extract. PLANTS (BASEL, SWITZERLAND) 2023; 12:948. [PMID: 36840296 PMCID: PMC9962561 DOI: 10.3390/plants12040948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Polyphenol-rich rabbiteye blueberry (Vaccinium virgatum Aiton) leaves have attracted attention as a food material. In this study, we compared the total polyphenols, total proanthocyanidin content, and antioxidant activity of the leaves of 18 blueberry varieties and investigated the seasonal variation in polyphenols. We also evaluated the anti-cancer cell proliferation properties of the rabbiteye blueberry leaf specific cultivar 'Kunisato 35 Gou'. Rabbiteye blueberry leaves had significantly higher total polyphenol and total proanthocyanidin values than northern highbush blueberry and southern highbush blueberry leaves. The antioxidant activity of blueberry leaves was highly positively correlated with both the total polyphenol and total proanthocyanidin content. Variations were observed in the total polyphenol and total proanthocyanidin content of rabbiteye blueberry leaves harvested at different points in the growing season; leaves collected in fall to winter contained more epicatechin in addition to proanthocyanidins. In the evaluation of anti-cancer cell proliferation properties against HL-60 promyelocytic leukemia cells, the September-harvested extracts of rabbiteye blueberry 'Kunisato 35 Gou' showed strong properties, and the use of an FITC Annexin V apoptosis detection kit with propidium iodide confirmed that this HL-60 cell death occurred via apoptosis. Limiting the harvest time would make rabbiteye blueberry leaves a more functional food ingredient.
Collapse
Affiliation(s)
- Yuki Toyama
- Graduate School of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki 889-2192, Japan
| | - Yoko Fujita
- Michimoto Foods Products Co., Ltd., 1667 Kou Tano-cho, Miyazaki 889-1701, Japan
| | - Saki Toshima
- Interdisciplinary Graduate School of Agriculture and Engineering, University of Miyazaki, 1-1 Gakuenkibanadainishi, Miyazaki 889-2192, Japan
| | - Tomonari Hirano
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki 889-2192, Japan
| | - Masao Yamasaki
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki 889-2192, Japan
| | - Hisato Kunitake
- Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-kibanadai nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
45
|
Influence of Processing and Digestion on the Stability, Bioac-Cessibility and Bioactivity of Food Polyphenols. Foods 2023; 12:foods12040851. [PMID: 36832925 PMCID: PMC9956109 DOI: 10.3390/foods12040851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
In part, the role of polyphenols, as partially responsible components, for the protective effects of a fruit and vegetable-rich diet is an increasingly important area of human nutrition research [...].
Collapse
|
46
|
Arangia A, Marino Y, Impellizzeri D, D’Amico R, Cuzzocrea S, Di Paola R. Hydroxytyrosol and Its Potential Uses on Intestinal and Gastrointestinal Disease. Int J Mol Sci 2023; 24:ijms24043111. [PMID: 36834520 PMCID: PMC9964144 DOI: 10.3390/ijms24043111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
In recent years, the phytoconstituents of foods in the Mediterranean diet (MD) have been the subject of several studies for their beneficial effects on human health. The traditional MD is described as a diet heavy in vegetable oils, fruits, nuts, and fish. The most studied element of MD is undoubtedly olive oil due precisely to its beneficial properties that make it an object of interest. Several studies have attributed these protective effects to hydroxytyrosol (HT), the main polyphenol contained in olive oil and leaves. HT has been shown to be able to modulate the oxidative and inflammatory process in numerous chronic disorders, including intestinal and gastrointestinal pathologies. To date, there is no paper that summarizes the role of HT in these disorders. This review provides an overview of the anti-inflammatory and antioxidant proprieties of HT against intestinal and gastrointestinal diseases.
Collapse
Affiliation(s)
- Alessia Arangia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ylenia Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: (D.I.); (R.D.); Tel.: +39-090-676-5208 (D.I. & R.D.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| |
Collapse
|
47
|
Navrátilová A, Kovár M, Kopčeková J, Mrázová J, Trakovická A, Požgajová M. Protective effect of Aronia melanocarpa juice against acrylamide-induced cellular toxicity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:139-149. [PMID: 36734814 DOI: 10.1080/03601234.2023.2172287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Acrylamide (AA) a widely used industrial chemical is also formed during food processing by the Maillard reaction, which makes its exposure to humans almost unavoidable. In this study, we used Schizosaccharomyces pombe as a model organism to investigate AA toxicity (10 or 20 mM concentration) in eukaryotes. In S. pombe, AA delays cell growth causes oxidative stress by enhancement of ROS production and triggers excitement of the antioxidant defence system resulting in the division arrest. Aronia fruit contains a variety of health-promoting substances with considerable antioxidant potential. Therefore, Aronia juice supplementation was tested to evaluate its protective effect against AA-derived perturbations of the organism. Cell treatment with several Aronia juice concentrations ranging from 0 to 2% revealed the best protective effect of 1 or 2% Aronia juice solutions. Both chosen Aronia juice concentrations alleviated AA toxicity through the improvement of the antioxidant cell capacity and metabolic activity by their strong ROS scavenging property. Efficiency of Aronia juice cell protection is dose dependent as the 2% solution led to significantly higher cellular defence compared with 1%. Due to the high similarity of biological processes of S. pombe with higher eukaryotes, the protective effect of Aronia juice against AA toxicity might also apply to higher organisms.
Collapse
Affiliation(s)
- Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jana Kopčeková
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Jana Mrázová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Anna Trakovická
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
48
|
Tabolacci C, De Vita D, Facchiano A, Bozzuto G, Beninati S, Failla CM, Di Martile M, Lintas C, Mischiati C, Stringaro A, Del Bufalo D, Facchiano F. Phytochemicals as Immunomodulatory Agents in Melanoma. Int J Mol Sci 2023; 24:2657. [PMID: 36768978 PMCID: PMC9916941 DOI: 10.3390/ijms24032657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Cutaneous melanoma is an immunogenic highly heterogenic tumor characterized by poor outcomes when it is diagnosed late. Therefore, immunotherapy in combination with other anti-proliferative approaches is among the most effective weapons to control its growth and metastatic dissemination. Recently, a large amount of published reports indicate the interest of researchers and clinicians about plant secondary metabolites as potentially useful therapeutic tools due to their lower presence of side effects coupled with their high potency and efficacy. Published evidence was reported in most cases through in vitro studies but also, with a growing body of evidence, through in vivo investigations. Our aim was, therefore, to review the published studies focused on the most interesting phytochemicals whose immunomodulatory activities and/or mechanisms of actions were demonstrated and applied to melanoma models.
Collapse
Affiliation(s)
- Claudio Tabolacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Daniela De Vita
- Department of Environmental Biology, University of Rome La Sapienza, 00185 Rome, Italy
| | | | - Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Simone Beninati
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | | | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine, Università Campus Bio-Medico, 00128 Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Carlo Mischiati
- Department of Neuroscience and Rehabilitation, School of Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
49
|
Wu Q, Lv Q, Liu X, Ye X, Cao L, Wang M, Li J, Yang Y, Li L, Wang S. Natural compounds from botanical drugs targeting mTOR signaling pathway as promising therapeutics for atherosclerosis: A review. Front Pharmacol 2023; 14:1083875. [PMID: 36744254 PMCID: PMC9894899 DOI: 10.3389/fphar.2023.1083875] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that is a major cause of cardiovascular diseases (CVDs), including coronary artery disease, hypertension, myocardial infarction, and heart failure. Hence, the mechanisms of AS are still being explored. A growing compendium of evidence supports that the activity of the mechanistic/mammalian target of rapamycin (mTOR) is highly correlated with the risk of AS. The mTOR signaling pathway contributes to AS progression by regulating autophagy, cell senescence, immune response, and lipid metabolism. Various botanical drugs and their functional compounds have been found to exert anti- AS effects by modulating the activity of the mTOR signaling pathway. In this review, we summarize the pathogenesis of AS based on the mTOR signaling pathway from the aspects of immune response, autophagy, cell senescence, and lipid metabolism, and comb the recent advances in natural compounds from botanical drugs to inhibit the mTOR signaling pathway and delay AS development. This review will provide a new perspective on the mechanisms and precision treatments of AS.
Collapse
Affiliation(s)
- Qian Wu
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Qianyu Lv
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao’an Liu
- Capital University of Medical, Beijing, China
| | - Xuejiao Ye
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Cao
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Manshi Wang
- Beijing Xicheng District Guangwai Hospital, Beijing, China
| | - Junjia Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yingtian Yang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Lanlan Li
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Shihan Wang
- Guang’anmen Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Spiegel M, Sroka Z. Quantum-mechanical characteristics of apigenin: Antiradical, metal chelation and inhibitory properties in physiologically relevant media. Fitoterapia 2023; 164:105352. [PMID: 36400153 DOI: 10.1016/j.fitote.2022.105352] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Density functional theory was used to examine the antioxidant activity of apigenin. All protonated species that are present in a non-negligible population at physiological pH were considered in the study. The ability to scavenge the hydroperoxide radical was evaluated in lipid and aqueous environments. The capacity to halt the Fenton reaction by chelating Fe(III) and Cu(II) ions was also investigated, as was the ability to inhibit xanthine oxidase. The results indicate that these activities may be particularly important in describing the beneficial effects of apigenin, especially because of its lower anti-•OOH potential than Trolox or vitamin C. The findings underscore the significant role of dianion in the antiradical and chelating properties, despite its presence in much lower molar fractions than other ions.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland.
| | - Zbigniew Sroka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|