1
|
Augustin MA, Chen JY, Ye JH. Processing to improve the sustainability of chickpea as a functional food ingredient. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8397-8413. [PMID: 38619292 DOI: 10.1002/jsfa.13532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/16/2024]
Abstract
Chickpea is a field crop that is playing an emerging role in the provision of healthy and sustainable plant-based value-added ingredients for the food and nutraceutical industries. This article reviews the characteristics of chickpea (composition, health properties, and techno-functionality) and chickpea grain that influence their use as whole foods or ingredients in formulated food. It covers the exploitation of traditional and emerging processes for the conversion of chickpea into value-added differentiated food ingredients. The influence of processing on the composition, health-promoting properties, and techno-functionality of chickpea is discussed. Opportunities to tailor chickpea ingredients to facilitate their incorporation in traditional food applications and in the expanding plant-based meat alternative and dairy alternative markets are highlighted. The review includes an assessment of the possible uses of by-products of chickpea processing. Recommendations are provided for future research to build a sustainable industry using chickpea as a value-added ingredient. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mary Ann Augustin
- CSIRO Agriculture and Food, Werribee, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, Australia
| | - Jia-Ying Chen
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
De Angelis D, Latrofa V, Caponio F, Pasqualone A, Summo C. Techno-functional properties of dry-fractionated plant-based proteins and application in food product development: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1884-1896. [PMID: 38009309 DOI: 10.1002/jsfa.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/20/2023] [Accepted: 11/27/2023] [Indexed: 11/28/2023]
Abstract
Dry-fractionated protein concentrates are gaining attention because they are produced using a versatile and sustainable technology, which can be applied to a wide range of plant material. To facilitate their utilization in new product development, it is crucial to obtain a comprehensive overview of their techno-functional properties. The present review aims to examine the techno-functional properties of dry-fractionated protein concentrates and describe their primary applications in food products, considering the published works in the last decade. The techno-functional properties of proteins, including water absorption capacity, emulsifying and foaming properties, gelling ability or protein solubility, are relevant factors to consider during food formulation. However, these properties are significantly influenced by the extraction technology, the type of protein and its characteristics. Overall, dry-fractionated proteins are characterized by high protein solubility, high foaming ability and foam stability, and high gelling ability. Such properties have been exploited in the development of food, such as bakery products and pasta, with the aim of increasing the protein content and enhancing the nutritional value. Additionally, innovative foods with distinctive textural and nutritional characteristics, such as meat and dairy analogues, have been developed by using dry-fractionated proteins. The results indicate that the study of these ingredients still needs to be improved, including their application with a broader range of plant materials. Nevertheless, this review could represent an initial step to obtaining an overview of the techno-functional properties of dry-fractionated proteins, facilitating their use in foods. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari "Aldo Moro", Bari, Italy
| | - Vittoria Latrofa
- Department of Soil, Plant and Food Science (DISSPA), University of Bari "Aldo Moro", Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari "Aldo Moro", Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari "Aldo Moro", Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
3
|
Spina A, Summo C, Timpanaro N, Canale M, Sanfilippo R, Amenta M, Strano MC, Allegra M, Papa M, Pasqualone A. Lupin as Ingredient in Durum Wheat Breadmaking: Physicochemical Properties of Flour Blends and Bread Quality. Foods 2024; 13:807. [PMID: 38472920 DOI: 10.3390/foods13050807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The popularity of adding pulse flours to baked goods is growing rapidly due to their recognised health benefits. In this study, increasing amounts (3, 7, 10, and 15%) of white lupin flour (Lupinus albus L.) and of protein concentrate from narrow-leaved lupin (Lupinus angustifolius L.) were used as replacements for durum wheat semolina to prepare bread, and their effects on the physicochemical properties of the flour blends, as well as the technological and sensory qualities of bread, were evaluated. The addition of protein concentrate from narrow-leaved lupin and white lupin flour increased the water binding capacity and the leavening rate compared to pure semolina. A farinograph test indicated that the dough development time had a slight but significant tendency to increase with the addition of lupin flour and protein concentrate of narrow-leaved lupin, while had a negative effect on the stability of dough. The alveograph strength decreased (225, 108, and 76 × 10-4 J for dough made with semolina, 15% of protein concentrate from narrow-leaved lupin, and 15% of white lupin flour, respectively), whereas there was an upward trend in the P/L ratio. Compared to re-milled semolina, the samples with lupin flour and protein concentrate from narrow-leaved lupin had low amylase activity, with falling number values ranging from 439 s to 566 s. The addition of the two different lupin flours lowered the specific volumes of the breads (2.85, 2.39, and 1.93 cm3/g for bread made from semolina, from 15% of protein concentrate from narrow-leaved lupin, and from 15% of white lupin flour, respectively) and increased their hardness values (up to 21.34 N in the bread with 15% of protein concentrate from narrow-leaved lupin). The porosity of the loaves was diminished with the addition of the two lupin flours (range of 5-8). The sensory analysis showed that the addition of white lupin flour or protein concentrate from narrow-leaved lupin did not impart any unpleasant flavours or odours to the bread. To conclude, the use of lupin in breadmaking requires adjustments to strengthen the gluten network but does not require a deflavouring process.
Collapse
Affiliation(s)
- Alfio Spina
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Nicolina Timpanaro
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Michele Canale
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Rosalia Sanfilippo
- Research Centre for Cereal and Industrial Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Margherita Amenta
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Maria Concetta Strano
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Maria Allegra
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Martina Papa
- Research Centre for Olive, Fruit and Citrus Crops, Council for Agricultural Research and Economics (CREA), Corso Savoia, 190, 95024 Acireale, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
4
|
De Angelis D, Latrofa V, Squeo G, Pasqualone A, Summo C. Dry-fractionated protein concentrate as egg replacer in sponge cake: how the rheological properties of the batters affect the physical and structural quality of the products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:1190-1199. [PMID: 37752603 DOI: 10.1002/jsfa.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Egg replacement is a notable food trend for academics and industry. Dry-fractionated protein concentrates (DFp) are minimally processed and sustainable ingredients. DFp from chickpea, red lentil and mung bean, prepared as aqueous dispersions at 20-40% (w/w), were used to replace egg in sponge cakes. To understand the effect of DFp on the physicochemical features of sponge cakes, the batter rheological properties (i.e., flow behavior, frequency-dependent and temperature-dependent behaviors) were investigated. RESULTS Frequency sweep revealed a higher storage modulus (G') than loss modulus (G″), indicating predominantly elastic-like behavior, dependent on the frequency. Increasing DFp content, especially at 40%, resulted in firmer batters, indicated by elevated apparent viscosity. During temperature sweep, G' increased starting from 80 °C in all DFp-based batters, indicating protein and starch conformational changes. Higher DFp content better simulated the egg behavior, affecting specific volume and thickness variation after baking but resulting in harder cakes. Crumb structure was similar to the control, highlighting that DFp can emulate the egg behavior in cake preparation. Protein content in cakes containing 30% DFp was similar to the control. However, the addition of DFp caused an increase in phytic acid. Sensory analysis of sponge cakes revealed differences in crust color, sweetness and legume flavor, with minimal effect on astringency. Chickpea and lentil DFp are suggested as preferred alternatives because of their to milder sensory impact. CONCLUSION Overall, eggs in cake formulation can be substituted by plant-based protein produced by dry fractionation. However, further research is essential to evaluate the nutritional characteristics. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari 'Aldo Moro', Bari, Italy
| | - Vittoria Latrofa
- Department of Soil, Plant and Food Science (DISSPA), University of Bari 'Aldo Moro', Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari 'Aldo Moro', Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari 'Aldo Moro', Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
5
|
The Effects of the Mixed Fermentation of Honeysuckle Cereal Mixed Flour on the Dough Characteristics and Bread Quality. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
This study investigated the effects of the mixed solid fermentation of honeysuckle cereal mixed flour with lactic acid bacteria and yeast on dough characteristics and bread quality. Honeysuckle powder and whole wheat flour were mixed to make reconstituted cereal flour, and yeast and Lactobacillus plantarum were implanted and mixed to make dough for fermentation. The dynamic rheological properties of the dough were determined, and the properties of the reconstituted cereal flour bread were determined, including the texture characteristics and color; then, the sensory evaluation and antioxidant capacity of the bread were determined. The storage modulus (G′) and loss modulus (G″) of the dough increased gradually with the increase in the honeysuckle powder content, and the loss tangent value, tanδ (G″/G′), was less than 1.0. The loss tangent value of the dough had no significant change (p > 0.05) with the increase in honeysuckle powder content; the L* value of the bread decreased from 88.50 to 76.00, the a* value increased from −1.87 to 0.79, and the b* value decreased from 21.04 to 13.68 with the increase in the amount of honeysuckle powder. When the honeysuckle powder addition was 4%, the reconstituted cereal bread was bright yellow and gave off a hint of bean and wheat flavor and had the best taste and quality. The hardness, chewiness, and the recovery of the bread decreased when the content of the honeysuckle powder was in the range of 0~4%, but the elasticity and the antioxidant and antiaging activity of the bread increased significantly (p > 0.05). It was determined that the best content of honeysuckle powder was 4%. The mixed microbial fermentation of honeysuckle cereal mixed flour can improve the quality and enhance the nutritional value of bread.
Collapse
|
6
|
Difonzo G, Troilo M, Allegretta I, Pasqualone A, Caponio F. Grape skin and seed flours as functional ingredients of pizza: Potential and drawbacks related to nutritional, physicochemical and sensory attributes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Yaver E. Nutritional and textural properties and antioxidant activity of breads prepared from immature, mature, germinated, fermented and black chickpea flours. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:7164-7171. [PMID: 35726896 DOI: 10.1002/jsfa.12082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chickpea is a rich source of proteins with well-balanced amino acids, dietary fibers, vitamins, minerals and phytochemicals. In the present study, immature, mature, germinated, fermented and black chickpea flours at a 20% ratio were used in breadmaking to reduce the glycemic index and enhance nutritive value. The effects of chickpea flours on the physical, chemical and textural characteristics, as well as the antioxidant properties and in vitro glycemic index of bread were compared. RESULTS Compared to the control (100% wheat bread), the inclusion of chickpea flours at a 20% ratio generally showed greater ash, fat and protein contents in bread. The use of immature, germinated and fermented chickpea flours in bread elicited a lower phytic acid concentration than that of bread containing mature and black chickpea flours. On the other hand, the inclusion of immature and germinated chickpea flours presented the highest total phenolic content in bread. Moreover, in vitro glycemic index values of loaves made with chickpea flours were markedly lower (at least 11%) compared to the control. The specific volume values of bread samples formulated with chickpea flours (except for fermented chickpea flour) were similar (P > 0.05) to each other. Bread samples containing immature and germinated chickpea flours exhibited lower hardness and chewiness than those of other samples containing chickpea flours. CONCLUSION The findings showed that immature, germinated and black chickpea flours are a good alternative to mature chickpea flour with respect to producing healthy bread. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elif Yaver
- Department of Food Engineering, Engineering Faculty, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
8
|
Mefleh M, Faccia M, Natrella G, De Angelis D, Pasqualone A, Caponio F, Summo C. Development and Chemical-Sensory Characterization of Chickpeas-Based Beverages Fermented with Selected Starters. Foods 2022; 11:foods11223578. [PMID: 36429170 PMCID: PMC9689564 DOI: 10.3390/foods11223578] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Legume protein ingredients are receiving continuous interest for their potential to formulate plant-based dairy analogs. In this study, a legume-based slurry was produced from an Apulian black chickpeas (BCP) protein concentrate and fermented with three starter cultures, Streptococcus thermophilus (ST), a co-culture of ST with Lactococcus lactis (STLL) and a co-culture of ST with Lactobacillus plantarum (STLP). The effect of fermentation on the biochemical, texture and sensorial parameters was evaluated. The same beverage without inoculum was used as a control (CTRL). All the obtained fermented beverages were characterized by high protein (120.00 g kg−1) and low-fat contents (17.12 g kg−1). Fermentation contributed to a decrease in the contents of phytic acid by 10 to 79% and saturated fatty acids by 30 to 43%, with the STLP fermentation exercising the major effect. The three culture starters influenced the texture and sensorial attributes and the profile of the volatile compounds differently. Fermentation increased the lightness, consistency, cohesivity and viscosity of the formulated beverages. On a sensorial level, STLL had a major effect on the acidity, sourness and astringency, while both ST and STLP affected the creaminess, solubility and stickiness. Legumes and grass aromas were masked in LAB-fermented samples, probably due to a new VOC formation. The functional properties of LAB fermentation, along with the high protein content of the black chickpeas concentrate, provide the opportunity to formulate a clean label and safe plant-based fermented beverage with higher nutritional value compared to the others currently found in the market.
Collapse
|
9
|
Inulin from Globe Artichoke Roots: A Promising Ingredient for the Production of Functional Fresh Pasta. Foods 2022; 11:foods11193032. [PMID: 36230108 PMCID: PMC9562900 DOI: 10.3390/foods11193032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 12/31/2022] Open
Abstract
Globe artichoke roots represent an alternative and sustainable source for inulin extraction and are well-noted for their technological and functional properties. Therefore, the aim of our study was to exploit inulin with high degree of polymerization as a replacement of durum wheat semolina for the production of functional fresh pasta. The effect of increased level of substitution (5, 10, 15%) on cooking, structural, sensory, and nutritional properties were evaluated and compared with a control sample consisting exclusively of durum wheat semolina. Inulin addition caused changes to internal structure as evaluated by scanning electron microscopy. The enriched samples showed a lower swelling index, an increasing cooking time, and values of cooking loss (2.37–3.62%), mainly due to the leaching of inulin into the cooking water. Cooked and raw enriched pasta was significantly darker and firmer than the control, but the sensory attributes were not negatively affected, especially at 5 and 10% of substitution levels. The increase of dietary fiber content in enriched pasta (3.44–12.41 g/100 g) resulted in a significant reduction of glycaemic index (pGI) and starch hydrolysis (HI). After gastrointestinal digestion, inulin-enriched pasta increased prebiotic growth able to significantly reduce E. coli cell density.
Collapse
|
10
|
Vurro F, Summo C, Squeo G, Caponio F, Pasqualone A. The Use of Durum Wheat Oil in the Preparation of Focaccia: Effects on the Oxidative Stability and Physical and Sensorial Properties. Foods 2022; 11:foods11172679. [PMID: 36076864 PMCID: PMC9455472 DOI: 10.3390/foods11172679] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Durum wheat oil is an innovative oil that could be considered the “second life” of durum wheat milling by-products. In this study, we proposed the use of this oil in the reformulation of a traditional Italian greased flat bread, namely focaccia, whose typical sensorial features are due to the presence of relevant amounts of oil in its formulation. The chemical, physical, and sensorial features of focaccia with durum wheat oil (DWO) were compared with those of focaccia prepared with olive oil (OO) and sunflower oil (SO). The results showed the prevalence of polyunsaturated fatty acids in DWO, followed by SO. DWO was more resistant to oxidation than SO (induction time 86.2 and 66.3 min, respectively), due to its higher content of tocotrienols (1020 and 70.2 mg/kg in DWO and SO, respectively), but was less resistant than OO, richer in monounsaturated fatty acids, and contained phenolic compounds. The volatile oxidation markers, namely hexanal and nonanal, were less prevalent in OO and DWO than in SO. Texture and color were positively influenced by the use of durum wheat oil, allowing the nutritional improvement of this flat bread in a sustainable and circular manner.
Collapse
|
11
|
Effect of Wheat Replacement by Pulse Flours on the Texture, Color, and Sensorial Characteristics of Crackers: Flash Profile Analysis. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2022; 2022:2354045. [PMID: 36032407 PMCID: PMC9410925 DOI: 10.1155/2022/2354045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/20/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022]
Abstract
Pulse flours are growing in popularity as alternatives to wheat in bakery products due to their high protein and nutritional value. However, the effect of different pulse species and substitution on sensory perception is unclear. The sensory perception of crackers made by partially replacing wheat with chickpea (40-80%) and lupin flour (10-30%) was evaluated using Flash profile analysis in association with instrumental analysis of texture and color. Flash profile analysis was conducted in Greece and Indonesia in order to allow culture comparison of the profiling of the samples and language by the subjects of the panel. Lightness (L∗) and hardness of crackers were decreased by the addition of pulses. Flash profile analysis indicated an association among color, texture, and sensory perception by judges. Derived attributes were associated with the physicochemical characteristics and raw materials of crackers for both panels. GPA analysis of Greek panel indicated that increasing the replacement of wheat led to the generation of more attributes regardless of pulse species, while the Indonesian panel was able to detect differences among pulse species.
Collapse
|
12
|
Pasqualone A, Vurro F, Summo C, Abd-El-Khalek MH, Al-Dmoor HH, Grgic T, Ruiz M, Magro C, Deligeorgakis C, Helou C, Le-Bail P. The Large and Diverse Family of Mediterranean Flat Breads: A Database. Foods 2022; 11:foods11152326. [PMID: 35954092 PMCID: PMC9368210 DOI: 10.3390/foods11152326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
An in-depth survey was conducted by collecting information from web sources, supplemented by interviews with experts and/or bakers, to identify all the flat breads (FBs) produced in the nine Mediterranean countries involved in the FlatBreadMine Project (Croatia, Egypt, France, Greece, Italy, Jordan, Lebanon, Malta and Spain), and to have an insight into their technical and cultural features. A database with information on 143 FB types (51 single-layered, 15 double-layered, 66 garnished, 11 fried) was established. Flours were from soft wheat (67.4%), durum wheat (13.7%), corn (8.6%), rye, sorghum, chickpea, and chestnut (together 5.2%). The raising agents were compressed yeast (55.8%), sourdough (16.7%), baking powder (9.0%), but 18.6% of FBs were unleavened. Sixteen old-style baking systems were recorded, classified into baking plates and vertical ovens (tannur and tabun). Artisanal FBs accounted for 82%, while the industrial ones for 7%. Quality schemes (national, European or global) applied to 91 FBs. Fifteen FBs were rare, prepared only for family consumption: changes in lifestyle and increasing urbanization may cause their disappearance. Actions are needed to prevent the reduction of biodiversity related to FBs. Information in the database will be useful for the selection of FBs suitable to promotional activities and technical or nutritional improvement.
Collapse
Affiliation(s)
- Antonella Pasqualone
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, 70124 Bari, Italy
- Brussels Institute of Advanced Studies (BrIAS) Fellow 2021/22, Elsene, 1050 Brussels, Belgium
- Correspondence:
| | - Francesca Vurro
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, 70124 Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Via Amendola, 165/a, 70124 Bari, Italy
| | - Mokhtar H. Abd-El-Khalek
- Food Technology Research Institute (FTRI), Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Haneen H. Al-Dmoor
- Scientific Food Center (FACTS), Princess Taghreed Street Bulding 68, P.O. Box 177, Amman 11831, Jordan
| | - Tomislava Grgic
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Maria Ruiz
- Institute of Agrochemistry and Food Technology (IATA-CSIC), C/Agustin Escardino, 7, 46980 Paterna, Spain
| | - Christopher Magro
- Department of Food Sciences and Nutrition, Faculty of Health Sciences, University of Malta, MSD2040 Msida, Malta
| | - Christodoulos Deligeorgakis
- Department of Food Science and Technology, Alexandrian Campus, International Hellenic University (IHU), 57400 Thessaloniki, Greece
| | - Cynthia Helou
- Department of Nutrition, Faculty of Pharmacy, Saint Joseph University of Beirut, Beirut 1004 2020, Lebanon
| | - Patricia Le-Bail
- INRAe, UR1268 Biopolymères, Interactions, Assemblages (BIA), Rue de la Géraudière, CEDEX 3, 44316 Nantes, France
| |
Collapse
|
13
|
De Angelis D, Squeo G, Pasqualone A, Summo C. Optimization of formulation and physicochemical, nutritional and sensory evaluation of vegan chickpea-based salad dressings. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2685-2693. [PMID: 35734110 PMCID: PMC9206952 DOI: 10.1007/s13197-021-05288-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 06/15/2023]
Abstract
UNLABELLED The formulation of a vegan salad dressing supplemented with chickpea flour (VC-SD) was optimized by D-optimal mixture design, evaluating the effect of chickpea flour, water and oil on the textural properties of the product. The linear models showed the best fitting and predictive ability, as highlighted by high R2 adj and Q2. The Cox-effects of the textural parameters were significant for water and chickpea flour contents, but not for oil. Sensory evaluation indicated that all the VC-SD were characterized by the predominance of pungent/acid odor notes, whereas sourness was the most perceived fundamental taste, together with a sensation of a grainy texture in mouth due to flour particles. Overall, the product can be consumed by vegans and vegetarians because produced without animal-derived ingredients, and is in synergy with the healthful characteristics of Mediterranean diet, in which pulses and extra-virgin olive oil play beneficial roles. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-021-05288-x.
Collapse
Affiliation(s)
- Davide De Angelis
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science, Food Science and Technology Section (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
14
|
Pasqualone A, Costantini M, Faccia M, Difonzo G, Caponio F, Summo C. The Effectiveness of Extruded-Cooked Lentil Flour in Preparing a Gluten-Free Pizza with Improved Nutritional Features and a Good Sensory Quality. Foods 2022; 11:482. [PMID: 35159632 PMCID: PMC8834442 DOI: 10.3390/foods11030482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Extruded-cooked lentil (ECL) flour was used to fortify (10/100 g dough) gluten-free pizza, which was compared with rice/corn-based pizza (control), and with pizza containing native lentil (NL) flour. Viscoamylograph and Mixolab data evidenced the hydrocolloid properties of ECL flour (initial viscosity = 69.3 BU), which contained pregelatinized starch. The use of ECL flour made it possible to eliminate hydroxymethylcellulose (E464), obtaining a clean label product. Both NL and ECL pizzas showed significantly (p < 0.05) higher contents of proteins (7.4 and 7.3/100 g, respectively) than the control pizza (4.4/100 g) and could be labelled as "source of proteins" according to the Regulation (EC) No. 1924/2006. In addition, NL and ECL pizzas were characterized by higher contents of bioactive compounds, including anthocyanins, and by higher in vitro antioxidant activity (1.42 and 1.35 µmol Trolox/g d.m., respectively) than the control pizza (1.07 µmol Trolox/g d.m.). However, NL and ECL pizzas also contained small amounts of undigestible oligosaccharides, typically present in lentils (verbascose = 0.92-0.98 mg/g d.m.; stachyose = 4.04-5.55 mg/g d.m.; and raffinose = 1.98-2.05 mg/g d.m.). No significant differences were observed in the liking level expressed by consumers between ECL and control pizzas.
Collapse
Affiliation(s)
- Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, I-70126 Bari, Italy; (M.C.); (M.F.); (G.D.); (F.C.); (C.S.)
| | | | | | | | | | | |
Collapse
|
15
|
Chigwedere CM, Wanasundara JPD, Shand PJ. Sensory descriptors for pulses and pulse-derived ingredients: Toward a standardized lexicon and sensory wheel. Compr Rev Food Sci Food Saf 2022; 21:999-1023. [PMID: 35122393 DOI: 10.1111/1541-4337.12893] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023]
Abstract
The organoleptic quality of pulses and their derived ingredients is fundamental in human utilization and evolution of food. However, the widespread use of pulses is hindered by their inherent sensorial aspects, which are regarded as atypical by the consumers who are unfamiliar to them. In most studies involving sensory assessment of pulses and pulse-ingredients using classical descriptive analysis methods, assessors establish their own lexica. This review is a synthesis of descriptive terms by which sensations emanating from pea, chickpea, lentil, faba bean, dry bean, bambara groundnut, lupin, pigeon pea and cowpea, and their derived ingredients have been described in the literature. Studies involving sensory assessment of processed whole seeds, slurries of raw flour, slurries of protein extracted from raw flour, and food products containing components of pulses were considered. The terms are categorized into those denoting basic taste, aroma, flavor, and trigeminal sensations. Bitterness is the most widely perceived basic taste. Beany, which is broad and complex with subcharacter notes, is predominantly used to describe aroma and flavor. The frequency of use of the collated terms in the reviewed studies was used to establish a sensory wheel. Inconsistency in the use of descriptive terms in the literature necessitates establishment of a standard lexicon that can be applied in both classical and increasingly popular rapid descriptive methods (e.g., check-all-that-apply) throughout the pulse value chain. This review is timely considering the dominance of pulses in plant-based foods and their increasing appeal to the food industry.
Collapse
Affiliation(s)
- Claire M Chigwedere
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| | - Janitha P D Wanasundara
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada.,Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada
| | - Phyllis J Shand
- Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
16
|
Optimization, identification, and comparison of peptides from germinated chickpea (Cicer arietinum) protein hydrolysates using either papain or ficin and their relationship with markers of type 2 diabetes. Food Chem 2021; 374:131717. [PMID: 34920404 DOI: 10.1016/j.foodchem.2021.131717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023]
Abstract
The objective was to optimize and compare the production of antidiabetic peptides from germinated chickpea isolated protein using either papain or ficin. Kabuli chickpeas were germinated for 2, 4 and 6 days. Proteins were isolated, and peptides were produced based on a central composite design selecting human dipeptidyl peptidase (DPP-IV) inhibition as a response. Peptide sequencing was performed to identify and evaluate the physiochemical, biochemical and bitterness properties. DPP-IV inhibition using papain was 84.66 ± 8.72%, with ficin being 72.05 ± 1.20%. The optimum hydrolysate conditions were 6 days germination, 1:10 E/S, and 30 min ficin hydrolysis; SPGAGKG, GLAR, and STSA were identified. Pure SPGAGKG had relatively high affinity for DPP-IV (-7.2 kcal/mol) and α-glucosidase inhibition (-5.9 kcal/mol), with an IC50 of 0.27 mg/mL for DPP-IV inhibition. Peptides in the chickpea hydrolysate inhibited markers of T2D, indicating that the optimal conditions could be used to prepare a functional food ingredient.
Collapse
|
17
|
Turgut Y, Turgut SS, Karacabey E. Use of ohmic heating as an alternative method for cooking pasta. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5529-5540. [PMID: 33682136 DOI: 10.1002/jsfa.11203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND In this study, the alternative method of ohmic heating (OH) was applied to investigate its potential usage in the cooking process for pasta and its comparison with the conventional method. For this purpose, OH was operated at four different voltage gradients (10, 20, 30, 40 V cm-1 ). The electrical conductivity of pasta σ (S m-1 ) was calculated for the temperature range 22-95 °C and a three-phase linear relation between σ and temperature was determined. RESULTS According to the results, the energy consumption of the OH system and cooking time were lower than the conventional method. Energy conservation was about 73.7% at 40 V cm-1 and increased up to 90.4% (at 10 V cm-1 ) with lower voltage gradients. Total cooking time, cooking loss, water absorption, degree of gelatinization, volume uptake, energy consumption and sensorial properties were investigated. No significant differences between the results of samples cooked with the conventional method and OH at 30-40 V cm-1 were found in terms of starch gelatinization degree, volume change, water absorption, and sensorial analysis (P > 0.05). CONCLUSION These results revealed that OH did not cause any negative effects on the quality parameters of pasta samples, and positive effects were observed on energy and time saving. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yelizcan Turgut
- Faculty of Engineering, Food Engineering Department, Süleyman Demirel University, Isparta, Turkey
- Provincial Directorate of Ministry of Agriculture and Forestry, Ministry of Agriculture and Forestry, Isparta, Turkey
| | - Sebahattin Serhat Turgut
- Faculty of Engineering, Food Engineering Department, Süleyman Demirel University, Isparta, Turkey
| | - Erkan Karacabey
- Faculty of Engineering, Food Engineering Department, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
18
|
Nutritional and Technological Optimization of Wheat-Chickpea- Milk Powder Composite Flour and Its Impact on Rheological and Sensorial Properties of Leavened Flat Bread. Foods 2021; 10:foods10081843. [PMID: 34441620 PMCID: PMC8391890 DOI: 10.3390/foods10081843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
Flour quality is influenced by the nature of the gluten and its various components. Gluten free flour made of pulses is known to enhance the nutritional quality of wheat flour. However, its addition can compromise the rheological and sensorial attributes of the bread. We used mixture design to optimize nutritional and technological qualities of a wheat-chickpea flour blend by adding milk powder as a natural organoleptic improver. A total of thirteen flour blends were prepared by incorporating 10 to 30% chickpea flour and 10 to 20% milk powder to wheat flour. Our results showed that the optimal flour blend consisted of 60% wheat, 24% chickpea, and 16% milk powder. Farinographic parameters of the optimal dough blend remained on par with those of the control dough (100% wheat flour), thereby preserving its bread-making quality. Sensory analysis of breads made from the optimal flour blend revealed no significant difference (p ≤ 0.05) from wheat flour for crumb and chewiness. Appreciation was brought to the appearance, crust, aroma, and taste in the optimized bread. This study suggests that chickpea flour can be suitably incorporated into bread wheat flour up to a percentage of 24% with 16% milk powder to produce bread with optimal nutritional quality while improving its sensory attributes and consumer acceptability.
Collapse
|
19
|
Costantini M, Summo C, Faccia M, Caponio F, Pasqualone A. Kabuli and Apulian black Chickpea Milling By-Products as Innovative Ingredients to Provide High Levels of Dietary Fibre and Bioactive Compounds in Gluten-Free Fresh Pasta. Molecules 2021; 26:4442. [PMID: 34361595 PMCID: PMC8348039 DOI: 10.3390/molecules26154442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Gluten-free (GF) products, including pasta, are often characterised by nutritional deficiencies, such as scarce dietary fibre and excess of calories. Chickpea flour is increasingly being used by the food industries. Hulls, rich in dietary fibre and bioactive compounds, are discarded after milling. The aim of this work was to evaluate the quality features of short-cut GF fresh pasta added of hull (8% w/w) derived from kabuli (KH) or Apulian black (ABH) chickpeas, in comparison with control GF pasta prepared without hull. The enriched pasta, which could be labelled as "high fibre", was characterised by a higher level of bioactive compounds and antioxidant activity than the control. ABH-enriched pasta showed the highest anthocyanins (33.37 ± 1.20 and 20.59 ± 0.11 mg/kg of cyanidin-3-O-glucoside on dry matter in raw and cooked pasta, respectively). Hull addition increased colour intensity and structural quality of GF pasta: ABH-enriched pasta had the lowest cooking loss and the highest water absorption capacity; KH-enriched pasta showed the highest firmness. No significant differences in sensory liking were found among the samples, except for "aftertaste". Chickpea hull can be used as an innovative ingredient to produce potentially functional GF pasta, meeting the dietary needs of consumers without affecting quality.
Collapse
Affiliation(s)
| | | | | | | | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy; (M.C.); (C.S.); (M.F.); (F.C.)
| |
Collapse
|
20
|
Pasqualone A, Summo C, De Angelis D, Cucci G, Caranfa D, Lacolla G. Effect of Mineral and Organic Fertilization on desi and kabuli Chickpea ( Cicer arietinum L.): Plant Growth and Production, Hydration Properties, Bioactive Compounds, and Antioxidant Activity. PLANTS 2021; 10:plants10071441. [PMID: 34371640 PMCID: PMC8309255 DOI: 10.3390/plants10071441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 01/24/2023]
Abstract
Composting is a strategic technology to convert organic waste into environmentally friendly soil improvers, mitigating the pressure on landfills and contributing to sustainability. This research evaluates the effects of different doses of mineral/organic fertilizers on two chickpea types: desi and kabuli. A randomized block design with three replications and six conditions was adopted: non-fertilized control, two mineral fertilizations (M1, M2), and three organic fertilizations (B1, B2, B3). M1 and B1 provided for comparable NPK amounts. Fertilization and variety significantly influenced plant growth and production, and seed hydration. Fertilization had a lower influence on bioactive compounds. The highest seed yields were obtained with M2 (30–40–100 kg ha−1 of N, P2O5, and K2O, respectively. An addition of 40 kg ha−1 of P2O5 (M1) had no effect on seed yield. B1 (10 Mg ha−1 of Bio Vegetal) and M1 led to the same yield, which did not increase using higher doses of green compost. Mineral and organic fertilizations favored hydration and swelling of chickpeas. Desi chickpea showed a significantly higher seed yield but a lower seed weight than kabuli. Organic fertilization, combined with the recovery of peculiar chickpeas, which are more productive and richer in bioactive compounds, promotes a more sustainable food system.
Collapse
Affiliation(s)
- Antonella Pasqualone
- Department of Soil, Plant, and Food Science (Di.S.S.P.A.), University of Bari ‘Aldo Moro’, Via Amendola, 165/A, I-70126 Bari, Italy; (A.P.); (C.S.); (D.D.A.)
| | - Carmine Summo
- Department of Soil, Plant, and Food Science (Di.S.S.P.A.), University of Bari ‘Aldo Moro’, Via Amendola, 165/A, I-70126 Bari, Italy; (A.P.); (C.S.); (D.D.A.)
| | - Davide De Angelis
- Department of Soil, Plant, and Food Science (Di.S.S.P.A.), University of Bari ‘Aldo Moro’, Via Amendola, 165/A, I-70126 Bari, Italy; (A.P.); (C.S.); (D.D.A.)
| | - Giovanna Cucci
- Department of Agricultural and Environmental Science (Di.S.A.A.T.), University of Bari ‘Aldo Moro’, Via Amendola, 165/A, I-70126 Bari, Italy; (D.C.); (G.L.)
- Correspondence:
| | - Davide Caranfa
- Department of Agricultural and Environmental Science (Di.S.A.A.T.), University of Bari ‘Aldo Moro’, Via Amendola, 165/A, I-70126 Bari, Italy; (D.C.); (G.L.)
| | - Giovanni Lacolla
- Department of Agricultural and Environmental Science (Di.S.A.A.T.), University of Bari ‘Aldo Moro’, Via Amendola, 165/A, I-70126 Bari, Italy; (D.C.); (G.L.)
| |
Collapse
|
21
|
Herrera A C, Gonzalez de Mejia E. Feasibility of commercial breadmaking using chickpea as an ingredient: Functional properties and potential health benefits. J Food Sci 2021; 86:2208-2224. [PMID: 34028013 DOI: 10.1111/1750-3841.15759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 01/16/2023]
Abstract
The use of pulses, such as chickpea, has become more relevant in baking as they exhibit potential health benefits such as reduction of obesity, type 2 diabetes, and prevention of colon cancer. It is also a good source of highly bioavailable protein at a low cost. This allows companies to develop new innovative products that meet the demand for nutritional value-added baked goods. Further understanding of the baking properties and rheology of chickpea flours will allow the baking industry to overcome processing and quality challenges related to the effects caused by the addition of non-gluten-forming ingredients. Therefore, the objective of this review was to summarize the rheological properties of baking formulations using chickpea as an ingredient in order to produce quality products while preserving the nutritional aspects of this legume. It also covers health benefits linked to chickpea-specific compounds.
Collapse
Affiliation(s)
- Catherin Herrera A
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
22
|
Costantini M, Summo C, Centrone M, Rybicka I, D’Agostino M, Annicchiarico P, Caponio F, Pavan S, Tamma G, Pasqualone A. Macro- and Micro-Nutrient Composition and Antioxidant Activity of Chickpea and Pea Accessions. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/135813] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
23
|
Qualitative and Nutritional Improvement of Cereal-Based Foods and Beverages. Foods 2021; 10:foods10020338. [PMID: 33562433 PMCID: PMC7915169 DOI: 10.3390/foods10020338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 11/28/2022] Open
Abstract
The main directions of research aimed at nutritional improvement have to face either excesses or deficiencies in the diet. To this end, different strategies may be adopted, such as the reformulation of products, the introduction of functional ingredients, and the application of biotechnology to increase the bioavailability of bioactive compounds. These interventions, however, can alter the physico-chemical and sensory properties of the final products, making it necessary to achieve a balance between nutritional and quality modification. This Special Issue offers readers information on innovative ways to improve the cereal-based foods and beverages, useful for researchers and for industry operators.
Collapse
|
24
|
De Angelis D, Pasqualone A, Allegretta I, Porfido C, Terzano R, Squeo G, Summo C. Antinutritional factors, mineral composition and functional properties of dry fractionated flours as influenced by the type of pulse. Heliyon 2021; 7:e06177. [PMID: 33644466 PMCID: PMC7887393 DOI: 10.1016/j.heliyon.2021.e06177] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 01/08/2023] Open
Abstract
Coarse (CF) and Fine (FF) fractions were obtained by dry fractionation (air classification) of raw micronized flour (RM) of kabuli chickpea, green pea, yellow and red lentil. Pea showed the highest phytate content in RM and CF. Stachyose was the main oligosaccharide in lentils, exceeding 50 mg g-1, whereas raffinose (39.9 mg g-1) was abundant in chickpea. Antinutritional factors were significantly enriched in FF, whereas decreased in CF. Total-reflection X-ray fluorescence identified potassium as the main macronutrient in pulses. Ca was highly variable, ranging from 0.92 to 0.28 g kg-1 in pea and yellow lentil, respectively. A significant shift of minerals was observed in FF, but despite the highest phytate content, phytate:Zn ratio of lentils was lower than RM, indicating that Zn was enriched more than phytates. Yellow lentil and pea FF showed a protein content higher than 55 g 100g-1. Dry fractionation significantly affected the physicochemical properties, indicating different potential use of fractions.
Collapse
Affiliation(s)
- Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, I-70126, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, I-70126, Bari, Italy
| | - Ignazio Allegretta
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, I-70126, Bari, Italy
| | - Carlo Porfido
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, I-70126, Bari, Italy
| | - Roberto Terzano
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, I-70126, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, I-70126, Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/A, I-70126, Bari, Italy
| |
Collapse
|
25
|
Binou P, Yanni AE, Karathanos VT. Physical properties, sensory acceptance, postprandial glycemic response, and satiety of cereal based foods enriched with legume flours: a review. Crit Rev Food Sci Nutr 2020; 62:2722-2740. [PMID: 33305591 DOI: 10.1080/10408398.2020.1858020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Legumes are rich in proteins and widely consumed around the world. Their consumption has been associated with improved glycemic and lipidemic profile and positive alterations of gut microbiota. These beneficial effects have created a growing scientific interest in the role of legume-enriched foods on the promotion of human health. The aim of this review was to critically record the studies examining the nutritional value and textural properties of these products, as well as their efficacy on lowering postprandial glucose response and satiety. Reviewed data have shown that cereal products with high nutritional value are formulated when fortified with legume flours. The postprandial glucose response appears to be ameliorated and the enriched foods have a medium or a low glycemic index, however not enough data are presented referring to the appetite hormones responses. Textural properties are affected by the addition of legumes and occasionally, when substitution level is high, the final product has not acceptable odor and appearance. To overcome this barrier, particular food processes such as fermentation, extrusion and addition of hydrocolloids, are used and have shown great results on the textural and sensory properties of the final products. The development of healthy legume-enriched cereal-based products is of great importance for the increase of legume consumption and the promotion of public health.
Collapse
Affiliation(s)
- Panagiota Binou
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopion University of Athens, Athens, Greece
| | - Amalia E Yanni
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopion University of Athens, Athens, Greece
| | - Vaios T Karathanos
- Laboratory of Chemistry-Biochemistry-Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopion University of Athens, Athens, Greece
| |
Collapse
|
26
|
Pasqualone A, Laddomada B, Boukid F, Angelis DD, Summo C. Use of Almond Skins to Improve Nutritional and Functional Properties of Biscuits: An Example of Upcycling. Foods 2020; 9:E1705. [PMID: 33233841 PMCID: PMC7699943 DOI: 10.3390/foods9111705] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/11/2022] Open
Abstract
Upcycling food industry by-products has become a topic of interest within the framework of the circular economy, to minimize environmental impact and the waste of resources. This research aimed at verifying the effectiveness of using almond skins, a by-product of the confectionery industry, in the preparation of functional biscuits with improved nutritional properties. Almond skins were added at 10 g/100 g (AS10) and 20 g/100 g (AS20) to a wheat flour basis. The protein content was not influenced, whereas lipids and dietary fiber significantly increased (p < 0.05), the latter meeting the requirements for applying "source of fiber" and "high in fiber" claims to AS10 and AS20 biscuits, respectively. The addition of almond skins altered biscuit color, lowering L* and b* and increasing a*, but improved friability. The biscuits showed sensory differences in color, odor and textural descriptors. The total sum of single phenolic compounds, determined by HPLC, was higher (p < 0.05) in AS10 (97.84 µg/g) and AS20 (132.18 µg/g) than in control (73.97 µg/g). The antioxidant activity showed the same trend as the phenolic. The p-hydroxy benzoic and protocatechuic acids showed the largest increase. The suggested strategy is a practical example of upcycling when preparing a health-oriented food product.
Collapse
Affiliation(s)
- Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (D.D.A.); (C.S.)
| | - Barbara Laddomada
- Institute of Sciences of Food Production (ISPA), CNR, via Monteroni, 73100 Lecce, Italy;
| | - Fatma Boukid
- Institute of Agriculture and Food Research and Technology (IRTA), Food Safety Programme, Food Industry Area, Finca Camps i Armet s/n, 17121 Monells, Catalonia, Spain;
| | - Davide De Angelis
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (D.D.A.); (C.S.)
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (D.D.A.); (C.S.)
| |
Collapse
|
27
|
Nutritional characterization of an Italian traditional bread from ancient grains: the case study of the durum wheat bread “Pane di Monreale”. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03617-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Pasqualone A, Costantini M, Coldea TE, Summo C. Use of Legumes in Extrusion Cooking: A Review. Foods 2020; 9:E958. [PMID: 32698316 PMCID: PMC7404795 DOI: 10.3390/foods9070958] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
The traditional perception that legumes would not be suitable for extrusion cooking is now completely outdated. In recent years, an increasing number of studies have been conducted to assess the behavior of various types of legume flours in extrusion cooking, proving that legumes have excellent potential for the production of extruded ready-to-eat foods by partially or totally replacing cereals. This review identifies the optimal processing conditions for legume-based and legume-added extruded foods, which allow the improvement of the expansion ratio and give the extrudates the spongy and crisp structure expected by consumers. In particular, the effect of the individual processing parameters on the physical-chemical and nutritional properties of the final product is highlighted. The extrusion cooking process, indeed, has a positive effect on nutritional characteristics, because it induces important modifications on starch and proteins, enhancing their digestibility, and reduces the content of trypsin inhibitors, lectins, phytic acid, and tannins, typically present in legumes. Therefore, the extrusion of legume flours is a viable strategy to improve their nutritional features while reducing home preparation time, so as to increase the consumption of these sustainable crops.
Collapse
Affiliation(s)
- Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.C.); (C.S.)
| | - Michela Costantini
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.C.); (C.S.)
| | - Teodora Emilia Coldea
- Department of Food Engineering, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Via Amendola, 165/a, I-70126 Bari, Italy; (M.C.); (C.S.)
| |
Collapse
|
29
|
Development of Durum Wheat Breads Low in Sodium Using a Natural Low-Sodium Sea Salt. Foods 2020; 9:foods9060752. [PMID: 32517162 PMCID: PMC7353580 DOI: 10.3390/foods9060752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/30/2020] [Accepted: 06/04/2020] [Indexed: 01/30/2023] Open
Abstract
Durum wheat is widespread in the Mediterranean area, mainly in southern Italy, where traditional durum wheat breadmaking is consolidated. Bread is often prepared by adding a lot of salt to the dough. However, evidence suggests that excessive salt in a diet is a disease risk factor. The aim of this work is to study the effect of a natural low-sodium sea salt (Saltwell®) on bread-quality parameters and shelf-life. Bread samples were prepared using different levels of traditional sea salt and Saltwell®. The loaves were packaged in modified atmosphere conditions (MAPs) and monitored over 90 days of storage. No significant differences (p ≤ 0.05) were found in specific volumes and bread yield between the breads and over storage times, regardless of the type and quantity of salt used. Textural data, however, showed some significant differences (p ≤ 0.01) between the breads and storage times. 5-hydroxymethylfurfural (HMF) is considered, nowadays, as an emerging ubiquitous processing contaminant; bread with the lowest level of Saltwell® had the lowest HMF content, and during storage, a decrease content was highlighted. Sensory data showed that the loaves had a similar rating (p ≤ 0.05) and differed only in salt content before storage. This study has found that durum wheat bread can make a nutritional claim of being "low in sodium" and "very low in sodium".
Collapse
|
30
|
Peris M, Rubio-Arraez S, Castelló ML, Ortolá MD. From the Laboratory to the Kitchen: New Alternatives to Healthier Bakery Products. Foods 2019; 8:foods8120660. [PMID: 31835412 PMCID: PMC6963723 DOI: 10.3390/foods8120660] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/01/2019] [Accepted: 12/05/2019] [Indexed: 01/13/2023] Open
Abstract
Due to the growing interest in improving the nutritional profile of bakery products, we have dealt with the most recent and relevant contributions regarding potential replacements for carbohydrates, proteins, and fats. Focusing on the influence of carbohydrates on metabolism, their excess implies obesity, diabetes and tooth decay. However, they are technologically important, since they are responsible for the structure of many bakery products. Regarding of the lipid profile, saturated fats have a great impact on the appearance of cardiovascular disease. Fortunately, nature and the food industry offer alternatives to traditional oils/butters with large amounts of omega 3 and other components that can mitigate these problems. Other relevant aspects are related to allergies concerning egg proteins, gluten or even requirements for vegan consumers. Several studies have been performed in this line, replacing eggs with milk serum, different mucilages obtained from legumes or some gums, etc. In conclusion, many papers have been published showing the possibility of successfully replacing (both at technological and sensory levels) less healthy ingredients with others that are nutritionally better. The challenge now is to combine these better components in a given product, as well as to evaluate possible interactions among them.
Collapse
Affiliation(s)
- Miguel Peris
- Department of Chemistry, Universitat Politècnica de València, Camino de Vera, s/n. 46022 Valencia, Spain
- Correspondence:
| | - Susana Rubio-Arraez
- Institute of Food Engineering for Development, Universitat Politècnica de València, Camino de Vera, s/n. 46022 Valencia, Spain; (S.R.-A.); (M.L.C.); (M.D.O.)
| | - María Luisa Castelló
- Institute of Food Engineering for Development, Universitat Politècnica de València, Camino de Vera, s/n. 46022 Valencia, Spain; (S.R.-A.); (M.L.C.); (M.D.O.)
| | - María Dolores Ortolá
- Institute of Food Engineering for Development, Universitat Politècnica de València, Camino de Vera, s/n. 46022 Valencia, Spain; (S.R.-A.); (M.L.C.); (M.D.O.)
| |
Collapse
|