1
|
Bui TQ, Dat TTH, Quy PT, Hai NTT, Thai NM, Phu NV, Tuan LV, Huynh LK, Li MS, Nhung NTA. Identification of potential anti-hyperglycemic compounds in Cordyceps militaris ethyl acetate extract: in vitro and in silico studies. J Biomol Struct Dyn 2025; 43:627-643. [PMID: 37997953 DOI: 10.1080/07391102.2023.2283156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Cordyceps militaris has been long known for valuable health benefits by folk experience and was recently reported with diabetes-tackling evidences, thus deserving extending efforts on screening for component-activity relationship. In this study, experiments were carried out to find the evidence, justification, and input for computations on the potential against diabetes-related protein structures: PDB-4W93, PDB-3W37, and PDB-4A3A. Liquid chromatography identified 14 bioactive compounds in the ethyl acetate extract (1-14) and quantified the contents of cordycepin (0.11%) and adenosine (0.01%). Bioassays revealed the overall potential of the extract against α-amylase (IC50 = 6.443 ± 0.364 mg.mL-1) and α-glucosidase (IC50 = 2.580 ± 0.194 mg.mL-1). A combination of different computational platforms was used to select the most promising candidates for applications as anti-diabetic bio-inhibitors, i.e. 1 (ground state: -888.49715 a.u.; dipole moment 3.779 Debye; DS ¯ -12.3 kcal.mol-1; polarizability 34.7 Å3; logP - 1.30), 10 (ground state: -688.52406 a.u.; dipole moment 5.487 Debye; DS ¯ -12.6 kcal.mol-1; polarizability 24.9 Å3; logP - 3.39), and 12 (ground state: -1460.07276 a.u.; dipole moment 3.976 Debye; DS ¯ -12.5 kcal.mol-1; polarizability 52.4 Å3; logP - 4.39). The results encourage further experimental tests on cordycepin (1), mannitol (10), and adenosylribose (12) to validate their in-practice diabetes-related activities, thus conducive to hypoglycemic applications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thanh Q Bui
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), Hue, Vietnam
| | - Phan Tu Quy
- Department of Natural Sciences & Technology, Tay Nguyen University, Dak Lak, Vietnam
| | | | - Nguyen Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | - Nguyen Vinh Phu
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Le Van Tuan
- Department of Environmental Science, University of Sciences, Hue University, Hue City, Vietnam
| | - Lam K Huynh
- School of Chemical and Environmental Engineering, International University, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Ho Chi Minh City, Vietnam
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue, Vietnam
| |
Collapse
|
2
|
Li H, Ye Z, Zheng G, Su Z. Polysaccharides targeting autophagy to alleviate metabolic syndrome. Int J Biol Macromol 2024; 283:137393. [PMID: 39521230 DOI: 10.1016/j.ijbiomac.2024.137393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Metabolic syndrome is a prevalent non-communicable disease characterized by central obesity, insulin resistance, hypertension, hyperglycemia, and hyperlipidemia. Epidemiological statistics indicate that one-third of the world's population is affected by metabolic syndrome. Unfortunately, owing to complicated pathogenesis and limited pharmacological options, the growing prevalence of metabolic syndrome threatens human health worldwide. Autophagy is an intracellular degradation mechanism that involves the degradation of unfolded or aggregated proteins and damaged cellular organelles, thereby maintaining metabolic homeostasis. Increasing evidence indicates that dysfunctional autophagy is closely associated with the development of metabolic syndrome, making it an attractive therapeutic target. Furthermore, a growing number of plant-derived polysaccharides have been shown to regulate autophagy, thereby alleviating metabolic syndrome, such as Astragalus polysaccharides, Laminaria japonica polysaccharides, Ganoderma lucidum polysaccharides and Lycium barbarum polysaccharides. In this review, we summarize recent advances in the discovery of autophagy modulators of plant polysaccharides for the treatment of metabolic syndrome, with the aim of providing precursor compounds for the development of new therapeutic agents. Additionally, we look forward to seeing more diseases being treated with plant polysaccharides by regulating autophagy, as well as the discovery of more intricate mechanisms that govern autophagy.
Collapse
Affiliation(s)
- Hongxia Li
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zeting Ye
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zuqing Su
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Pi CC, Cheng YC, Chen CC, Lee JW, Lin CN, Chiou MT, Chen HW, Chiu CH. Synergistic fermentation of Cordyceps militaris and herbal substrates boosts grower pig antioxidant and immune function. BMC Vet Res 2024; 20:531. [PMID: 39604968 PMCID: PMC11600677 DOI: 10.1186/s12917-024-04338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Pathogenic infections can significantly impact the health of livestock. Traditionally, antibiotic growth promoters (AGPs) have been used in feed to enhance growth performance and disease control. However, concerns regarding antibiotic resistance have led to the exploration of traditional herbal medicine as a natural alternative, guided by the principle of medicine-food homology. The Taguchi method was employed to optimize the culture formula for cordycepin production, an active component of Cordyceps militaris (C. militaris). The influences of C. militaris supplementing solid-state fermentation (CMSSF) in feed on the growth performance and immune responses of grower pigs were evaluated in the present study. RESULTS The C. militaris ethanol extract (CME) displayed potent free radical scavenging activity against 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) after undergoing fermentation. Additionally, the antibacterial testing revealed that CME effectively inhibits the growth of common pig pathogens such as Glaesserella parasuis, Pasteurella multocida, Staphylococcus hyicus, and Streptococcus suis. In lipopolysaccharide (LPS)-treated intestinal porcine enterocyte cell line (IPEC-J2), CME significantly suppressed the production of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin (IL)-6. In addition, higher antioxidative activity was detected as indicated by elevated concentration of superoxide dismutase (SOD) in pig serum. The levels of immunoglobulin M (IgM), IgA, and IgG antibodies, as well as classical swine fever virus (CSFV) antibodies (S/P ratio) in serum were all increased. Growth performance of pigs fed with dietary CMSSF supplementation was improved in comparison with the control. CONCLUSIONS Results demonstrated that CMSSF has the potential to be used as a natural growth promoter to enhance immunity, antioxidation, as well as overall health and growth performance of grower pigs.
Collapse
Affiliation(s)
- Chia-Chen Pi
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
- King's Ground Biotech Co., Ltd, Pingtung, 91252, Taiwan.
| | | | | | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Ming-Tang Chiou
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan
| | - Hui-Wen Chen
- Department of Veterinary Medicine, National Taiwan University, Taipei, 10617, Taiwan
- Animal Resource Center, National Taiwan University, Taipei, 10617, Taiwan
| | - Chiu-Hsia Chiu
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201, Taiwan.
| |
Collapse
|
4
|
Li Y, Lu Y, Yu B, Huang Z, Luo Y, Zheng P, Mao X, Yu J, Luo J, Yan H, He J. Functional Characterization and Toxicological Study of Cordyceps militaris in Weaned Pigs. Toxins (Basel) 2024; 16:507. [PMID: 39728765 DOI: 10.3390/toxins16120507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 12/28/2024] Open
Abstract
Cordyceps militaris (CM), a well-known parasitic fungus that grows on the larvae of Lepidoptera, has a variety of pharmacological activities. However, little is known about its safe dosage for animals, including pigs. To explore its effect on intestinal health and evaluate its safe dosage, 30 weaned pigs were randomly allotted to five groups and fed with a basal diet supplemented with different doses of CM for 42 days. The results showed that CM supplementation at 100 mg/kg increased the average daily weight gain (ADG) and significantly decreased the ratio of feed intake to gain (F:G) in the weaned pigs (p < 0.05). However, CM supplementation at a higher dose (1000 to 4000 mg/kg) had no effect on growth performance. CM supplementation at 100 mg/kg also increased the digestibility of gross energy and increased the ratio of villus height to crypt depth (V/C) in the duodenum and ileum (p < 0.05). Moreover, CM supplementation at 100 mg/kg increased the activities of catalase (CAT) and total antioxidant capacity (T-AOC), but decreased the concentration of malondialdehyde (MDA) in serum (p < 0.05). Importantly, histopathological studies of tissues (e.g., heart, liver, kidney, spleen, lungs, pancreas, thymus, mesenteric lymph nodes, stomach, and small intestine), organ indexes, major hematological parameters, and serum biochemical parameters were not affected upon CM supplementation. These results suggest that CM may have the potential to act as a safe and effective supplement to improve the growth performance and intestinal health of weaned pigs.
Collapse
Affiliation(s)
- Yanping Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Yang Lu
- Institute of Animal Husbandry & Veterinary Sciences, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistant Nutrition, Chengdu 611130, China
| |
Collapse
|
5
|
Shan L, Gao L, Chai Y, Li K, Yu J, Liang F, Qin J, Ni Y, Sun P. Cordycepin improves hyperactivation and acrosome reaction through adenosine receptors during human sperm capacitation in vitro. Reprod Biol Endocrinol 2024; 22:143. [PMID: 39533327 PMCID: PMC11555834 DOI: 10.1186/s12958-024-01318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sperm capacitation is a prerequisite for natural or in vitro fertilization. After capacitation, sperm become hyperactivated and undergo an acrosome reaction, which helps them penetrate the oocyte. Cordycepin, a bioactive compound first isolated from Cordyceps militaris, is an adenosine analog with numerous physiological activities. However, its effects on sperm capacitation remain unclear. This study aims to elucidate the effects and mechanisms of cordycepin on human sperm capacitation. METHODS During in vitro capacitation culture, healthy human sperm were treated with cordycepin (20, 100, 500 µM). Sperm motility and hyperactivation were detected using a computer-assisted sperm analyzer. Sperm acrosome reaction was measured using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin. Sperm protein kinase A (PKA) activity was analyzed using an ELISA kit. The levels of sperm protein tyrosine phosphorylation were detected by western blotting. Sperm DNA damage was detected by a sperm chromatin dispersion assay. Reactive oxygen species (ROS) were measured using the fluorescence probe 2',7'-dichlorodihydrofluorescein diacetate. The expression and localization of adenosine receptors were analyzed by western blotting and immunofluorescence. The specific inhibitors of adenosine receptors were used to confirm their effects on cordycepin-induced sperm capacitation. Finally, molecular docking was performed to analyze the interaction between cordycepin and adenosine receptors. RESULTS Cordycepin improved hyperactivated sperm motility, acrosome reaction, PKA activity, and protein tyrosine phosphorylation during capacitation while having no obvious effects on sperm ROS or DNA damage. Four adenosine receptor subtypes were expressed in human sperm, but their localizations differed. Inhibition of adenosine receptors significantly decreased cordycepin-induced sperm hyperactivation and the acrosome reaction. Molecular docking showed that cordycepin can bind to the four subtypes of adenosine receptors. CONCLUSION Cordycepin may promote human sperm capacitation through adenosine receptor-mediated signaling pathways. These findings may be useful for assisted reproductive technology and animal breeding.
Collapse
Affiliation(s)
- Lijun Shan
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Linmei Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhao Chai
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Kun Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianmin Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Fei Liang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiangfeng Qin
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ya Ni
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Peibei Sun
- School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Laboratory of Experimental Animal's & Nonclinical Laboratory Studies, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Eiamthaworn K, Holthaus D, Suriyaprom S, Rickerts V, Tragoolpua Y. Immunomodulation and Protective Effects of Cordyceps militaris Extract Against Candida albicans Infection in Galleria mellonella Larvae. INSECTS 2024; 15:882. [PMID: 39590481 PMCID: PMC11595007 DOI: 10.3390/insects15110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Cordyceps militaris-derived formulations are currently used for multiple purposes because of their medical properties, especially immune system modulation. This study analyzes the inhibitory effects of C. militaris aqueous extract on Candida albicans infections and the immune response in larvae of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae). Larvae exhibited melanization within 1 h of being infected with C. albicans inoculum at a concentration of 106 cells/larvae, and died within 24 h from a lethal dose. Aqueous extract of C. militaris proved to be nontoxic at concentrations of 0.25 and 0.125 mg/larvae, and had the greatest ability to prolong the survival of larvae infected with a sublethal dose of C. albicans at a concentration of 105 cells/larvae. Moreover, the number of hemocytes in the hemolymph of G. mellonella increased after infection with C. albicans and treatment with the aqueous extract of C. militaris at 1, 24, and 48 h by 1.21 × 107, 1.23 × 107, and 1.4 × 107 cells/100 µL, respectively. The highest number of hemocytes was recorded after treatment of infected G. mellonella with the extract for 48 h. Transcriptional upregulation of the immune system was observed in certain antimicrobial peptides (AMPs), showing that the relative expression of galiomicin, gallerimycin, and lysozyme genes were upregulated as early as 1 h after infection. Therefore, we conclude that C. militaris aqueous extract can modulate the immune system of G. mellonella and protect against infection from C. albicans.
Collapse
Affiliation(s)
- Kiratiya Eiamthaworn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
| | - David Holthaus
- Department of Gynecology and Obstetrics, Universitätsklinikum Schleswig-Holstein, 24105 Kiel, Germany;
- Robert Koch Institute, 13353 Berlin, Germany;
| | - Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (K.E.); (S.S.)
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
7
|
Kanno T, Tada R, Nakasone T, Okamatsu S, Iwakura Y, Tamura K, Miyaoka H, Adachi Y. Cordyceps militaris fruit body activates myeloid dendritic cells via a Dectin-1-mediated pathway. Mol Immunol 2024; 175:112-120. [PMID: 39341081 DOI: 10.1016/j.molimm.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Cordyceps militaris, an entomopathogenic fungus, has been traditionally used in East Asian medicine. Recent research indicates that the fruit bodies of C. militaris are rich in bioactive compounds, such as polysaccharides and nucleosides, which may offer health benefits. However, the specific components responsible for its immunostimulatory effects and the mechanisms involved remain unclear. This study explored the immunomodulatory activity of a fruit body extract from C. militaris, named Ryukyu-kaso (RK), and examined the effect of the β-glucan receptor Dectin-1 on bone marrow-derived dendritic cells (BMDCs). Our results demonstrated that RK, which contains 1,3-β-glucan, effectively stimulated BMDCs to secrete pro-inflammatory and immunoregulatory cytokines and upregulated surface markers indicative of maturation and activation. Notably, these immunostimulatory effects were completely absent in BMDCs derived from Dectin-1-knockout mice, confirming that Dectin-1 is crucial for RK-induced immunomodulation. These findings provide new insights into the immunostimulatory mechanisms of C. militaris and underscore the potential of RK as a natural immunomodulatory agent for various therapeutic applications.
Collapse
Affiliation(s)
- Takashi Kanno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rui Tada
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | | | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroaki Miyaoka
- Department of Biomolecular Organic Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
8
|
Chrysostomou PP, Freeman E, Murphy MM, Chaudhary A, Siddiqui N, Daoust J. A toxicological assessment of Ganoderma lucidum and Cordyceps militaris mushroom powders. FRONTIERS IN TOXICOLOGY 2024; 6:1469348. [PMID: 39539985 PMCID: PMC11558339 DOI: 10.3389/ftox.2024.1469348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Gonoderma lucidum (G. lucidum) and Cordyceps militaris (C. militaris) are among the many mushrooms known for their long history of use in traditional medicine. Wildcrafted sources of mushrooms including G. lucidum and C. militaris can be limited from a scarcity and quality perspective, but solid fermentation processes in cultivation settings can provide an efficient way to deliver whole mushroom preparations of a consistent composition. Despite the historical use of these mushrooms, few published reports have explored their potential subchronic oral toxicity or genotoxicity, either from specific components or whole mushroom preparations. The purpose of this study was to assess the potential for acute toxicity, subchronic toxicity, and genotoxicity of powders produced from G. lucidum mycelial biomass and fruiting body ("Organic Reishi M2-102-02 powder") cultured on oats, and C. militaris mycelial biomass, stroma, and fruiting body ("Organic Cordyceps M2-116-04 powder") cultured on oats. Results of the testing demonstrate that both Organic Reishi M2-102-02 powder and Organic Cordyceps M2-116-04 powder were not acutely toxic, did not exhibit subchronic oral toxicity in rats at doses up to the highest dose tested of 2,000 mg/kg bw/day, and did not have genotoxic potential based on in vitro and in vivo genotoxicity assays.
Collapse
Affiliation(s)
- Paola P. Chrysostomou
- Exponent Inc., Center for Chemical Regulation and Food Safety, Washington, DC, United States
| | - Elaine Freeman
- Exponent Inc., Center for Chemical Regulation and Food Safety, Washington, DC, United States
| | - Mary M. Murphy
- Exponent Inc., Center for Chemical Regulation and Food Safety, Washington, DC, United States
| | - Ankit Chaudhary
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Nazia Siddiqui
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Julie Daoust
- Scientific Affairs, M2 Ingredients, Vista, CA, United States
| |
Collapse
|
9
|
Chen L, Liu X, Zheng K, Wang Y, Li M, Zhang Y, Cui Y, Deng S, Liu S, Zhang G, Li L, He Y. Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects. Molecules 2024; 29:5107. [PMID: 39519748 PMCID: PMC11547421 DOI: 10.3390/molecules29215107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cordyceps primarily consists of ascomycetes, a parasitic fungus that infects insects and arthropods. Recently, Cordyceps has been shown to manifest a diverse range of pharmacological activities, rendering it applicable for the treatment and mitigation of various diseases, such as diabetes, acute liver injury, and colitis. Many active constituents have been identified from Cordyceps sinensis, including cordycepin, adenosine, sterols, and polysaccharides. Polysaccharides constitute a primary active component of Cordyceps, exhibiting immunomodulatory effects. We searched the Web of Science database with the keywords of cordyceps, polysaccharide, and immune modulation; collected related studies from 2004 to 2024; and eliminated articles with low influence and workload. A review of the research advancements regarding the immunomodulatory effects of Cordyceps polysaccharides was conducted with the aim of furnishing valuable reference information. Research indicates that polysaccharides exhibiting immunomodulatory activity are predominantly sourced from Cordyceps sinensis and Cordyceps militaris. Immunological experimental results demonstrate that Cordyceps polysaccharides can augment the activities of macrophages, lymphocytes, and dendritic cells while fostering the expression of immune-active substances such as cytokines and chemokines. Furthermore, animal experiments have substantiated the immunomodulatory effects of Cordyceps polysaccharides. These effects encompass ameliorating immune suppression induced by drugs or radiation, enhancing immune organ indices, elevating the expression of immunoreactive substances, and mitigating immune evasion prompted by tumors. In conclusion, Cordyceps polysaccharides exhibit significant immunomodulatory activity and merit further investigation.
Collapse
Affiliation(s)
- Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu 610097, China;
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Kaiyue Zheng
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Sichun Deng
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Shiqi Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Gaoju Zhang
- Sichuan Chinese Herb Preparation, Chengdu 611732, China;
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| |
Collapse
|
10
|
Luo L, Dai F, Xu Z, Guan J, Fei G, Qu J, Yao M, Xue Y, Zhou Y, Zou X. Core microbes in Cordyceps militaris sclerotia and their nitrogen metabolism-related ecological functions. Microbiol Spectr 2024; 12:e0105324. [PMID: 39162541 PMCID: PMC11448085 DOI: 10.1128/spectrum.01053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Cordyceps militaris infects insects and forms sclerotia within the insect remains, establishing insect-microbe complexes. Here, C. militaris sclerotia samples from a single location in China over a 5-year period were subjected to high-throughput DNA sequencing, and the core microbes (which were stably enriched in the sclerotia over the 5 years) were identified. Next, seven bacterial strains were isolated from the C. militaris sclerotia, their biochemical characteristics were assessed, and they were co-cultured with C. militaris to study their effects on C. militaris metabolite production and biomass. Furthermore, the effects of NH4, NO3, and peptone media on C. militaris were compared. The results showed that Rhodococcus, Phyllobacterium, Pseudomonas, Achromobacter, Ensifer, Stenotrophomonas, Sphingobacterium, Variovorax, and Acinetobacter were the core microbes. Although co-culture of C. militaris with the seven bacterial strains isolated from the sclerotia did not directly increase the cordycepin level, they all had NO3 reduction ability, and four had urea decomposition ability. Meanwhile, C. militaris in NH4 medium had an increased cordycepin level compared to C. militaris in the other two media. From this, we inferred that bacteria in the sclerotia can convert NO3 to NH4, and then cordycepin is produced using NH4, which was confirmed by RNA-seq and real-time fluorescence quantitative PCR. Thus, bacteria in the sclerotia may indirectly affect the C. militaris metabolite production by regulating nitrogen metabolism. In summary, there are stable core microbes in the C. militaris sclerotia, and they may directly and indirectly affect the growth and metabolite production of C. militaris. IMPORTANCE The model Cordyceps species Cordyceps militaris is rich in therapeutic compounds. It has recently been demonstrated that symbiotic microbes in sclerotia affect Cordyceps' growth, development, and secondary metabolite production. In this study, core microbes were identified based on C. militaris sclerotia samples obtained from the same site over 5 years. Additionally, bacterial strains isolated from C. militaris sclerotia were found to affect metabolite production and nitrogen utilization, based on functional tests. Moreover, based on the bacterial nitrogen metabolism capacity in the sclerotia and its influence on C. militaris metabolite production, we deduced that bacteria in the sclerotia can indirectly affect C. militaris metabolite production by regulating nitrogen metabolism. This is the first report on how bacteria in the sclerotia affect C. militaris metabolite production from the perspective of the nitrogen cycle. The results increase our understanding of microbial functions in C. militaris sclerotia.
Collapse
Affiliation(s)
- Li Luo
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Fei Dai
- Anshun Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Zhongshun Xu
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Jingqiang Guan
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Gangxiang Fei
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Jiaojiao Qu
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Min Yao
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Yuan Xue
- Anshun Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Yeming Zhou
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
11
|
Lusakunwiwat P, Thananusak R, Nopgason R, Laoteng K, Vongsangnak W. Holistic transcriptional responses of Cordyceps militaris to different culture temperatures. Gene 2024; 923:148574. [PMID: 38768876 DOI: 10.1016/j.gene.2024.148574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Cordyceps militaris is a medicinal entomopathogenic fungus containing valuable biometabolites for pharmaceutical applications. Its genetic inheritance and environmental factors play a crucial role in the production of biomass enriched with cordycepin. While temperature is a crucial controlled parameter for fungal cultivation, its impacts on growth and metabolite biosynthesis remains poorly characterized. This study aimed to investigate the metabolic responses and cordycepin production of C. militaris strain TBRC6039 under various temperature conditions through transcriptome analysis. Among 9599 expressed genes, 576 genes were significantly differentially expressed at culture temperatures of 15 and 25 °C. The changes in the transcriptional responses induced by these temperatures were found in several metabolisms involved in nutrient assimilation and energy source, including amino acids metabolism (e.g., glycine, serine and threonine metabolism) and lipid metabolism (e.g., biosynthesis of unsaturated fatty acids and steroid biosynthesis). At the lower temperature (15 °C), the biosynthetic pathways of lipids, specifically ergosterol and squalene, were the target for maintaining membrane function by transcriptional upregulation. Our study revealed the responsive mechanisms of C. militaris in acclimatization to temperature conditions that provide an insight on physiological manipulation for the production of metabolites by C. militaris.
Collapse
Affiliation(s)
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Rujirek Nopgason
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| |
Collapse
|
12
|
Thepmalee C, Jenkham P, Ramwarungkura B, Suwannasom N, Khoothiam K, Thephinlap C, Sawasdee N, Panya A, Yenchitsomanus PT. Enhancing cancer immunotherapy using cordycepin and Cordyceps militaris extract to sensitize cancer cells and modulate immune responses. Sci Rep 2024; 14:21907. [PMID: 39300166 DOI: 10.1038/s41598-024-72833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Integrating immunotherapy with natural compounds holds promise in enhancing the immune system's ability to eliminate cancer cells. Cordyceps militaris, a traditional Chinese medicine, emerges as a promising candidate in this regard. This study investigates the effects of cordycepin and C. militaris ethanolic extract (Cm-EE) on sensitizing cancer cells and regulating immune responses against breast cancer (BC) and hepatocellular carcinoma (HCC) cells. Cordycepin, pentostatin and adenosine were identified in Cm-EE. Cordycepin treatment decreased HLA-ABC-positive cells in pre-treated cancer cells, while Cm-EE increased NKG2D ligand and death receptor expression. Additionally, cordycepin enhanced NKG2D receptor and death ligand expression on CD3-negative effector immune cells, particularly on natural killer (NK) cells, while Cm-EE pre-treatment stimulated IL-2, IL-6, and IL-10 production. Co-culturing cancer cells with effector immune cells during cordycepin or Cm-EE incubation resulted in elevated cancer cell death. These findings highlight the potential of cordycepin and Cm-EE in improving the efficacy of cancer immunotherapy for BC and HCC.
Collapse
Affiliation(s)
- Chutamas Thepmalee
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Phanitaporn Jenkham
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Boonyanuch Ramwarungkura
- Division of Molecular Medicine, Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Nittiya Suwannasom
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Krissana Khoothiam
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Microbiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Chonthida Thephinlap
- Unit of Excellence on Research and Development of Cancer Therapy, University of Phayao, Phayao, Thailand
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Nunghathai Sawasdee
- Division of Molecular Medicine, Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Aussara Panya
- Cell Engineering for Cancer Therapy Research Group, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE‑CIT), Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
13
|
Rodríguez-Ortiz LM, Hincapié CA, Hincapié-Llanos GA, Osorio M. Potential uses of silkworm pupae ( Bombyx mori L.) in food, feed, and other industries: a systematic review. FRONTIERS IN INSECT SCIENCE 2024; 4:1445636. [PMID: 39355451 PMCID: PMC11442273 DOI: 10.3389/finsc.2024.1445636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/29/2024] [Indexed: 10/03/2024]
Abstract
The increasing pressures imposed on ecosystems by the growing needs of the human population are stimulus for research into innovative and unconventional sources of raw materials for different industries. This systematic review was carried out to investigate the available literature on the possible industrial uses of silkworm (Bombyx mori L.) pupae, a residue of silk production. The review was conducted using an adapted version of PRISMA. After a screening process, 105 articles were obtained and subjected to a detailed quantitative and qualitative analysis. It was found that in the last decade there has been a significant increase in the number of papers devoted to the study of the potential use of silkworm pupae in different applications, with a significantly higher number in the last three years of the scope of this review, indicating a growing interest in the subject. From the analysis of the information collected, promising uses in human and animal food, such as fish, mammalian, poultry, swine and companion animals, as well as potential uses for the pharmaceutical industry, were identified. The evaluated research identified compounds with antioxidant activity and important contents of unsaturated fatty acids, which are related to beneficial effects on cardiovascular health, diabetes control, reduction of the risk of developing certain types of cancer and inflammatory activity, among other benefits. One of the most relevant findings is that many studies report a significant concentration of α-linolenic acid in silkworm pupae oil, which is attributed with anticancer, anti-inflammatory, antioxidant, anti-obesity and neuroprotective properties, among others.
Collapse
Affiliation(s)
- Luis Miguel Rodríguez-Ortiz
- Grupo de Investigaciones Agroindustriales (GRAIN), Escuela de Ingenierías, Universidad Pontificia, Medellín, Colombia
| | - Carlos A Hincapié
- Grupo de Investigaciones Agroindustriales (GRAIN), Escuela de Ingenierías, Universidad Pontificia, Medellín, Colombia
| | | | - Marisol Osorio
- Grupo de investigación en Gestión de la Tecnología y la Innovación (GTI), Escuela de Ingenierías, Universidad Pontificia, Medellín, Colombia
| |
Collapse
|
14
|
He R, Zhou W. Application and research progress of cordycepin in the treatment of tumours (Review). Mol Med Rep 2024; 30:161. [PMID: 38994776 PMCID: PMC11258602 DOI: 10.3892/mmr.2024.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cordycepin is a nucleoside molecule found in Cordyceps sinensis and can be obtained through chemical synthesis and biotransformation. Cordycepin has been extensively studied and has been shown to have antitumour activity. This activity includes effects on the autophagy process and inhibition of the MAPK/ERK and Hedgehog pathways. Ultimately, the inhibitory effect of cordycepin on tumour cells is due to the interplay of these effects. Cordycepin was shown to enhance the therapeutic effects of radiotherapy. There is increasing evidence indicating that cordycepin plays an anticancer role in the treatment of various cancers. The present review aims to provide a clear understanding of the antitumour mechanisms of cordycepin and discuss its present application in the treatment of tumours. This information can be an important theoretical basis and provide clinical guidance for the further development of cordycepin as an antitumour drug.
Collapse
Affiliation(s)
- Ru He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
15
|
Liu QH, Tang JW, Ma ZW, Hong YX, Yuan Q, Chen J, Wen XR, Tang YR, Wang L. Rapid discrimination between wild and cultivated Ophiocordyceps sinensis through comparative analysis of label-free SERS technique and mass spectrometry. Curr Res Food Sci 2024; 9:100820. [PMID: 39263205 PMCID: PMC11387260 DOI: 10.1016/j.crfs.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/01/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Ophiocordyceps sinensis is a genus of ascomycete fungi that has been widely used as a valuable tonic or medicine. However, due to over-exploitation and the destruction of natural ecosystems, the shortage of wild O. sinensis resources has led to an increase in artificially cultivated O. sinensis. To rapidly and accurately identify the molecular differences between cultivated and wild O. sinensis, this study employs surface-enhanced Raman spectroscopy (SERS) combined with machine learning algorithms to distinguish the two O. sinensis categories. Specifically, we collected SERS spectra for wild and cultivated O. sinensis and validated the metabolic profiles of SERS spectra using Ultra-Performance Liquid Chromatography coupled with Orbitrap High-Resolution Mass Spectrometry (UPLC-Orbitrap-HRMS). Subsequently, we constructed machine learning classifiers to mine potential information from the spectral data, and the spectral feature importance map is determined through an optimized algorithm. The results indicate that the representative characteristic peaks in the SERS spectra are consistent with the metabolites identified through metabolomics analysis, confirming the feasibility of the SERS method. The optimized support vector machine (SVM) model achieved the most accurate and efficient capacity in discriminating between wild and cultivated O. sinensis (accuracy = 98.95%, 5-fold cross-validation = 98.38%, time = 0.89s). The spectral feature importance map revealed subtle compositional differences between wild and cultivated O. sinensis. Taken together, these results are expected to enable the application of SERS in the quality control of O. sinensis raw materials, providing a foundation for the efficient and rapid identification of their quality and origin.
Collapse
Affiliation(s)
- Qing-Hua Liu
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jia-Wei Tang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhang-Wen Ma
- State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Yong-Xuan Hong
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Quan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jie Chen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xin-Ru Wen
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yu-Rong Tang
- Department of Laboratory Medicine, Shengli Oilfield Central Hospital, Dongying, Shandong Province, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
- Division of Microbiology and Immunology, School of Biomedical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
16
|
Hu Y, Wu Y, Song J, Ma M, Xiao Y, Zeng B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering (Basel) 2024; 11:783. [PMID: 39199741 PMCID: PMC11351413 DOI: 10.3390/bioengineering11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.H.); (Y.W.); (J.S.); (M.M.); (Y.X.)
| |
Collapse
|
17
|
Zhang H, Yang J, Luo S, Liu L, Yang G, Gao B, Fan H, Deng L, Yang M. A novel complementary pathway of cordycepin biosynthesis in Cordyceps militaris. Int Microbiol 2024; 27:1009-1021. [PMID: 37987892 PMCID: PMC11300563 DOI: 10.1007/s10123-023-00448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023]
Abstract
We determined whether there exists a complementary pathway of cordycepin biosynthesis in wild-type Cordyceps militaris, high-cordycepin-producing strain C. militaris GYS60, and low-cordycepin-producing strain C. militaris GYS80. Differentially expressed genes were identified from the transcriptomes of the three strains. Compared with C. militaris, in GYS60 and GYS80, we identified 145 and 470 upregulated and 96 and 594 downregulated genes. Compared with GYS80, in GYS60, we identified 306 upregulated and 207 downregulated genes. Gene Ontology analysis revealed that upregulated genes were mostly involved in detoxification, antioxidant, and molecular transducer in GYS60. By Clusters of Orthologous Groups of Proteins and Kyoto Encyclopedia of Genes and Genomes analyses, eight genes were significantly upregulated: five genes related to purine metabolism, one to ATP production, one to secondary metabolite transport, and one to RNA degradation. In GYS60, cordycepin was significantly increased by upregulation of ATP production, which promoted 3',5'-cyclic AMP production. Cyclic AMP accelerated 3'-AMP accumulation, and cordycepin continued to be synthesized and exported. We verified the novel complementary pathway by adding the precursor adenosine and analyzing the expression of four key genes involved in the main pathway of cordycepin biosynthesis. Adenosine addition increased cordycepin production by 51.2% and 10.1%, respectively, in C. militaris and GYS60. Four genes in the main pathway in GYS60 were not upregulated.
Collapse
Affiliation(s)
- Hucheng Zhang
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Jun Yang
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Shuai Luo
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Linying Liu
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Guowei Yang
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Bo Gao
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Haitao Fan
- Bioengineering College Beijing Polytechnic, Beijing, 100176, China
| | - Lina Deng
- Department of English, Beijing Health Vocational College, Beijing, 102402, China.
| | - Ming Yang
- Department of Cardiovascular Surgery Institute of Cardiac Surgery, PLA General Hospital, Beijing, 100141, China.
| |
Collapse
|
18
|
Huang HC, Shi YJ, Vo TLT, Hsu TH, Song TY. The Anti-Inflammatory Effects and Mechanism of the Submerged Culture of Ophiocordyceps sinensis and Its Possible Active Compounds. J Fungi (Basel) 2024; 10:523. [PMID: 39194849 DOI: 10.3390/jof10080523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
The pharmacological effects of the fruiting body of Ophiocordyceps sinensis (O. sinensis) such as antioxidant, anti-virus, and immunomodulatory activities have already been described, whereas the anti-inflammatory effects and active components of the submerged culture of O. sinesis (SCOS) still need to be further verified. This study aimed to investigate the active compounds in the fermented liquid (FLOS), hot water (WEOS), and 50-95% (EEOS-50, EEOS-95) ethanol extracts of SCOS and their anti-inflammatory effects and potential mechanisms in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. The results demonstrated that all of the SCOS extracts could inhibit NO production in BV2 cells. EEOS-95 exhibited the strongest inhibitory effects (71% inhibitory ability at 500 µg/mL), and its ergosterol, γ-aminobutyric acid (GABA), total phenolic, and total flavonoid contents were significantly higher than those of the other extracts (18.60, 18.60, 2.28, and 2.14 mg/g, p < 0.05, respectively). EEOS-95 also has a strong inhibitory ability against IL-6, IL-1β, and TNF-α with an IC50 of 617, 277, and 507 µg/mL, respectively, which is higher than that of 1 mM melatonin. The anti-inflammatory mechanism of EEOS-95 seems to be associated with the up-regulation of PPAR-γ/Nrf-2/HO-1 antioxidant-related expression and the down-regulation of NF-κB/COX-2/iNOS pro-inflammatory expression signaling. In summary, we demonstrated that EEOS-95 exhibits neuroinflammation-mediated neurodegenerative disorder activities in LPS-induced inflammation in brain microglial cells.
Collapse
Affiliation(s)
- Hsien-Chi Huang
- PhD Program of Biotechnology and Bioindustry, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan
| | - Yu-Juan Shi
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Thuy-Lan-Thi Vo
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tai-Hao Hsu
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| | - Tuzz-Ying Song
- Department of Medicinal Botanicals and Foods on Health Applications, Da-Yeh University, Changhua 515, Taiwan
| |
Collapse
|
19
|
Liu M, Wang A, Meng G, Liu Q, Yang Y, Wang M, Wang Z, Wang F, Dong C. Innovative application of CRISPR for eliminating Ustiloxin in Cordyceps militaris: Enhancing food safety and quality. Lebensm Wiss Technol 2024; 204:116420. [PMID: 39119199 PMCID: PMC11308680 DOI: 10.1016/j.lwt.2024.116420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Cordyceps militaris (L.) Fr. Has long been recognized as a valuable functional food consumed in numerous countries. However, biosynthetic gene clusters of this species and safety regarding mycotoxin production remain largely unexplored. In this study, a ribosomally synthesized and post-translationally modified peptide (RiPP) cluster responsible for the production of cyclopeptide mycotoxins in Cordyceps was unveiled via genome mining. Ustiloxin B and a novel, predominant and Cordyceps specific ustiloxin I were confirmed by extraction and structural analysis. The difference between Ustiloxins I and B lied in the side chain at C19, where an additional methyl substituent in Ustiloxin I resulted in an alanine moiety substitution for glycine of Ustiloxin B. The simultaneous deletion of the two adjacent core genes, CmustYb and CmustYa, using a single guide RNA designed in the intergenic region, and subsequent in-situ complementation via AMA-mediated CRISPR/Cas9 system confirmed the RiPP cluster's responsibility for ustiloxin production. The cultivation of the edited strain yielded ustiloxin-free fruiting bodies without affecting agronomic characters. PCR and genome resequencing confirmed the absence of any off-target events or foreign sequence remnants. This study marks a significant advancement in utilizing CRISPR technology to control ustiloxins in food, underscoring its broader implications for food safety and quality improvement.
Collapse
Affiliation(s)
- Mengqian Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anning Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoliang Meng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Yang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, Guangdong, China
| | - Zheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06510, United States
| | - Fen Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Caihong Dong
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
20
|
Lu H, Wang P, Sun J, Yin Y, Yang G, Huang B. A novel betapartitivirus isolated from Cordyceps militaris, an edible-medicinal mushroom. Arch Virol 2024; 169:159. [PMID: 38972922 DOI: 10.1007/s00705-024-06085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024]
Abstract
In this study, we identified a novel partitivirus, named "Cordyceps militaris partitivirus 1" (CmPV1), in Cordyceps militaris strain RCEF7506. The complete genome of CmPV1 comprises two segments, dsRNA1 and dsRNA2, each encoding a single protein. dsRNA1 (2,206 bp) encodes an RNA-dependent RNA polymerase (RdRp), and dsRNA2 (2,256 bp) encodes a coat protein (CP). Sequence analysis revealed that dsRNA1 has the highest similarity to that of Bipolaris maydis partitivirus 2 (BmPV2), whereas dsRNA2 shows the highest similarity to human blood-associated partitivirus (HuBPV). Phylogenetic analysis based on RdRp sequences suggests that CmPV1 is a new member of the genus Betapartitivirus of the family Partitiviridae. This is the first documentation of a betapartitivirus infecting the entomopathogenic fungus C. militaris.
Collapse
Affiliation(s)
- Hanwen Lu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Ping Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Sun
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Yin
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guogen Yang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
21
|
Gebru H, Faye G, Belete T. Antioxidant capacity of Pleurotus ostreatus (Jacq.) P. Kumm influenced by growth substrates. AMB Express 2024; 14:73. [PMID: 38878132 PMCID: PMC11180080 DOI: 10.1186/s13568-024-01698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/08/2024] [Indexed: 06/19/2024] Open
Abstract
Functional constituents are the main concern in food production and consumption. Because foods rich in functional constituents have antioxidant capacity and are important in keeping consumers healthy. Pleurotus ostreatus is among foods rich in functional constituents. However, its functional constituents are affected by various factors. This study compared the antioxidant capacity of P. ostreatus grown on different substrates: straws of tef (Trt1), barley (Trt2), and wheat (Trt3), husks of faba bean (Trt4), and field pea (Trt5), sawdust (Trt6), and the mixture of the above with 1:1 w/w (Trt7). Trt7 had significantly higher radical scavenging activity (RSA) (73.27%), vitamin C (10.61 mg/100 g), and vitamin D (4.92 mg/100 g) compared to other treatments. Whereas the lowest values of RSA (44.24%), vitamin C (5.39 mg/100 g), and vitamin D (1.21 mg/100 g) were found in Trt2. The results indicated that mixed substrate may be a good growth substrate for functionally beneficial P. ostreatus and could be a promising source of natural antioxidants.
Collapse
Affiliation(s)
- Hailu Gebru
- Department of Horticulture, College of Agriculture and Natural Resources, Salale University, P.O. Box 245, Fiche, Ethiopia.
| | - Gezahegn Faye
- Department of Chemistry, College of Natural Science, Salale University, P.O. Box 245, Fiche, Ethiopia
| | - Tolosa Belete
- Department of Biology, College of Natural Science, Salale University, P.O. Box 245, Fiche, Ethiopia
| |
Collapse
|
22
|
Thapliyal S, Vishnoi R, Murti Y, Kumar R, Chavan N, Rawat P, Joshi G, Dwivedi AR, Goel KK. Exploring anticancer properties of the phytoconstituents and comparative analysis of their chemical space parameters with USFDA-approved synthetic anticancer agents. Chem Biol Drug Des 2024; 103:e14561. [PMID: 38862268 DOI: 10.1111/cbdd.14561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/30/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024]
Abstract
The present review article thoroughly analyses natural products and their derived phytoconstituents as a rich source of plausible anticancer drugs. The study thoroughly explores the chemical components derived from various natural sources, thus emphasizing their unique structural characteristics and therapeutic potential as an anticancer agent. The review contains the critical chemical constituents' in-depth molecular mechanisms, their source's chemical structures and the categories. The review also comprises an exhaustive and comprehensive analysis of different chemical spacing parameters of the anticancer agents derived from natural products. It compares them with USFDA-approved synthetic anticancer drugs up to 2020, thus providing a meaningful understanding of the relationship between natural and synthetic compounds portraying the anticancer assets. The review also delves more deeply into the chemical analysis of the heterocyclic moieties from the natural product arena, illustrating the anticancer mechanisms. The present article is, therefore, expected to serve as a valuable resource for natural product and medicinal chemists, encouraging and promoting an integrated approach to exploit the potential of natural products in drug discovery development and translational research, which have a prerequisite of bench to bedside approach. The work could guide researchers toward innovative approaches for the ever-evolving field of anticancer drug discovery.
Collapse
Affiliation(s)
- Somesh Thapliyal
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ritu Vishnoi
- Department of Botany, Hariom Saraswati PG College, Dhanauri, Haridwar, Uttarakhand, India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, Ghudda, Bathinda, India
| | - Nirja Chavan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Pramod Rawat
- Graphic Era (Deemed to be University) Clement Town Dehradun, Dehradun, India
- Graphic Era Hill University Clement Town Dehradun, Dehradun, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University), Srinagar, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy, GITAM (Deemed to be) University, Hyderabad, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, Uttarakhand, India
| |
Collapse
|
23
|
Wang M, Han Z, Fan B, Qu K, Zhang W, Li W, Li J, Li L, Li J, Li H, Wu S, Wang D, Zhu H. Discovery of Oral AMP-Activated Protein Kinase Activators for Treating Hyperlipidemia. J Med Chem 2024; 67:7870-7890. [PMID: 38739840 DOI: 10.1021/acs.jmedchem.3c01267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Activation of AMP-activated protein kinase (AMPK) is proposed to alleviate hyperlipidemia. With cordycepin and N6-(2-hydroxyethyl) adenosine (HEA) as lead compounds, a series of adenosine-based derivatives were designed, synthesized, and evaluated on activation of AMPK. Finally, compound V1 was identified as a potent AMPK activator with the lipid-lowering effect. Molecular docking and circular dichroism indicated that V1 exerted its activity by binding to the γ subunit of AMPK. V1 markedly decreased the serum low-density lipoprotein cholesterol levels in C57BL/6 mice, golden hamsters, and rhesus monkeys. V1 was selected as the clinical compound and concluded Phase 1 clinical trials. A single dose of V1 (2000 mg) increased AMPK activation in human erythrocytes after 5 and 12 h of treatment. RNA sequencing data suggested that V1 downregulated expression of genes involved in regulation of apoptotic process, lipid metabolism, endoplasmic reticulum stress, and inflammatory response in liver by activating AMPK.
Collapse
Affiliation(s)
- Mingchao Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Zunsheng Han
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Baoyan Fan
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Kai Qu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Wei Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Jingya Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Li Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Jin Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Hui Li
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Song Wu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Dongmei Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Xian Nong Tan Street 1, Xicheng District, Beijing 100050, China
| |
Collapse
|
24
|
Sakao K, Sho C, Miyata T, Takara K, Oda R, Hou DX. Verification of In Vitro Anticancer Activity and Bioactive Compounds in Cordyceps Militaris-Infused Sweet Potato Shochu Spirits. Molecules 2024; 29:2119. [PMID: 38731610 PMCID: PMC11085083 DOI: 10.3390/molecules29092119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/24/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Many liqueurs, including spirits infused with botanicals, are crafted not only for their taste and flavor but also for potential medicinal benefits. However, the scientific evidence supporting their medicinal effects remains limited. This study aims to verify in vitro anticancer activity and bioactive compounds in shochu spirits infused with Cordyceps militaris, a Chinese medicine. The results revealed that a bioactive fraction was eluted from the spirit extract with 40% ethanol. The infusion time impacted the inhibitory effect of the spirit extract on the proliferation of colon cancer-derived cell line HCT-116 cells, and a 21-day infusion showed the strongest inhibitory effect. Furthermore, the spirit extract was separated into four fractions, A-D, by high-performance liquid chromatography (HPLC), and Fractions B, C, and D, but not A, exerted the effects of proliferation inhibition and apoptotic induction of HCT-116 cells and HL-60 cells. Furthermore, Fractions B, C, and D were, respectively, identified as adenosine, cordycepin, and N6-(2-hydroxyethyl)-adenosine (HEA) by comprehensive chemical analyses, including proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FT-IR), and electrospray ionization mass spectrometry (ESI-MS). To better understand the bioactivity mechanisms of cordycepin and HEA, the agonist and antagonist tests of the A3 adenosine receptor (A3AR) were performed. Cell viability was suppressed by cordycepin, and HEA was restored by the A3AR antagonist MR1523, suggesting that cordycepin and HEA possibly acted as agonists to activate A3ARs to inhibit cell proliferation. Molecular docking simulations revealed that both adenosine and cordycepin bound to the same pocket site of A3ARs, while HEA exhibited a different binding pattern, supporting a possible explanation for the difference in their bioactivity. Taken together, the present study demonstrated that cordycepin and HEA were major bioactive ingredients in Cordyceps militaries-infused sweet potato shochu spirits, which contributed to the in vitro anticancer activity.
Collapse
Affiliation(s)
- Kozue Sakao
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (K.S.); (T.M.); (K.T.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Cho Sho
- Kirishima Shuzo Co., Ltd., 4-28-1 Shimokawahigashi, Miyakonojo, Miyazaki 885-8588, Japan;
| | - Takeshi Miyata
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (K.S.); (T.M.); (K.T.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - Kensaku Takara
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (K.S.); (T.M.); (K.T.)
- Faculty of Agriculture, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Rio Oda
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| | - De-Xing Hou
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan; (K.S.); (T.M.); (K.T.)
- Graduate School of Agriculture, Forestry and Fisheries, Kagoshima University, Kagoshima 890-0065, Japan
| |
Collapse
|
25
|
Krishna KV, Balasubramanian B, Park S, Bhattacharya S, Kadanthottu Sebastian J, Liu WC, Pappuswamy M, Meyyazhagan A, Kamyab H, Chelliapan S, Malaviya A. Conservation of Endangered Cordyceps sinensis Through Artificial Cultivation Strategies of C. militaris, an Alternate. Mol Biotechnol 2024:10.1007/s12033-024-01154-1. [PMID: 38658470 DOI: 10.1007/s12033-024-01154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
Cordyceps, an entomopathogenic fungus belonging to the Ascomycota phylum, is a familiar remedial mushroom that is extensively used in the traditional medicinal system, especially in South Asian nations. The significance of this genus' members in a range of therapeutic and biotechnological applications has long been acknowledged. The exceedingly valuable fungus Ophiocordyceps sinensis (Cordyceps sinensis) is found in the alpine meadows of Bhutan, Nepal, Tibet, and India, where it is severely harvested. Driven by market demand and ecological concerns, the study highlights challenges in natural C. sinensis collection and emphasizes the shift towards sustainable artificial cultivation methods. This in-depth review navigates Cordyceps cultivation strategies, focusing on C. sinensis and the viable alternative, C. militaris. The escalating demand for Cordyceps fruiting bodies and bioactive compounds prompts a shift toward sustainable artificial cultivation. While solid-state fermentation on brown rice remains a traditional method, liquid culture, especially submerged and surface/static techniques, emerges as a key industrial approach, offering shorter cultivation periods and enhanced cordycepin production. The review accentuates the adaptability and scalability of liquid culture, providing valuable insights for large-scale Cordyceps production. The future prospects of Cordyceps cultivation require a holistic approach, combining scientific understanding, technological innovation, and sustainable practices to meet the demand for bioactive metabolites while ensuring the conservation of natural Cordyceps populations.
Collapse
Affiliation(s)
- Kondapalli Vamsi Krishna
- Applied and Industrial Biotechnology Laboratory, Christ University, Hosur Road, Bangalore, Karnataka, India
| | | | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Sukanta Bhattacharya
- Applied and Industrial Biotechnology Laboratory, Christ University, Hosur Road, Bangalore, Karnataka, India
| | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | | | - Arun Meyyazhagan
- Department of Life Sciences, Christ University, Bangalore, India
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College, and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, India.
- Faculty of Social Sciences, Media and Communication, University of Religions and Denominations, Pardisan, Qom, Iran.
| | - Shreeshivadasan Chelliapan
- Department of Smart Engineering and Advanced Technology, Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Alok Malaviya
- Applied and Industrial Biotechnology Laboratory, Christ University, Hosur Road, Bangalore, Karnataka, India.
- QuaLife Biotech Pvt. Ltd, Bangalore, India.
| |
Collapse
|
26
|
Li X, Wang X, Liang F, Wang Z, Liu W, Ge Y, Yang S, Liu Y, Li Y, Cheng X, Li W. Biological characteristics of Cordyceps militaris single mating-type strains. Arch Microbiol 2024; 206:225. [PMID: 38642078 DOI: 10.1007/s00203-024-03952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.
Collapse
Affiliation(s)
- Xiu'E Li
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Xin Wang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Fengji Liang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Zhaoxin Wang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Wenshuo Liu
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Yupeng Ge
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Shude Yang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Yu Liu
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Yin Li
- Yantai Hospital of Traditional Chinese Medicine, Yantai, 264013, China
| | - Xianhao Cheng
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China.
- Yantai Edible and Medicinal Mushroom Technology Innovation Center, Yantai, 264013, China.
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai, Shandong Province, 264025, China.
| | - Weihuan Li
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China.
- Yantai Edible and Medicinal Mushroom Technology Innovation Center, Yantai, 264013, China.
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai, Shandong Province, 264025, China.
| |
Collapse
|
27
|
Xiong S, Jiang J, Wan F, Tan D, Zheng H, Xue H, Hang Y, Lu Y, Su Y. Cordyceps militaris Extract and Cordycepin Alleviate Oxidative Stress, Modulate Gut Microbiota and Ameliorate Intestinal Damage in LPS-Induced Piglets. Antioxidants (Basel) 2024; 13:441. [PMID: 38671889 PMCID: PMC11047340 DOI: 10.3390/antiox13040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Cordycepin is considered a major bioactive component in Cordyceps militaris extract. This study was performed to evaluate the ameliorative effect of Cordyceps militaris extract (CME) and cordycepin (CPN) supplementation on intestinal damage in LPS-challenged piglets. The results showed that CPN or CME supplementation significantly increased the villus height (p < 0.01) and villus height/crypt depth ratio (p < 0.05) in the jejunum and ileum of piglets with LPS-induced intestinal inflammation. Meanwhile, CPN or CME supplementation alleviated oxidative stress and inflammatory responses by reducing the levels of MDA (p < 0.05) and pro-inflammatory cytokines in the serum. Additionally, supplementation with CPN or CME modulated the structure of the intestinal microbiota by enriching short-chain fatty acid-producing bacteria, and increased the level of butyrate (p < 0.05). The RNA-seq results demonstrated that CME or CPN altered the complement and coagulation-cascade-related genes (p < 0.05), including upregulating gene KLKB1 while downregulating the genes CFD, F2RL2, CFB, C4BPA, F7, C4BPB, CFH, C3 and PROS1, which regulate the complement activation involved in inflammatory and immune responses. Correlation analysis further demonstrated the potential relation between the gut microbiota and intestinal inflammation, oxidative stress, and butyrate in piglets. In conclusion, CPN or CME supplementation might inhibit LPS-induced inflammation and oxidative stress by modulating the intestinal microbiota and its metabolite butyrate in piglets.
Collapse
Affiliation(s)
- Shijie Xiong
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (H.Z.)
| | - Jiajia Jiang
- Institute of China Black Pig Industry Research, Zhejiang Qinglian Food Co., Ltd., Haiyan 314317, China;
| | - Fan Wan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Ding Tan
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (H.Z.)
| | - Haibo Zheng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (H.Z.)
| | - Huiqin Xue
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
| | - Yiqiong Hang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
| | - Yang Lu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (S.X.); (F.W.); (H.X.); (Y.H.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (D.T.); (H.Z.)
| |
Collapse
|
28
|
Ontawong A, Pengnet S, Thim-Uam A, Munkong N, Narkprasom N, Narkprasom K, Kuntakhut K, Kamkeaw N, Amornlerdpison D. A randomized controlled clinical trial examining the effects of Cordyceps militaris beverage on the immune response in healthy adults. Sci Rep 2024; 14:7994. [PMID: 38580687 PMCID: PMC10997757 DOI: 10.1038/s41598-024-58742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/02/2024] [Indexed: 04/07/2024] Open
Abstract
Cordyceps militaris (L.) Link (C. militaris) contains various beneficial substances, including polysaccharides (galactomannan), nucleotides (adenosine and cordycepin), cordycepic acid, amino acids, and sterols (ergosterol and beta-sitosterol). It also contains other essential nutrients, such as protein, vitamins (E, K, B1, B2, and B12), and minerals (potassium, sodium, calcium, magnesium, iron, zinc, and selenium). Due to the numerous health benefits of supplements and products containing C. militaris extract, their popularity has increased. However, the immunostimulant effect of C. militaris remains unclear. Therefore, this study developed a functional beverage from the submerged fermentation of C. militaris (FCM) and aimed to investigate the potential of FCM in healthy male and female volunteers in Phayao Province, Thailand. This study provides essential information for the development of healthy drink products. Healthy men and women were provided either FCM containing 2.85 mg of cordycepin or placebo for 8 weeks (n = 10 for each gender). The immune cell markers, immunoglobulins, and safety parameters were assessed initially at baseline and at 4 and 8 weeks. The NK cell activity markedly increased in the male FCM group from baseline (p = 0.049) to 4 weeks after receiving FCM. Compared with those in the placebo group, the NK activity in women who received FCM for 8 weeks significantly increased (p = 0.023) from baseline. Within-group analysis revealed that the IL-1β levels were markedly reduced in the male FCM group (p = 0.049). Furthermore, the IL-6 levels decreased from baseline in the female FCM group (p = 0.047). The blood sugar, lipid, and safety indices were not different between the experimental groups. FCM can potentially be developed as an immune-boosting supplement without liver, kidney, or blood component toxicity.
Collapse
Affiliation(s)
- Atcharaporn Ontawong
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Sirinat Pengnet
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Arthid Thim-Uam
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Narongsuk Munkong
- Department of Pathology, School of Medicine, University of Phayao, Phayao, 56000, Thailand
| | - Nukrob Narkprasom
- Division of Food Engineering, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai, 50290, Thailand
| | - Kanjana Narkprasom
- Division of Food Engineering, Faculty of Engineering and Agro-Industry, Maejo University, Chiang Mai, 50290, Thailand
| | - Kullanat Kuntakhut
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, Chiang Mai, 50290, Thailand
| | - Natakorn Kamkeaw
- Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
| | - Doungporn Amornlerdpison
- Center of Excellence in Agricultural Innovation for Graduate Entrepreneur, Maejo University, Chiang Mai, 50290, Thailand.
- Faculty of Fisheries Technology and Aquatic Resources, Maejo University, Chiang Mai, 50290, Thailand.
| |
Collapse
|
29
|
Wu N, Ge X, Yin X, Yang L, Chen L, Shao R, Xu W. A review on polysaccharide biosynthesis in Cordyceps militaris. Int J Biol Macromol 2024; 260:129336. [PMID: 38224811 DOI: 10.1016/j.ijbiomac.2024.129336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Cordyceps militaris (C. militaris) is an edible parasitic fungus with medicinal properties. Its bioactive polysaccharides are structurally diverse and exhibit various metabolic and biological activities, including antitumor, hypoglycemic, antioxidant, hypolipidemic, anti-inflammatory, immunostimulatory, and anti-atherosclerotic effects. These properties make C. militaris-derived polysaccharides a promising candidate for future development. Recent advancements in microbial fermentation technology have enabled successful laboratory cultivation and extraction of these polysaccharides. These polysaccharides are structurally diverse and exhibit various biological activities, such as immunostimulatory, antioxidant, antitumor, hypolipidemic, and anti-atherosclerotic effects. This review aims to summarize the structure and production mechanisms of polysaccharides from C. militaris, covering extraction methods, key genes and pathways involved in biosynthesis, and fermentation factors that influence yield and activity. Furthermore, the future potential and challenges of utilizing polysaccharides in the development of health foods and pharmaceuticals are addressed. This review serves as a valuable reference in the fields of food and medicine, and provides a theoretical foundation for the study of polysaccharides.
Collapse
Affiliation(s)
- Na Wu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaodong Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xuemei Yin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Lei Yang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Ligen Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Rong Shao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wei Xu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
30
|
Soommat P, Raethong N, Ruengsang R, Thananusak R, Laomettachit T, Laoteng K, Saithong T, Vongsangnak W. Light-Exposed Metabolic Responses of Cordyceps militaris through Transcriptome-Integrated Genome-Scale Modeling. BIOLOGY 2024; 13:139. [PMID: 38534409 DOI: 10.3390/biology13030139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024]
Abstract
The genome-scale metabolic model (GSMM) of Cordyceps militaris provides a comprehensive basis of carbon assimilation for cell growth and metabolite production. However, the model with a simple mass balance concept shows limited capability to probe the metabolic responses of C. militaris under light exposure. This study, therefore, employed the transcriptome-integrated GSMM approach to extend the investigation of C. militaris's metabolism under light conditions. Through the gene inactivity moderated by metabolism and expression (GIMME) framework, the iPS1474-tiGSMM model was furnished with the transcriptome data, thus providing a simulation that described reasonably well the metabolic responses underlying the phenotypic observation of C. militaris under the particular light conditions. The iPS1474-tiGSMM obviously showed an improved prediction of metabolic fluxes in correlation with the expressed genes involved in the cordycepin and carotenoid biosynthetic pathways under the sucrose culturing conditions. Further analysis of reporter metabolites suggested that the central carbon, purine, and fatty acid metabolisms towards carotenoid biosynthesis were the predominant metabolic processes responsible in light conditions. This finding highlights the key responsive processes enabling the acclimatization of C. militaris metabolism in varying light conditions. This study provides a valuable perspective on manipulating metabolic genes and fluxes towards the target metabolite production of C. militaris.
Collapse
Affiliation(s)
- Panyawarin Soommat
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand
| | - Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Ratchaprapa Ruengsang
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok 10150, Thailand
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Teeraphan Laomettachit
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok 10150, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology and School of Information Technology, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok 10150, Thailand
- Center for Agricultural Systems Biology (CASB), Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi (Bang Khun Thian), Bangkok 10150, Thailand
| | - Wanwipa Vongsangnak
- Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
31
|
Ju MS, Jo YH, Kim YR, Ghassemi Nejad J, Lee JG, Lee HG. Supplementation of complex natural feed additive containing ( C. militaris, probiotics and red ginseng by-product) on rumen-fermentation, growth performance and carcass characteristics in Korean native steers. Front Vet Sci 2024; 10:1300518. [PMID: 38288378 PMCID: PMC10822911 DOI: 10.3389/fvets.2023.1300518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/01/2023] [Indexed: 01/31/2024] Open
Abstract
This study evaluated the effects of a complex natural feed additive on rumen fermentation, carcass characteristics and growth performance in Korean-native steers. In this study, in vitro and in vivo experiment were conducted. Seven different levels of complex natural feed additive (CA) were added to the buffered rumen fluid using AnkomRF gas production system for 12, 24 and 48 h. All experimental data were analyzed by mixed procedure of SAS. Total gas production increased in the CA groups, with the highest response observed in the 0.06% group at 48 h of incubation (linear, p = 0.02; quadratic, p < 0.01). Regarding rumen fermentation parameters, the total volatile fatty acid (TVFA) tended to increase in all the CA groups (p = 0.07). The concentrations of butyrate, iso-butyrate, and iso-valerate significantly increased in all treatment groups (p < 0.05). In the in vivo experiment, 23 Korean-native steers were allocated to two groups: (1) Control and (2) Treatment; control +0.07% CA (DM basis), in a randomized complete-block design and blocked by body weight (ave. body weight = 641.96 kg ± 62.51 kg, p = 0.80) and feed intake (ave. feed intake = 13.96 kg ± 0.74 kg, p = 0.08) lasted for 252 days. Average daily gain decreased in the treatment group (p < 0.01). Backfat thickness significantly decreased in the CA group (p = 0.03), whereas meat color tended to increase (p = 0.07). In conclusion, in the in vitro experiment, the inclusion of complex natural feed additive decreased methane proportion and tended to increase TVFA production, but supplementation to Korean native steers decreased average daily gain and backfat thickness.
Collapse
Affiliation(s)
- Mun-Su Ju
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Yong-Ho Jo
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Yoo-Rae Kim
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jalil Ghassemi Nejad
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - Jang-Gu Lee
- DM Bio Co., Ltd., Jellonam-do, Republic of Korea
| | - Hong-Gu Lee
- Laboratory of Animal Nutrition, Physiology and Proteomics, Department of Animal Science and Technology, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Wang S, Zeng MH, Mao YP, Luo TT, Xu HY, Wang K, Li YX, Li Y, Chen LH, Wu WJ. Impact of Cooking Methods on Sensory Evaluation and Nutritional Properties of Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 2024; 26:75-87. [PMID: 39704621 DOI: 10.1615/intjmedmushrooms.2024055599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study addresses the alterations in nutrients [calcium, iron, and vitamins C and E (VC and VE, respectively)] and cordycepin content, alongside its sensory appeal in Cordyceps militaris, subjected to five distinct cooking methods: boiling, steaming, roasting, microwaving, and deep-frying. A comparative analysis showed the notable decline in nutrient content across most cooking methods excluding deep-frying. In notable contrast, the content of VE was substantially amplified during deep-frying, thereby emphasizing its value in preserving nutrients. However, an exception was noted wherein VE content remained essentially unchanged in the microwaved samples. Notably, the cordycepin content in boiled C. militaris reduced significantly, contrastingly, an elevation in this content was recorded for steamed, microwaved, or deep-fried samples, with roasting producing a stable content comparable to raw samples. The principal component analysis further discerned the iron, VC, and cordycepin as primary influencers on raw and roasted C. militaris, signifying superior retention during roasting, whereas deep-fried samples were predominantly affected by the calcium and VE content. Observation on nutrient losses revealed that boiling, steaming, and microwaving were less efficacious, compared with roasting and deep-frying. Sensory evaluations inductively favored steaming as synonymous with the finest culinary attribute, whereas deep-frying ranked least favorably on the sensory scale. Consequently, the present study offers refined dietary advice for the consumption of C. militaris catered to specific demographic groups, deepening understanding of the effects of various culinary practices on its overall nutrient profile and organoleptic properties.
Collapse
Affiliation(s)
- Shuo Wang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China; Jiangsu Alphay Bio-Technology Co. Ltd., Nantong, Jiangsu 226010, P.R. China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127, P.R. China
| | - Ming-Hui Zeng
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127, P.R. China
| | - Yue-Ping Mao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China
| | - Ting-Ting Luo
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China
| | - Hong-Yun Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China
| | - Kun Wang
- JiangSu Konen Bioengineering Limited by Share Ltd., Yangzhou, Jiangsu 211413, P.R. China
| | - Yun-Xia Li
- JiangSu Konen Bioengineering Limited by Share Ltd., Yangzhou, Jiangsu 211413, P.R. China
| | - Yi Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China; Yangzhou Engineering Research Center of Food Intelligent Packaging and Preservation Technology, Yangzhou, Jiangsu 225127, P.R. China
| | - Li-Hua Chen
- Jiangsu Alphay Bio-Technology Co. Ltd., Nantong, Jiangsu 226010, P.R. China
| | - Wei-Jie Wu
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, P.R. China; Jiangsu Alphay Bio-Technology Co. Ltd., Nantong, Jiangsu 226010, P.R. China
| |
Collapse
|
33
|
Kanno T, Tada R, Nakasone T, Okamatsu S, Iwakura Y, Tamura K, Miyaoka H, Adachi Y. Hot Water Extract of the Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes) Fruiting Body Activates Myeloid Dendritic Cells through A Dectin-1-Mediated Pathway. Int J Med Mushrooms 2024; 26:1-10. [PMID: 39704615 DOI: 10.1615/intjmedmushrooms.2024055210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The traditional use of Cordyceps militaris, an entomopathogenic fungus, in East Asian medicine has been well documented. Our previous study revealed that the fruiting body powder of C. militaris, referred to as Ryukyu-kaso, contains 1,3-β-glucan and stimulates bone marrow-derived dendritic cells via a dectin-1-dependent pathway. However, the immunomodulatory effects of soluble 1,3-β-glucan in Ryukyu-kaso and the underlying mechanisms remain unclear. In the present study, we aimed to investigate the immunostimulatory effects of the hot water extract of C. militaris fruiting body (RK-HWE) on bone marrow-derived dendritic cells and the involvement of the β-glucan receptor dectin-1. Our findings revealed that the hot water extract of C. militaris fruiting body contains soluble 1,3-β-glucan and potently induces bone marrow-derived dendritic cells to secrete both pro-inflammatory and immunoregulatory cytokines. Compared with the control, RK-HWE significantly increased the secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, interfer-on-в, IL-12p70, and granulocyte-macrophage colony-stimulating factor (all ,i>p < 0.05), with TNF-α secretion increasing from 7.82 ± 1.57 (control) to 403.7 ± 59.7 pg/mL with (RK-HWE; p < 0.001). Notably, these immunostimulatory effects of RK-HWE were completely abolished in bone marrow-derived dendritic cells derived from dectin-1-knockout mice (p < 0.001, all cytokines), suggesting that dectin-1 is essential for immunomodulation induced by RK-HWE. These findings provide novel insights into the mechanisms underlying the immunostimulatory effects of RK-HWE and highlight its potential as a natural immunomodulatory agent for various therapeutic applications.
Collapse
Affiliation(s)
- Takashi Kanno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Rui Tada
- Tokyo University of Pharmacy and Life Sciences
| | | | | | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroaki Miyaoka
- Department of Biomolecular Organic Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
34
|
Dutta D, Singh NS, Aggarwal R, Verma AK. Cordyceps militaris: A Comprehensive Study on Laboratory Cultivation and Anticancer Potential in Dalton's Ascites Lymphoma Tumor Model. Anticancer Agents Med Chem 2024; 24:668-690. [PMID: 38305294 DOI: 10.2174/0118715206282174240115082518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Cancer, a predominant cause of mortality, poses a formidable challenge in our pursuit of elevating life expectancy. Throughout history, individuals have sought natural remedies with minimal side effects as an appealing substitute for chemotherapeutic drugs. One such remedy is Cordyceps militaris, a renowned medicinal mushroom deeply entrenched in Asian ethnomedicine. Revered for its rejuvenating and curative attributes, it relied upon for ages. OBJECTIVE The mushroom's soaring demand outpaced natural availability, necessitating controlled laboratory cultivation as the core focus and exploring the potential of methanolic extracts from harvested Cordyceps militaris fruiting bodies against Dalton's Lymphoma Ascites (DLA) cells in vitro, with a specific emphasis on its anticancer traits. METHODS For cultivation, we employed a diverse range of rice substrates, among which bora rice showed promising growth of C. militaris fruiting bodies. To assess DLA cell cytotoxicity, several assays, including trypan blue exclusion assay, MTT assay, and LDH assay, were employed at different time points (24-96 h), which provided valuable insights on DLA cell viability and proliferation, shedding light on its therapeutic potential against cancer. RESULTS Our studies unveiled that methanolic extract prompts apoptosis in DLA cells via AO/EB dual staining, manifesting consistent apoptosis indicators such as membrane blebbing, chromatin condensation, nuclei fragmentation, and cellular shrinkage at 48-96 h of treatment. Furthermore, these striking repercussions of apoptosis were comprehended by an in silico approach having molecular docking simulation against antiapoptotic proteins like BCL-2, BCL-XL, MCL-1, BFL-1 & HSP100. CONCLUSION Methanolic C. militaris extracts exhibited cytotoxicity and apoptotic alterations in DLA cells.
Collapse
Affiliation(s)
- Diksha Dutta
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India
| | - Namram Sushindrajit Singh
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India
| | - Rohit Aggarwal
- Cosmic Cordycep Farms, Badarpur Said Tehsil, Faridabad, 121101, Haryana, India
| | - Akalesh Kumar Verma
- Department of Zoology, Cell & Biochemical Technology Laboratory, Cotton University, Guwahati, 781001, Assam, India
| |
Collapse
|
35
|
Sharma H, Sharma N, An SSA. Unique Bioactives from Zombie Fungus ( Cordyceps) as Promising Multitargeted Neuroprotective Agents. Nutrients 2023; 16:102. [PMID: 38201932 PMCID: PMC10780653 DOI: 10.3390/nu16010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Cordyceps, also known as "zombie fungus", is a non-poisonous mushroom that parasitizes insects for growth and development by manipulating the host system in a way that makes the victim behave like a "zombie". These species produce promising bioactive metabolites, like adenosine, β-glucans, cordycepin, and ergosterol. Cordyceps has been used in traditional medicine due to its immense health benefits, as it boosts stamina, appetite, immunity, longevity, libido, memory, and sleep. Neuronal loss is the typical feature of neurodegenerative diseases (NDs) (Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS)) and neurotrauma. Both these conditions share common pathophysiological features, like oxidative stress, neuroinflammation, and glutamatergic excitotoxicity. Cordyceps bioactives (adenosine, N6-(2-hydroxyethyl)-adenosine, ergosta-7, 9 (11), 22-trien-3β-ol, active peptides, and polysaccharides) exert potential antioxidant, anti-inflammatory, and anti-apoptotic activities and display beneficial effects in the management and/or treatment of neurodegenerative disorders in vitro and in vivo. Although a considerable list of compounds is available from Cordyceps, only a few have been evaluated for their neuroprotective potential and still lack information for clinical trials. In this review, the neuroprotective mechanisms and safety profile of Cordyceps extracts/bioactives have been discussed, which might be helpful in the identification of novel potential therapeutic entities in the future.
Collapse
Affiliation(s)
| | - Niti Sharma
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 461-701, Gyeonggi-do, Republic of Korea;
| |
Collapse
|
36
|
Zhu Z, Huang A, Chen M, Wang J, Li Z, Sun Z, Ye Y, Nan J, Yu S, Chen M, Xie Y, Hu H, Zhang J, Wu Q, Ding Y. Impacts of selenium enrichment on nutritive value and obesity prevention of Cordyceps militaris: A nutritional, secondary metabolite, and network pharmacological analysis. Food Chem X 2023; 19:100788. [PMID: 37780281 PMCID: PMC10534092 DOI: 10.1016/j.fochx.2023.100788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
This study aimed to compare the nutritive value and obesity prevention of ordinary Cordyceps militaris (CM) and selenium-enriched CM (SeCM). The results indicated that Se enrichment significantly increased the total carbohydrate and soluble dietary fiber content, while the protein and insoluble dietary fiber content decreased. Although the fat content was not affected, the medium and long-chain fatty acids content significantly changed. Moreover, Se enrichment significantly elevated the secondary metabolites belonging to terpenoids and alkaloids, which are linked with the enhanced biosynthesis of secondary metabolites. Both CM and SeCM reduced body weight, adipose accumulation, impaired glucose tolerance, and lipid levels in high-fat diet (HFD)-fed mice, and there was no significant difference between them. Network pharmacological analysis revealed that dietary CM and SeCM prevented HFD-induced obesity and associated metabolic diseases with multi-ingredients acting on multi-targets. Overall, Se enrichment improved the nutritive value of CM without altering its role in preventing obesity.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Aohuan Huang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Mengfei Chen
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zeyang Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zhongxu Sun
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Yiheng Ye
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Jingwei Nan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Shubo Yu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Moutong Chen
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Yizhen Xie
- Guangdong Yuewei Edible Mushroom Technology Co., Ltd., Guangzhou 510700, China
| | - Huiping Hu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Jumei Zhang
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Qingping Wu
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| | - Yu Ding
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
- Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
| |
Collapse
|
37
|
Gawas G, Ayyanar M, Gurav N, Hase D, Murade V, Nadaf S, Khan MS, Chikhale R, Kalaskar M, Gurav S. Process Optimization for the Bioinspired Synthesis of Gold Nanoparticles Using Cordyceps militaris, Its Characterization, and Assessment of Enhanced Therapeutic Efficacy. Pharmaceuticals (Basel) 2023; 16:1311. [PMID: 37765119 PMCID: PMC10537427 DOI: 10.3390/ph16091311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The promising therapeutic implications of nanoparticles have spurred their development for biomedical applications. An eco-friendly methodology synthesizes gold nanoparticles using Cordyceps militaris, an edible mushroom (Cord-Au-NPs), using a quality-by-design approach (central composite design). UV-visible spectroscopy analysis revealed an absorption peak at 540-550 nm, thus confirming the synthesis of gold nanoparticles. Cord-Au-NPs have a crystalline structure, as evidenced by the diffraction peaks. The zeta potential value of -19.42 mV signifies the stability of Cord-Au-NPs. XRD study shows gold facets and EDX analysis revealed a strong peak of spherical nanoparticles in the gold region with a mean particle size of 7.18 nm and a polydispersity index of 0.096. The obtained peaks are closely associated with phenolic groups, lipids, and proteins, as examined by FTIR, suggesting that they function as the reducing agent. Cord-Au-NPs exhibited dose-dependent antioxidant, antidiabetic, and antibacterial activity. The method is eco-friendly, nontoxic, less time-consuming, and does not use synthetic materials, leading to higher capabilities in biomedical applications.
Collapse
Affiliation(s)
- Girish Gawas
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji 403001, India;
| | - Muniappan Ayyanar
- Department of Botany, A.V.V.M. Sri Pushpam College (Autonomous), Affiliated to Bharathidasan University, Poondi 613503, India;
| | - Nilambari Gurav
- PES’s Rajaram and Tarabai Bandekar College of Pharmacy, Goa University, Ponda 403401, India;
| | - Dinesh Hase
- Department of Pharmacognosy, Amrutwahini College of Pharmacy, Sangamner 422608, India;
| | - Vaishali Murade
- Department of Chemistry and Research Centre, Padmashri Vikhe Patil College Pravaranagar, Loni 445001, India;
| | - Sameer Nadaf
- Bharati Vidyapeeth College of Pharmacy, Palus 416310, India;
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Rupesh Chikhale
- UCL School of Pharmacy, 29–39 Brunswick Square, London WC1N 1AX, UK;
| | - Mohan Kalaskar
- R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India;
| | - Shailendra Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Panaji 403001, India;
| |
Collapse
|
38
|
Thai NM, Dat TTH, Hai NTT, Bui TQ, Phu NV, Quy PT, Triet NT, Pham DT, De Tran V, Nhung NTA. Identification of potential inhibitors against Alzheimer-related proteins in Cordyceps militaris ethanol extract: experimental evidence and computational analyses. 3 Biotech 2023; 13:292. [PMID: 37547918 PMCID: PMC10403485 DOI: 10.1007/s13205-023-03714-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/22/2023] [Indexed: 08/08/2023] Open
Abstract
Laboratory experiments were carried out to identify the chemical composition of Cordyceps militaris and reveal the first evidence of their Alzheimer-related potential. Liquid chromatography-mass spectrometry analysis identified 21 bioactive compounds in the ethanol extract (1-21). High-performance liquid chromatography quantified the content of cordycepin (0.32%). Bioassays revealed the overall anti-Alzheimer potential of the extract against acetylcholinesterase (IC50 = 115.9 ± 11.16 µg mL-1). Multi-platform computations were utilized to predict the biological inhibitory effects of its phytochemical components against Alzheimer-related protein structures: acetylcholinesterase (PDB-4EY7) and β-amyloid protein (PDB-2LMN). In particular, 7 is considered as a most effective inhibitor predicted by its chemical stability in dipole-based environments (ground state - 467.26302 a.u.; dipole moment 11.598 Debye), inhibitory effectiveness (DS ¯ - 13.6 kcal mol-1), polarized compatibility (polarizability 25.8 Å3; logP - 1.01), and brain penetrability (logBB - 0.244; logPS - 3.047). Besides, 3 is promising as a brain-penetrating agent (logBB - 0.257; logPS - 2.400). The results preliminarily suggest further experimental attempts to verify the pro-cognitive effects of l(-)-carnitine (7). Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03714-9.
Collapse
Affiliation(s)
- Nguyen Minh Thai
- Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700000 Vietnam
| | - Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), Hue, 530000 Vietnam
| | - Nguyen Thi Thanh Hai
- Department of Chemistry, University of Sciences, Hue University, Hue, 530000 Vietnam
| | - Thanh Q. Bui
- Department of Chemistry, University of Sciences, Hue University, Hue, 530000 Vietnam
| | - Nguyen Vinh Phu
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University, Hue, 530000 Vietnam
| | - Phan Tu Quy
- Tay Nguyen University, Buon Ma Thuot, Dak Lak 630000 Vietnam
| | - Nguyen Thanh Triet
- Faculty of Traditional Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 70000 Vietnam
| | - Duy Toan Pham
- Department of Chemistry, College of Natural Sciences, Can Tho University, Campus II, 3/2 Street, Can Tho, 900000 Vietnam
| | - Van De Tran
- Department of Health Organization and Management, Can Tho University of Medicine and Pharmacy, 179 Nguyen Van Cu, Can Tho, 900000 Vietnam
| | - Nguyen Thi Ai Nhung
- Department of Chemistry, University of Sciences, Hue University, Hue, 530000 Vietnam
| |
Collapse
|
39
|
Silva AM, Preto M, Grosso C, Vieira M, Delerue-Matos C, Vasconcelos V, Reis M, Barros L, Martins R. Tracing the Path between Mushrooms and Alzheimer's Disease-A Literature Review. Molecules 2023; 28:5614. [PMID: 37513486 PMCID: PMC10384108 DOI: 10.3390/molecules28145614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is well-known among neurodegenerative diseases for the decline of cognitive functions, making overall daily tasks difficult or impossible. The disease prevails as the most common form of dementia and remains without a well-defined etiology. Being considered a disease of multifactorial origin, current targeted treatments have only managed to reduce or control symptoms, and to date, only two drugs are close to being able to halt its progression. For decades, natural compounds produced by living organisms have been at the forefront of research for new therapies. Mushrooms, which are well-known for their nutritional and medicinal properties, have also been studied for their potential use in the treatment of AD. Natural products derived from mushrooms have shown to be beneficial in several AD-related mechanisms, including the inhibition of acetylcholinesterase (AChE) and β-secretase (BACE 1); the prevention of amyloid beta (Aβ) aggregation and neurotoxicity; and the prevention of Tau expression and aggregation, as well as antioxidant and anti-inflammatory potential. Several studies in the literature relate mushrooms to neurodegenerative diseases. However, to the best of our knowledge, there is no publication that summarizes only AD data. In this context, this review aims to link the therapeutic potential of mushrooms to AD by compiling the anti-AD potential of different mushroom extracts or isolated compounds, targeting known AD-related mechanisms.
Collapse
Affiliation(s)
- Ana Margarida Silva
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
| | - Marco Preto
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Mónica Vieira
- Ciências Químicas e das Biomoléculas, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal; (A.M.S.); (M.V.)
- TBIO—Centro de Investigação em Saúde Translacional e Biotecnologia Médica, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, 4249-015 Porto, Portugal; (C.G.); (C.D.-M.)
| | - Vitor Vasconcelos
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Mariana Reis
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
| | - Lillian Barros
- CIMO, Centro de Investigação de Montanha, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Rosário Martins
- CIIMAR/CIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.P.); (V.V.); (M.R.)
- CISA, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Instituto Politécnico do Porto, 4200-072 Porto, Portugal
| |
Collapse
|
40
|
Prescott TAK, Hill R, Mas-Claret E, Gaya E, Burns E. Fungal Drug Discovery for Chronic Disease: History, New Discoveries and New Approaches. Biomolecules 2023; 13:986. [PMID: 37371566 DOI: 10.3390/biom13060986] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Fungal-derived drugs include some of the most important medicines ever discovered, and have proved pivotal in treating chronic diseases. Not only have they saved millions of lives, but they have in some cases changed perceptions of what is medically possible. However, now the low-hanging fruit have been discovered it has become much harder to make the kind of discoveries that have characterised past eras of fungal drug discovery. This may be about to change with new commercial players entering the market aiming to apply novel genomic tools to streamline the discovery process. This review examines the discovery history of approved fungal-derived drugs, and those currently in clinical trials for chronic diseases. For key molecules, we discuss their possible ecological functions in nature and how this relates to their use in human medicine. We show how the conservation of drug receptors between fungi and humans means that metabolites intended to inhibit competitor fungi often interact with human drug receptors, sometimes with unintended benefits. We also plot the distribution of drugs, antimicrobial compounds and psychoactive mushrooms onto a fungal tree and compare their distribution to those of all fungal metabolites. Finally, we examine the phenomenon of self-resistance and how this can be used to help predict metabolite mechanism of action and aid the drug discovery process.
Collapse
Affiliation(s)
| | - Rowena Hill
- Earlham Institute, Norwich NR4 7UZ, Norfolk, UK
| | | | - Ester Gaya
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| | - Edie Burns
- Royal Botanic Gardens, Kew, Richmond TW9 3AB, Surrey, UK
| |
Collapse
|
41
|
Raethong N, Thananusak R, Cheawchanlertfa P, Prabhakaran P, Rattanaporn K, Laoteng K, Koffas M, Vongsangnak W. Functional genomics and systems biology of Cordyceps species for biotechnological applications. Curr Opin Biotechnol 2023; 81:102939. [PMID: 37075529 DOI: 10.1016/j.copbio.2023.102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 04/21/2023]
Abstract
The use of Cordyceps species for the manufacture of natural products has been established; however, the tremendous advances observed in recent years in genetic engineering and molecular biology have revolutionized the optimization of Cordyceps as cell factories and drastically expanded the biotechnological potential of these fungi. Here, we present a review of systems and synthetic biology studies of Cordyceps and their implications for fungal biology and industrial applications. We summarize the current status of synthetic biology for enhancing targeted metabolites in Cordyceps species, such as cordycepin, adenosine, polysaccharide, and pentostatin. Progress in the systems and synthetic biology of Cordyceps provides a strategy for comprehensively comprehensive controlling efficient cell factories of natural bioproducts and novel synthetic biology toolbox for targeted engineering.
Collapse
Affiliation(s)
- Nachon Raethong
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Institute of Nutrition, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Pattsarun Cheawchanlertfa
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Pranesha Prabhakaran
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kittipong Rattanaporn
- Fermentation Technology Research Center (FTRC), Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok 10900, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology BIOTEC, National Science and Technology Development Agency NSTDA, Pathum Thani 12120, Thailand
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand.
| |
Collapse
|
42
|
Shaik RA, F. F. Alotaibi M, Nasrullah MZ, Alrabia MW, Asfour HZ, Abdel-Naim AB. Cordycepin- Melittin nanoconjugate intensifies wound healing efficacy in diabetic rats. Saudi Pharm J 2023; 31:736-745. [PMID: 37181143 PMCID: PMC10172630 DOI: 10.1016/j.jsps.2023.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The current study was designed to develop a nanoconjugate of cordycepin-melittin (COR-MEL) and assess its healing property in wounded diabetic rats. The prepared nanoconjugate has a particle size of 253.5 ± 17.4 nm with a polydispersity index (PDI) of 0.35 ± 0.04 and zeta potential of 17.2 ± 0.3 mV. To establish the wound healing property of the COR-MEL nanoconjugate, animal studies were pursued, where the animals with diabetes were exposed to excision and treated with COR hydrogel, MEL hydrogel, or COR-MEL nanoconjugate topically. The study demonstrated an accelerated wound contraction in COR-MEL nanoconjugate -treated diabetic rats, which was further validated by histological analysis. The nanoconjugate further exhibited antioxidant activities by inhibiting the accumulation of malondialdehyde (MDA) and exhaustion of superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzymatic activities. The nanoconjugate further demonstrated an enhanced anti-inflammatory activity by retarding the expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. Additionally, the nanoconjugate exhibits a strong expression of transforming growth factor (TGF)-β1, vascular endothelial growth factor (VEGF)-A, and platelet-derived growth factor (PDGFR)-β, indicating enrichment of proliferation. Likewise, nanoconjugate increased the concentration of hydroxyproline as well as the mRNA expression of collagen, type I, alpha 1 (Col 1A1). Thus, it is concluded that the nanoconjugate possesses a potent wound-healing activity in diabetic rats via antioxidant, anti-inflammatory, and pro-angiogenetic mechanisms.
Collapse
|
43
|
Hobbs C. The Health and Clinical Benefits of Medicinal Fungi. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:285-356. [PMID: 37468715 DOI: 10.1007/10_2023_230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The human uses of mushrooms and cultured mycelium products for nutrition and medicine are detailed and supported by available human studies, which in many cases are clinical trials published in peer-reviewed journals. The major medically active immunomodulating compounds in the cell walls-chitin, beta-glucans, and glycoproteins, as well as lower weight molecules-nitrogen-containing compounds, phenolics, and terpenes-are discussed in relation to their current clinical uses. The nutritional content and foods derived from mushrooms, particularly related to their medical benefits, are discussed. High-quality major nutrients such as the high amounts of complete protein and prebiotic fibers found in edible and medicinal fungi and their products are presented. Mushrooms contain the highest amount of valuable medicinal fiber, while dried fruiting bodies of some fungi have up to 80% prebiotic fiber. These fibers are particularly complex and are not broken down in the upper gut, so they can diversify the microbiome and increase the most beneficial species, leading to better immune regulation and increasing normalizing levels of crucial neurotransmitters like serotonin and dopamine. Since the growth of medicinal mushroom products is expanding rapidly worldwide, attention is placed on reviewing important aspects of mushroom and mycelium cultivation and quality issues relating to adulteration, substitution, and purity and for maximizing medicinal potency. Common questions surrounding medicinal mushroom products in the marketplace, particularly the healing potential of fungal mycelium compared with fruiting bodies, extraction methods, and the use of fillers in products, are all explored, and many points are supported by the literature.
Collapse
Affiliation(s)
- Christopher Hobbs
- Institute for Natural Products Research, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
44
|
Treatment of Drug-Induced Liver Injury. Biomedicines 2022; 11:biomedicines11010015. [PMID: 36672522 PMCID: PMC9855719 DOI: 10.3390/biomedicines11010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Current pharmacotherapy options of drug-induced liver injury (DILI) remain under discussion and are now evaluated in this analysis. Needless to say, the use of the offending drug must be stopped as soon as DILI is suspected. Normal dosed drugs may cause idiosyncratic DILI, and drugs taken in overdose commonly lead to intrinsic DILI. Empirically used but not substantiated regarding efficiency by randomized controlled trials (RCTs) is the intravenous antidote treatment with N-acetylcysteine (NAC) in patients with intrinsic DILI by N-acetyl-p-aminophenol (APAP) overdose. Good data recommending pharmacotherapy in idiosyncratic DILI caused by hundreds of different drugs are lacking. Indeed, a recent analysis revealed that just eight RCTs have been published, and in only two out of eight trials were DILI cases evaluated for causality by the worldwide used Roussel Uclaf Causality Assessment Method (RUCAM), representing overall a significant methodology flaw, as results of DILI RCTs lacking RUCAM are misleading since many DILI cases are known to be attributable erroneously to nondrug alternative causes. In line with these major shortcomings and mostly based on anecdotal reports, glucocorticoids (GCs) and other immuno-suppressants may be given empirically in carefully selected patients with idiosyncratic DILI exhibiting autoimmune features or caused by immune checkpoint inhibitors (ICIs), while some patients with cholestatic DILI may benefit from ursodeoxycholic acid use; in other patients with drug-induced hepatic sinusoidal obstruction syndrome (HSOS) and coagulopathy risks, the indication for anticoagulants should be considered. In view of many other mechanistic factors such as the hepatic microsomal cytochrome P450 with a generation of reactive oxygen species (ROS), ferroptosis with toxicity of intracellular iron, and modification of the gut microbiome, additional therapy options may be available in the future. In summation, stopping the offending drug is still the first line of therapy for most instances of acute DILI, while various therapies are applied empirically and not based on good data from RCTs awaiting further trials using the updated RUCAM that asks for strict exclusion and inclusion details like liver injury criteria and provides valid causality rankings of probable and highly probable grades.
Collapse
|
45
|
Jędrejko K, Kała K, Sułkowska-Ziaja K, Pytko-Polończyk J, Muszyńska B. Effect of Cordyceps spp. and Cordycepin on Functions of Bones and Teeth and Related Processes: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238170. [PMID: 36500262 PMCID: PMC9737375 DOI: 10.3390/molecules27238170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Cordyceps spp. (belonging to the Ascomycota group) are entomopathogenic mushrooms that have traditionally been used in ethnomedicine in Asian countries such as China, Japan, Korea, and India. They are unique parasites of larvae of selected species of moths. Cordyceps militaris is one of the best sources of cordycepin. Worldwide, osteoporosis is one of the most common bone diseases, whose pharmacotherapy includes various medical interventions; however, the research and development of new molecules and new drugs is required. The impact of adenosine receptors (ARs) on the purinergic signaling pathway may regulate proliferation, differentiate dental pulp stem cells and bone marrow, and modulate osteogenesis and bone repair. The aim of the review was to collect and analyze the available data on the effects of Cordyceps spp. or cordycepin on bone function and related processes. To the best of our knowledge, this is the first systematic review in this perspective, not necessarily using mushroom raw material or even the isolated parent compound cordycepin, but new molecules that are analogs of nucleosides, such as those from C. militaris. This review found that Cordyceps spp. or isolated cordycepin interacts via the AR, 5' adenosine monophosphate-activated protein kinase (AMPK), and adenosine-5'-triphosphate (ATP) signaling pathway and evaluated their impact on bones, teeth, and dental pulp. Cordyceps spp. was found to have the potential to develop regenerative medicines, thus providing an opportunity to expand the treatment or intervention methods in the recovery after traumatic injuries, convalescence, and terminal-stage or devastating diseases.
Collapse
Affiliation(s)
- Karol Jędrejko
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
- Correspondence: (K.J.); (B.M.)
| | - Katarzyna Kała
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Sułkowska-Ziaja
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Jolanta Pytko-Polończyk
- Chair and Department of Integrated Dentistry, Faculty of Medicine, Jagiellonian University Medical College, 4 Montelupich Street, 31-155 Kraków, Poland
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
- Correspondence: (K.J.); (B.M.)
| |
Collapse
|
46
|
Turk A, Abdelhamid MAA, Yeon SW, Ryu SH, Lee S, Ko SM, Kim BS, Pack SP, Hwang BY, Lee MK. Cordyceps mushroom with increased cordycepin content by the cultivation on edible insects. Front Microbiol 2022; 13:1017576. [DOI: 10.3389/fmicb.2022.1017576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Cordycepin is the major constituent of Cordyceps mushroom (or Cordyceps militaris) with therapeutic potential. Insects are the direct sources of nutrients for Cordyceps in nature. Therefore, optimized condition of Cordyceps cultivation for efficient cordycepin production was explored using six edible insects as substrates. The highest yield of cordycepin was produced by the cultivation on Allomyrina dichotoma and was 34 times that on Bombyx mori pupae. Among insect components, fat content was found to be important for cordycepin production. Especially, a positive correlation was deduced between oleic acid content and cordycepin production. The transcriptional levels of cns1 and cns2, genes involved in cordycepin biosynthesis, were higher in Cordyceps grown on A. dichotoma than on other insects tested. The addition of oleic acid to the substrates increased cordycepin production together with the transcriptional levels of cns1 and cns2. Therefore, Cordyceps with high content of cordycepin can be secured by the cultivation on insects.
Collapse
|
47
|
Cmcrf1, a Putative Zn2Cys6 Fungal Transcription Factor, Is Involved in Conidiation, Carotenoid Production, and Fruiting Body Development in Cordyceps militaris. BIOLOGY 2022; 11:biology11101535. [PMID: 36290438 PMCID: PMC9598893 DOI: 10.3390/biology11101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Cordyceps militaris is a high-value medicinal and edible fungus that produces many bioactive compounds, including carotenoid, and thus, improving the carotenoid productivity of C. militaris will increase its commercial value. However, little is known about the genetic regulatory mechanism of carotenoid biosynthesis in C. militaris. To further understanding the regulatory mechanism of carotenoid biosynthesis, we performed a large-scale screen of T-DNA insertional mutant library and identified a defective mutant, denoted T111, whose colonies did not change color from white to yellow upon exposure to light. Mutation analysis confirmed that a single T-DNA insertion occurred in the gene encoding a 695-amino-acid putative fungal-specific transcription factor with a predicted Zn2Cys6 binuclear cluster DNA-binding domain found uniquely in fungi. Targeted deletion of this gene, denoted C. militaris carotenogenesis regulatory factor 1 (Cmcrf1), generated the ΔCmcrf1 mutant that exhibited drastically reduced carotenoid biosynthesis and failed to generate fruiting bodies. In addition, the ΔCmcrf1 mutant showed significantly increased conidiation and increased hypersensitivity to cell-wall-perturbing agents compared with the wild-type strain. However, the Cmcrf1 gene did not have an impact on the mycelia growth of C. militaris. These results show that Cmcrf1 is involved in carotenoid biosynthesis and is required for conidiation and fruiting body formation in C. militaris.
Collapse
|
48
|
Simple Isolation of Cordycepin from Cordyceps militaris by Dual-Normal Phase Column Chromatography and Its Potential for Making Kombucha Functional Products. SEPARATIONS 2022. [DOI: 10.3390/separations9100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cordycepin (3′-deoxyadenosine) is a potent bioactive metabolite of the medicinal fungus Cordyceps militaris, which has been increasingly exploited to treat various chronic diseases in humans. However, the current synthesis and purification procedures of cordycepin are principally laborious and complicated. This study provides a simple protocol approach to isolate and purify cordycepin from C. militaris by normal phase column chromatography at room temperature. Besides, this is the first to investigate the potential of cordycepin and cordycepin-included extracts from C. militaris for making Kombucha functional products. By a repeated column chromatography, an amount of 1.16 g of cordycepin is isolated from 2.8 kg of fruiting bodies of C. militaris, which obtained an efficiency of 83.26% compared to that estimated by high-performance liquid chromatography (HPLC). The purity of cordycepin is confirmed by thin-layer chromatography (TLC), HPLC, and proton nuclear magnetic resonance (1H NMR). In addition, kombucha-fermented extracts from cordycepin and cordycepin-included fractions show potential biological activities in terms of antioxidant, anti-diabetes via α-glucosidase inhibitory assay, and cytotoxicity via MTT assay on Meg-01 and HL-60 cell lines. Further studies on optimization of extraction protocol and verification of health benefits of kombucha products from cordycepin should be conducted prior to the official mass production.
Collapse
|
49
|
Cordyceps militaris—Fruiting Bodies, Mycelium, and Supplements: Valuable Component of Daily Diet. Antioxidants (Basel) 2022; 11:antiox11101861. [PMID: 36290584 PMCID: PMC9598386 DOI: 10.3390/antiox11101861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Cordyceps militaris has long been used in Eastern medicine for alleviating fatigue and as an immunostimulant. The present study aimed to determine the content of biologically active substances (bioelements and organic compounds), the total phenolic content, and the antioxidant activity of fruiting bodies (commercially available and self-cultivated), mycelia, and two food supplements. The results show that substrate composition and cultivation method had an influence on the properties of mushroom materials. An important aspect of the study is the estimation of the content of bioactive substances present after extraction into digestive juices in the artificial gastrointestinal tract model, which can allow for determining the amount of these substances that is potentially bioavailable for the human body. The best results for cordycepin (81.4 mg/100 g d.w.) and lovastatin (53.6 mg/100 g d.w.) were achieved for commercially available food supplements. Furthermore, after digestion in artificial intestinal juice, the highest amount of cordycepin was determined in the fruiting bodies from commercially obtained (25.9 mg/100 g d.w.) and self-cultivated mushroom (25.8 mg/100 g d.w.). In conclusion, the mycelium and fruiting bodies of C. militaris are ideal food supplements and pharmaceutical agents and can serve as a good source of prohealth substances potentially bioavailable for humans.
Collapse
|
50
|
Lan YH, Lu YS, Wu JY, Lee HT, Srinophakun P, Canko GN, Chiu CC, Wang HMD. Cordyceps militaris Reduces Oxidative Stress and Regulates Immune T Cells to Inhibit Metastatic Melanoma Invasion. Antioxidants (Basel) 2022; 11:antiox11081502. [PMID: 36009221 PMCID: PMC9404731 DOI: 10.3390/antiox11081502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, the water extract of Cordyceps militaris (Linn.) Link (CM) was used as a functional material to investigate the inhibitory mechanisms on B16F10 and lung metastatic melanoma (LMM) cells. Reducing power, chelating ability, and 2,2-diphenyl-2-picrylhydrazyl (DPPH) assays were applied for antioxidative capacities, and we obtained positive results from the proper concentrations of CM. To examine the ability of CM in melanoma proliferation inhibition and to substantiate the previous outcomes, three cellular experiments were performed via (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, MTT, a tetrazole) assay, cell migration, and invasion evaluation. The addition of CM to the incubation medium increased the number of CD8+ T cells significantly, which improved the immunogenicity. This study showed that CM exhibits various biological capabilities, including antioxidation, anti-tumor, tumor invasion suppression, and T cytotoxic cell activity promotion.
Collapse
Affiliation(s)
- Yuan-Hong Lan
- Department of Medical Laboratory Science and Biotechnology, ASIA University, Taichung 413, Taiwan;
| | - Yun-Sheng Lu
- Taiwan Agriculture Research Institute, Council of Agriculture, Taichung 413, Taiwan;
| | - Ju-Yu Wu
- Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan;
| | - Hsu-Tung Lee
- The Department of Neurological Institute, Taichung Veterans General Hospital, Taichung 402, Taiwan;
| | - Penjit Srinophakun
- Chemical Engineering Department, Faculty of Engineering, Kasetsart University, 50 Ngamwongwan Rd., Ladyao, Jatujak, Bangkok 10900, Thailand;
| | - Gizem Naz Canko
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan;
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Correspondence: ; Tel.: +886-935-753-718 or +886-4-2284-0733 (ext. 651); Fax: +886-4-228-522-42
| |
Collapse
|