1
|
Milon RB, Hu P, Zhang X, Hu X, Ren L. Recent advances in the biosynthesis and industrial biotechnology of Gamma-amino butyric acid. BIORESOUR BIOPROCESS 2024; 11:32. [PMID: 38647854 PMCID: PMC10992975 DOI: 10.1186/s40643-024-00747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/03/2024] [Indexed: 04/25/2024] Open
Abstract
GABA (Gamma-aminobutyric acid), a crucial neurotransmitter in the central nervous system, has gained significant attention in recent years due to its extensive benefits for human health. The review focused on recent advances in the biosynthesis and production of GABA. To begin with, the investigation evaluates GABA-producing strains and metabolic pathways, focusing on microbial sources such as Lactic Acid Bacteria, Escherichia coli, and Corynebacterium glutamicum. The metabolic pathways of GABA are elaborated upon, including the GABA shunt and critical enzymes involved in its synthesis. Next, strategies to enhance microbial GABA production are discussed, including optimization of fermentation factors, different fermentation methods such as co-culture strategy and two-step fermentation, and modification of the GABA metabolic pathway. The review also explores methods for determining glutamate (Glu) and GABA levels, emphasizing the importance of accurate quantification. Furthermore, a comprehensive market analysis and prospects are provided, highlighting current trends, potential applications, and challenges in the GABA industry. Overall, this review serves as a valuable resource for researchers and industrialists working on GABA advancements, focusing on its efficient synthesis processes and various applications, and providing novel ideas and approaches to improve GABA yield and quality.
Collapse
Affiliation(s)
- Ripon Baroi Milon
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Pengchen Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xueqiong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xuechao Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
- Shanghai JanStar Technology Development Co, Ltd., No. 1288, Huateng Road, Shanghai, People's Republic of China
| | - Lujing Ren
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
2
|
Dunn MF, Becerra-Rivera VA. The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2671. [PMID: 37514285 PMCID: PMC10385936 DOI: 10.3390/plants12142671] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant-PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant-microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research.
Collapse
Affiliation(s)
- Michael F Dunn
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| | - Víctor A Becerra-Rivera
- Programa de Genómica Funcional de Procariotes, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62210, Mexico
| |
Collapse
|
3
|
Gu J, Hu C, Jia X, Ren Y, Su D, He J. Physiological and biochemical bases of spermidine-induced alleviation of cadmium and lead combined stress in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:104-114. [PMID: 36081232 DOI: 10.1016/j.plaphy.2022.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) and lead (Pb) pollution is a major environmental issue affecting plant production. Spermidine (Spd) is involved in plant response to abiotic stress. However, the role and associated mechanism of Spd under Cd + Pb combined stress are poorly understood. The potential protective role of Spd at different concentration on rice (Oryza sativa L.) seedlings exposed to Cd + Pb treatment was investigated by a hydroponic experiment in this study. The results showed that exogenous Spd enhanced the tolerance of rice seedlings to Cd + Pb stress, resulted in an increase in plant height, root length, fresh weight and dry weight of roots and shoots. Further, application of Spd decreased the contents of hydrogen peroxide, superoxide anion, malondialdehyde, and the accumulation of Cd and Pb, and increased the contents of mineral nutrient, carotenoids, chlorophyll, proline, soluble sugar, soluble protein, total phenol, flavonoid, anthocyanin, and antioxidant enzymes activities in roots and shoots of rice seedlings under Cd + Pb stress. Particularly, 0.5 mmol L-1 Spd was the most effective to alleviate the adverse impacts on growth and physiological metabolism of rice seedlings under Cd + Pb stress. Principal component analysis and heat map clustering established correlations between physio-biochemical parameters and further revealed Spd alleviated Cd + Pb damage in rice seedling was associated with inhibition of accumulation and translocation of Cd and Pb, increasing the contents of photosynthetic pigments and mineral nutrient and stimulation of antioxidative response and osmotic adjustment. Overall, our findings provide an important prospect for use of Spd in modulating Cd + Pb tolerance in rice plants. Spd could help to alleviate Cd + Pb damage through inhibition of accumulation and translocation of Cd and Pb and stimulation of oxidant-defense system and osmotic adjustment.
Collapse
Affiliation(s)
- Jinyu Gu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Chunmei Hu
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Xiangwei Jia
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Yanfang Ren
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| | - Dongming Su
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Junyu He
- School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China; Jiangsu Petrochemical Safety and Environmental Engineering Research Center, Changzhou, 213164, PR China.
| |
Collapse
|
4
|
Shao J, Huang K, Batool M, Idrees F, Afzal R, Haroon M, Noushahi HA, Wu W, Hu Q, Lu X, Huang G, Aamer M, Hassan MU, El Sabagh A. Versatile roles of polyamines in improving abiotic stress tolerance of plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1003155. [PMID: 36311109 PMCID: PMC9606767 DOI: 10.3389/fpls.2022.1003155] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In recent years, extreme environmental cues such as abiotic stresses, including frequent droughts with irregular precipitation, salinity, metal contamination, and temperature fluctuations, have been escalating the damage to plants' optimal productivity worldwide. Therefore, yield maintenance under extreme events needs improvement in multiple mechanisms that can minimize the influence of abiotic stresses. Polyamines (PAs) are pivotally necessary for a defensive purpose under adverse abiotic conditions, but their molecular interplay in this remains speculative. The PAs' accretion is one of the most notable metabolic responses of plants under stress challenges. Recent studies reported the beneficial roles of PAs in plant development, including metabolic and physiological processes, unveiling their potential for inducing tolerance against adverse conditions. This review presents an overview of research about the most illustrious and remarkable achievements in strengthening plant tolerance to drought, salt, and temperature stresses by the exogenous application of PAs. The knowledge of underlying processes associated with stress tolerance and PA signaling pathways was also summarized, focusing on up-to-date evidence regarding the metabolic and physiological role of PAs with exogenous applications that protect plants under unfavorable climatic conditions. Conclusively, the literature proposes that PAs impart an imperative role in abiotic stress tolerance in plants. This implies potentially important feedback on PAs and plants' stress tolerance under unfavorable cues.
Collapse
Affiliation(s)
- Jinhua Shao
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Kai Huang
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Maria Batool
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fahad Idrees
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Rabail Afzal
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Haroon
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | | | - Weixiong Wu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Qiliang Hu
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Xingda Lu
- China Guangxi Hydraulic Research Institute, Nanning, China
- Key Laboratory of Water Engineering Materials and Structures, Nanning, China
| | - Guoqin Huang
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Aamer
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Ayman El Sabagh
- Department of Field Crops, Faculty of Agriculture, Siirt University, Siirt, Turkey
- Department of Agronomy, Faculty of Agriculture, University of Kafrelsheikh, Kafr El Sheikh, Egypt
| |
Collapse
|
5
|
da Silva TI, Dias MG, de Araújo NO, de Sousa Santos MN, Cruz RRP, Dias TJ, Ribeiro WS, Grossi JAS, Barbosa JG. Spermine reduces the harmful effects of salt stress in Tropaeolum majus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:687-696. [PMID: 35465202 PMCID: PMC8986909 DOI: 10.1007/s12298-022-01165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Flowers, leaves, fruits and buds of Tropaeolum majus are used for ornamental, medicinal and food purposes. However, salt stress limits the development and productivity of T. majus due to biochemical, physiological and anatomical disturbances. Polyamine application is an alternative for mitigating the harmful effects of salt stress. Thus, the objective of this work was to evaluate the effects of spermine application in T. majus grown under salt stress. The experiment was carried out in a completely randomized design, in a 3 × 2 factorial scheme, with 0, 40 mM (moderate salt stress) and 80 mM (severe salt stress) NaCl, and 0 and 1 mM spermine, and with five replicates. Growth (plant height, stem diameter, number of leaves, number of flowers, number of buds, leaf dry mass, stem dry mass and flower dry mass), gas exchange (gs, A, E, Ci and WUE), relative water content, contents of free amino acids, phenolic compounds, reducing and non-reducing sugars, lipid peroxidation and enzymatic activities (CAT, POD and APX) were evaluated. Spermine application decreased the harmful effects of salt stress on the growth and gas exchange and increased flowering in T. majus. Furthermore, the relative water content of T. majus increased under severe salt stress conditions. Spermine application reduced the contents of total phenolic compounds, free amino acids, reducing sugars and non-reducing sugars on leaves of T. majus. Spermine application increased CAT and POD activities in plants under severe salt stress and POD and APX in plants under moderate salt stress.
Collapse
Affiliation(s)
| | - Marlon Gomes Dias
- Department of Agronomy, Universidade Federal de Viçosa, 36570900 Viçosa, Brazil
| | | | | | | | - Thiago Jardelino Dias
- Department of Agriculture, Universidade Federal da Paraíba, 58220000 Bananeiras, Brazil
| | | | | | | |
Collapse
|
6
|
Jiang X, Xu Q, Zhang A, Liu Y, Li Z, Tang H, Cao D, Zhang D. Revealing the Hypoglycemic Effects and Mechanism of GABA-Rich Germinated Adzuki Beans on T2DM Mice by Untargeted Serum Metabolomics. Front Nutr 2022; 8:791191. [PMID: 34970582 PMCID: PMC8712313 DOI: 10.3389/fnut.2021.791191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is one of the most common metabolic diseases, and exploring strategies to prevent and treat diabetes has become extremely important. In recent decades the search for new therapeutic strategies for T2DM involving dietary interventions has attracted public attention. We established a diabetic mouse model by feeding mice a high-fat diet combined with injection of low-dose streptozotocin, intending to elucidate the effects and possible mechanisms of different dosages of γ-aminobutyric acid (GABA)-rich germinated adzuki beans on the treatment of diabetes in mice. The mice were treated for 6 weeks either with increasing doses of GABA-enriched germinated adzuki beans, with non-germinated adzuki beans, with GABA, or with the positive control drug metformin. Then, the blood glucose levels and blood lipid biochemical indicators of all the mice were measured. At the same time, serum differential metabolite interactions were explored by UPLC-Q/TOF-MS-based serum metabolomic analysis. The results showed that body weight and fasting blood glucose levels were significantly reduced (P < 0.05). We also report improved levels of total cholesterol, triglycerides, aspartate aminotransferase, alanine aminotransferase, urea, and serum creatinine. We observed a significant improvement in the homeostasis model assessment of the beta cell function and insulin resistance (HOMA-β and HOMA-IR) scores (P < 0.05) in the group of mice treated with the highest dose of GABA-enriched germinated adzuki beans. In addition, the metabolic profiles of the serum were analyzed, and 31 differential metabolites including amino acids and lipids were obtained. According to the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis, this was found to be correlated with nine significantly enriched metabolic pathways involving the up-regulation of levels of L-serine, SM (d18:1/22:1(13Z)), L-histidine, creatine, and 3-indoleacetic acid. Our data suggest that the hypoglycemic effect of GABA-enriched germinated adzuki beans on diabetic mice may be related to improving tryptophan metabolism, glycerol phospholipid metabolism, sphingosline metabolism, and the glycine, serine, and threonine metabolic pathways. This study provides a reference for the application of GABA-enriched germinated foods in type 2 diabetes and could provide a cue for searching biomarkers to be adopted for T2DM diagnosis.
Collapse
Affiliation(s)
- Xiujie Jiang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qingpeng Xu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Aiwu Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yong Liu
- Experimental Equipment Management Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Huacheng Tang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongmei Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
7
|
Sardar R, Ahmed S, Yasin NA. Role of exogenously applied putrescine in amelioration of cadmium stress in Coriandrum sativum by modulating antioxidant system. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:955-962. [PMID: 34632884 DOI: 10.1080/15226514.2021.1985961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Abiotic stress reduces the plant growth and biomass production. Putrescine (Put) may be applied to alleviate numerous types of abiotic stresses in plants. The present research was intended to evaluate the role of exogenously applied Put in extenuation of cadmium (Cd) stress in coriander plants. Coriander seeds primed with 0.25, 0.5, and1 mM Put were allowed to grow in 50 mg kg-1 Cd contaminated soil for one month. Put treatment improved seed germination, gas exchange attributes, root growth and shoot growth of coriander. The improved activity of stress-responsive enzymes such as superoxide dismutase, catalase and peroxidase, besides amplification of proline was observed in Put treated seedlings under Cd stress. In addition, a reduced amount of total soluble protein and sugars content were noticed in Cd stressed seedlings. Nevertheless, Put reduced MDA level in treated plants. Our results demonstrated that Put mitigated Cd induced stress by modulating antioxidants and photosynthetic activity of coriander plants.Novelty statement Most of the researchers have studied the role of endogenous putrescine in alleviation of plant stress. However, during current study, we primed coriander seeds with putrescine. Our results elucidated very promising role of exogenously applied putrescine in stress mitigation and growth improvement of coriander seedlings under Cd stress. The findings of current study advocate the application of putrescine for stress alleviation in crop plants.
Collapse
Affiliation(s)
- Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | |
Collapse
|
8
|
Jiang X, Xu Q, Zhang A, Liu Y, Zhao L, Gu L, Yuan J, Jia H, Shen X, Li Z, Cao D, Zhang D. Optimization of γ-Aminobutyric Acid (GABA) Accumulation in Germinating Adzuki Beans ( Vigna angularis) by Vacuum Treatment and Monosodium Glutamate, and the Molecular Mechanisms. Front Nutr 2021; 8:693862. [PMID: 34568402 PMCID: PMC8458712 DOI: 10.3389/fnut.2021.693862] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
This study aimed to investigate the optimal hypoxic and monosodium glutamate (MSG) stress conditions for the enrichment of γ-Aminobutyric acid (GABA) in germinating adzuki beans and to reveal the potential underlying molecular mechanisms of GABA accumulation. Using single-factor experiments and response surface model, we investigated the effects of germination time, germination temperature, vacuum time, and MSG concentration on GABA contents, and further explored the activity and gene expression of glutamate decarboxylase (GAD) and polyamine oxidase (PAO) critical rate restriction enzymes during GABA synthesis. The optimal soaking temperature, soaking time, and pH conditions were 35°C, 16 h, and 5, respectively. Furthermore, the optimal germination conditions for optimal GABA enrichment were 48 h, 1.99 mg/ml MSG concentration, germination temperature of 31.49°C, and vacuum time of 15.83 h. Under such conditions, the predicted GABA concentration was 443.57 ± 7.18 mg/100 g, with no significant difference between the predicted and experimental data. The vacuum + MSG (FZM) treatment has a maximum contribution rate of GABA to 38.29%, which significantly increase GABA content, and the increase was associated with increased GAD and PAO activity. In addition, MSG in combination with vacuum treatment could significantly induce VaGAD4 and VaGAD6 genes in 2 days germination of adzuki beans. According to the results of the present study, vacuum + MSG treatment is an effective approach to enhancing GABA accumulation in germinating adzuki beans, which could be employed in enhancing the functional quality of germinating adzuki beans.
Collapse
Affiliation(s)
- Xiujie Jiang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Qingpeng Xu
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Aiwu Zhang
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yong Liu
- Experimental Equipment Management Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liqin Zhao
- Experimental Equipment Management Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liwei Gu
- Experimental Equipment Management Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jianbin Yuan
- Experimental Equipment Management Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hongdou Jia
- Experimental Equipment Management Center, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xinting Shen
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongmei Cao
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongjie Zhang
- National Coarse Cereals Engineering Research Center, Heilongjiang Bayi Agricultural University, Daqing, China.,College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
9
|
Tailor A, Bhatla SC. Polyamine homeostasis modulates plasma membrane- and tonoplast-associated aquaporin expression in etiolated salt-stressed sunflower (Helianthus annuus L.) seedlings. PROTOPLASMA 2021; 258:661-672. [PMID: 33404919 DOI: 10.1007/s00709-020-01589-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/23/2020] [Indexed: 05/08/2023]
Abstract
Salt stress adversely affects plants by causing osmotic and ionic imbalance. Cellular osmotic adjustment occurs by modulation of water fluxes. Polyamines (PAs) are often advocated to be involved in osmoregulation during stressful conditions, and thus, they serve as potential "osmolytes." Aquaporins (AQPs), the water-transporting channels, are expected to play crucial roles in osmoregulation. Present investigations on etiolated sunflower seedlings demonstrate a possible correlation between PA homeostasis and maintenance of water balance, as a function of modulation of the abundance of two major AQP subfamilies: PIP2 (plasma membrane intrinsic protein 2) and TIP1 (tonoplast intrinsic protein 1). Salt stress (120 mM NaCl) restricts growth of sunflower seedlings and induces reduction in relative water content (RWC). This accompanies enhanced abundance of PIP2s and TIP1s in seedling roots and that of TIP1s in cotyledons, as revealed by Western blot analysis of AQP isoforms and also their imaging by confocal laser scanning microscopy (CLSM). Raising seedlings in the presence of 500 μM of DFMA (DL-α-difluoromethylarginine) or DFMO (DL-α-difluoromethylornithine), which are potent inhibitors of PA biosynthesis enzymes (arginine decarboxylase (ADC) and ornithine decarboxylase (ODC), respectively), significantly promotes root extension, irrespective of NaCl stress, and results in further lowering of salt-induced reduction in RWC in roots and cotyledons. This correlates with enhanced accumulation of both PIP2s and TIP1s in seedling roots, but not in cotyledons. Present work, therefore, implicates PA homeostasis in the maintenance of water status of sunflower seedlings, possibly via regulation of abundance and distribution of AQP isoforms associated with the plasma membrane and tonoplast.
Collapse
Affiliation(s)
- Aditi Tailor
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Satish C Bhatla
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
10
|
Alcázar R, Bueno M, Tiburcio AF. Polyamines: Small Amines with Large Effects on Plant Abiotic Stress Tolerance. Cells 2020; 9:E2373. [PMID: 33138071 PMCID: PMC7692116 DOI: 10.3390/cells9112373] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
In recent years, climate change has altered many ecosystems due to a combination of frequent droughts, irregular precipitation, increasingly salinized areas and high temperatures. These environmental changes have also caused a decline in crop yield worldwide. Therefore, there is an urgent need to fully understand the plant responses to abiotic stress and to apply the acquired knowledge to improve stress tolerance in crop plants. The accumulation of polyamines (PAs) in response to many abiotic stresses is one of the most remarkable plant metabolic responses. In this review, we provide an update about the most significant achievements improving plant tolerance to drought, salinity, low and high temperature stresses by exogenous application of PAs or genetic manipulation of endogenous PA levels. We also provide some clues about possible mechanisms underlying PA functions, as well as known cross-talks with other stress signaling pathways. Finally, we discuss about the possible use of PAs for seed priming to induce abiotic stress tolerance in agricultural valuable crop plants.
Collapse
Affiliation(s)
- Rubén Alcázar
- Polyamine’s Laboratory, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| | - Milagros Bueno
- Laboratory of Plant Physiology, Department of Animal Biology, Plant Biology and Ecology, Faculty of Experimental Science, University of Jaén, 23071 Jaén, Spain;
| | - Antonio F. Tiburcio
- Polyamine’s Laboratory, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
| |
Collapse
|