1
|
Shao T, Guo A, Zhang J, Hu S. Reducing tetracycline resistance genes in wheat soil using natural quorum sensing inhibitors: A new approach for mitigating antibiotic resistance gene contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175982. [PMID: 39241890 DOI: 10.1016/j.scitotenv.2024.175982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
The distribution and transmission of antibiotic resistance genes (ARGs) in agricultural soils constitute a significant threat to food safety and human health. Natural quorum sensing inhibitors (QSIs), with advantages such as low plant toxicity and low application costs, present a potential approach for mitigating ARG contamination by targeting bacterial quorum sensing systems. This study explored the impacts and mechanisms of three natural QSIs (vanillin, catechin, and tannin) on the abundance of tetracycline resistance genes (TRGs) in both rhizosphere and non-rhizosphere soils. Results illustrated a notable reduction in TRG abundance across three natural QSI treatments, with catechin displaying the most pronounced effect in the rhizosphere soil. Furthermore, the application of natural QSIs had a significant influence on the bacterial community structure and population dynamics, particularly evident in the alterations induced by catechin on bacterial interactions within the soil ecosystem. Natural QSIs inhibited the production of N-acyl homoserine lactone (AHL) signaling molecules. The primary environmental factors driving changes in bacterial community were identified as pH and NO3--N content. Through mechanisms involving the modulations of AHL concentrations and soil environmental factors, natural QSIs were found to impact bacterial population, ultimately leading to a decrease in TRG abundance. Importantly, the application of natural QSIs did not exhibit adverse effects on plant phenotypic traits. These findings serve as a useful reference for implementing natural QSIs to effectively control soil ARG contamination.
Collapse
Affiliation(s)
- Tengteng Shao
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Aiyun Guo
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jian Zhang
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shugang Hu
- School of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Liu S, Quek SY, Huang K. An Ecofriendly Nature-Inspired Microcarrier for Enhancing Delivery, Stability, and Biocidal Efficacy of Phage-Based Biopesticides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403465. [PMID: 38940376 DOI: 10.1002/smll.202403465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/30/2024] [Indexed: 06/29/2024]
Abstract
In pursuit of sustainable agricultural production, the development of environmentally friendly and effective biopesticides is essential to improve food security and environmental sustainability. Bacteriophages, as emerging biocontrol agents, offer an alternative to conventional antibiotics and synthetic chemical pesticides. The primary challenges in applying phage-based biopesticides in agricultural settings are their inherent fragility and low biocidal efficacy, particularly the susceptibility to sunlight exposure. This study addresses the aforementioned challenges by innovatively encapsulating phages in sporopollenin exine capsules (SECs), which are derived from plant pollen grains. The size of the apertures on SECs could be controlled through a non-thermal and rapid process, combining reinflation and vacuum infusion techniques. This unique feature facilitates the high-efficiency encapsulation and controlled release of phages under various conditions. The proposed SECs could encapsulate over 9 log PFU g-1 of phages and significantly enhance the ultraviolet (UV) resistance of phages, thereby ensuring their enhanced survivability and antimicrobial efficacy. The effectiveness of SECs encapsulated phages (T7@SECs) in preventing and treating bacterial contamination on lettuce leaves is further demonstrated, highlighting the practical applicability of this novel biopesticide in field applications. Overall, this study exploits the potential of SECs in the development of phage-based biopesticides, presenting a promising strategy to enhancing agricultural sustainability.
Collapse
Affiliation(s)
- Shanshan Liu
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Siew-Young Quek
- School of Chemical Sciences, The University of Auckland, Auckland, 1142, New Zealand
| | - Kang Huang
- Department of Biological Systems Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
3
|
Ribeiro VP, Bajsa-Hirschel J, Bastos JK, Reichley A, Duke SO, Meepagala KM. Characterization of the Phytotoxic Potential of Seven Copaifera spp. Essential Oils: Analyzing Active Compounds through Gas Chromatography-Mass Spectrometry Molecular Networking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18528-18536. [PMID: 39105735 DOI: 10.1021/acs.jafc.4c04586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
In recent years, there has been a need for environmentally friendly compounds for weed management in agriculture. This study is aimed to assess the phytotoxic constituents of oils obtained from oleoresins of seven Copaifera species (known as copaiba oils). Copaiba oils were separated from the resins by hydro-distillation, and the distillates were analyzed using gas chromatography-mass spectrometry (GC-MS) to characterize their chemical compositions. Multivariate analyses and molecular networking of GC-MS data were conducted to discern patterns in the chemical composition and phytotoxic activity of the oils, with the aim of identifying key compounds associated with phytotoxic activity. Seed germination bioassay revealed strong or complete germination inhibition against the monocot, Agrostis stolonifera but not the dicot Lactuca sativa. GC-MS analysis showed variations in composition among Copaifera species with some common compounds identified across multiple species. Caryophyllene oxide and junenol were associated with the observed phytotoxic effects. Automated flash chromatography was used to isolate the major compounds of the oils. Isolated compounds exhibited differing levels of phytotoxicity compared to the oils, suggesting the importance of interactions or synergism among oil components. These findings highlight the potential of copaiba oils as natural herbicidal agents and underscore the importance of considering species-specific responses in weed management strategies.
Collapse
Affiliation(s)
- Victor Pena Ribeiro
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Joanna Bajsa-Hirschel
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Jairo Kenupp Bastos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, SP 14440-903,Brazil
| | - Amber Reichley
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Stephen O Duke
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 39677, United States
| | - Kumudini M Meepagala
- Agricultural Research Service, U.S. Department of Agriculture, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| |
Collapse
|
4
|
Borah G, Samia BR, Hussain S, Kemprai P, Saikia SP, Haldar S. Eryngial: An α,β-Unsaturated Fatty Aldehyde as the Major Phytotoxin in Spiny Coriander (Eryngium foetidum L.) Essential Oil. Chem Biodivers 2024; 21:e202400195. [PMID: 38837651 DOI: 10.1002/cbdv.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/09/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024]
Abstract
Weed species many times possess allelochemicals as a part of their survival strategy. These metabolites can be potential targets in search of natural phytotoxins. This study aims to evaluate the phytotoxic ability of fatty aldehyde-rich essential oil from spiny coriander (Eryngium foetidum) leaves, also known as fitweed or spiritweed and to further identify the active phytotoxins. This oil dose-dependently inhibited the wheatgrass coleoptile and radicle growth in multiple bioassays with half maximal inhibitory concentration (IC50) 30.6-56.7 μg/mL, while exhibiting a less pronounced effect on the germination (IC50 181.8 μg/mL). The phytotoxicity assessment of two oil constituents identified eryngial (trans-2-dodecenal), exclusively major fatty aldehydic constituent as the potent growth inhibitor with IC50 in the range 20.8-36.2 μg/mL during an early phase of wheatgrass emergence. Eryngial-inspired screening of eleven saturated fatty aldehydes and alcohols did not find a significantly higher phytotoxic potency. In an open vessel, eryngial as the supplementation in agar medium, dose-dependently inhibited the growth of pre-germinated seeds of one monocot (bermudagrass) and one dicot (green amaranth) weed species with IC50 in the range 23.8-65.4 μg/mL. The current study identified eryngial, an α,β-unsaturated fatty aldehyde of coriander origin to be a promising phytotoxic candidate for weed control.
Collapse
Affiliation(s)
- Gitasree Borah
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Begom Rifah Samia
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
| | - Sajjad Hussain
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Phirose Kemprai
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Department of Botany, Debraj Roy College, Golaghat, Assam, 785621, India
| | - Siddhartha Proteem Saikia
- Agrotechnology and Rural Development Division, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Saikat Haldar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
| |
Collapse
|
5
|
Lami F, Burgio G, Magagnoli S, Depalo L, Lanzoni A, Frassineti E, Marotti I, Alpi M, Mercatante D, Rodriguez-Estrada MT, Dinelli G, Masetti A. The Effects of Natural Insecticides on the Green Peach Aphid Myzus persicae (Sulzer) and Its Natural Enemies Propylea quatuordecimpunctata (L.) and Aphidius colemani Viereck. INSECTS 2024; 15:556. [PMID: 39057288 PMCID: PMC11277335 DOI: 10.3390/insects15070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Botanical insecticides and soaps are frequently proposed as environmentally safer alternatives to synthetic insecticides. However, the efficacy and selectivity of these products are often only partially supported by empirical evidence. Here, we tested the effectiveness of five botanical insecticides, belonging to different categories, on the green peach aphid Myzus persicae (Sulzer) and their selectivity towards two natural enemies, the ladybird beetle Propylea quatuordecimpunctata (L.) and the parasitoid Aphidius colemani (Dalman). White thyme essential oil (EO), sweet orange EO, crude garlic extract and Marseille soap were tested and compared with a pyrethrin-based commercial product. Both direct spray assays and residual contact assays on treated cabbage leaf disks were carried out. The tested products had low efficacy against aphids when compared to pyrethrins but were in general less detrimental to ladybird beetle larvae, meaning that if applied against other pests, they have a lower chance of harming this agent of aphid biocontrol. Some of the products (soap, orange EO) did, however, show direct exposure toxicity toward ladybird larvae, and thyme EO had extensive phytotoxic effects on cabbage leaves, possibly indirectly leading to higher mortality in ladybird adults. These results underline the necessity for case-by-case evaluations of botanical insecticides.
Collapse
Affiliation(s)
- Francesco Lami
- DISTAL-Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (G.B.); (S.M.); (L.D.); (A.L.); (E.F.); (I.M.); (M.A.); (D.M.); (M.T.R.-E.); (G.D.); (A.M.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Luo C, Zhang L, Ali MM, Xu Y, Liu Z. Environmental risk substances in soil on seed germination: Chemical species, inhibition performance, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134518. [PMID: 38749244 DOI: 10.1016/j.jhazmat.2024.134518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Nowadays, numerous environmental risk substances in soil worldwide have exhibited serious germination inhibition of crop seeds, posing a threat to food supply and security. This review provides a comprehensive summary and discussion of the inhibitory effects of environmental risk substances on seed germination, encompassing heavy metals, microplastics, petroleum hydrocarbons, salinity, phenols, essential oil, agricultural waste, antibiotics, etc. The impacts of species, concentrations, and particle sizes of various environmental risk substances are critically investigated. Furthermore, three primary inhibition mechanisms of environmental risk substances are elucidated: hindering water absorption, inducing oxidative damage, and damaging seed cells/organelles/cell membranes. To address these negative impacts, diverse effective coping measures such as biochar/compost addition, biological remediation, seed priming, coating, and genetic modification are proposed. In brief, this study systematically analyzes the negative effects of environmental risk substances on seed germination, and provides a basis for the comprehensive understanding and future implementation of efficient treatments to address this significant challenge and ensure food security and human survival.
Collapse
Affiliation(s)
- Cheng Luo
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Linyan Zhang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Mahmoud M Ali
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Agricultural Engineering Research Institute, Agricultural Research Center, Giza 12311, Egypt
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
| |
Collapse
|
7
|
Nilofar, Ahmed S, Zengin G, Di Simone SC, Acquaviva A, Libero ML, Chiavaroli A, Orlando G, Tacchini M, Di Vito M, Menghini L, Ferrante C. Combining the Pharmaceutical and Toxicological Properties of Selected Essential Oils with their Chemical Components by GC-MS Analysis. Chem Biodivers 2024; 21:e202400738. [PMID: 38695450 DOI: 10.1002/cbdv.202400738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024]
Abstract
In the current investigation, a comprehensive analysis was carried out on essential oils (EOs) extracted from six aromatic plant species, namely Rosmarinus officinalis, Pelargonium graveolens, Thymus vulgaris, Origanum vulgare, Laurus nobilis, and Aloysia citrodora. An exploration was conducted into the chemical composition using Gas Chromatography-Mass Spectrometry (GC/MS), antioxidant properties assessed through DPPH, ABTS, CUPRAC, FRAP, MCA, and PBD assays, ecotoxicological impacts evaluated via allelopathy and the Daphnia magna heartbeat test, as well as bio-pharmacological effects including anticancer activity and gene expression analysis. Results revealed strong antioxidant activity in all essential oils, with T. vulgaris EO (2748.00 mg TE/g) and O. vulgare EO (2609.29 mg TE/g) leading in CUPRAC assay. R. officinalis EO showed the highest α-amylase inhibition at 1.58 mmol ACAE/g, while O. vulgare EO excelled in α-glucosidase inhibition at 1.57 mmol ACAE/g. Additionally, cytotoxic effects were evaluated on human colorectal cancer (HCT116) cells. A. citrodora, O. vulgare, and R. officinalis EOs were found the most potent anticancer, as also witnessed by their higher modulatory effects on the gene expression of BAX and Bcl-2. Collectively, the present data highlight the importance to implement the knowledge and to valorize the supply chain of aromatic plants.
Collapse
Affiliation(s)
- Nilofar
- Department of Pharmacy, Botanic Garden "Giardino dei, Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Shakeel Ahmed
- Foodomics Laboratory, Instituto de Investigación en Ciencias de la Alimentación, CSIC-UAM, Nicolás Cabrera 9, 28049, Madrid, Spain
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Simonetta Cristina Di Simone
- Department of Pharmacy, Botanic Garden "Giardino dei, Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandra Acquaviva
- Department of Pharmacy, Botanic Garden "Giardino dei, Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Maria Loreta Libero
- Department of Pharmacy, Botanic Garden "Giardino dei, Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Annalisa Chiavaroli
- Department of Pharmacy, Botanic Garden "Giardino dei, Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Giustino Orlando
- Department of Pharmacy, Botanic Garden "Giardino dei, Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Massimo Tacchini
- Department of Life Sciences and Biotechnology (SVeB), UR7 Terra&Acqua Tech, University of Ferrara, 44121, Ferrara, Italy
| | - Maura Di Vito
- Dip. di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie Università Cattolica del Sacro Cuore 24, Largo Agostino Gemelli 1, 00167, Rome, Italy
| | - Luigi Menghini
- Department of Pharmacy, Botanic Garden "Giardino dei, Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| | - Claudio Ferrante
- Department of Pharmacy, Botanic Garden "Giardino dei, Semplici", Università degli Studi "Gabriele d'Annunzio", via dei Vestini 31, 66100, Chieti, Italy
| |
Collapse
|
8
|
Dias BL, Sarmento RA, Venzon M, Jumbo LOV, dos Santos LSS, de Souza Moura W, Mourão DDSC, Fernandes PRDS, Neitzke TR, Oliveira JVDA, Dias T, Dalcin MS, Oliveira EE, dos Santos GR. Morinda citrifolia Essential Oil: A Plant Resistance Biostimulant and a Sustainable Alternative for Controlling Phytopathogens and Insect Pests. BIOLOGY 2024; 13:479. [PMID: 39056674 PMCID: PMC11274064 DOI: 10.3390/biology13070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
With the growing demand for sustainable and safe agricultural practices, plant compounds emerge as a solution for biological activities. Here, we evaluated the potential of using Morinda citrifolia essential oil to induce plant resistance and to control phytopathogens (Curvularia lunata) and insect pests (Daubulus maidis). We conducted a chromatographic analysis to unveil the essential oil components. We also quantified the activity levels of antioxidant enzymes and chitinase for resistance induction. The antifungal action was evaluated through disease progression and the inhibition of mycelial growth in addition to in silico studies that made it possible to predict the interaction site between the fungal protein and the compounds. We assessed the toxicity and repellent actions towards the D. maidis. Octanoic acid (58.43%) was identified as the essential oil major compound. Preventive treatment with essential oil and octanoic acid (25.0 µL mL-1) increased not only the plant defense activities (i.e., the activity of the enzymes superoxide dismutase, catalase, phenol peroxidase, ascorbate peroxidase, and chitinase) but also controlled Curvularia leaf spot. The stable interactions between octanoic acid and tyrosine-tRNA ligase from C. lunata suggested protein synthesis inactivation. The essential oil inhibited 51.6% of mycelial growth, and this effect was increased to 75.9% with the addition of adjuvants (i.e., angico gum). The essential oil reduced 76% of the population of D. maidis adults and repelled 50% of the number of D. maidis after 48 h under field conditions. The repellency effect in the field reduced the population of D. maidis adults, transmitters of the stunting complex, by 50%. The results highlight the potential of M. citrifolia as a resistance activator, fungicide, insecticide, and an effective biorational alternative.
Collapse
Affiliation(s)
- Bruna Leticia Dias
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia- Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (R.A.S.); (W.d.S.M.)
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
| | - Renato Almeida Sarmento
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia- Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (R.A.S.); (W.d.S.M.)
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Madelaine Venzon
- Agriculture and Livestock Research Enterprise of Minas Gerais (EPAMIG), Viçosa 36571-000, MG, Brazil;
| | - Luis Oswaldo Viteri Jumbo
- Programa de Pós-Graduação Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil;
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil
| | - Lucas Samuel Soares dos Santos
- Departamento de Química, Universidade Federal do Tocantins, Curso de Química Ambiental, Câmpus de Gurupi, P.O. Box 66, Gurupi 77410-530, TO, Brazil;
| | - Wellington de Souza Moura
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia- Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (R.A.S.); (W.d.S.M.)
| | - Dalmarcia de Souza Carlos Mourão
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
| | - Paulo Ricardo de Sena Fernandes
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Taila Renata Neitzke
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
| | - João Victor de Almeida Oliveira
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
| | - Tiago Dias
- Departamento de Engenharia Agronômica, Universidade Estadual do Tocantins (UNITINS), Campus de Palmas, Palmas 77001-090, TO, Brazil;
| | - Mateus Sunti Dalcin
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
| | - Eugênio E. Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa (UFV), Viçosa 36570-900, MG, Brazil;
| | - Gil Rodrigues dos Santos
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia- Rede Bionorte, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (R.A.S.); (W.d.S.M.)
- Departamento de Fitopatologia, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil; (D.d.S.C.M.); (P.R.d.S.F.); (T.R.N.); (J.V.d.A.O.)
- Programa de Pós-Graduação em Produção Vegetal, Universidade Federal do Tocantins, Gurupi 77402-970, TO, Brazil;
- Programa de Pós-Graduação Ciências Florestais e Ambientais, Universidade Federal do Tocantins (UFT), Gurupi 77402-970, TO, Brazil;
| |
Collapse
|
9
|
Silvestre WP, Pansera MR, Andrade LB, Vicenço CB, Rota LD, Pauletti GF. Vacuum fractional distillation of Cunila galioides Benth. essential oil: chemical composition and biological activities of raw oil and its fractions. Nat Prod Res 2024:1-11. [PMID: 38829275 DOI: 10.1080/14786419.2024.2360149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024]
Abstract
This work aimed to rectify Cunila galioides essential oil and evaluate the raw oil and the fractions' antifungal, allelopathic, and antioxidant activities. The results showed that the raw essential oil and the bottom fraction were primarily composed of linalyl propionate (42.9 wt.% and 60.2 wt.%). The top fraction was composed mainly of limonene (45.7 wt.%). The antioxidant activity changed with the radical and the fraction. The bottom had a weaker antifungal effect than the raw oil and the top. Nevertheless, the essential oil and the fractions had a similar antifungal activity at 0.50 % v/v and higher. Similar behavior was observed for the allelopathic tests. No difference occurred between the raw oil and the fractions, with reduced germination percentages and speed at 0.25 % v/v and complete inhibition at 0.50 % v/v. The oil can be rectified, and the fractions may be used without harming their biological activity.
Collapse
Affiliation(s)
- Wendel P Silvestre
- Laboratory of Studies of the Soil, Plant, and Atmosphere System and Plant Metabolism, University of Caxias do Sul, Caxias do Sul, RS, Brazil
- Postgraduate Program in Process Engineering and Technologies (PGEPROTEC), University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Márcia R Pansera
- Postgraduate Program in Process Engineering and Technologies (PGEPROTEC), University of Caxias do Sul, Caxias do Sul, RS, Brazil
- Laboratory of Phytopathology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Luciana B Andrade
- Laboratory of Oxidative Stress and Antioxidants, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Camila B Vicenço
- Laboratory of Studies of the Soil, Plant, and Atmosphere System and Plant Metabolism, University of Caxias do Sul, Caxias do Sul, RS, Brazil
- Postgraduate Program in Biotechnology (PPGBIO), University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Luciana D Rota
- Postgraduate Program in Biotechnology (PPGBIO), University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | - Gabriel F Pauletti
- Laboratory of Studies of the Soil, Plant, and Atmosphere System and Plant Metabolism, University of Caxias do Sul, Caxias do Sul, RS, Brazil
- Postgraduate Program in Process Engineering and Technologies (PGEPROTEC), University of Caxias do Sul, Caxias do Sul, RS, Brazil
| |
Collapse
|
10
|
Chaves JL, Dias GDS, Pereira MM, Bastos LDS, Souza MIA, Vieira LF, de Paula ACCFF, Marco C, Marchiori PER, Bicalho EM. New Perspective on the Use of α-Bisabolol for Weed Control. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6289-6301. [PMID: 38502021 PMCID: PMC11197090 DOI: 10.1021/acs.jafc.3c08566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/27/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
The indiscriminate use of synthetic herbicides reduces its effectiveness. Bioherbicides produced with metabolites emerge as an alternative to managing weeds. We aimed to analyze the phytotoxic potential of the essential oil of Vanillosmopsis arborea (EOVA) and the α-bisabolol molecule, its main component. We evaluated the effects of EOVA and α-bisabolol at different concentrations on the germination, growth, antioxidant metabolism, and photosynthesis of different species. EOVA and α-bisabolol showed promising phytotoxic effects on the germination and initial growth of the weed Senna occidentalis, inhibiting the activity of the antioxidant enzymes and increasing lipid peroxidation. α-Bisabolol reduced the weed seedling growth by inducing oxidative stress, which suggests a greater role in postemergence. Moreover, in the weed postemergence, both EOVA and α-bisabolol caused damage in the shoots, reduced the chlorophyll content, and increased lipid peroxidation besides reducing photosynthesis in S. occidentalis. Overall, we suggest the promising action of α-bisabolol and EOVA as bioherbicides for weed control.
Collapse
Affiliation(s)
- Josyelem
Tiburtino Leite Chaves
- Laboratório
de Crescimento e Desenvolvimento de Plantas, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais CEP 37200-000, Brazil
| | - Geovane da Silva Dias
- Laboratório
de Crescimento e Desenvolvimento de Plantas, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais CEP 37200-000, Brazil
| | - Marina Mariá Pereira
- Laboratório
de Crescimento e Desenvolvimento de Plantas, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais CEP 37200-000, Brazil
| | - Ludmila da Silva Bastos
- Laboratório
de Crescimento e Desenvolvimento de Plantas, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais CEP 37200-000, Brazil
| | - Maria Isabel Almeida Souza
- Laboratório
de Crescimento e Desenvolvimento de Plantas, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais CEP 37200-000, Brazil
| | | | | | - Cláudia
Araújo Marco
- Laboratório
Interdisciplinar em Produtos Naturais, Centro de Ciências Agrárias
e da Terra, Universidade Federal do Cariri, Crato, Ceará CEP 63130-025, Brazil
| | - Paulo Eduardo Ribeiro Marchiori
- Laboratório
de Crescimento e Desenvolvimento de Plantas, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais CEP 37200-000, Brazil
| | - Elisa Monteze Bicalho
- Laboratório
de Crescimento e Desenvolvimento de Plantas, Setor de Fisiologia Vegetal, Universidade Federal de Lavras, Lavras, Minas Gerais CEP 37200-000, Brazil
| |
Collapse
|
11
|
Uwineza PA, Urbaniak M, Stępień Ł, Gramza-Michałowska A, Waśkiewicz A. Efficacy of Lamium album as a natural fungicide: impact on seed germination, ergosterol, and mycotoxins in Fusarium culmorum-infected wheat seedlings. Front Microbiol 2024; 15:1363204. [PMID: 38463484 PMCID: PMC10920328 DOI: 10.3389/fmicb.2024.1363204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Fusarium culmorum is a major wheat pathogen, and its secondary metabolites (mycotoxins) cause damage to plants, animals, and human health. In the era of sustainable agriculture, eco-friendly methods of prevention and control are constantly needed. The use of plant extracts as biocontrol agents has gained popularity as they are a source of active substances that play a crucial role in fighting against phytopathogens. This study evaluated the impact of Lamium album on wheat seed germination and seedling growth. In a pot experiment, the effect of L. album on wheat seedlings artificially inoculated with F. culmorum was evaluated by measuring seedling growth parameters, and by using chromatographic methods, ergosterol and mycotoxins levels were analyzed. The results showed that the phytotoxic effect of L. album flower extracts on wheat seed germination and seedling growth was concentration dependent. The radicle length was also reduced compared to the control; however, L. album did not significantly affect the dry weight of the radicle. A slight phytotoxic effect on seed germination was observed, but antifungal effects on artificially infected wheat seedlings were also confirmed with the reduction of ergosterol level and mycotoxins accumulation in the roots and leaves after 21 days of inoculation. F. culmorum DNA was identified in the control samples only. Overall, this study is a successful in planta study showing L. album flower extract protection of wheat against the pathogen responsible for Fusarium crown and root rot. Further research is essential to study the effects of L. album extracts on key regulatory genes for mycotoxin biosynthetic pathways.
Collapse
Affiliation(s)
| | - Monika Urbaniak
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Łukasz Stępień
- Plant-Pathogen Interaction Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Anna Gramza-Michałowska
- Department of Gastronomy Science and Functional Foods, Poznan University of Life Sciences, Poznan, Poland
| | | |
Collapse
|
12
|
Radušienė J, Karpavičienė B, Vilkickytė G, Marksa M, Raudonė L. Comparative Analysis of Root Phenolic Profiles and Antioxidant Activity of Five Native and Invasive Solidago L. Species. PLANTS (BASEL, SWITZERLAND) 2024; 13:132. [PMID: 38202440 PMCID: PMC10780316 DOI: 10.3390/plants13010132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
The high environmental importance of invasive goldenrod has prompted research to find potential benefits that can be derived from these species. This study aimed to identify differences in root phenolic profiles among five Solidago species, thus providing valuable information on their potential applications and the botanical origin of the raw material. The roots of native S. virgaurea L., two alien species S. gigantea Aiton and S. canadensis L. and their hybrids S. ×niederederi Khek and S. ×snarskisii Gudž. & Žaln. were sampled from mixed-species stands in Lithuania. A complex of twelve phenolic acids and their derivatives was identified and quantified in methanol-water root extracts using the HPLC-PDA and LC/MS systems. The radical-scavenging capacities of the extracts were assessed by ABTS. The chemical content of the roots of S. virgaurea, S. gigantea and S. ×niederederi were statistically similar, while the roots of S. canadensis and S. ×snarskisii contained lower amounts of compounds than the other species. The PCA score-plot models of the phenolic profiles only partially confirmed the identification of S. ×niederederi and S. ×snarskisii as crosses between native and alien species. The findings from the phenolic profiles and the observed radical-scavenging activity of root extracts of Solidago species provide valuable insights into their potential applications in various fields.
Collapse
Affiliation(s)
- Jolita Radušienė
- Laboratory of Economic Botany, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania;
| | - Birutė Karpavičienė
- Laboratory of Economic Botany, Nature Research Centre, Akademijos Str. 2, 08412 Vilnius, Lithuania;
| | - Gabrielė Vilkickytė
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania; (G.V.); (L.R.)
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania;
| | - Lina Raudonė
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania; (G.V.); (L.R.)
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, 50162 Kaunas, Lithuania
| |
Collapse
|
13
|
Lou S, Ni X, Xiao W, Li Y, Gao Z. Physical stability, microstructure and antimicrobial properties of konjac glucomannan coatings enriched with Litsea cubeba essential oil nanoemulsion and its effect on citruses preservation. Int J Biol Macromol 2024; 256:128306. [PMID: 37995787 DOI: 10.1016/j.ijbiomac.2023.128306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
This study purposed to develop konjac glucomannan (KGM) based antimicrobial coatings containing Litsea cubeba essential oil nanoemulsion (LNE) for citruses preservation. Physical stability, rheological, structural and antimicrobial properties of the coating solutions were investigated, along with the release characteristics of Litsea cubeba essential oil (LCO). Results showed that the coating solutions displayed shear thinning behavior. The oil droplets were distributed homogeneously in KGM phase with good stability. The coating structure became loose with increasing LNE content due to LNE interfering with molecular interactions and entanglement of KGM. The coating solutions showed stronger antibacterial activity against Escherichia coli than against Staphylococcus aureus and were effective in inhibiting the growth of Penicillium italicum on citrus surfaces. KGM-LNE 10 negatively affected citruses due to phytotoxicity caused by high levels of LCO. LCO was released slowly and continuously from the coatings, and its release was faster in deionized water than in an ethanol-water solution. KGM-LNE 2.5 coated citruses had the least weight loss, the greatest hardness, and kept the minimum changes in total soluble solids, total acid and vitamin C content, implying that KGM-LNE 2.5 best maintained the quality of citruses. The findings suggest that KGM-based coatings containing LNE have high potential for citruses preservation.
Collapse
Affiliation(s)
- Shangrong Lou
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Xuewen Ni
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China.
| | - Weilu Xiao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Yanlei Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
14
|
Yaqoob N, Imtiaz F, Shafiq N, Rehman S, Munir H, Bourhia M, Almaary KS, Nafidi HA. Oleogels for the Promotion of Healthy Skin Care Products: Synthesis and Characterization of Allantoin Containing Moringa-based Oleogel. Curr Pharm Biotechnol 2024; 25:2326-2336. [PMID: 38867525 DOI: 10.2174/0113892010295050240508114723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Oleogelation is an efficient and emerging approach for obtaining biocompatible and biodegradable elastic semisolid crystals to be used in various cosmetic and pharmaceutical formulations. Recently, drug incorporation in oil structuring has been a promising strategy under consideration due to the effectiveness of this method. Plant oils have very beneficial characteristics for skin care and wound healing due to the presence of certain antioxidants. METHODS In this study, the oleogels of Moringa oleifera seed oil with natural polysaccharides, including pectin, chitosan, and xanthan gum, were prepared using the emulsion template method. Moringa oil was selected because it can hydrate and moisturize the skin and has great antioxidant activity. Also, the natural polysaccharides, i.e., pectin and chitosan, exhibited good gelling properties. Allantoin, which is a wound healer and eucalyptus leaf oil with antioxidant potential, was incorporated into the emulsion-based-oleogels to enhance the antioxidant and antimicrobial activity of the oleogels. RESULTS Allantoin and eucalyptus-loaded oleogels exhibited good antibacterial activity against E. coli. The FTIR spectra of moringa-based oleogels in the range between 3226-3422 cm-1 indicate the presence of hydrogen bonding in oleogels. CONCLUSION The antioxidant potential of allantoin and eucalyptus-containing oleogel was maximized, and an IC50 value of 0.9719 μM was found. Maximum release of allantoin from oleogel was observed in the first hour.
Collapse
Affiliation(s)
- Nazia Yaqoob
- Green Chemistry Lab, Department of Chemistry, Government College Women University Faisalabad, 38000, Faisalabad, Pakistan
| | - Fazeelat Imtiaz
- Green Chemistry Lab, Department of Chemistry, Government College Women University Faisalabad, 38000, Faisalabad, Pakistan
| | - Nusrat Shafiq
- Synthetic and Natural Products drug discovery Lab., Department of Chemistry, Government College Women University Faisalabad, 38000, Faisalabad, Pakistan
| | - Saima Rehman
- Department of Chemistry, Government College for Women University Faisalabad, 38000, Pakistan
| | - Huma Munir
- Green Chemistry Lab, Department of Chemistry, Government College Women University Faisalabad, 38000, Faisalabad, Pakistan
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune 70000, Morocco
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. BOX 2455, Riyadh 11451, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, 2325 Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
15
|
Petrauskas LN, Haase K, Schmidt GC, Hübler AC, Mannsfeld SCB, Ellinger F, Boroujeni BK. Potential Application of Organic Electronics in Electrical Sensing of Insects and Integrated Pest Management towards Developing Ecofriendly Replacements for Chemical Insecticides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304849. [PMID: 37943021 PMCID: PMC10811475 DOI: 10.1002/advs.202304849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/03/2023] [Indexed: 11/10/2023]
Abstract
Synthetic insecticides are widely used against plant pest insects to protect the crops. However, many insecticides have poor selectivity and are toxic also to beneficial insects, animals, and humans. In addition, insecticide residues can remain on fruits for many days, jeopardizing food safety. For these reasons, a reusable, low-cost electronic trap that can attract, detect, and identify, but attack only the pest while leaving beneficial insects unharmed could provide a sustainable, nature-friendly replacement. Here, for the first time, research results are presented suggesting the great potential and compatibility of organic electronic devices and technologies with pest management. Electrical characterizations confirm that an insect's body has relatively high dielectric permittivity. Adaptive memcapacitor circuits can track the impedance change for insect detection. Other experiments show that printed polymer piezoelectric transducers on a plastic substrate can collect information about the weight and activity of insects for identification. The breakdown voltage of most insects´ integument is measured to be <200 V. Long channel organic transistors easily work at such high voltages while being safe to touch for humans thanks to their inherent low current. This feasibility study paves the way for the future development of organic electronics for physical pest control and biodiversity protection.
Collapse
Affiliation(s)
- Lautaro N. Petrauskas
- Chair for Circuit Design and Network Theory (CCN)Faculty of Electrical and Computer EngineeringTechnische Universität Dresden01069DresdenGermany
| | - Katherina Haase
- Chair of Organic DevicesFaculty of Electrical and Computer EngineeringTechnische Universität Dresden01069DresdenGermany
| | - Georg C. Schmidt
- Institute for Print and Media TechnologyTechnische Universität Chemnitz09126ChemnitzGermany
| | - Arved C. Hübler
- Institute for Print and Media TechnologyTechnische Universität Chemnitz09126ChemnitzGermany
| | - Stefan C. B. Mannsfeld
- Chair of Organic DevicesFaculty of Electrical and Computer EngineeringTechnische Universität Dresden01069DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität Dresden01069DresdenGermany
| | - Frank Ellinger
- Chair for Circuit Design and Network Theory (CCN)Faculty of Electrical and Computer EngineeringTechnische Universität Dresden01069DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität Dresden01069DresdenGermany
| | - Bahman K. Boroujeni
- Chair for Circuit Design and Network Theory (CCN)Faculty of Electrical and Computer EngineeringTechnische Universität Dresden01069DresdenGermany
- Center for Advancing Electronics Dresden (cfaed)Technische Universität Dresden01069DresdenGermany
| |
Collapse
|
16
|
Oliveira-Fernandes J, Oliveira-Pinto PR, Mariz-Ponte N, Sousa RMOF, Santos C. Satureja montana and Mentha pulegium essential oils' antimicrobial properties against Pseudomonas syringae pv. actinidiae and elicitor potential through the modulation of kiwifruit hormonal defenses. Microbiol Res 2023; 277:127490. [PMID: 37722185 DOI: 10.1016/j.micres.2023.127490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is responsible for the kiwifruit bacterial canker, the most severe disease of Actinidia spp. The use in agriculture of antibiotics and cooper-based compounds is increasingly being restricted, demanding for new sustainable alternatives to current agrochemicals. We aimed to characterize the anti-Psa potential of essential oils (EOs) of Mentha pulegium and Satureja montana and investigate if they elicit the plant-host hormonal defenses. The EOs were characterized through gas-chromatography with flame ionization detector (GC-FID) and mass spectrometry (MS). Pulegone (78.6%) and carvacrol (43.5%) were the major constituents of M. pulegium and S. montana EO, respectively. Only S. montana EO showed relevant anti-Psa activity in vitro. To evaluate if the EOs also elicited host defenses, in vitro shoots were treated with 2 mg shoot-1 of EO-solution and subsequently inoculated with Psa three days later. Shoots were analyzed 10 min, three days (and 10 min after Psa-inoculation), four and ten days after EO application. The up/down regulation of RNA-transcripts for hormone biosynthesis, Psa biofilm production and virulence genes were quantified by real-time quantitative PCR (RT-qPCR). Phytohormones were quantified by High-Performance Liquid Chromatography (HPLC). S. montana EO showed the most promising results as a defense elicitor, increasing 6-benzylaminopurine (BAP) by 131.07% and reducing indole-3-acetic acid (IAA) levels by 49.19%. Decreases of salicylic acid (SA), and gibberellic acid 3 (GA3) levels by 32.55% and 33.09% respectively and an increase of abscisic acid (ABA) by 85.03%, in M. pulegium EO-treated shoots, revealed some protective post-infection effect. This is the most comprehensive research on the Psa's impact on phytohormones. It also unveils the protective influence of prior EO exposure, clarifying the plant hormonal response to subsequent infections. The results reinforce the hypothesis that carvacrol-rich S. montana EO can be a suitable disease control agent against Psa infection. Its dual action against pathogens and elicitation of host plant defenses make it a promising candidate for incorporation into environmentally friendly disease management approaches. Nonetheless, to fully leverage these promising results, further research is imperative to elucidate the EO mode of action and evaluate the long-term efficacy of this approach.
Collapse
Affiliation(s)
- Juliana Oliveira-Fernandes
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Paulo R Oliveira-Pinto
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Nuno Mariz-Ponte
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal; CIBIO-InBIO, Campus de Vairão, Universidade do Porto, Rua Padre Armando Quintas, Vairão, Portugal
| | - Rose M O F Sousa
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; GreenUPorto/Inov4Agro, Faculty of Sciences, University of Porto, Rua Campo Alegre, Porto, Portugal; CITAB/Inov4Agro, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Conceição Santos
- Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169- 007 Porto, Portugal; LAQV-REQUIMTE, Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
da Silva RR, Santos JCV, Meira HM, Almeida SM, Sarubbo LA, Luna JM. Microbial Biosurfactant: Candida bombicola as a Potential Remediator of Environments Contaminated by Heavy Metals. Microorganisms 2023; 11:2772. [PMID: 38004783 PMCID: PMC10673205 DOI: 10.3390/microorganisms11112772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Industrial interest in surfactants of microbial origin has intensified recently due to the characteristics of these compounds, such as biodegradability and reduced toxicity, and their efficiency in removing heavy metals and hydrophobic organic compounds from soils and waters. The aim of this study was to produce a biosurfactant using Candida bombicola URM 3712 in a low-cost medium containing 5.0% molasses, 3.0% corn steep liquor and 2.5% residual frying oil for 144 h at 200 rmp. Measurements of engine oil tension and emulsification were made under extreme conditions of temperature (0 °C, 5 °C, 70 °C, 100 °C and 120 °C), pH (2-12) and NaCl concentrations (2-12), demonstrating the stability of the biosurfactant. The isolated biosurfactant was characterized as an anionic molecule with the ability to reduce the surface tension of water from 72 to 29 mN/m, with a critical micellar concentration of 0.5%. The biosurfactant had no toxic effect on vegetable seeds or on Eisenia fetida as a bioindicator. Applications in the removal of heavy metals from contaminated soils under dynamic conditions demonstrated the potential of the crude and isolated biosurfactant in the removal of Fe, Zn and Pb with percentages between 70 and 88%, with the highest removal of Pb being 48%. The highest percentage of removal was obtained using the cell-free metabolic liquid, which was able to remove 48, 71 and 88% of lead, zinc and iron from the soil, respectively. Tests in packed columns also confirmed the biosurfactant's ability to remove Fe, Zn and Pb between 40 and 65%. The removal kinetics demonstrated an increasing percentage, reaching removal of 50, 70 and 85% for Pb, Zn and Fe, respectively, reaching a greater removal efficiency at the end of 24 h. The biosurfactant was also able to significantly reduce the electrical conductivity of solutions containing heavy metals. The biosurfactant produced by Candida bombicola has potential as an adjuvant in industrial processes for remediating soils and effluents polluted by inorganic contaminants.
Collapse
Affiliation(s)
- Renata Raianny da Silva
- Northeast Biotechnology Network (Renorbio), Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, Recife 52171-900, PE, Brazil;
| | - Júlio C. V. Santos
- Environmental Process Development (PPGDPA), Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil;
| | - Hugo M. Meira
- Advanced Institute of Technology and Innovation (IATI), Rua Potira de Brito, n.216, Boa Vista, Recife 50050-900, PE, Brazil
| | - Sérgio M. Almeida
- School of Health and Life Sciences, Catholic University of Pernambuco, Rua do Príncipe, n. 526, Recife 50050-900, PE, Brazil;
| | - Leonie A. Sarubbo
- Advanced Institute of Technology and Innovation (IATI), Rua Potira de Brito, n.216, Boa Vista, Recife 50050-900, PE, Brazil
- Icam Tech School, Catholic University of Pernambuco, Rua do Príncipe, n. 526, Boa Vista, Recife 50050-900, PE, Brazil
| | - Juliana M. Luna
- School of Health and Life Sciences, Catholic University of Pernambuco, Rua do Príncipe, n. 526, Recife 50050-900, PE, Brazil;
| |
Collapse
|
18
|
Girardi J, Berķe-Ļubinska K, Mežaka I, Nakurte I, Skudriņš G, Pastare L. In Vivo Bioassay of the Repellent Activity of Caraway Essential Oil against Green Peach Aphid. INSECTS 2023; 14:876. [PMID: 37999074 PMCID: PMC10672326 DOI: 10.3390/insects14110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
An in vivo dual choice bioassay with white cabbage as a host plant was used to determine the repellent effect of three different accessions of caraway (Carum carvi L.) essential oils (EOs) against the green peach aphid Myzus persicae (Sulzer). The dominant components of the EO were D-Carvone (47.3-74.4%) and D-limonene (25.2-51.9%), which accounted for 99.2-99.5% of the EOs determined by GC/MS. The EO with the highest D-limonene content (51.9%) showed the highest repellence (Repellency Index (RI) = +41%), which was stable up to 330 min. The incorporation of several surfactants with different hydrophilic-lipophilic balance values (from 12.4 to 16.7) with caraway EO caused a general inhibition of the repellent effect during the testing period (RI from +41% to -19%). Overall, the findings indicate that caraway EO could be used as a green peach aphid repellent, but more work is needed to formulate the EO into a ready-to-use product.
Collapse
Affiliation(s)
- Jessica Girardi
- Institute for Environmental Solutions, “Lidlauks”, Priekuli Parish, LV-4126 Cesis, Latvia; (K.B.-Ļ.); (I.M.); (I.N.); (G.S.); (L.P.)
| | | | | | | | | | | |
Collapse
|
19
|
Deweer C, Sahmer K, Muchembled J. Anti-oomycete activities from essential oils and their major compounds on Phytophthora infestans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110240-110250. [PMID: 37779122 PMCID: PMC10625517 DOI: 10.1007/s11356-023-29270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/07/2023] [Indexed: 10/03/2023]
Abstract
Botanicals are various plant-based products like plant extracts or essential oils. Anti-fungal activities of selected essential oils were tested on the pathogen causing potato and tomato late blight (Phytophthora infestans). Tests to evaluate anti-oomycete activities of commercial essential oils and their major compounds were carried out in vitro in microplate in liquid media. Anti-oomycete activities on Phytophthora infestans strain were obtained from essential oils/major compounds: Eucalyptus citriodora/citronellal; Syzygium aromaticum (clove)/eugenol; Mentha spicata/D-Carvone, L-Carvone; Origanum compactum/carvacrol; Satureja montana (savory)/carvacrol; Melaleuca alternifolia (tea tree)/terpinen-4-ol, and Thymus vulgaris/thymol. As an active substance of mineral origin, copper sulfate was chosen as a control. All selected essential oils showed an anti-oomycete activity calculated with IC50 indicator. The essential oils of clove, savory, and thyme showed the best anti-oomycete activities similar to copper sulfate, while oregano, eucalyptus, mint, and tea tree essential oils exhibited significantly weaker activities than copper sulfate. Clove essential oil showed the best activity (IC50 = 28 mg/L), while tea tree essential oil showed the worst activity (IC50 = 476 mg/L). For major compounds, three results were obtained: they were statistically more active than their essential oils (carvacrol for oregano, D- and L-Carvone for mint) or as active as their essential oils sources (thymol for thyme, carvacrol for savory, terpinen-4-ol for tea tree) or less active than their original essential oils (eugenol for clove, citronellal for eucalyptus). Microscopical observations carried out with the seven essential oils showed that they were all responsible for a modification of the morphology of the mycelium. The results demonstrated that various essential oils show different anti-oomycete activities, sometimes related to a major compound and sometimes unrelated, indicating that other compounds must play a role in total anti-oomycete activity.
Collapse
Affiliation(s)
- Caroline Deweer
- Joint Research Unit 1158 BioEcoAgro, INRAE, JUNIA, University of Lille, University of Liège, UPJV, University of Artois, ULCO, F-59000, Lille, France
| | - Karin Sahmer
- Univ. Lille, IMT Lille Douai, Univ. Artois, JUNIA, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000, Lille, France
| | - Jérôme Muchembled
- Joint Research Unit 1158 BioEcoAgro, INRAE, JUNIA, University of Lille, University of Liège, UPJV, University of Artois, ULCO, F-59000, Lille, France.
| |
Collapse
|
20
|
Martini F, Jijakli MH, Gontier E, Muchembled J, Fauconnier ML. Harnessing Plant's Arsenal: Essential Oils as Promising Tools for Sustainable Management of Potato Late Blight Disease Caused by Phytophthora infestans-A Comprehensive Review. Molecules 2023; 28:7302. [PMID: 37959721 PMCID: PMC10650712 DOI: 10.3390/molecules28217302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Potato late blight disease is caused by the oomycete Phytophthora infestans and is listed as one of the most severe phytopathologies on Earth. The current environmental issues require new methods of pest management. For that reason, plant secondary metabolites and, in particular, essential oils (EOs) have demonstrated promising potential as pesticide alternatives. This review presents the up-to-date work accomplished using EOs against P. infestans at various experimental scales, from in vitro to in vivo. Additionally, some cellular mechanisms of action on Phytophthora spp., especially towards cell membranes, are also presented for a better understanding of anti-oomycete activities. Finally, some challenges and constraints encountered for the development of EOs-based biopesticides are highlighted.
Collapse
Affiliation(s)
- Florian Martini
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| | - Eric Gontier
- Laboratory of Plant Biology and Innovation, BIOPI-UPJV, UMRT BioEcoAgro INRAE1158, UFR Sciences of University of Picardie Jules Verne, 33 rue Saint Leu, 80000 Amiens, France;
| | - Jérôme Muchembled
- Joint and Research Unit, 1158 BioEcoAgro Junia, 59000 Lille, France;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
21
|
Santiago-Santiago M, Sánchez-Viveros G, Hernández-Adame L, Chiquito-Contreras CJ, Salinas-Castro A, Chiquito-Contreras RG, Hernández-Montiel LG. Essential Oils and Antagonistic Microorganisms as Eco-Friendly Alternatives for Coffee Leaf Rust Control. PLANTS (BASEL, SWITZERLAND) 2023; 12:3519. [PMID: 37895983 PMCID: PMC10609872 DOI: 10.3390/plants12203519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023]
Abstract
Coffee leaf rust (CLR) is caused by the biotrophic fungus Hemileia vastatrix Berk. & Br., a disease of economic importance, reducing coffee yield up to 60%. Currently, CLR epidemics have negatively impacted food security. Therefore, the objective of the present research study is to show a current framework of this disease and its effects on diverse areas, as well as the biological systems used for its control, mode of action, and effectiveness. The use of essential plant oils and antagonistic microorganisms to H. vastatrix are highlighted. Terpenes, terpenoids, and aromatic compounds are the main constituents of these oils, which alter the cell wall and membrane composition and modify the basic cell functions. Beneficial microorganisms inhibit urediniospore germination and reduce disease incidence and severity. The antagonistic microorganisms and essential oils of some aromatic plants have great potential in agriculture. These biological systems may have more than one mechanism of action, which reduces the possibility of the emergence of resistant strains of H. vastatrix.
Collapse
Affiliation(s)
| | - Gabriela Sánchez-Viveros
- Facultad de Ciencias Agrícolas, Universidad Veracruzana, Xalapa 91090, Mexico; (G.S.-V.); (C.J.C.-C.)
| | - Luis Hernández-Adame
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, La Paz 23096, Mexico;
- Nanotechnology & Microbial Biocontrol Group, Centro de Investigaciones Biológicas del Noroeste, La Paz 23096, Mexico
| | | | | | | | | |
Collapse
|
22
|
Nikolova M, Lyubenova A, Yankova-Tsvetkova E, Georgiev B, Berkov S, Aneva I, Trendafilova A. Artemisia santonicum L. and Artemisia lerchiana Web. Essential Oils and Exudates as Sources of Compounds with Pesticidal Action. PLANTS (BASEL, SWITZERLAND) 2023; 12:3491. [PMID: 37836231 PMCID: PMC10574841 DOI: 10.3390/plants12193491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/19/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
The application of natural products for pest control is important in modern farming. In the present study, Artemisia santonicum L. and Artemisia lerchiana Weber essential oil and exudate profiles were determined, and their potential as inhibitors of seed germination, acetylcholinesterase, and phytopathogenic mycelium growth were evaluated. Essential oils (EO) were obtained via hydrodistillation and exudates (AE) by washing aerial parts of the species with acetone. EO and AE's composition was identified using GC/MS. Eucalyptol (1,8-cineole) and camphor were found to be the main components of A. lerchiana EO, while β-pinene, trans-pinocarveol, α-pinene, α-terpineol, and spathulenol were established as major compounds of A. santonicum EO. Strong inhibition on Lolium perenne seed germination was found at 2 µL/mL and 5 mg/mL using aqueous solutions of EO and AE, respectively. An inhibitory effect on acetylcholinesterase was established, with an IC50 value of 64.42 and 14.60 μg/mL for EO and 0.961, >1 mg/mL for the AE of A. lerchiana and A. santonicum, respectively. The low inhibition on the mycelium growth of studied phytopathogenic fungi was established by applying 2 µL of EO and 15 µL of 100 mg/mL of AE, with the exception of A. lerchiana AE against Botrytis cinerea. These results show that the studied EO and AE exhibited strong phytotoxic and AChE inhibitory activities, providing new data for these species.
Collapse
Affiliation(s)
- Milena Nikolova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.Y.-T.); (B.G.); (S.B.); (I.A.)
| | - Aneta Lyubenova
- Department of Agrobiotechnology, AgroBioInstitute, Agricultural Academy, 1164 Sofia, Bulgaria;
| | - Elina Yankova-Tsvetkova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.Y.-T.); (B.G.); (S.B.); (I.A.)
| | - Borislav Georgiev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.Y.-T.); (B.G.); (S.B.); (I.A.)
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.Y.-T.); (B.G.); (S.B.); (I.A.)
| | - Ina Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (E.Y.-T.); (B.G.); (S.B.); (I.A.)
| | - Antoaneta Trendafilova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| |
Collapse
|
23
|
Olmedo GM, Zhang J, Zhao W, Mattia M, Rosskopf EN, Ritenour M, Plotto A, Bai J. Application of Thymol Vapors to Control Postharvest Decay Caused by Penicillium digitatum and Lasiodiplodia theobromae in Grapefruit. Foods 2023; 12:3637. [PMID: 37835290 PMCID: PMC10572620 DOI: 10.3390/foods12193637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Two of the major postharvest diseases impacting grapefruit shelf life and marketability in the state of Florida (USA) are stem-end rot (SER) caused by Lasiodiplodia theobromae and green mold (GM) caused by Penicillium digitatum. Here, we investigated the in vitro and in vivo efficacy of vapors of thymol, a natural compound found in the essential oil of various plants and the primary constituent of thyme (Thymus vulgaris) oil, as a potential solution for the management of GM and SER. Thymol vapors at concentrations lower than 10 mg L-1 significantly inhibited the mycelial growth of both pathogens, causing severe ultrastructural damage to P. digitatum conidia. In in vivo trials, the incidence and lesion area of GM and SER on inoculated grapefruit were significantly reduced after a 5 d exposure to 50 mg L-1 thymol vapors. In addition, the in vitro and in vivo sporulation of P. digitatum was suppressed by thymol. When applied in its vapor phase, thymol had no negative effect on the fruit, neither introducing perceivable off-flavor nor causing additional weight loss. Our findings support the pursuit of further studies on the use of thymol, recognized as safe for human health and the environment, as a promising strategy for grapefruit postharvest disease management.
Collapse
Affiliation(s)
- Gabriela M. Olmedo
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Jiuxu Zhang
- Indian River Research and Education Center, University of Florida, 2199 S. Rock Rd, Ft. Pierce, FL 34945, USA; (J.Z.); (M.R.)
| | - Wei Zhao
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Matthew Mattia
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Erin N. Rosskopf
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Mark Ritenour
- Indian River Research and Education Center, University of Florida, 2199 S. Rock Rd, Ft. Pierce, FL 34945, USA; (J.Z.); (M.R.)
| | - Anne Plotto
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| | - Jinhe Bai
- Horticultural Research Laboratory (USDA-ARS), 2001 S. Rock Rd, Ft. Pierce, FL 34945, USA; (G.M.O.); (W.Z.); (M.M.); (E.N.R.); (A.P.)
| |
Collapse
|
24
|
Abd-ElGawad AM, Assaeed AM, El Gendy AEN, Pistelli L, Dar BA, Elshamy AI. Phytotoxicity of Rich Oxygenated Terpenes Essential Oil of Prosopis farcta against the Weed Dactyloctenium aegyptium. SEPARATIONS 2023; 10:361. [DOI: 10.3390/separations10060361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
Weeds are considered the main reason for crop yield loss in the world. Weed control and management include various treatments such as cultural, physical, chemical, and biological methods. Chemical control of weeds is the most common method; however, the application of commercial synthetic herbicides caused several dangerous hazards in the environment including the appearance of resistant weed biotypes. Prosopis farcta (Banks & Sol.) J.F.Macbr. (Family: Fabaceae), is a common weed plant in the Middle East, where it is hard to eliminate due to its deep and overlapped roots. On the other side, it has many traditional uses around the world. Herein, the essential oil (EO) of P. farcta above-ground parts was extracted via hydrodistillation techniques and then analyzed using gas chromatography-mass spectroscopy (GC-MS). From the GC-MS analysis, 47 compounds were identified with a relative concentration of 98.02%, including terpenes as the main components (95.08%). From overall identified compounds, cubenol (19.07%), trans-chrysanthenyl acetate (17.69%), torreyol (8.28%), davana ether (3.50%), camphor (3.35%), and farnesyl acetone (3.13%) represented the abundant constituents. Furthermore, the phytotoxic activity of the P. farcta EO was assessed against the weed Dactyloctenium aegyptium (L.) Willd. The EO of P. farcta, at a concentration of 100 µL L−1, significantly inhibited the germination, seedling shoot growth, and seedling root growth by 64.1, 64.0, and 73.4%, respectively. The results exhibited that the seedling root growth is the most affected followed by the seed germination and seedling shoot growth with respective IC50 at 64.5, 80.5, and 92.9 µL L−1. It can be concluded that weeds are not absolutely harmful, but they may have beneficial uses, such as, for example as a source of phytochemicals with application in weed control practices (bioherbicides). It is advised to conduct additional research to characterize the allelopathic action of the major chemicals in their pure form, either alone or in combination, against a variety of weeds.
Collapse
Affiliation(s)
- Ahmed M. Abd-ElGawad
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M. Assaeed
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abd El-Nasser El Gendy
- Medicinal and Aromatic Plants Research Department, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Luisa Pistelli
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
| | - Basharat A. Dar
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
25
|
Herrera-Calderon O, Saleh AM, Mahmood AAR, Khalaf MA, Calva J, Loyola-Gonzales E, Tataje-Napuri FE, Chávez H, Almeida-Galindo JS, Chavez-Espinoza JH, Pari-Olarte JB. The Essential Oil of Petroselinum crispum (Mill) Fuss Seeds from Peru: Phytotoxic Activity and In Silico Evaluation on the Target Enzyme of the Glyphosate Herbicide. PLANTS (BASEL, SWITZERLAND) 2023; 12:2288. [PMID: 37375914 DOI: 10.3390/plants12122288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Petroselinum crispum (Mill) Fuss is an aromatic plant belonging to the Apiaceae family and used in gastronomy as a spice. Several studies have been developed in leaves but studies are limited in seeds, especially the essential oils obtained from seeds. The aim of this study was to determine the phytochemical profile of the volatile compounds of this essential oil by gas-chromatography-mass spectrometry (GC-MS) in order to evaluate its phytotoxic activity on Lactuca sativa seeds and to carry out an in silico analysis on the target enzyme of the herbicide glyphosate 5-enolpyruvylshikimate 3-phosphate synthase (EPSP). The essential oil was obtained by steam distillation for two hours and then was injected into a GC-MS, the phytotoxic assay was carried out on Lactuca seeds and the in silico evaluation on the EPSP synthase focused on the volatile compounds similar to glyphosate, docking analysis, and molecular dynamics to establish the protein-ligand stability of the most active molecule. The chromatographic analysis revealed 47 compounds, predominated by three compounds with the most abundant percentage in the total content (1,3,8-ρ-menthatriene (22.59%); apiole (22.41%); and β-phellandrene (15.02%)). The phytotoxic activity demonstrated that the essential oil had a high activity at 5% against L. sativa seed germination, inhibition of root length, and hypocotyl length, which is comparable to 2% glyphosate. The molecular docking on EPSP synthase revealed that trans-p-menth-6-en-2,8-diol had a high affinity with the enzyme EPSP synthase and a better stability during the molecular dynamic. According to the results, the essential oil of P. crispum seeds presented a phytotoxic activity and might be useful as a bioherbicide agent against weeds.
Collapse
Affiliation(s)
- Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
| | - Abdulrahman M Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Bab-Almouadam, Baghdad 10001, Iraq
| | - Mohamed A Khalaf
- Chemistry Department, College of Science, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates
| | - James Calva
- Departamento de Química, Universidad Técnica Particular de Loja, Loja 1101608, Ecuador
| | - Eddie Loyola-Gonzales
- Department of Pharmaceutical Science, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | - Freddy Emilio Tataje-Napuri
- Departamento de Ciencias Comunitarias de la Facultad de Odontología, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | - Haydee Chávez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | | | - Javier Hernán Chavez-Espinoza
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | - Josefa Bertha Pari-Olarte
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| |
Collapse
|
26
|
Cuadros-Siguas CF, Herrera-Calderon O, Batiha GES, Almohmadi NH, Aljarba NH, Apesteguia-Infantes JA, Loyola-Gonzales E, Tataje-Napuri FE, Kong-Chirinos JF, Almeida-Galindo JS, Chávez H, Pari-Olarte JB. Volatile Components, Antioxidant and Phytotoxic Activity of the Essential Oil of Piper acutifolium Ruiz & Pav. from Peru. Molecules 2023; 28:molecules28083348. [PMID: 37110583 PMCID: PMC10140949 DOI: 10.3390/molecules28083348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Piper acutifolium Ruiz & Pav is known as "matico" and belongs to the Piperaceae family, and in Peru it is traditionally used as an infusion or decoction to ameliorate wound healings or ulcers. In this study, the aim was to investigate the volatile components, the antioxidant profile, and the phytotoxic activity of the essential oil (EO) of P. acutifolium from Peru. To identify the phytoconstituents, the EO was injected into a Gas Chromatography-Mass Spectrometry (GC-MS) to obtain the chemical profile of the volatile components, followed by the antioxidant activity carried out by the reaction with three organic radicals (2,2-diphenyl-1-picrylhydrazyl (DPPH); 2,2'-azinobis-(3-ethylbenzothiazoline)-6- sulfonic acid (ABTS); ferric reducing/antioxidant power (FRAP)). Finally, the phytotoxic capabilities of the EO were tested on two model plants, Lactuca sativa seeds and Allium cepa bulbs. As a result, the analysis identified α-phellandrene as its main volatile chemical at 38.18%, followed by β-myrcene (29.48%) and β-phellandrene (21.88%). Regarding the antioxidant profile, the half inhibitory concentration (IC50) in DPPH was 160.12 ± 0.30 µg/mL, for ABTS it was 138.10 ± 0.06 µg/mL and finally in FRAP it was 450.10 ± 0.05 µg/mL. The phytotoxic activity demonstrated that the EO had high activity at 5% and 10% against L. sativa seed germination, the inhibition of root length, and hypocotyl length. Additionally, in A. cepa bulbs, the inhibition root length was obtained at 10%, both comparable to glyphosate, which was used as a positive control. The molecular docking on 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) revealed that α-phellandrene had -5.8 kcal/mol, being near to glyphosate at -6.3 kcal/mol. The conclusion shows that the EO of P. acutifolium presented antioxidant and phytotoxic activity and might be useful as a bioherbicide in the future.
Collapse
Affiliation(s)
- Carmela Fiorella Cuadros-Siguas
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr Puno 1002, Lima 15001, Peru
| | - Oscar Herrera-Calderon
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr Puno 1002, Lima 15001, Peru
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Najlaa Hamed Almohmadi
- Clinical Nutrition Department, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia
| | - Nada H Aljarba
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - José Alfonso Apesteguia-Infantes
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr Puno 1002, Lima 15001, Peru
| | - Eddie Loyola-Gonzales
- Department of Pharmaceutical Science, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | - Freddy Emilio Tataje-Napuri
- Departamento de Ciencias Comunitarias, Facultad de Odontología, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | - José Francisco Kong-Chirinos
- Department of Surgical Clinical Sciences, Faculty of Human Medicine, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | | | - Haydee Chávez
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| | - Josefa Bertha Pari-Olarte
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biochemistry, Universidad Nacional San Luis Gonzaga, Ica 11001, Peru
| |
Collapse
|
27
|
Amato G, Caputo L, Francolino R, Martino M, De Feo V, De Martino L. Origanum heracleoticum Essential Oils: Chemical Composition, Phytotoxic and Alpha-Amylase Inhibitory Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:866. [PMID: 36840214 PMCID: PMC9959193 DOI: 10.3390/plants12040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Many studies have demonstrated the herbicidal effects of several essential oils and their possible use as substitutes for chemical herbicides. Several enzymes play a very significant role in seed germination: among these, α-amylase could be involved in essential oil phytotoxic processes. The aims of this study were to compare the chemical composition of the essential oils of two ecotypes of O. heracleoticum growing in Cilento (Southern Italy) and to study their possible use as natural herbicide using Raphanus sativus, Sinapis arvensis and Lolium multiflorum seeds. Moreover, a possible inhibitory activity on the α-amylase enzyme extracted from germinating seeds was evaluated as a possible mechanism of action. Both oils, characterized by GC-MS, belonged to a carvacrol chemotype. The alpha-amylase activity was determined using DNSA (dinitrosalicylic acid) assay quantifying the reducing sugar produced. Furthermore, the essential oils demonstrated phytotoxicity at the highest dose tested, and an inhibitory effect on α-amylase, probably correlated with the phytotoxic effects, was registered. The oils showed interesting phytotoxic and alpha-amylase inhibitory activities, which deserve to be further investigated.
Collapse
|
28
|
Amri I, Khammassi M, Ben Ayed R, Khedhri S, Mansour MB, Kochti O, Pieracci Y, Flamini G, Mabrouk Y, Gargouri S, Hanana M, Hamrouni L. Essential Oils and Biological Activities of Eucalyptus falcata, E. sideroxylon and E. citriodora Growing in Tunisia. PLANTS (BASEL, SWITZERLAND) 2023; 12:816. [PMID: 36840164 PMCID: PMC9965493 DOI: 10.3390/plants12040816] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Many plants are able to synthesize essential oils (EOs), which play key roles in defense against weeds, fungi and pests. This study aims to analyze the chemical composition and to highlight the antioxidant, antimicrobial and phytotoxic properties of the EOs from Eucalyptus falcata, E. sideroxylon and E. citriodora growing in Tunisia. EOs were analyzed by gas chromatography coupled to mass spectrometry (GC/MS) and their antioxidant properties were determined by total antioxidant capacity (TAC), DPPH and ABTS assays. The phytotoxic potential was assessed against weeds (Sinapis arvensis, Phalaris canariensis) and durum wheat crop (Triticum durum) and compared to chemical herbicide glyphosate. The antifungal activity was investigated in vitro against eight target fungal strains. All EOs displayed a specific richness in oxygenated monoterpenes (51.3-90%) and oxygenated sesquiterpenes (4.8-29.4%), and 1,8-cineole, citronellal, citronellol, trans-pinocarveol, globulol, spathulenol and citronellyl acetate were the main constituents. Eucalyptus EOs exhibited remarkable antioxidant activity and E. citriodora oil exhibited significant activity when compared with E. falcata and E. sideroxylon EOs. The phytotoxic potential of the tested oils had different efficacy on seed germination and the growth of seedlings and varied among tested herbs and their chemical composition variability. Their effectiveness was better than that of glyphosate. At the post-emergence stage, symptoms of chlorosis and necrosis were observed. Furthermore, a decrease in chlorophyll and relative water content, electrolyte leakage and high levels of MDA and proline were indicators of the oxidative effects of EOs and their effectiveness as bioherbicides. Moreover, all the EOs exhibited moderate fungitoxic properties against all the tested fungal strains. Therefore, according to the obtained results, Eucalyptus EOs could have potential application as natural pesticides.
Collapse
Affiliation(s)
- Ismail Amri
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Marwa Khammassi
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Rayda Ben Ayed
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam-lif 2050, Tunisia
- Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT), University of Carthage-Tunis, 43 Avenue Charles Nicolle, El Mahrajène 1082, Tunisia
| | - Sana Khedhri
- Laboratory of Management and Valorization of Forest Resources, National Institute of Researches on Rural Engineering, Water and Forests, P.B. 10, Ariana 2080, Tunisia
| | - Manel Ben Mansour
- Laboratory of Plant Protection, National Institut of Agronomic Research of Tunisia, P.B. 10, Ariana 2080, Tunisia
| | - Oumayma Kochti
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Ylenia Pieracci
- Dipartimento di Farmacia, via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| | - Guido Flamini
- Dipartimento di Farmacia, via Bonanno 6, University of Pisa, 56126 Pisa, Italy
| | - Yassine Mabrouk
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| | - Samia Gargouri
- Laboratory of Plant Protection, National Institut of Agronomic Research of Tunisia, P.B. 10, Ariana 2080, Tunisia
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, B.P. 901, Hammam-lif 2050, Tunisia
| | - Lamia Hamrouni
- Laboratory of Biotechnology and Nuclear Technology, National Center of Nuclear Science and Technology, Sidi Thabet, B.P. 72, Ariana 2020, Tunisia
| |
Collapse
|
29
|
Pre-emergent bioherbicide potential of Schinus terebinthifolia Raddi essential oil nanoemulsion for Urochloa brizantha. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2022.102598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Development of smoke flavour-antimicrobial packaging from coconut fibre using Litsea cubeba essential oil and wood smoke for dried fish preservation and reduction of PAH. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Laudani F, Campolo O, Caridi R, Latella I, Modafferi A, Palmeri V, Sorgonà A, Zoccali P, Giunti G. Aphicidal Activity and Phytotoxicity of Citrus sinensis Essential-Oil-Based Nano-Insecticide. INSECTS 2022; 13:1150. [PMID: 36555059 PMCID: PMC9786027 DOI: 10.3390/insects13121150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Due to its high polyphagy, Aphis gossypii is considered a key pest of many crops, and it can feed on hundreds of plant species belonging to the families Cucurbitaceae, Malvaceae, Solanaceae, Rutaceae, and Asteraceae. The control of this pest mainly relies on synthetic insecticides whose adverse effects on the environment and human health are encouraging researchers to explore innovative, alternative solutions. In this scenario, essential oils (EOs) could play a key role in the development of ecofriendly pesticides. In this study, the development of a citrus peel EO-based nano-formulation and its biological activity against A. gossypii both in the laboratory and field were described and evaluated. The phytotoxicity towards citrus plants was also assessed. The developed nano-insecticide highlighted good aphicidal activity both in the laboratory and field trials, even at moderate EO concentrations. However, the highest tested concentrations (4 and 6% of active ingredient) revealed phytotoxic effects on the photosynthetic apparatus; the side effects need to be carefully accounted for to successfully apply this control tool in field conditions.
Collapse
Affiliation(s)
- Francesca Laudani
- Department of AGRARIA, University “Mediterranea” of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Orlando Campolo
- Department of AGRARIA, University “Mediterranea” of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Roberta Caridi
- Department of AGRARIA, University “Mediterranea” of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Ilaria Latella
- Department of AGRARIA, University “Mediterranea” of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Antonino Modafferi
- Department of AGRARIA, University “Mediterranea” of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Vincenzo Palmeri
- Department of AGRARIA, University “Mediterranea” of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Agostino Sorgonà
- Department of AGRARIA, University “Mediterranea” of Reggio Calabria, Feo di Vito, 89122 Reggio Calabria, Italy
| | - Paolo Zoccali
- I.P.S.S.A.S.R.-Scigliano, Via Municipio, 87057 Cosenza, Italy
| | - Giulia Giunti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|
32
|
Abd-Ellatif S, Ibrahim AA, Safhi FA, Abdel Razik ES, Kabeil SSA, Aloufi S, Alyamani AA, Basuoni MM, ALshamrani SM, Elshafie HS. Green Synthesized of Thymus vulgaris Chitosan Nanoparticles Induce Relative WRKY-Genes Expression in Solanum lycopersicum against Fusarium solani, the Causal Agent of Root Rot Disease. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223129. [PMID: 36432858 PMCID: PMC9695361 DOI: 10.3390/plants11223129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 05/30/2023]
Abstract
Fusarium solani is a plant pathogenic fungus that causes tomato root rot disease and yield losses in tomato production. The current study's main goal is testing the antibacterial efficacy of chitosan nanoparticles loaded with Thyme vulgaris essential oil (ThE-CsNPs) against F. solani in vitro and in vivo. GC-MS analysis was used to determine the chemical constituents of thyme EO. ThE-CsNPs were investigated using transmission electron microscopy before being physicochemically characterized using FT-IR. ThE-CsNPs were tested for antifungal activity against F. solani mycelial growth in vitro. A pot trial was conducted to determine the most effective dose of ThE-CsNPs on the morph/physiological characteristics of Solanum lycopersicum, as well as the severity of fusarium root rot. The relative gene expression of WRKY transcript factors and defense-associated genes were quantified in root tissues under all treatment conditions. In vitro results revealed that ThE-CsNPs (1%) had potent antifungal efficacy against F. solani radial mycelium growth. The expression of three WRKY transcription factors and three tomato defense-related genes was upregulated. Total phenolic, flavonoid content, and antioxidant enzyme activity were all increased. The outfindings of this study strongly suggested the use of ThE-CsNPs in controlling fusarium root rot on tomatoes; however, other experiments remain necessary before they are recommended.
Collapse
Affiliation(s)
- Sawsan Abd-Ellatif
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Amira A. Ibrahim
- Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Elsayed S. Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Sanaa S. A. Kabeil
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technology Applications, Alexandria 21934, Egypt
| | - Salman Aloufi
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Amal A. Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Mostafa M. Basuoni
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | | | - Hazem S. Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, 85100 Potenza, Italy
| |
Collapse
|
33
|
Tarakanov RI, Dzhalilov FSU. Using of Essential Oils and Plant Extracts against Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens on Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:2989. [PMID: 36365442 PMCID: PMC9655289 DOI: 10.3390/plants11212989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
The bacteria Pseudomonas savastanoi pv. glycinea (Coerper, 1919; Gardan et al., 1992) (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges 1922) (Cff) are harmful pathogens of soybean (Glycine max). Presently, there are several strategies to control these bacteria, and the usage of environmentally friendly approaches is encouraged. In this work, purified essential oils (EOs) from 19 plant species and total aqueous and ethanolic plant extracts (PEs) from 19 plant species were tested in vitro to observe their antimicrobial activity against Psg and Cff (by agar diffusion and broth microdilution method). Tested EOs and PEs produced significant bacterial growth inhibition with technologically acceptable MIC and MBC values. Non-phytotoxic concentrations for Chinese cinnamon and Oregano essential oils and leather bergenia ethanolic extract, which previously showed the lowest MBC values, were determined. Testing of these substances with artificial infection of soybean plants has shown that the essential oils of Chinese cinnamon and oregano have the maximum efficiency against Psg and Cff. Treatment of leaves and seeds previously infected with phytopathogens with these essential oils showed that the biological effectiveness of leaf treatments was 80.6-77.5% and 86.9-54.6%, respectively, for Psg and Cff. GC-MS and GC-FID analyzes showed that the major compounds were 5-Methyl-3-methylenedihydro-2(3H)-furanone (20.32%) in leather bergenia ethanolic extract, cinnamaldehyde (84.25%) in Chinese cinnamon essential oil and carvacrol (62.32%) in oregano essential oil.
Collapse
Affiliation(s)
- Rashit I. Tarakanov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| | - Fevzi S.-U. Dzhalilov
- Department of Plant Protection, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Str. 49, 127434 Moscow, Russia
| |
Collapse
|
34
|
Karakoti H, Mahawer SK, Tewari M, Kumar R, Prakash O, de Oliveira MS, Rawat DS. Phytochemical Profile, In Vitro Bioactivity Evaluation, In Silico Molecular Docking and ADMET Study of Essential Oils of Three Vitex Species Grown in Tarai Region of Uttarakhand. Antioxidants (Basel) 2022; 11:antiox11101911. [PMID: 36290633 PMCID: PMC9598352 DOI: 10.3390/antiox11101911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 02/05/2023] Open
Abstract
A comparative study of volatiles, antioxidant activity, phytotoxic activity, as well as in silico molecular docking and ADMET study, was conducted for essential oils from three Vitex species, viz., V. agnus-castus, V. negundo, and V. trifolia. Essential oils (OEs) extracted by hydrodistillation were subjected to compositional analysis using GC-MS. A total number of 37, 45, and 43 components were identified in V. agnus-castus, V. negundo, and V. trifolia, respectively. The antioxidant activity of EOs, assessed using different radical-scavenging (DPPH, H2O2 and NO), reducing power, and metal chelating assays, were found to be significant as compared with those of the standards. The phytotoxic potential of the EOs was performed in the receptor species Raphanusraphanistrum (wild radish) and the EOs showed different levels of intensity of seed germination inhibition and root and shoot length inhibition. The molecular docking study was conducted to screen the antioxidant and phytotoxic activity of the major and potent compounds against human protein target, peroxiredoxin 5, and 4-hydroxyphenylpyruvate dioxygenase protein (HPPD). Results showed good binding affinities and attributed the strongest inhibitory activity to 13-epi-manoyl oxide for both the target proteins.
Collapse
Affiliation(s)
- Himani Karakoti
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Sonu Kumar Mahawer
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Monika Tewari
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Ravendra Kumar
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
- Correspondence: (R.K.); (M.S.d.O.)
| | - Om Prakash
- Department of Chemistry, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Mozaniel Santana de Oliveira
- Campus de Pesquisa-Museu Paraense Emílio Goeldi-Botany Coordination, Av. Perimetral, 1901-Terra Firme, Belém 66077-830, PA, Brazil
- Correspondence: (R.K.); (M.S.d.O.)
| | - Dharmendra Singh Rawat
- Department of Biological Sciences, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| |
Collapse
|
35
|
Direct and Indirect Effects of Essential Oils for Sustainable Crop Protection. PLANTS 2022; 11:plants11162144. [PMID: 36015446 PMCID: PMC9416161 DOI: 10.3390/plants11162144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Plant essential oils (EOs) are gaining interest as biopesticides for crop protection. EOs have been recognized as important ingredients of plant protection products including insecticidal, acaricidal, fungicidal, and nematicidal agents. Considering the growing importance of EOs as active ingredients, the domestication and cultivation of Medicinal and Aromatic Plants (MAPs) to produce chemically stable EOs contributes to species conservation, provides the sustainability of production, and decreases the variations in the active ingredients. In addition to these direct effects on plant pests and diseases, EOs can induce plant defenses (priming effects) resulting in better protection. This aspect is of relevance considering that the EU framework aims to achieve the sustainable use of new plant protection products (PPPs), and since 2020, the use of contaminant PPPs has been prohibited. In this paper, we review the most updated information on the direct plant protection effects of EOs, focusing on their modes of action against insects, fungi, and nematodes, as well as the information available on EOs with plant defense priming effects.
Collapse
|
36
|
Phytochemical Profile and Herbicidal (Phytotoxic), Antioxidants Potential of Essential Oils from Calycolpus goetheanus (Myrtaceae) Specimens, and in Silico Study. Molecules 2022; 27:molecules27154678. [PMID: 35897853 PMCID: PMC9331371 DOI: 10.3390/molecules27154678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 12/10/2022] Open
Abstract
The essential oil (EO) of Calycolpus goetheanus (Myrtaceae) specimens (A, B, and C) were obtained through hydrodistillation. The analysis of the chemical composition of the EOs was by gas chromatography coupled with mass spectrometry CG-MS, and gas chromatography coupled with a flame ionization detector CG-FID. The phytotoxic activity of those EOs was evaluated against two weed species from common pasture areas in the Amazon region: Mimosa pudica L. and Senna obtusifolia (L.) The antioxidant capacity of the EOs was determined by (DPPH•) and (ABTS•+). Using molecular docking, we evaluated the interaction mode of the major EO compounds with the molecular binding protein 4-hydroxyphenylpyruvate dioxygenase (HPPD). The EO of specimen A was characterized by β-eudesmol (22.83%), (E)-caryophyllene (14.61%), and γ-eudesmol (13.87%), while compounds 1,8-cineole (8.64%), (E)-caryophyllene (5.86%), δ-cadinene (5.78%), and palustrol (4.97%) characterize the chemical profile of specimen B’s EOs, and specimen C had α-cadinol (9.03%), δ-cadinene (8.01%), and (E)-caryophyllene (6.74%) as the majority. The phytotoxic potential of the EOs was observed in the receptor species M. pudica with percentages of inhibition of 30%, and 33.33% for specimens B and C, respectively. The EOs’ antioxidant in DPPH• was 0.79 ± 0.08 and 0.83 ± 0.02 mM for specimens A and B, respectively. In the TEAC, was 0.07 ± 0.02 mM for specimen A and 0.12 ± 0.06 mM for specimen B. In the results of the in silico study, we observed that the van der Waals and hydrophobic interactions of the alkyl and pi-alkyl types were the main interactions responsible for the formation of the receptor–ligand complex.
Collapse
|
37
|
Caetano ARS, das Graças Cardoso M, Resende MLV, Chalfuon SM, Martins MA, Gomes HG, Andrade MER, Brandão RM, Campolina GA, Nelson DL, de Oliveira JE. Antifungal activity of poly(ε-caprolactone) nanoparticles incorporated with Eucalyptus essential oils against Hemileia vastatrix. Lett Appl Microbiol 2022; 75:1028-1041. [PMID: 35778984 DOI: 10.1111/lam.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022]
Abstract
Coffee (Coffea L.) is one of the main crops produced globally. Its contamination by the fungus Hemileia vastatrix Berkeley and Broome has been economically detrimental for producers. The objective of this work was to extract and characterize the essential oils from Eucalyptus citriodora Hook, Eucalyptus camaldulensis Dehn and Eucalyptus grandis Hill ex Maiden, produce and characterize nanoparticles containing these essential oils, and evaluate the in vivo and in vitro antifungal activity of free and nanoencapsulated essential oils. The principal constituents of the essential oil from E. citriodora was citronellal , that from E. grandis was α-pinene , and that from E. camaldulensis was 1,8-cineol. The in vitro antifungal activity against the fungus H. vastatrix was 100% at a concentration of 1000 μl l-1 for all the oils and nanoparticles containing these natural products. The sizes of the nanoparticles produced with the essential oils from E. citriodora, E. camaldulensis and E. grandis were 402.13 nm, 275.33 nm and 328.5 nm, respectively, with surface charges of -11.8 mV, -9.24 mV and -6.76 mV, respectively. Fourier transform infrared analyses proved that the encapsulation of essential oils occurred in the polymeric matrix of poly(ε-caprolactone). The incorporation of essential oils into biodegradable poly(ε-caprolactone) nanoparticles increased their efficiency as biofungicides in the fight against coffee rust, decreasing the severity of the disease by up to 90.75% after treatment with the nanoparticles conaining the essential oil from E. grandis.
Collapse
Affiliation(s)
| | | | | | - Sara Maria Chalfuon
- Agricultural Research Corporation of Minas Gerais, Federal University of Lavras (UFLA), Lavras, MG, Brazil
| | | | | | | | | | | | - David Lee Nelson
- Postgraduate Program in Biofuels, Federal University of The Jequitinhonha and Mucuri Valleys, Diamantina, MG, Brazil
| | | |
Collapse
|
38
|
Gharbi K, Tay JW. Fumigant Toxicity of Essential Oils against Frankliniella occidentalis and F. insularis (Thysanoptera: Thripidae) as Affected by Polymer Release and Adjuvants. INSECTS 2022; 13:insects13060493. [PMID: 35735830 PMCID: PMC9224942 DOI: 10.3390/insects13060493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Frankliniella occidentalis is among the most economically significant pests of greenhouse crops. In contrast, F. insularis is a relatively minor pest with a narrower distribution and host range. We conducted a series of fumigation assays to assess the vulnerability of both species to fumigation with essential oils released from hydrogels. These hydrogels contained either (R)-linalool, (S)-linalool, racemic linalool, or a binary mixture of (R)-linalool with one of twelve other essential oils. Solanum lycopersicum seedlings were screened for their sensitivity to the most potent fumigants, as determined from thrips bioassays. The least saturated hydrogels conditioned in essential oils were the most effective, and both species of thrips were more sensitive to (R)-linalool than to (S)-linalool. Frankliniella occidentalis was significantly more resistant to all treatments than F. insularis. Treatment of S. lycopersicum with the same concentrations of oils required to control thrips resulted in reduced root and hypocotyl lengths, most severely in seedlings exposed via foliar sprays than as fumigants. While our study demonstrates that essential oils are a promising alternative to conventional insecticides for thrips control, the resistance demonstrated by F. occidentalis underlines the need for judicious use of essential oils as part of broader pest control programs. Abstract Frankliniella occidentalis is among the most economically significant pests of greenhouse crops, whose resistance to conventional insecticides has created demand for biopesticides such as essential oils. We assessed the fumigant toxicity of linalool against F. occidentalis, F. insularis, and Solanum lycopersicum. Thrips were fumigated with polyacrylamide hydrogels containing either (R)-linalool, (S)-linalool, racemic linalool, or a binary mixture of (R)-linalool with one of twelve adjuvants (i.e., peppermint, cedarwood, neem, clove, coconut, jojoba, soybean, olive, α-terpineol, 1,8-cineole, trans-anethole, or (R)-pulegone). Solanum lycopersicum seedlings were exposed to (R)-linalool or a mixture of (R)-linalool and peppermint oil via conditioned hydrogels or foliar spray. For F. insularis, (R)-linalool was more toxic than (S)-linalool, with LC50 values of 11.7 mg/L air and 16.7 mg/L air, respectively. Similarly for F. occidentalis, (R)-linalool was more toxic than (S)-linalool, with LC50 values of 29.0 mg/L air and 34.9 mg/L air, respectively. Peppermint oil and α-terpineol were the only synergists, while the other adjuvants exhibited varying degrees of antagonism. All seedling treatments demonstrated phytotoxicity, but symptoms were most severe for foliar sprays and mixtures containing peppermint oil. While hydrogels conditioned in linalool may be a favorable substitute to conventional insecticides, the cross-resistance demonstrated herein indicates that expectations should be metered.
Collapse
|
39
|
Lemus de la Cruz AS, Barrera-Cortés J, Lina-García LP, Ramos-Valdivia AC, Santillán R. Nanoemulsified Formulation of Cedrela odorata Essential Oil and Its Larvicidal Effect against Spodoptera frugiperda (J.E. Smith). Molecules 2022; 27:molecules27092975. [PMID: 35566324 PMCID: PMC9101729 DOI: 10.3390/molecules27092975] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Cedrela odorata L. is a plant species from the Meliaceae family that is cultivated for timber production. Although the C. odorata essential oil (EO) contains mainly sesquiterpenes, its insecticidal potential is unknown. The lipophilic properties and high degradation capacity of EOs have limited their application for use in pest control. However, the currently available knowledge on the nanoemulsification of EOs, in addition to the possibility of improving their dispersion, would allow them to prolong their permanence in the field. The objective of the present work was to develop a nanoemulsion of the C. odorata EO and to evaluate its larvicidal activity against Spodoptera frugiperda. The EO was obtained by the hydrodistillation of C. odorata dehydrated leaves, and the nanoemulsion was prepared with non-ionic surfactants (Tween 80 and Span 80) using a combined method of agitation and dispersion with ultrasound. The stability of the nanoemulsion with a droplet diameter of <200 nm was verified in samples stored at 5 °C and 25 °C for 90 days. Both the C. odorata EO and its corresponding nanoemulsion presented lethal properties against S. frugiperda. The results obtained provide guidelines for the use of wood waste to produce sustainable and effective insecticides in the fight against S. frugiperda. In addition, considering that a phytochemical complex mixture allows the simultaneous activation of different action mechanisms, the development of resistance in insects is slower.
Collapse
Affiliation(s)
- Ana Sofía Lemus de la Cruz
- Centro de Investigación y de Estudios Avanzados, Departamento de Biotecnología y Bioingeniería, Instituto Politécnico Nacional (Cinvestav-IPN), Unidad Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (A.S.L.d.l.C.); (A.C.R.-V.)
| | - Josefina Barrera-Cortés
- Centro de Investigación y de Estudios Avanzados, Departamento de Biotecnología y Bioingeniería, Instituto Politécnico Nacional (Cinvestav-IPN), Unidad Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (A.S.L.d.l.C.); (A.C.R.-V.)
- Correspondence: ; Tel.: +52-55-5747-3800
| | - Laura Patricia Lina-García
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Chamilpa, Cuernavaca 62209, Mexico;
| | - Ana C. Ramos-Valdivia
- Centro de Investigación y de Estudios Avanzados, Departamento de Biotecnología y Bioingeniería, Instituto Politécnico Nacional (Cinvestav-IPN), Unidad Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico; (A.S.L.d.l.C.); (A.C.R.-V.)
| | - Rosa Santillán
- Departamento de Química, Cinvestav-IPN, Unidad Zacatenco, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico;
| |
Collapse
|
40
|
Maes C, Abir S, Jacquet P, De Clerck C, Blecker C, Bouquillon S, Fauconnier ML. Cinnamomum zeylanicum Essential Oil Formulation with Poly(propylene imine) Dendrimers with Surface-Grafted Glycerol: Release Kinetics of trans-Cinnamaldehyde and Germination Inhibition Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5177-5185. [PMID: 35435666 DOI: 10.1021/acs.jafc.1c07472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Third-generation glycerodendrimer polypropylenimine (GD-PPI-3) can be used in an aqueous formulation of Cinnamomum zeylanicum essential oil (CEO). The purpose was to give an overview of this innovative method of retaining and releasing essential oils. The formulation consisted of 366 min stirring at 1735 rpm of the aqueous solution of 2 mM GD-PPI-3 with CEO. Some physicochemical properties of these formulations, as well as the release of trans-cinnamaldehyde, have been studied. A bimodal distribution and no concentration or aging effect were observed by optical microscopy. Moreover, the release kinetics showed the retention of volatile molecules in solution under various environmental conditions. The release profile was characterized by an initial burst followed by a steady release. The dendrimers allowed us to reduce this initial burst and extended the release by at least 15 h. In addition, the herbicidal effect was evaluated: inhibition of Arabidopsis thaliana seed germination was obtained for 7 days with a formulation of 12.5 mg/L CEO in a closed space and 360 mg/L CEO in an open space.
Collapse
Affiliation(s)
- Chloë Maes
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université Reims-Champagne-Ardenne, UFR Sciences, BP 1039 boîte 44, 51687 Reims Cedex 2, France
- Laboratoire de Chimie des Molécules Naturelles, Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux, Belgium
| | - Soleiman Abir
- Laboratoire de Chimie des Molécules Naturelles, Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux, Belgium
| | - Pierre Jacquet
- Laboratoire de Chimie des Molécules Naturelles, Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux, Belgium
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux, Belgium
| | - Christophe Blecker
- Laboratoire de Science des Aliments et Formulation, Gembloux Agro-Bio Tech, Université de Liège, Avenue de la Faculté d'Agronomie 2B, 5030 Gembloux, Belgium
| | - Sandrine Bouquillon
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université Reims-Champagne-Ardenne, UFR Sciences, BP 1039 boîte 44, 51687 Reims Cedex 2, France
| | - Marie-Laure Fauconnier
- Laboratoire de Chimie des Molécules Naturelles, Gembloux Agro-Bio Tech, Université de Liège, 5030 Gembloux, Belgium
| |
Collapse
|
41
|
Distribution Patterns of Essential Oil Terpenes in Native and Invasive Solidago Species and Their Comparative Assessment. PLANTS 2022; 11:plants11091159. [PMID: 35567160 PMCID: PMC9099864 DOI: 10.3390/plants11091159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/17/2022]
Abstract
The importance of invasive Solidago L. species to the environment creates a new approach to controlling their spread through the use of potentially high value raw materials. The aim of this study was to assess the distribution patterns of volatile compounds in the four Solidago spp., by identifying common and species-specific compounds with their potentials, and to confirm the origin of the spontaneous hybrid Solidago × niederederi on the basis of comparative assessment of essential oil (EO) profiles. Plant material in the flowering phase was collected in mixed populations from six different sites. The EOs were isolated separately from the leaf and the inflorescence samples by hydrodistillation for 3 h. The chemical analysis was performed by gas chromatography—mass spectrometry. Multivariate data analysis was employed to explain the interspecies relationships among Solidago spp. The results revealed the similarity among Solidago spp. EO profiles, which were dominated by monoterpenes and oxygenated compound fractions. Solidago spp. differed in species distinctive terpenes and their distribution between accessions and plant parts. Volatile compound patterns confirmed the origin of Solidago × niederederi between Solidago canadensis and Solidago virgaurea, with the higher contribution of alien species than native ones. Correct taxonomic identification of species is highly essential for the targeted collection of raw material from the wild for different applications. Solidago spp. can be considered to be underutilized sources of bioactive secondary metabolites.
Collapse
|
42
|
Faheem F, Liu ZW, Rabail R, Haq IU, Gul M, Bryła M, Roszko M, Kieliszek M, Din A, Aadil RM. Uncovering the Industrial Potentials of Lemongrass Essential Oil as a Food Preservative: A Review. Antioxidants (Basel) 2022; 11:720. [PMID: 35453405 PMCID: PMC9031912 DOI: 10.3390/antiox11040720] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/01/2023] Open
Abstract
The food industry is growing vastly, with an increasing number of food products and the demand of consumers to have safe and pathogen-free food with an extended shelf life for consumption. It is critical to have food safe from pathogenic bacteria, fungi, and unpleasant odors or tastes so that the food may not cause any health risks to consumers. Currently, the direction of food industry has been shifting from synthetically produced preservatives to natural preservatives to lower the unnecessary chemical burden on health. Many new technologies are working on natural prevention tools against food degradation. Lemongrass is one such natural preservative that possesses significant antimicrobial and antioxidant activity. The essential oil of lemongrass contains a series of terpenes that are responsible for these activities. These properties make lemongrass acceptable in the food industry and may fulfill consumer demands. This article provides detailed information about the role of lemongrass and its essential oil in food preservation. The outcomes of the research on lemongrass offer room for its new technological applications in food preservation.
Collapse
Affiliation(s)
- Fatima Faheem
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Zhi Wei Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Roshina Rabail
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Iahtisham-Ul Haq
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore 54600, Pakistan;
| | - Maryam Gul
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Marcin Bryła
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Roszko
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland; (M.B.); (M.R.)
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159 C, 02-776 Warsaw, Poland
| | - Ahmad Din
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan; (F.F.); (R.R.); (M.G.); (A.D.)
| |
Collapse
|
43
|
Study on the Sustainability Potential of Thyme, Oregano, and Coriander Essential Oils Used as Vapours for Antifungal Protection of Wheat and Wheat Products. SUSTAINABILITY 2022. [DOI: 10.3390/su14074298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to highlight the antifungal, antimicotoxigenic potential and phytotoxic effect of three essential oils (EOs) of Origanum vulgare (OEO), Thymus vulgaris (TEO), and Coriandrum sativum (CEO) on wheat storage, but also the impact of EOs treatment on the sensory properties of bakery products obtained from the wheat seeds. The chemical composition of EOs was determined using GC-MS analysis; the fungal load was evaluated using the direct plating technique, while mycotoxin analyses were conducted using enzyme-linked immunosorbent assay (ELISA). A selective antifungal effect has been highlighted in terms of the action of EOs vapours. OEO and TEO are inhibited Alternaria, Fusarium and Drechslera, while Saccharomyces and Cladosporium have proven to be the most tolerant fungi. Drechslera is the most sensitive, the effect of all EOs being a fungicidal one. However, the fungicidal effect proved present in all EOs applied as vapours with values ranging between 0.2–0.4%. Regarding the phytotoxic effect of EOs vapours on the germination of the seeds, TEO and OEO had an inhibitory effect, especially at 0.4%. The effect is cumulative over time. The EOs inhibited deoxynivalenol (DON) occurrence; the maximum percentage of inhibition was obtained after 21 days of vapours exposure, being more effective in the case of 0.2%. EOs vapours treatment does not affect the quality of bread obtained from treated wheat seeds from a sensory point of view.
Collapse
|
44
|
Essential Oils of Three Aromatic Plant Species as Natural Herbicides for Environmentally Friendly Agriculture. SUSTAINABILITY 2022. [DOI: 10.3390/su14063596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural herbicides based on essential oils (EOs) extracted from aromatic plants are gaining relevance in contemporary agriculture. Due to their allelopathic properties, they have an inhibitory effect on the germination and growth of different species, having, in general, the advantage of high specificity. For this reason, the analysis of the effects of these natural compounds on noxious weeds is continuously increasing. In the present study, three commercial EOs extracted from Mentha piperita L., Thymbra capitata (L.) Cav. and Santolina chamaecyparissus L. were tested on two invasive weeds with an increasing presence in southern Europe, Erigeron bonariensis L. and Araujia sericifera Brot. Five concentrations (0.125, 0.25, 0.50, 1 and 2 µL mL–1) were tested in a randomized manner for each essential oil and five replicates with 20 seeds each for E. bonariensis and 10 replicates with 10 seeds each for A. sericifera. Two higher concentrations of 4 and 8 μL mL–1 of the three EOs were applied with irrigation on the plants of the two species at the vegetative growth stage. The number of replicas for each treatment and species was 7. The results obtained confirmed the significant inhibitory effects on seed germination and early seedling development, especially in E. bonariensis; of the three EOs, peppermint had the strongest effect, completely preventing germination in both species. Multivariate analysis, performed on several morphological traits scored after one month of treatment in young plants, showed a different pattern: the highest inhibition was recorded in A. sericifera and the greatest reduction in growth in the treatment with the highest dose of Santolina EO. The results obtained revealed the efficacy of these natural compounds and the specificity of their toxicity according to the species and stage of development.
Collapse
|
45
|
Saed-Moucheshi A, Mozafari AA. Alternate gene expression profiling of monoterpenes in Hymenocrater longiflorus as a novel pharmaceutical plant under water deficit. Sci Rep 2022; 12:4084. [PMID: 35260740 PMCID: PMC8904481 DOI: 10.1038/s41598-022-08062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 02/11/2022] [Indexed: 11/08/2022] Open
Abstract
Hymenocrater longiflorus (surahalala) is a wild plant species with potential pharmaceutical and ornamental interest. To date, the genomics of this plant is unknown and the gene expression profiling of the genes related to its metabolite has never been studied before. In order to study the responses of in vitro-grown surahalala plants to abiotic stresses and the differential expression of the genes related to its essential oils under exogenous proline application; three levels of PEG600 (0, 10, and 20%) and five levels of proline (0, 5, 10, 15, and 20 µm) were combined in the culture media. Thus, water deficit increased oxidants levels and decreased fresh weight of surahalala tissues, whereas addition of proline up to 15 µm was able to relatively compensate the negative effect of water deficit. Contrarily, high proline level (20 µm) had a negative effect on surahalala plants probably due to the stress simulation (nutrition) under high proline concentration. In addition, the best combination for achieving highest essential oils content was 10 µm proline plus 10% PEG. The expressional profiling of the genes TPS27, L3H, TPS2, TPS1, OMT and GDH3 were successfully carried out and their involvement in 1,8-cineole, carvone, α-pinene, thymol, estragole and β-Citronellol biosynthesis, respectively, was verified. In addition, our results indicated that these genes could also be involved in the synthesis of other metabolites under water deficit condition.
Collapse
Affiliation(s)
- Armin Saed-Moucheshi
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ali Akbar Mozafari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
46
|
Azlan Azizan K, Izzairy Zamani A, Azlan Nor Muhammad N, Khairudin K, Yusoff N, Firdaus Nawawi M. Dose-Dependent Effect of Wedelia trilobata Essential Oil (EO) on Lettuce (Lactuca sativa L.) with Multivariate Analysis. Chem Biodivers 2022; 19:e202100833. [PMID: 34962057 DOI: 10.1002/cbdv.202100833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/28/2021] [Indexed: 11/07/2022]
Abstract
Understanding metabolite changes and underlying metabolic pathways that may be affected in target plants following essential oils (EOs) exposure is of great importance. In this study, a gas chromatography-mass spectrometry (GC/MS) based metabolomics approach was used to determine the metabolite changes in lettuce (Lactuca sativa L.) shoot and root after exposure to different concentrations of W. trilobata EO. Multivariate analyses of principal component analysis (PCA) and orthogonal partial least-discriminant analysis (OPLS-DA) corroborated that shoot and root of lettuce responded differently to W. trilobata EO. In EO-exposed shoot samples, an increase in the levels of malic acid, glutamine, serine, lactose and α-glucopyranose affected important metabolism pathways such as glycolysis, fructose and mannose metabolism and galactose metabolism. The findings suggest that lettuce may be up-regulating these metabolites to increase tolerance against W. trilobata EO. In EO-exposed root samples, changes in fatty acid biosynthesis, elongation, degradation, phenylalanine, tyrosine and tryptophan metabolism were linked to a decrease in lyxose, palmitic acid, octadecanoic acid, aspartic acid, phenylalanine and myo-inositol. These results indicate that W. trilobata EO could cause alterations in fatty acid compositions and lead to inhibition of roots growth. Together, these findings provide insight into the metabolic responses of lettuce upon W. trilobata EO exposure, as well as potential mechanisms of action of W. trilobata EO as bio-herbicides.
Collapse
Affiliation(s)
- Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan, Malaysia (UKM), Selangor, 43600 UKM, Bangi, Malaysia
| | - Arief Izzairy Zamani
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan, Malaysia (UKM), Selangor, 43600 UKM, Bangi, Malaysia
| | - Nor Azlan Nor Muhammad
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan, Malaysia (UKM), Selangor, 43600 UKM, Bangi, Malaysia
| | - Khairunisa Khairudin
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan, Malaysia (UKM), Selangor, 43600 UKM, Bangi, Malaysia
| | - Nornasuha Yusoff
- Agriculture Science and Biotechnology, Universiti Sultan Zainal Abidin (UniSZA), Kampus Besut, Terengganu Darul Iman, 2220, Besut, Malaysia
| | - Mohamad Firdaus Nawawi
- National Science Center (PSN), Persiaran Bukit Kiara, Bukit Damansara, 50490, Kuala Lumpur, Malaysia
| |
Collapse
|
47
|
Acheuk F, Basiouni S, Shehata AA, Dick K, Hajri H, Lasram S, Yilmaz M, Emekci M, Tsiamis G, Spona-Friedl M, May-Simera H, Eisenreich W, Ntougias S. Status and Prospects of Botanical Biopesticides in Europe and Mediterranean Countries. Biomolecules 2022; 12:biom12020311. [PMID: 35204810 PMCID: PMC8869379 DOI: 10.3390/biom12020311] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/03/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023] Open
Abstract
Concerning human and environmental health, safe alternatives to synthetic pesticides are urgently needed. Many of the currently used synthetic pesticides are not authorized for application in organic agriculture. In addition, the developed resistances of various pests against classical pesticides necessitate the urgent demand for efficient and safe products with novel modes of action. Botanical pesticides are assumed to be effective against various crop pests, and they are easily biodegradable and available in high quantities and at a reasonable cost. Many of them may act by diverse yet unexplored mechanisms of action. It is therefore surprising that only few plant species have been developed for commercial usage as biopesticides. This article reviews the status of botanical pesticides, especially in Europe and Mediterranean countries, deepening their active principles and mechanisms of action. Moreover, some constraints and challenges in the development of novel biopesticides are highlighted.
Collapse
Affiliation(s)
- Fatma Acheuk
- Laboratory for Valorization and Conservation of Biological Resources, Faculty of Sciences, University M’Hamed Bougara of Boumerdes, Boumerdes 35000, Algeria;
| | - Shereen Basiouni
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt;
| | - Awad A. Shehata
- Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany;
| | - Katie Dick
- Hochschule Trier, Schneidershof, 54293 Trier, Germany;
| | - Haifa Hajri
- Laboratory of Molecular Physiology of Plants, Borj-Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (H.H.); (S.L.)
| | - Salma Lasram
- Laboratory of Molecular Physiology of Plants, Borj-Cedria Biotechnology Center, BP. 901, Hammam-Lif 2050, Tunisia; (H.H.); (S.L.)
| | - Mete Yilmaz
- Department of Bioengineering, Bursa Technical University, Bursa 16310, Turkey;
| | - Mevlüt Emekci
- Department of Plant Protection, Faculty of Agriculture, Ankara University, Keçiören, Ankara 06135, Turkey;
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St, 30100 Agrinio, Greece;
| | - Marina Spona-Friedl
- Bavarian NMR Center, Structural Membrane Biochemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Helen May-Simera
- Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz, 55128 Mainz, Germany;
| | - Wolfgang Eisenreich
- Bavarian NMR Center, Structural Membrane Biochemistry, Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
- Correspondence: (W.E.); (S.N.)
| | - Spyridon Ntougias
- Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67132 Xanthi, Greece
- Correspondence: (W.E.); (S.N.)
| |
Collapse
|
48
|
Sayed S, Soliman MM, Al-Otaibi S, Hassan MM, Elarrnaouty SA, Abozeid SM, El-Shehawi AM. Toxicity, Deterrent and Repellent Activities of Four Essential Oils on Aphis punicae (Hemiptera: Aphididae). PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11030463. [PMID: 35161443 PMCID: PMC8839614 DOI: 10.3390/plants11030463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 05/26/2023]
Abstract
Chemical insecticides have many harmful effects, including as foodborne residues and environmental contaminants, as well as side effects on natural enemies and serious risks for human health. The use of plant-derived essential oils (EOs) as effective bio-agents has become an essential component of integrated pest management. In this study, the contact toxicity, deterrent, and repellent activities were evaluated for essential oils obtained from Mentha piperita, Mentha longifolia, Salvia officinalis, and Salvia rosmarinus, grown at high altitudes in the Taif region, KSA, on Aphis punicae. Furthermore, the toxicity of these EOs against the predator Coccinella undecimpunctata was estimated. A total of 17, 14, 16, and 26 compounds were identified in the EOs of M. piperita, M. longifolia, S. officinalis, and S. rosmarinus, respectively. They showed a variation in the major compounds: M. piperita (Carvone, 61.16%), M. longifolia (Pulegone, 48.6%), S. officinalis (Eucalyptol, 33.52%), and S. rosmarinus (α-pinene, 36.65%). A contact toxicity test on A. punicae imago and C. undecimpunctata larvae showed that LC50 were approximately four-fold greater for all tested EOs towards aphids compared to towards the predator, while the two species of Salvia sp. were more effective than the other two species of Mentha sp. The LC50 values on A. punicae ranged from 1.57 to 2.97 µg/mL, while on C. undecimpunctata larvae, they ranged from 5.96 to 10.33 µg/mL. Furthermore, the EOs of two species of Salvia sp. showed excellent repellence and deterrence against A. punicae. In conclusion, the tested EOs, especially those from Salvia sp., have been shown to be promising natural aphicides, repellent, and deterrent against A. punicae, and they are safe for important insect predators.
Collapse
Affiliation(s)
- Samy Sayed
- Department of Science and Technology, University College-Ranyah, Taif University, Taif 21944, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif 21995, Saudi Arabia;
| | - Saad Al-Otaibi
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.A.-O.); (A.M.E.-S.)
| | - Mohamed M. Hassan
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Sayed-Ashraf Elarrnaouty
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Samia M. Abozeid
- Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt;
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.A.-O.); (A.M.E.-S.)
| |
Collapse
|
49
|
Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Phytotoxic activity of Moldavian dragonhead (Dracocephalum moldavica L.) essential oil and its possible use as bio-herbicide. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|