1
|
Munekawa C, Okamura T, Majima S, River B, Kawai S, Kobayashi A, Nakajima H, Kitagawa N, Okada H, Senmaru T, Ushigome E, Nakanishi N, Hamaguchi M, Fukui M. Daidzein Inhibits Muscle Atrophy by Suppressing Inflammatory Cytokine- and Muscle Atrophy-Related Gene Expression. Nutrients 2024; 16:3084. [PMID: 39339684 PMCID: PMC11434955 DOI: 10.3390/nu16183084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sarcopenic obesity, which is associated with a poorer prognosis than that of sarcopenia alone, may be positively affected by soy isoflavones, known inhibitors of muscle atrophy. Herein, we hypothesize that these compounds may prevent sarcopenic obesity by upregulating the gut metabolites with anti-inflammatory effects. METHODS To explore the effects of soy isoflavones on sarcopenic obesity and its mechanisms, we employed both in vivo and in vitro experiments. Mice were fed a high-fat, high-sucrose diet with or without soy isoflavone supplementation. Additionally, the mouse C2C12 myotube cells were treated with palmitic acid and daidzein in vitro. RESULTS The isoflavone considerably reduced muscle atrophy and the expression of the muscle atrophy genes in the treated group compared to the control group (Fbxo32, p = 0.0012; Trim63, p < 0.0001; Foxo1, p < 0.0001; Tnfa, p = 0.1343). Elevated levels of daidzein were found in the muscles and feces of the experimental group compared to the control group (feces, p = 0.0122; muscle, p = 0.0020). The real-time PCR results demonstrated that the daidzein decreased the expression of the palmitate-induced inflammation and muscle atrophy genes in the C2C12 myotube cells (Tnfa, p = 0.0201; Il6, p = 0.0008; Fbxo32, p < 0.0001; Hdac4, p = 0.0002; Trim63, p = 0.0114; Foxo1, p < 0.0001). Additionally, it reduced the palmitate-induced protein expression related to the muscle atrophy in the C2C12 myotube cells (Foxo1, p = 0.0078; MuRF1, p = 0.0119). CONCLUSIONS The daidzein suppressed inflammatory cytokine- and muscle atrophy-related gene expression in the C2C12 myotubes, thereby inhibiting muscle atrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (C.M.)
| | | |
Collapse
|
2
|
Ali AM, Al-Dossary SA, Laranjeira C, Amer F, Hallit S, Alkhamees AA, Aljubilah AF, Aljaberi MA, Alzeiby EA, Fadlalmola HA, Pakai A, Khatatbeh H. Effects of Hormonal Replacement Therapy and Mindfulness-Based Stress Reduction on Climacteric Symptoms Following Risk-Reducing Salpingo-Oophorectomy. Healthcare (Basel) 2024; 12:1612. [PMID: 39201170 PMCID: PMC11353799 DOI: 10.3390/healthcare12161612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Breast Cancer Associated Susceptibility Proteins Type 1/2 (BRCA1/2) promote cellular functioning by modulating NRF2-mediated antioxidant signaling. Redox failure in women with BRCA1/2 insufficiency increases the risk for breast/ovarian/uterine cancers. Risk-reducing salpingo-oophorectomy (RRSO) is a prophylactic surgery of the reproductive organs, which is frequently conducted by the age of 40 to lower the occurrence of cancer in women with BRCA1/2 mutations. However, abrupt estrogen decline following RRSO causes ovarian failure, which implicates various cellular physiological processes, resulting in the increased release of free radicals and subsequent severe onset of menopausal symptoms. Comfort measures (e.g., hormonal replacement therapy (HRT) and mindfulness-based stress reduction (MBSR)) may improve chronological menopause-related quality of life, but their specific effects are not clear in women with gene mutations. Aiming to fill the gap, this study used path analysis to examine the effects of HRT and MBSR on menopausal symptoms among RRSO patients (N = 199, mean age = 50.5 ± 6.7 years). HRT directly alleviated the levels of urogenital symptoms (β = -0.195, p = 0.005), which mediated its indirect significant effects on the somatic-vegetative and psychological symptoms of menopause (β = -0.046, -0.067; both p values = 0.004, respectively), especially in BRCA2 carriers and in women who were currently physically active, premenopausal at the time of RRSO, had a high BMI, and had no history of breast cancer. It increased the severity of urogenital symptoms in women with a history of cancer. MBSR, on the other hand, was associated with indirect increases in the intensity of the somatic-vegetative and psychological symptoms of menopause (β = 0.108, 0.029; p = 0.003, 0.033, respectively). It exerted positive direct effects on different menopausal symptoms in multigroup analysis. The results suggest that young women undergoing recent RRSO may benefit from HRT at an individual level, while their need for extensive measures to optimize their psychological wellbeing is ongoing. The adverse effects of MBSR, which are captured in the present study, imply that MBSR may interfere with redox sensitivity associated with estradiol fluctuations in BRCA1/2 carriers. Investigations are needed to test this hypothesis and elaborate on the underlying mechanisms in these women.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Smouha, Alexandria 21527, Egypt;
| | - Saeed A. Al-Dossary
- Department of Psychology, College of Education, University of Ha’il, Ha’il 55476, Saudi Arabia;
| | - Carlos Laranjeira
- School of Health Sciences, Polytechnic University of Leiria, Campus 2, Morro do Lena, Alto do Vieiro, Apartado 4137, 2411-901 Leiria, Portugal
- Centre for Innovative Care and Health Technology (ciTechCare), Polytechnic University of Leiria, Campus 5, Rua das Olhalvas, 2414-016 Leiria, Portugal
- Comprehensive Health Research Centre (CHRC), University of Évora, 7000-801 Évora, Portugal
| | - Faten Amer
- Department of Pharmacy, Faculty of Medicine and Health Science, An-Najah National University, Nablus 00970, Palestine;
| | - Souheil Hallit
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
- Psychology Department, College of Humanities, Effat University, Jeddah 21478, Saudi Arabia
- Applied Science Research Center, Applied Science Private University, Amman 11937, Jordan
| | - Abdulmajeed A. Alkhamees
- Department of Psychiatry, College of Medicine, Qassim University, Buraidah 52571, Al Qassim, Saudi Arabia
| | - Aljawharah Fahad Aljubilah
- College of Education and Human Development, Princess Nourah bint Abdulrahman University, Riyadh 13415, Saudi Arabia; (A.F.A.); (E.A.A.)
| | - Musheer A. Aljaberi
- Department of Internal Medicine, Section Nursing Science, Erasmus University Medical Center (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Ebtesam Abdullah Alzeiby
- College of Education and Human Development, Princess Nourah bint Abdulrahman University, Riyadh 13415, Saudi Arabia; (A.F.A.); (E.A.A.)
| | - Hammad Ali Fadlalmola
- Department of Community and Public Health, Nursing College, Taibah University, Madinah 42377, Saudi Arabia;
| | - Annamaria Pakai
- Institute of Nursing Sciences, Basic Health Sciences and Health Visiting, Faculty of Health Sciences, University of Pécs, 7622 Pécs, Hungary;
| | - Haitham Khatatbeh
- Department of Nursing, Faculty of Nursing, Jerash University, Jerash 26173, Jordan;
| |
Collapse
|
3
|
Kwak JE, Lee JY, Baek JY, Kim SW, Ahn MR. The Antioxidant and Anti-Inflammatory Properties of Bee Pollen from Acorn ( Quercus acutissima Carr.) and Darae ( Actinidia arguta). Antioxidants (Basel) 2024; 13:981. [PMID: 39199227 PMCID: PMC11352170 DOI: 10.3390/antiox13080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Aging is a complex biological process characterized by a progressive decline in physical function and an increased risk of age-related chronic diseases. Additionally, oxidative stress is known to cause severe tissue damage and inflammation. Pollens from acorn and darae are extensively produced in Korea. However, the underlying molecular mechanisms of these components under the conditions of inflammation and oxidative stress remain largely unknown. This study aimed to investigate the effect of bee pollen components on lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages. This study demonstrates that acorn and darae significantly inhibit the LPS-induced production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW 264.7 cells. Specifically, bee pollen from acorn reduces NO production by 69.23 ± 0.04% and PGE2 production by 44.16 ± 0.08%, while bee pollen from darae decreases NO production by 78.21 ± 0.06% and PGE2 production by 66.23 ± 0.1%. Furthermore, bee pollen from acorn and darae reduced active oxygen species (ROS) production by 47.01 ± 0.5% and 60 ± 0.9%, respectively. It increased the nuclear potential of nuclear factor erythroid 2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 cells. Moreover, treatment with acorn and darae abolished the nuclear potential of nuclear factor κB (NF-κB) and reduced the expression of extracellular signal-associated kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation in LPS-stimulated RAW 264.7 cells. Specifically, acorn decreased NF-κB nuclear potential by 90.01 ± 0.3%, ERK phosphorylation by 76.19 ± 1.1%, and JNK phosphorylation by 57.14 ± 1.2%. Similarly, darae reduced NF-κB nuclear potential by 92.21 ± 0.5%, ERK phosphorylation by 61.11 ± 0.8%, and JNK phosphorylation by 59.72 ± 1.12%. These results suggest that acorn and darae could be potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Jeong-Eun Kwak
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Joo-Yeon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Ji-Yoon Baek
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Sun Wook Kim
- Research and Business Planning Team, Panolos Bioscience Inc., Hwaseong 18471, Republic of Korea;
| | - Mok-Ryeon Ahn
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
4
|
Oršolić N, Jazvinšćak Jembrek M. Royal Jelly: Biological Action and Health Benefits. Int J Mol Sci 2024; 25:6023. [PMID: 38892209 PMCID: PMC11172503 DOI: 10.3390/ijms25116023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Royal jelly (RJ) is a highly nutritious natural product with great potential for use in medicine, cosmetics, and as a health-promoting food. This bee product is a mixture of important compounds, such as proteins, vitamins, lipids, minerals, hormones, neurotransmitters, flavonoids, and polyphenols, that underlie the remarkable biological and therapeutic activities of RJ. Various bioactive molecules like 10-hydroxy-2-decenoic acid (10-HDA), antibacterial protein, apisin, the major royal jelly proteins, and specific peptides such as apisimin, royalisin, royalactin, apidaecin, defensin-1, and jelleins are characteristic ingredients of RJ. RJ shows numerous physiological and pharmacological properties, including vasodilatory, hypotensive, antihypercholesterolaemic, antidiabetic, immunomodulatory, anti-inflammatory, antioxidant, anti-aging, neuroprotective, antimicrobial, estrogenic, anti-allergic, anti-osteoporotic, and anti-tumor effects. Moreover, RJ may reduce menopause symptoms and improve the health of the reproductive system, liver, and kidneys, and promote wound healing. This article provides an overview of the molecular mechanisms underlying the beneficial effects of RJ in various diseases, aging, and aging-related complications, with special emphasis on the bioactive components of RJ and their health-promoting properties. The data presented should be an incentive for future clinical studies that hopefully will advance our knowledge about the therapeutic potential of RJ and facilitate the development of novel RJ-based therapeutic opportunities for improving human health and well-being.
Collapse
Affiliation(s)
- Nada Oršolić
- Division of Animal Physiology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, HR-10000 Zagreb, Croatia
| | - Maja Jazvinšćak Jembrek
- Division of Molecular Medicine, Laboratory for Protein Dynamics, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000 Zagreb, Croatia;
- School of Medicine, Catholic University of Croatia, Ilica 242, HR-10000 Zagreb, Croatia
| |
Collapse
|
5
|
Hu J, Wang Y, Ji X, Zhang Y, Li K, Huang F. Non-Pharmacological Strategies for Managing Sarcopenia in Chronic Diseases. Clin Interv Aging 2024; 19:827-841. [PMID: 38765795 PMCID: PMC11102744 DOI: 10.2147/cia.s455736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
This article focuses on a range of non-pharmacological strategies for managing sarcopenia in chronic diseases, including exercise, dietary supplements, traditional Chinese exercise, intestinal microecology, and rehabilitation therapies for individuals with limited limb movement. By analyzing multiple studies, the article aims to summarize the available evidence to manage sarcopenia in individuals with chronic diseases. The results strongly emphasize the role of resistance training in addressing chronic diseases and secondary sarcopenia. Maintaining the appropriate frequency and intensity of resistance training can help prevent muscle atrophy and effectively reduce inflammation. Although aerobic exercise has limited ability to improve skeletal muscle mass, it does have some positive effects on physical function. Building upon this, the article explores the potential benefits of combined training approaches, highlighting their helpfulness for overall quality of life. Additionally, the article also highlights the importance of dietary supplements in combating muscle atrophy in chronic diseases. It focuses on the importance of protein intake, supplements rich in essential amino acids and omega-3, as well as sufficient vitamin D to prevent muscle atrophy. Combining exercise with dietary supplements appears to be an effective strategy for preventing sarcopenia, although the optimal dosage and type of supplement remain unclear. Furthermore, the article explores the potential benefits of intestinal microecology in sarcopenia. Probiotics, prebiotics, and bacterial products are suggested as new treatment options for sarcopenia. Additionally, emerging therapies such as whole body vibration training, blood flow restriction, and electrical stimulation show promise in treating sarcopenia with limited limb movement. Overall, this article provides valuable insights into non-pharmacological strategies for managing sarcopenia in individuals with chronic diseases. It emphasizes the importance of a holistic and integrated approach that incorporates exercise, nutrition, and multidisciplinary interventions, which have the potential to promote health in the elderly population. Future research should prioritize high-quality randomized controlled trials and utilize wearable devices, smartphone applications, and other advanced surveillance methods to investigate the most effective intervention strategies for sarcopenia associated with different chronic diseases.
Collapse
Affiliation(s)
- Jiawen Hu
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojian Ji
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yinan Zhang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kunpeng Li
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Huang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Scorza C, Goncalves V, Finsterer J, Scorza F, Fonseca F. Exploring the Prospective Role of Propolis in Modifying Aging Hallmarks. Cells 2024; 13:390. [PMID: 38474354 DOI: 10.3390/cells13050390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aging populations worldwide are placing age-related diseases at the forefront of the research agenda. The therapeutic potential of natural substances, especially propolis and its components, has led to these products being promising agents for alleviating several cellular and molecular-level changes associated with age-related diseases. With this in mind, scientists have introduced a contextual framework to guide future aging research, called the hallmarks of aging. This framework encompasses various mechanisms including genomic instability, epigenetic changes, mitochondrial dysfunction, inflammation, impaired nutrient sensing, and altered intercellular communication. Propolis, with its rich array of bioactive compounds, functions as a potent functional food, modulating metabolism, gut microbiota, inflammation, and immune response, offering significant health benefits. Studies emphasize propolis' properties, such as antitumor, cardioprotective, and neuroprotective effects, as well as its ability to mitigate inflammation, oxidative stress, DNA damage, and pathogenic gut bacteria growth. This article underscores current scientific evidence supporting propolis' role in controlling molecular and cellular characteristics linked to aging and its hallmarks, hypothesizing its potential in geroscience research. The aim is to discover novel therapeutic strategies to improve health and quality of life in older individuals, addressing existing deficits and perspectives in this research area.
Collapse
Affiliation(s)
- Carla Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Valeria Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | | | - Fúlvio Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - Fernando Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André 09060-650, Brazil
- Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo (UNIFESP), Diadema 09972-270, Brazil
| |
Collapse
|
7
|
Anbara H, Ghorbani M, Shahriary A. Anti-oxidant and anti-apoptotic effects of royal jelly against polystyrene microplastic-induced testicular injury in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:1515-1528. [PMID: 39539451 PMCID: PMC11556760 DOI: 10.22038/ijbms.2024.78787.17037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/13/2024] [Indexed: 11/16/2024]
Abstract
Objectives In recent years, microplastics (MPs), which are novel environmental contaminants measuring 5 mm in diameter, have garnered considerable attention. However, information regarding substances that can mitigate the dangers of MPs for animals remains extremely limited. Materials and Methods Ninety days were devoted to the exposure of mature male mice to royal jelly (RJ) and 2 µm virgin polystyrene microplastics (PS-MPs) in this study. Pre-implantation embryo development; the structure of testis tissue; the gonadosomatic index; sperm parameters; RNA damage in germinal cells; the anti-oxidant capacity of the entire testis; and the activity of anti-oxidant enzymes in serum and testicular tissue, including TAC, SOD dismutase, CAT, GSH, and MDA, histomorphometric indices of the testis (tubular differentiation index, spermatogenesis index, and repopulation index), steroidogenic foci, and the quantity of apoptosis were assessed in the testis, respectively, through the measurement of pro-apoptosis (p53, Bax, and Caspase-3) and anti-apoptosis (Bcl-2) factors, as well as Hsp70 mediator. Results The results indicate that concurrent administration of RJ can confer a protective effect on mice exposed to microplastics by maintaining the structure of mitochondria and enhancement of the anti-oxidant defense system. Furthermore, RJ co-treatment decreased apoptosis and oxidant/anti-oxidant status, enhanced pre-implantation embryo development, and improved sperm characteristics and RNA damage in germ cells. Conclusion The data confirm that royal jelly could protect the testis structure against polystyrene microplastic-induced testicular injury through anti-oxidant and anti-apoptotic properties.
Collapse
Affiliation(s)
- Hojat Anbara
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Ghorbani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Oszczędłowski P, Górecki K, Greluk A, Krawczyk M, Pacyna K, Kędzierawski JA, Ziółko AK, Chromiak K, Sławiński MA, Raczkiewicz P, Chylińska-Wrzos P, Jodłowska-Jędrych B, Pedrycz-Wieczorska A. All That Glitters Is Not Gold: Assessment of Bee Pollen Supplementation Effects on Gastric Mucosa. Nutrients 2023; 16:37. [PMID: 38201868 PMCID: PMC10780818 DOI: 10.3390/nu16010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
The aim of this study was to assess the influence of bee pollen supplementation on the levels of enzymes important for gastric mucosal homeostasis, namely cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and a biomarker-asymmetric dimethylarginine (ADMA)-in the gastric mucosa of Wistar rats. The experimental phase divided the rats into four groups: two control groups, sedentary and active, both not supplemented, and two experimental groups, sedentary and active, supplemented with bee pollen. The results indicated that bee pollen supplementation reduced the levels of COX-1 and elevated iNOS levels, while showing no significant impact on COX-2 levels. These findings do not conclusively support the gastroprotective and anti-inflammatory effects of bee pollen on gastric mucosa. However, the supplementation could have resulted in reduced ADMA levels in the physically active supplemented group. Our study does not unequivocally demonstrate the positive effects of bee pollen supplementation on the gastric mucosa, which may be attributed to the specific metabolism and bioavailability of substances within unprocessed, dried bee pollen. Further research should explore the topic of potential therapeutic applications of bee pollen in gastrointestinal health and its interactions with ADMA signaling pathways.
Collapse
Affiliation(s)
- Paweł Oszczędłowski
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Kamil Górecki
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Aleksandra Greluk
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Milena Krawczyk
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Katarzyna Pacyna
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Jan Andrzej Kędzierawski
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Artur Kacper Ziółko
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Karol Chromiak
- Students’ Scientific Association at the Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland (K.P.)
| | - Mirosław A. Sławiński
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | | | - Patrycja Chylińska-Wrzos
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Agnieszka Pedrycz-Wieczorska
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
9
|
Tirla A, Timar AV, Becze A, Memete AR, Vicas SI, Popoviciu MS, Cavalu S. Designing New Sport Supplements Based on Aronia melanocarpa and Bee Pollen to Enhance Antioxidant Capacity and Nutritional Value. Molecules 2023; 28:6944. [PMID: 37836785 PMCID: PMC10574696 DOI: 10.3390/molecules28196944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
With a high number of athletes using sport supplements targeting different results, the need for complex, natural and effective formulations represents an actual reality, while nutrition dosing regimens aiming to sustain the health and performance of athletes are always challenging. In this context, the main goal of this study was to elaborate a novel and complex nutraceutical supplement based on multiple bioactive compounds extracted from Aronia melanocarpa and bee pollen, aiming to support physiological adaptations and to minimize the stress generated by intense physical activity in the case of professional or amateur athletes. Our proposed formulations are based on different combinations of Aronia and bee pollen (A1:P1, A1:P2 and A2:P1), offering personalized supplements designed to fulfill the individual requirements of different categories of athletes. The approximate composition, fatty acid profile, identification and quantification of individual polyphenols, along with the antioxidant capacity of raw biological materials and different formulations, was performed using spectrophotometric methods, GS-MS and HPLC-DAD-MS-ESI+. In terms of antioxidant capacity, our formulations based on different ratios of bee pollen and Aronia were able to act as complex and powerful antioxidant products, highlighted by the synergic or additional effect of the combinations. Overall, the most powerful synergism was obtained for the A1:P2 formulation.
Collapse
Affiliation(s)
- Adrian Tirla
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Adrian Vasile Timar
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania; (A.V.T.); (A.R.M.)
| | - Anca Becze
- INCDO-INOE 2000 Subsidiary Research Institute for Analytical Instrumentation ICIA, 67 Donath Street, 400293 Cluj-Napoca, Romania;
| | - Adriana Ramona Memete
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania; (A.V.T.); (A.R.M.)
| | - Simona Ioana Vicas
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Faculty of Environmental Protection, University of Oradea, 26 Gen. Magheru Street, 410048 Oradea, Romania; (A.V.T.); (A.R.M.)
| | - Mihaela Simona Popoviciu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Doctoral School of Biomedical Sciences, Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| |
Collapse
|
10
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:nu15102413. [PMID: 37242296 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
11
|
Tian S, Zhao H, Guo H, Feng W, Jiang C, Jiang Y. Propolis Ethanolic Extract Attenuates D-gal-induced C2C12 Cell Injury by Modulating Nrf2/HO-1 and p38/p53 Signaling Pathways. Int J Mol Sci 2023; 24:ijms24076408. [PMID: 37047379 PMCID: PMC10094417 DOI: 10.3390/ijms24076408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Previous study has shown that propolis ethanolic extract (PEE) has a protective effect on aging skeletal muscle atrophy. However, the exact molecular mechanism remains unclear. This study aimed to investigate the effect of PEE on D-galactose (D-gal)-induced damage in mouse C2C12 cells. The results revealed that PEE increased the viability of senescent C2C12 cells, decreased the number of senescence-associated β-galactosidase (SA-β-Gal)-positive cells and promoted the differentiation of C2C12 cells. PEE resisted oxidative stress caused by D-gal by activating the Nrf2/HO-1 signaling pathway and maintained the differentiation ability of C2C12 cells. PEE inhibited apoptosis by suppressing p38 phosphorylation and reducing p53 expression. In summary, our findings reveal the molecular mechanism by which PEE protects D-gal-induced C2C12 cells, providing a theoretical basis for the development of PEE for the alleviation of muscle atrophy.
Collapse
Affiliation(s)
- Songhao Tian
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- Department of Medical Laboratory, Fenyang College of Shanxi Medical University, Fenyang 032200, China
| | - Huiting Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, China
| | - Hongru Guo
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Wei Feng
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Conglin Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
| | - Yusuo Jiang
- College of Animal Science, Shanxi Agricultural University, Taigu 030801, China
- Correspondence:
| |
Collapse
|
12
|
Anticonvulsant Effects of Royal Jelly in Kainic Acid-Induced Animal Model of Temporal Lobe Epilepsy Through Antioxidant Activity. Neurochem Res 2023; 48:2187-2195. [PMID: 36856963 DOI: 10.1007/s11064-023-03897-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/02/2023]
Abstract
Temporal lobe epilepsy (TLE) is the most common form of partial and drug-resistant epilepsy, characterized by recurrent seizures originating from temporal lobe structures like the hippocampus. Hippocampal sclerosis and oxidative stress are two important factors in the pathogenesis of TLE that exacerbate epileptic seizures in this form of epilepsy. Recently, royal jelly (RJ) shown to have neuroprotective and antioxidant activities in several neurodegenerative models. Therefore, the aim of the present study was to investigate the pretreatment effect of RJ on epileptic seizures, hippocampal neuronal loss, and oxidative stress in the rat model of kainic acid (KA)-induced TLE. To this aim, 40 male Wistar rats weighing 200-250 g were divided into 4 groups, including control, vehicle, KA, and RJ + KA. Rats received RJ (150 mg/kg/day) for 14 days before induction of TLE with KA. Epileptic behaviors were evaluated according to Racine's scale. Oxidative stress markers including, malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant capacity (TAC) as well as neuronal loss in the CA1 region of the hippocampus (using Nissl staining) were evaluated in all groups. Our findings showed that RJ pretreatment significantly reduced the seizure score and increased the latency to the first seizure. RJ also reduced MDA and TOS while increasing TAC. In addition, RJ reversed neuronal damage in the hippocampal CA1 and CA3 areas. In conclusion, our results suggest that RJ has anticonvulsant and neuroprotective effects in KA induced TLE via its antioxidative properties.
Collapse
|
13
|
Raoufi S, Salavati Z, Komaki A, Shahidi S, Zarei M. Royal jelly improves learning and memory deficits in an amyloid β-induced model of Alzheimer's disease in male rats: Involvement of oxidative stress. Metab Brain Dis 2023; 38:1239-1248. [PMID: 36809522 DOI: 10.1007/s11011-023-01168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/13/2023] [Indexed: 02/23/2023]
Abstract
Alzheimer's disease (AD) as the commonest type of dementia is associated with the cognitive function failure. Oxidative stress performs an essential role in the progression of AD. Royal jelly (RJ) is a natural product of bees with antioxidant and anti-inflammatory properties. The present research aimed to investigate the possible protective effect of RJ on learning and memory in a rat model of Aβ-induced AD. Forty male adult Wistar rats were equally distributed into five groups: control, sham-operated, Aβ (receiving intracerebroventricular (ICV) injection of amyloid beta (Aβ1-40)), Aβ + RJ 50 mg/kg, and Aβ + RJ 100 mg/kg. RJ was administered daily post-surgery by oral gavage for four weeks. Behavioral learning and memory were examined using the novel object recognition (NOR) and passive avoidance learning (PAL) tests. Also, oxidative stress markers, such as malondialdehyde (MDA), total oxidant status (TOS) and total antioxidant capacity (TAC), were assessed in the hippocampus. Aβ reduced step-through latency (STLr) and increased time spent in the dark compartment (TDC) in the PAL task and also decreased discrimination index in the NOR test. Administration of RJ ameliorated the Aβ-related memory impairment in both NOR and PAL tasks. Aβ decreased TAC and increased MDA and TOS levels in the hippocampus, whereas RJ administration reversed these Aβ-induced alterations. Our results indicated that RJ has the potential to ameliorate learning and memory impairment in the Aβ model of AD via attenuating oxidative stress.
Collapse
Affiliation(s)
- Safoura Raoufi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zahra Salavati
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
14
|
Kanazashi M, Iida T, Nakanishi R, Tanaka M, Ikeda H, Takamiya N, Maeshige N, Kondo H, Nishigami T, Harada T, Fujino H. Brazilian Propolis Intake Decreases Body Fat Mass and Oxidative Stress in Community-Dwelling Elderly Females: A Randomized Placebo-Controlled Trial. Nutrients 2023; 15:nu15020364. [PMID: 36678234 PMCID: PMC9861743 DOI: 10.3390/nu15020364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
This study aimed to investigate the effects of Brazilian propolis on body fat mass and levels of adiponectin and reactive oxygen species among community-dwelling elderly females. This was a double-blind randomized placebo-controlled trial. Altogether, 78 females aged 66-84 years were randomly assigned to the propolis (PRO; n = 39) or placebo (PLA; n = 39) group. For 12 weeks, the PRO group were given three capsules containing 227 mg of propolis twice a day. Meanwhile, the PLA group were given daily placebo capsules. Of 78 participants, 53 (PLA group: n = 28, PRO group: n = 25) completed the study. Although no changes were observed in absolute or relative fat mass in the PLA group, they showed a significant decline in the PRO group. The level of serum adiponectin in the PLA group did not change, although that of the PRO group significantly increased. The level of d-ROMs in the PLA group significantly increased, whereas that of the PRO group significantly decreased. The serum SOD activity in the PLA group significantly decreased, whereas that of the PRO group tended to increase. These results suggest that propolis supplementation may decrease body fat mass and oxidative stress among community-dwelling elderly females.
Collapse
Affiliation(s)
- Miho Kanazashi
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Tadayuki Iida
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Ryosuke Nakanishi
- Department of Physical Therapy, Faculty of Rehabilitation, Kobe International University, Kobe 658-0032, Japan
| | - Masayuki Tanaka
- Department of Physical Therapy, Faculty of Health Sciences, Okayama Healthcare Professional University, Okayama 700-0913, Japan
| | - Hiromi Ikeda
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Naomi Takamiya
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Noriaki Maeshige
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
| | - Hiroyo Kondo
- Department of Food Science and Nutrition, Nagoya Women’s University, Nagoya 467-8611, Japan
| | - Tomohiko Nishigami
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Toshihide Harada
- Department of Physical Therapy, Faculty of Health and Welfare, Prefectural University of Hiroshima, Mihara 723-0053, Japan
| | - Hidemi Fujino
- Department of Rehabilitation Science, Kobe University Graduate School of Health Sciences, Kobe 654-0142, Japan
- Correspondence: ; Tel.: +81-78-796-4542
| |
Collapse
|
15
|
Mutlu C, Özer-Atakoğlu Ö, Erbaş M, Yalçın MG. Advances in the Elemental Composition Analysis of Propolis Samples from Different Regions of Turkey by X-Ray Fluorescence Spectrometry. Biol Trace Elem Res 2023; 201:435-443. [PMID: 35169951 DOI: 10.1007/s12011-022-03152-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/05/2022] [Indexed: 01/11/2023]
Abstract
In this study, it was aimed to determine the elemental composition of 47 propolis samples collected from different regions of Turkey by X-ray fluorescence spectroscopy. According to the results, the most abundant elements in propolis samples were the Ca, K, and Si with the mean values as 1556, 1383, and 731 mg/kg, respectively. Additionally, there were high degrees of positive and strong correlations of Al with S (0.925) and Fe (0.926) and Ca with Mg (0.970). According to cluster analysis results, the Aegean, Marmara, and Mediterranean regions showed strong similarities, whereas Southeastern Anatolia propolis samples were remarkably different. The elements considered as toxic for human and environmental health such as Mn, Ni, Pb, Sn, and W were at the trace amounts as < 10 mg/kg. When assuming 1 g raw propolis is consumed daily by a 60-kg adult, the analyzed propolis samples were not a source carrying the negative effects of these elements. However, they could be an indicator of environmental pollution.
Collapse
Affiliation(s)
- Ceren Mutlu
- Food Engineering Department, Engineering Faculty, Akdeniz University, Antalya, Turkey
- Food Engineering Department, Engineering Faculty, Balıkesir University, Balıkesir, Turkey
| | - Özge Özer-Atakoğlu
- Geological Engineering Department, Engineering Faculty, Akdeniz University, Antalya, Turkey
| | - Mustafa Erbaş
- Food Engineering Department, Engineering Faculty, Akdeniz University, Antalya, Turkey.
| | - Mustafa Gürhan Yalçın
- Geological Engineering Department, Engineering Faculty, Akdeniz University, Antalya, Turkey
| |
Collapse
|
16
|
T. M. C, P. I. SJ, G. N, R. M. N, R. Z. M. Antimicrobial activity of flavonoids glycosides and pyrrolizidine alkaloids from propolis of Scaptotrigona aff. postica. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2150647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cantero T. M.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| | - Silva Junior P. I.
- Laboratory for Applied Toxinology (LETA), Center of Toxins, Immuneresponse and cell signaling (CeTICS/CEPID), Butantan Institute, Sao Paulo, Brazil
| | - Negri G.
- Laboratory of Phytochemistry, Department of Botany, Institute of Biosciences, University of São Paulo, Sao Paulo, Brazil
| | - Nascimento R. M.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| | - Mendonça R. Z.
- Laboratory of Parasitology, Butantan Institute, Sao Paulo, Brazil
| |
Collapse
|
17
|
Takahashi Y, Yoshida I, Fujita K, Igarashi T, Iuchi Y. Faeces tea of cherry caterpillar (larvae of Phalera flavescens) promotes differentiation into myotubes, activates mitochondria, and suppresses the protein expression of ubiquitin ligase in C2C12. INTERNATIONAL FOOD RESEARCH JOURNAL 2022. [DOI: 10.47836/ifrj.29.6.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sarcopenia is a syndrome characterised by progressive and systemic loss of skeletal muscle mass and strength. In order to prevent sarcopenia and lead a healthy life, it is necessary to maintain muscle mass and prevent loss of muscle mass. Insect faeces have long been consumed as tea in China, both as a medicine and as a functional food. In the present work, we investigated the efficacy of cherry caterpillar faeces tea (PT) for treating sarcopenia, particularly concerning muscle building and atrophy suppression using C2C12 cells. PT treatment (0.2 mg/mL) increased myotube widths by approximately 40%, and increased the expression levels of Myod, Myog, and MYHC. Additionally, PGC1α, TFAM, SDHA, BCAT, and BCKDH were upregulated in a PT concentration-dependent manner. For PGC1α, which is the transcription coactivator, the protein expression level also increased in a concentration-dependent manner. The findings demonstrated that PT could stimulate PGC1α and activate mitochondria via branched-chain amino acid metabolism and the electron transport chain in C2C12 myoblasts. Furthermore, PT suppressed LPS-induce expression of IL6 and TNFα, and reduced the protein expression levels of the ubiquitin ligases Atrogin-1 and MuRF, which are major cause of muscle atrophy. These results indicated that PT could be effective for muscle building and suppression of atrophy.
Collapse
|
18
|
Okamura T, Hamaguchi M, Bamba R, Nakajima H, Yoshimura Y, Kimura T, Hashimoto Y, Majima S, Senmaru T, Ushigome E, Nakanishi N, Asano M, Yamazaki M, Nishimoto Y, Yamada T, Fujikura C, Asama T, Okumura N, Takakuwa H, Sasano R, Fukui M. Brazilian green propolis improves gut microbiota dysbiosis and protects against sarcopenic obesity. J Cachexia Sarcopenia Muscle 2022; 13:3028-3047. [PMID: 36162824 PMCID: PMC9745478 DOI: 10.1002/jcsm.13076] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 06/26/2022] [Accepted: 07/27/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Brazilian green propolis is an important honeybee product that is considered beneficial for health. Here, we examined the therapeutic potential of dietary supplementation with propolis against sarcopenic obesity using Db/Db mice. METHODS Db/m mice fed a normal diet alone and Db/Db mice fed normal diet alone, or supplemented with different amounts of propolis (0.08, 0.4 and 2%), were examined for effects on sarcopenic obesity. RESULTS Propolis improved the glucose tolerance (P < 0.001), increased the grip strength (P < 0.001) and the weight of soleus (P = 0.006) and plantaris muscles (P = 0.008). Moreover, propolis improved the non-alcoholic fatty liver disease activity score (P < 0.001) and decreased the expression of genes related to inflammation, liver fibrosis and fatty acid metabolism. Propolis decreased the accumulation of saturated fatty acids in the liver and increased their excretion in faeces. With regard to the innate immunity, propolis decreased the ratio of M1 macrophages (P = 0.008) and Type 1 and 3 innate lymphoid cells to CD45-positive cells (P < 0.001) and increased the ratio of M2 macrophages (P = 0.002) and ILC2s (P = 0.007) in the liver. Additionally, propolis decreased the expression of genes related to muscle atrophy and inflammation and the concentration of saturated fatty acids in the soleus muscle. 16S rRNA phylogenetic sequencing revealed that propolis increased the Bacteroidetes/Firmicutes ratio, and the abundance of Butyricicoccus and Acetivibrio genera. Gut microbiota related to the pentose phosphatase pathway and glycerolipid metabolism was more prevalent after the administration of propolis. CONCLUSIONS This is the first study to demonstrate that propolis can improve sarcopenic obesity by improving dysbiosis due to overeating and provides new insights into diet-microbiota interactions during sarcopenic obesity.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryo Bamba
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hanako Nakajima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuta Yoshimura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomonori Kimura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshitaka Hashimoto
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saori Majima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mai Asano
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Yamazaki
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Takuji Yamada
- Metabologenomics Inc., Tsuruoka, Yamagata, Japan.,Department of Life Science and Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Chizuru Fujikura
- Institute for Bee Products and Health Science, R&D Department, Yamada Bee Company, Inc, Okayama, Japan
| | - Takashi Asama
- Institute for Bee Products and Health Science, R&D Department, Yamada Bee Company, Inc, Okayama, Japan
| | - Nobuaki Okumura
- Institute for Bee Products and Health Science, R&D Department, Yamada Bee Company, Inc, Okayama, Japan
| | - Hiroshi Takakuwa
- Agilent Technologies, Chromatography Mass Spectrometry Sales Department, Life Science and Applied Markets Group, Tokyo, Japan
| | | | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Vică ML, Glevitzky M, Dumitrel GA, Bostan R, Matei HV, Kartalska Y, Popa M. Qualitative Characterization and Antifungal Activity of Romanian Honey and Propolis. Antibiotics (Basel) 2022; 11:1552. [PMID: 36358206 PMCID: PMC9686581 DOI: 10.3390/antibiotics11111552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 09/10/2023] Open
Abstract
The purpose of this study was to review the physicochemical characterization of Romanian honey and propolis and their antifungal effect on different strains. As an indicator of environmental pollution, lead exceeded the allowed limits in two study areas. The relationship between the acidity and electrical conductivity of polyfloral honey and the antioxidant activity with the total content of phenolics and flavonoids was investigated. The antifungal activity of 13 polyfloral honey and propolis samples from North-West and Central Romania and 12 samples from Alba County was investigated against six fungal strains: Aspergillus niger, Aspergillus flavus, Candida albicans, Penicillium chrysogenum, Rhizopus stolonifer, Fusarium oxysporum. All honey and propolis samples exhibited an antifungal effect. The most sensitive strains were P. chrysogenum and R. stolonifer for honey and P. chrysogenum and F. oxisporumn for propolis. A two-way analysis of variance was used to evaluate the correlations between the diameter of the inhibition zones for the strains and the propolis extracts. Statistical analysis demonstrated that the diameter of the inhibition zone was influenced by the strain type and the geographical origin of honey and propolis. Pearson's correlation coefficient shows a significant positive linear relationship between the diameter of the inhibition zone and the flavonoid and phenol concentration of honey and propolis, respectively.
Collapse
Affiliation(s)
- Mihaela Laura Vică
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Institute of Legal Medicine Cluj-Napoca, 400006 Cluj-Napoca, Romania
| | - Mirel Glevitzky
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
- Sanitary Veterinary and Food Safety Directorate of Alba County, 510217 Alba Iulia, Romania
| | - Gabriela-Alina Dumitrel
- Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University of Timisoara, 300223 Timișoara, Romania
| | - Roxana Bostan
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
| | - Horea Vladi Matei
- Department of Cellular and Molecular Biology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Institute of Legal Medicine Cluj-Napoca, 400006 Cluj-Napoca, Romania
| | - Yordanka Kartalska
- Department of Microbiology and Ecological Biotechnologies, Agricultural University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Maria Popa
- Faculty of Exact Science and Engineering, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
| |
Collapse
|
20
|
Ali AM, Alameri RA, Hendawy AO, Al-Amer R, Shahrour G, Ali EM, Alkhamees AA, Ibrahim N, Hassan BH. Psychometric evaluation of the depression anxiety stress scale 8-items (DASS-8)/DASS-12/DASS-21 among family caregivers of patients with dementia. Front Public Health 2022; 10:1012311. [PMID: 36388286 PMCID: PMC9641276 DOI: 10.3389/fpubh.2022.1012311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 01/27/2023] Open
Abstract
Patients with dementia express a set of problematic and deteriorating symptoms, along with self-care dependency. Over time, the mental health of family caregivers of persons with dementia may be affected, putting them at a high risk for psychopathology, which may be associated with endangered wellbeing of people with dementia. This cross-sectional instrumental design study examined the psychometric properties of the Depression Anxiety Stress Scale 8-items (DASS-8), DASS-12, and DASS-21 in a convenient sample of 571 caregivers from northern Italy and southern Switzerland (mean age = 53 years, SD = 12, range = 24-89 years). A bifactor structure of the three measures had the best fit; some items of the DASS-12/DASS-21 failed to load on their domain-specific factors. The three-factor structure was invariant across various groups (e.g., gender and education), expressed adequate reliability and convergent validity, and had strong positive correlation with the three-item UCLA Loneliness Scale (UCLALS3). Distress scores did not differ among carers of different types of dementia (Alzheimer's disease vs. other types, e.g., vascular dementia). However, distress scores were significantly high among female individuals, adult children caregivers, those caring for dependent patients, and those who received help with care. For 54.9 and 38.8% of the latter, care was provided by relatives and health professionals, respectively. Since the DASS-8 expresses adequate psychometrics comparable with the DASS-21, it may be used as a brief measure of distress in this population.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria, Egypt
| | - Rana Ali Alameri
- Fundamentals of Nursing Department, College of Nursing, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Amin Omar Hendawy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
| | - Rasmieh Al-Amer
- Faculty of Nursing, Isra University, Amman, Jordan
- School of Nursing and Midwifery, Western Sydney University, Penrith, NSW, Australia
| | - Ghada Shahrour
- Jordan University of Science and Technology, Faculty of Nursing, Irbid, Jordan
| | - Esraa M. Ali
- Department of Basic and Educational Sciences, Faculty of Education for Early Childhood, Alexandria University, Alexandria, Egypt
| | - Abdulmajeed A. Alkhamees
- Department of Medicine, Unayzah College of Medicine and Medical Sciences, Qassim University, Unayzah, Saudi Arabia
| | - Nashwa Ibrahim
- Psychiatric and Mental Health Nursing Department, Faculty of Nursing, Mansoura University, Mansoura, Egypt
| | - Bothaina Hussein Hassan
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Gerontological Nursing, Faculty of Nursing, Alexandria University, Alexandria, Egypt
| |
Collapse
|
21
|
Tian S, Zhao H, Liu J, Ma X, Zheng L, Guo H, Jiang Y. Metabolomics reveals that alcohol extract of propolis alleviates D-gal-induced skeletal muscle senescence in mice. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, Godoy L, Meskini M, Rami MR, Ahmadi S, Al-Najjar SZ, Al-Sharify NT, Ahmed SM, Dehghani MH. Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58628-58647. [PMID: 35794320 PMCID: PMC9258455 DOI: 10.1007/s11356-022-21652-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Zainab T Al-Sharify
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Bab-al-Mu'adhem, P.O. Box 14150, Baghdad, Iraq
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mathabatha Frank Maleka
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maleke Maleke
- Department of Life Science, Faculty of Health and Environmental Science, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Alhaji Maolloum
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa
| | - Liliana Godoy
- Department of Fruit and Oenology, Faculty of Agronomy and Forestry, Pontifical Catholic University of Chile, Santiago, Chile
| | - Maryam Meskini
- Microbiology Research Center, Pasteur Institute of Iran, Teheran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Teheran, Iran
| | - Mina Rezghi Rami
- Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Shabnam Ahmadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahad Z Al-Najjar
- Chemical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Noor T Al-Sharify
- Medical Instrumentation Engineering Department, Al-Esraa University College, Baghdad, Iraq
| | - Sura M Ahmed
- Department of Electrical and Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Calluna vulgaris as a Valuable Source of Bioactive Compounds: Exploring Its Phytochemical Profile, Biological Activities and Apitherapeutic Potential. PLANTS 2022; 11:plants11151993. [PMID: 35956470 PMCID: PMC9370339 DOI: 10.3390/plants11151993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 01/23/2023]
Abstract
Calluna vulgaris, belonging to the Ericaceae family, is an invasive plant that has widely spread from Europe all across Asia, North America, Australia and New Zealand. Being able to survive in rigid soil and environmental conditions, it is nowadays considered to be of high nature-conservation value. Known for its nutritional and medicinal properties, C. vulgaris stands out for its varied physiochemical composition, spotlighting a wide range of biological activity. Among the most important bioactive compounds identified in C. vulgaris, the phenolic components found in different parts of this herbaceous plant are the main source of its diverse pro-health properties (antioxidant, anti-inflammatory, antimicrobial, chemoprotective, etc.). Nonetheless, this plant exhibits an excellent nectariferous potential for social insects such as honeybees; therefore, comparing the bioactive compounds observed in the plant and in the final product of the beehive, namely honey, will help us understand and find new insights into the health benefits provided by the consumption of C. vulgaris-related products. Thus, the main interest of this work is to review the nutritional profile, chemical composition and biological activities of the C. vulgaris plant and its related honey in order to encourage the future exploration and use of this health-promoting plant in novel foods, pharmacological products and apitherapy.
Collapse
|
24
|
Dundar AN. Total phenolic and antioxidant bioaccessibilities of cookies enriched with bee pollen. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Al-Amer R, Malak MZ, Burqan HMR, Stănculescu E, Nalubega S, Alkhamees AA, Hendawy AO, Ali AM. Emotional Reaction to the First Dose of COVID-19 Vaccine: Postvaccination Decline in Anxiety and Stress among Anxious Individuals and Increase among Individuals with Normal Prevaccination Anxiety Levels. J Pers Med 2022; 12:912. [PMID: 35743695 PMCID: PMC9224616 DOI: 10.3390/jpm12060912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/07/2023] Open
Abstract
Although vaccination has been adopted by the WHO to limit worldwide transmission of COVID-19, people's worries about COVID-19 vaccines may suppress their desire for vaccination despite vaccine availability. This study aimed to investigate anxiety and stress symptoms among 250 Jordanians (mean age = 43.18 ± 6.34 years, 72% females) who received their first vaccine dose. The respondents completed the anxiety and stress subscales of the Depression Anxiety and Stress scale 21 (DASS-21) before and after vaccination. The respondents expressed more moderate-severe levels of stress before than after vaccination (20.8% and 13.2%, respectively). Meanwhile, 37.2% and 45.2% of the respondents expressed moderate-severe anxiety before and after vaccination, respectively. Wilcoxon signed-rank test revealed that the drop in the level of stress from before- (median (IQR) = 5 (1-8)) to after vaccination (median (IQR) = 3 (1-7)) was statistically significant (z = -3.81, p = 0.001, r = 0.17) while the increase in anxiety was not. Anxiety significantly dropped postvaccination among individuals experiencing mild to severe anxiety before vaccination. Similarly, stress and anxiety significantly increased among individuals expressing normal anxiety before vaccination (z = -3.57 and -8.24, p values = 0.001, r = 0.16 and 0.37, respectively). Age positively correlated with postvaccination anxiety among respondents with mild prevaccination anxiety, and it negatively correlated with the prevaccination level of stress in the normal-anxiety group. Gender, marital status, respondents' level of education, and history of COVID-19 infection had no significant correlation with anxiety or stress at either point of measurement. Overcoming their hesitancy to receive COVID-19 vaccines, individuals with normal levels of anxiety experienced a rise in their distress symptoms following immunization. On the contrary, vaccination seemed to desensitize anxious individuals. Policymakers need to formulate a population-specific plan to increase vaccine preparedness and promote psychological well-being over all during the pandemic.
Collapse
Affiliation(s)
- Rasmieh Al-Amer
- Faculty of Nursing, Isra University, Amman 11953, Jordan;
- School of Nursing and Midwifery, Western Sydney University, Penrith, NSW 2751, Australia
| | - Malakeh Z. Malak
- Community Health Nursing, Faculty of Nursing, Al-Zaytoonah University of Jordan, Amman 11733, Jordan;
| | - Hala Mohammad Ramadan Burqan
- School of Nursing, Alghad International Colleges for Applied Medical Sciences, Riyadh Branch, Riyadh 13315, Saudi Arabia;
| | - Elena Stănculescu
- Faculty of Psychology and Educational Sciences, University of Bucharest, 050663 Bucharest, Romania;
| | - Sylivia Nalubega
- Department of Nursing, School of Health Sciences, Soroti University, Soroti City 211, Uganda;
| | - Abdulmajeed A. Alkhamees
- Department of Medicine, Unayzah College of Medicine and Medical Sciences, Qassim University, Unayzah 52571, Saudi Arabia
| | - Amin Omar Hendawy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour 22516, Egypt;
| | - Amira Mohammed Ali
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Smouha, Alexandria 21527, Egypt;
| |
Collapse
|
26
|
The Clean Your Plate Campaign: Resisting Table Food Waste in an Unstable World. SUSTAINABILITY 2022. [DOI: 10.3390/su14084699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The COVID-19 pandemic threatens global food security and has created an urgent need for food conservation. This article presents a review of clean plate campaigns around the world. It aims to fight food waste and reveal the factors that may influence food waste. The Clean Plate Club in the US developed during wartime and relied heavily on political power for compliance, whereas the Clean Plate movement in South Korea was based on religion. China’s Clean Your Plate Campaign (CYPC) has gone through two stages: CYPC I and CYPC II. The latter occurred during the unstable period of the COVID-19 pandemic. It was large-scale and more strongly enforced than CYPC I. In China, CYPC has relied more on personal virtue than on politics or religion. Culture, policy, COVID-19, and behavior are all important social factors that influence food waste. Specifically, two cultural values are drivers of food waste in China: hospitality and face-saving (mianzi). In terms of policy, China’s food waste law mainly relies on persuasion; it lacks any power of enforcement. Laws in France and Italy, by contrast, focus on re-using food and involve both coercion and incentives. COVID-19 may have led to panic purchasing and stockpiling, but, in general, it has resulted in a reduction in food waste.
Collapse
|
27
|
Zhang HY, Chong MC, Tan MP, Chua YP, Zhang JH. The Association Between Depressive Symptoms and Sarcopenia Among Community-Dwelling Older Adults: A Cross-Sectional Study. J Multidiscip Healthc 2022; 15:837-846. [PMID: 35496716 PMCID: PMC9041356 DOI: 10.2147/jmdh.s355680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To evaluate the relationship between depressive symptoms and sarcopenia among older adults. Materials and Methods This is a cross-sectional study. A total of 700 community-dwelling older persons enrolled in this study. Sarcopenia is defined according to the Asian Working Group for Sarcopenia 2019 (AWGS 2019). The bioelectrical impedance analysis assessed muscle mass while a digital dynamometer quantified muscle strength. Furthermore, a 6-meter gait speed test measured physical performance. The Geriatric Depression Scale (GDS-30) screened for depressive symptoms. Data collected include those of socio-demographic, lifestyle, and comorbidity. Results The sample comprised 700 participants (455 women) with a mean age of 70.4±6.8 years. 21.5% had sarcopenia, among them, 5.6% at severe stage, while depressive symptoms were present in 8.1% (57/700). After adjusting for the potential confounders of age, sex, marital status, living status, hypertension, body mass index, and physical activity, the depressive symptoms that were found were not associated with sarcopenia but, instead, low gait speed. However, severe sarcopenia significantly impacted the risk of depressive symptoms, particularly in females. Conclusion Depressive symptoms are not associated with sarcopenia, but severe sarcopenia increases the risk of depressive symptoms in females, according to updated AWGS 2019 criteria. Gait speed is independently associated with depressive symptoms. The finding highlights that older people with sarcopenia should be screened for depressive symptoms, especially females. Future studies should evaluate the value of gait speed interventions for depressive symptoms among older adults.
Collapse
Affiliation(s)
- Hai Yan Zhang
- Department of Nursing Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mei Chan Chong
- Department of Nursing Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Correspondence: Mei Chan Chong, Department of Nursing Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia, Tel +603-79492806, Email
| | - Maw Pin Tan
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yan Piaw Chua
- Department of Mathematics and Science Education, Faculty of Education, University of Malaya, Kuala Lumpur, Malaysia
| | - Jin Hua Zhang
- Faculty of Nursing, Xin Xiang Medical University, Xin Xiang City, People’s Republic of China
- Jin Hua Zhang, Faculty of Nursing, Xin Xiang Medical University, Xin Xiang City, 453000, People’s Republic of China, Tel +86-13837328062, Email
| |
Collapse
|
28
|
Focus on Nutritional Aspects of Sarcopenia in Diabetes: Current Evidence and Remarks for Future Research. Nutrients 2022; 14:nu14020312. [PMID: 35057493 PMCID: PMC8781815 DOI: 10.3390/nu14020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/22/2023] Open
Abstract
Sarcopenia has been defined as a progressive and generalized loss of muscle mass that can be observed after the age of 40 years, with a rate of deterioration of about 8% every ten years up to 70 years, and 15-25% thereafter [...].
Collapse
|
29
|
Alzahrani NS, Almarwani AM, Asiri SA, Alharbi HF, Alhowaymel FM. Factors influencing hospital anxiety and depression among emergency department nurses during the COVID-19 pandemic: A multi-center cross-sectional study. Front Psychiatry 2022; 13:912157. [PMID: 35990067 PMCID: PMC9387387 DOI: 10.3389/fpsyt.2022.912157] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/13/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION The emergency department (ED) is a highly stressful environment, which exposes nurses to infection. ED nurses handle life-threatening conditions, endure long working hours, and deal with anxious patients and their families. AIM This study aimed to examine factors, which may influence anxiety and depression levels among ED nurses during the coronavirus disease 2019 (COVID-19) pandemic. METHODS A cross-sectional design was used with 251 participants from six hospitals in Saudi Arabia (mean age = 32.7 ± 6.59, range = 21-54 years, 70.5% females). Data were collected using the Hospital Anxiety and Depression Scale (HADS), and the analysis was conducted using structural equation modeling (SEM). RESULTS Based on the HADS scores, 29.1 and 25.5% of ED nurses were identified as doubtful cases for depression and anxiety, respectively. Additionally, 34.7 and 43.3% of ED nurses were identified as definite cases for depression and anxiety, respectively. Higher anxiety levels were observed among female nurses, nurses with lower physical activity levels, and nurses who worked in urban areas. Low physical activity levels and more than 6 years of work experience correlated with a higher level of depression. None of the hypothesized paths in the anxiety and depression models were significant, except for two observed variables-namely, work location and physical exercise in the anxiety model and physical exercise in the depression model. CONCLUSION Emergency department nurses expressed high levels of anxiety and depression during the COVID-19 pandemic, which may negatively affect their performance and reduce care quality. Therefore, health care leaders should implement specialized mental health education programs focused on nursing occupational safety and support to improve ED nurses' psychological well-being. Specific attention should be paid to ED female nurses who work in urban areas, especially those with more than 6 years of experience.
Collapse
Affiliation(s)
- Naif S Alzahrani
- Department of Medical Surgical Nursing, College of Nursing, Taibah University, Medina, Saudi Arabia
| | | | - Saeed A Asiri
- Department of Medical Surgical Nursing, College of Nursing, King Saud University, Riyadh, Saudi Arabia
| | - Hanan F Alharbi
- Department of Maternity and Child Health Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fahad M Alhowaymel
- Department of Nursing, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| |
Collapse
|
30
|
Effects of Selenium Supplementation on Rumen Microbiota, Rumen Fermentation, and Apparent Nutrient Digestibility of Ruminant Animals: A Review. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010004] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Enzymes excreted by rumen microbiome facilitate the conversion of ingested plant materials into major nutrients (e.g., volatile fatty acids (VFA) and microbial proteins) required for animal growth. Diet, animal age, and health affect the structure of the rumen microbial community. Pathogenic organisms in the rumen negatively affect fermentation processes in favor of energy loss and animal deprivation of nutrients in ingested feed. Drawing from the ban on antibiotic use during the last decade, the livestock industry has been focused on increasing rumen microbial nutrient supply to ruminants through the use of natural supplements that are capable of promoting the activity of beneficial rumen microflora. Selenium (Se) is a trace mineral commonly used as a supplement to regulate animal metabolism. However, a clear understanding of its effects on rumen microbial composition and rumen fermentation is not available. This review summarized the available literature for the effects of Se on specific rumen microorganisms along with consequences for rumen fermentation and digestibility. Some positive effects on total VFA, the molar proportion of propionate, acetate to propionate ratio, ruminal NH3-N, pH, enzymatic activity, ruminal microbiome composition, and digestibility were recorded. Because Se nanoparticles (SeNPs) were more effective than other forms of Se, more studies are needed to compare the effectiveness of synthetic SeNPs and lactic acid bacteria enriched with sodium selenite as a biological source of SeNPs and probiotics. Future studies also need to evaluate the effect of dietary Se on methane emissions.
Collapse
|
31
|
Hassanien AA, Shaker EM, El-Sharkawy EE, Elsherif WM. Antifungal and antitoxin effects of propolis and its nanoemulsion formulation against Aspergillus flavus isolated from human sputum and milk powder samples. Vet World 2021; 14:2306-2312. [PMID: 34840447 PMCID: PMC8613795 DOI: 10.14202/vetworld.2021.2306-2312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Aspergillus flavus causes human and animal diseases through either inhalation of fungal spores or ingestion of mycotoxins as aflatoxins produced in human and animal feed as secondary metabolites. This study was aimed to detect the incidence of A. flavus and its aflatoxins in human sputum and milk powder samples and explore the efficacy of pure propolis (PP) and propolis nanoemulsion (PNE) as natural decontaminants against fungal growth and its released aflatoxins. Materials and Methods: A. flavus was isolated by mycological culture and identified macroscopically and microscopically. Coconut agar medium and thin-layer chromatography (TLC) were used to qualitatively detect aflatoxins in the isolated strains. Toxins were extracted from toxigenic strains by the fast extraction technique. The quantitative detection of toxin types was explored by high-performance liquid chromatography (HPLC). PNE was prepared by a novel method using natural components and characterized by Fourier-transform infrared spectroscopy, Zetasizer, and transmission electron microscopy. The effects of PP and PNE on A. flavus growth and its toxin were determined by the well-diffusion method and HPLC. Results: The mycological culture showed that 30.9% and 29.2% of sputum and milk powder samples were positive for A. flavus, respectively. TLC confirmed the production of 61.8% and 63.2% aflatoxin by the isolated strains in sputum and milk powder, respectively. PP and PNE showed antifungal activity on A. flavus growth with mean±standard error (SE) inhibition zones of 27.55±3.98 and 39.133±5.32 mm, respectively. HPLC revealed positive contamination of toxin extracts with AFB1, AFB2, and AFG2 at 0.57±0.026, 0.28±0.043, and 0.1±0.05 mg/L, respectively. After treatment with PP and PNE, a significant decrease in AFB1, AFB2, and AFG2 concentrations was observed. Conclusion: This study suggested using propolis and its nanoformulation as antifungal and antitoxins in human medicine and the food industry to increase the food safety level and stop food spoilage.
Collapse
Affiliation(s)
- Alshimaa A Hassanien
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag, 82511, Egypt
| | - Eman M Shaker
- Department of Food Hygiene, Faculty of Veterinary Medicine, Sohag University, Sohag, 82511, Egypt
| | - Eman E El-Sharkawy
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Assiut University, 71515, Egypt
| | - Walaa M Elsherif
- Nanotechnology Research Unit, Animal Health Research Institute, Agriculture Research Centre, 12618, Egypt
| |
Collapse
|
32
|
Nutrient weight against sarcopenia: regulation of the IGF-1/PI3K/Akt/FOXO pathway in quinoa metabolites. Curr Opin Pharmacol 2021; 61:136-141. [PMID: 34801804 DOI: 10.1016/j.coph.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 01/14/2023]
Abstract
Sarcopenia is characterized by the loss of muscle mass and strength, and one of its major molecular mechanisms is muscle protein turnover. Quinoa, the grain-like food crop, is a health nutrient used to treat diseases that predispose individuals to muscle wasting, including cardiovascular disorders, diabetes mellitus, and cancer. Quinoa secondary metabolites have recently been demonstrated to regulate protein turnover (including protein synthesis and degradation), a main biological process within muscle cells, through diverse signals (such as the p38 MAPK, TNF-α, and IGF-1/PI3K/Akt/FOXO pathways). Here, we describe how quinoa functions in the main pathway of protein synthesis and degradation, screen promising pharmacological components in nutritional applications, and provide guidance for the effects of quinoa products in sarcopenia.
Collapse
|
33
|
Ali AM, Alkhamees AA, Hori H, Kim Y, Kunugi H. The Depression Anxiety Stress Scale 21: Development and Validation of the Depression Anxiety Stress Scale 8-Item in Psychiatric Patients and the General Public for Easier Mental Health Measurement in a Post COVID-19 World. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10142. [PMID: 34639443 PMCID: PMC8507889 DOI: 10.3390/ijerph181910142] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 01/15/2023]
Abstract
Despite extensive investigations of the Depression Anxiety Stress Scales-21 (DASS-21) since its development in 1995, its factor structure and other psychometric properties still need to be firmly established, with several calls for revising its item structure. Employing confirmatory factor analysis (CFA), this study examined the factor structure of the DASS-21 and five shortened versions of the DASS-21 among psychiatric patients (N = 168) and the general public (N = 992) during the COVID-19 confinement period in Saudi Arabia. Multigroup CFA, Mann Whitney W test, Spearman's correlation, and coefficient alpha were used to examine the shortened versions of the DASS-21 (DASS-13, DASS-12, DASS-9 (two versions), and DASS-8) for invariance across age and gender groups, discriminant validity, predictive validity, item coverage, and internal consistency, respectively. Compared with the DASS-21, all three-factor structures of the shortened versions expressed good fit, with the DASS-8 demonstrating the best fit and highest item loadings on the corresponding factors in both samples (χ2(16, 15) = 16.5, 67.0; p = 0.420, 0.001; CFI = 1.000, 0.998; TLI = 0.999, 0.997; RMSEA = 0.013, 0.059, SRMR = 0.0186, 0.0203). The DASS-8 expressed configural, metric, and scalar invariance across age and gender groups. Its internal consistency was comparable to other versions (α = 0.94). Strong positive correlations of the DASS-8 and its subscales with the DASS-21 and its subscales (r = 0.97 to 0.81) suggest adequate item coverage and good predictive validity of this version. The DASS-8 and its subscales distinguished the clinical sample from the general public at the same level of significance expressed by the DASS-21 and other shortened versions, supporting its discriminant validity. Neither the DASS-21 nor the shortened versions distinguished patients diagnosed with depression and anxiety from each other or from other psychiatric conditions. The DASS-8 represents a valid short version of the DASS-21, which may be useful in research and clinical practice for quick identification of individuals with potential psychopathologies. Diagnosing depression/anxiety disorders may be further confirmed in a next step by clinician-facilitated examinations. Brevity of the DASS-21 would save time and effort used for filling the questionnaire and support comprehensive assessments by allowing the inclusion of more measures on test batteries.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan; (H.H.); (Y.K.)
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Abdulmajeed A. Alkhamees
- Department of Medicine, College of Medicine and Medical Sciences, Qassim University, Buraydah 52571, Al Qassim, Saudi Arabia;
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan; (H.H.); (Y.K.)
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan; (H.H.); (Y.K.)
| | - Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan;
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-8502, Japan
| |
Collapse
|
34
|
Vitamin K in COVID-19—Potential Anti-COVID-19 Properties of Fermented Milk Fortified with Bee Honey as a Natural Source of Vitamin K and Probiotics. FERMENTATION 2021. [DOI: 10.3390/fermentation7040202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Vitamin K deficiency is evident in severe and fatal COVID-19 patients. It is associated with the cytokine storm, thrombotic complications, multiple organ damage, and high mortality, suggesting a key role of vitamin K in the pathology of COVID-19. To support this view, we summarized findings reported from machine learning studies, molecular simulation, and human studies on the association between vitamin K and SARS-CoV-2. We also investigated the literature for the association between vitamin K antagonists (VKA) and the prognosis of COVID-19. In addition, we speculated that fermented milk fortified with bee honey as a natural source of vitamin K and probiotics may protect against COVID-19 and its severity. The results reported by several studies emphasize vitamin K deficiency in COVID-19 and related complications. However, the literature on the role of VKA and other oral anticoagulants in COVID-19 is controversial: some studies report reductions in (intensive care unit admission, mechanical ventilation, and mortality), others report no effect on mortality, while some studies report higher mortality among patients on chronic oral anticoagulants, including VKA. Supplementing fermented milk with honey increases milk peptides, bacterial vitamin K production, and compounds that act as potent antioxidants: phenols, sulforaphane, and metabolites of lactobacilli. Lactobacilli are probiotic bacteria that are suggested to interfere with various aspects of COVID-19 infection ranging from receptor binding to metabolic pathways involved in disease prognosis. Thus, fermented milk that contains natural honey may be a dietary manipulation capable of correcting nutritional and immune deficiencies that predispose to and aggravate COVID-19. Empirical studies are warranted to investigate the benefits of these compounds.
Collapse
|
35
|
Imbabi T, Hassan A, Ahmed-Farid O, El-Garhy O, Sabeq I, Moustafa M, Mohammadein A, Hassan N, Osman A, Sitohy M. Supplementing rabbit diets with butylated hydroxyanisole affects oxidative stress, growth performance, and meat quality. Animal 2021; 15:100339. [PMID: 34425485 DOI: 10.1016/j.animal.2021.100339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
Butylated hydroxyanisole (BHA) is a synthetic antioxidant analogous of vitamin E. It is used as a preservative to prevent free radical-mediated oxidation in high-fat foods, and this study's objective was to investigate the effects of BHA on oxidative stress and apoptosis in addition to delineating its efficacy as a growth-promoting feed additive. 60 weaned male rabbits (V-line) were randomly divided into four equal groups: BHA0.0 (control), BHA50, BHA100, and BHA150, administered basal diets with 0.0, 50, 100, and 150 mg BHA/kg of feed for 60 days. Animals were examined for growth performance, markers of oxidative stress and apoptosis, and meat characteristics. Compared to the control group, rabbits receiving BHA-supplemented diets exhibited increases in BW and average daily gain (P < 0.01), where BHA50 and BHA100 groups showed increased muscle content of methionine aspartic acid, serine, and glutamine (P < 0.05). These two groups also exhibited elevated catalase and superoxide dismutase activities and diminished malondialdehyde levels in the liver. Butylated hydroxyanisole upregulated fatty acid synthase gene (FASN), especially in BHA100 animals. Bcl-2-associated X/B-celllymphoma-2 (Bax/Bcl-2) ratio significantly increased in animals receiving higher doses of BHA, and the weight of the liver significantly increased following BHA treatment. Supplementing growing rabbits with lower doses of dietary BHA may promote growth performance and meat quality via maintaining the redox balance. Hence, the 50-100 mg/kg may be recommended as a safe and still effective feed additive as well as an oxidative stress attenuator.
Collapse
Affiliation(s)
- T Imbabi
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - A Hassan
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - O Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza 12553, Egypt
| | - O El-Garhy
- Animal Production Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - I Sabeq
- Department of Food Hygiene, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Egypt
| | - M Moustafa
- Genetics and Genetic Engineering Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt(1)
| | - A Mohammadein
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - N Hassan
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - A Osman
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - M Sitohy
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
36
|
Honeybee and Plant Products as Natural Antimicrobials in Enhancement of Poultry Health and Production. SUSTAINABILITY 2021. [DOI: 10.3390/su13158467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The quality and safety attributes of poultry products have attracted increasing widespread attention and interest from scholarly groups and the general population. As natural and safe alternatives to synthetic and artificial chemical drugs (e.g., antibiotics), botanical products are recently being used in poultry farms more than 60% of the time for producing organic products. Medicinal plants, and honeybee products, are natural substances, and they were added to poultry diets in a small amount (between 1% and 3%) as a source of nutrition and to provide health benefits for poultry. In addition, they have several biological functions in the poultry body and may help to enhance their welfare. These supplements can increase the bodyweight of broilers and the egg production of laying hens by approximately 7% and 10% and enhance meat and egg quality by more than 25%. Moreover, they can improve rooster semen quality by an average of 20%. Previous research on the main biological activities performed by biotics has shown that most research only concentrated on the notion of using botanical products as growth promoters, anti-inflammatory, and antibacterial agents. In the current review, the critical effects and functions of bee products and botanicals are explored as natural and safe alternative feed additives in poultry production, such as antioxidants, sexual-stimulants, immuno-stimulants, and for producing healthy products.
Collapse
|
37
|
The Effects of Royal Jelly Acid, 10-Hydroxy-trans-2-decenoic Acid, on Neuroinflammation and Oxidative Stress in Astrocytes Stimulated with Lipopolysaccharide and Hydrogen Peroxide. IMMUNO 2021. [DOI: 10.3390/immuno1030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The increased prevalence of neurodegenerative diseases, especially during the COVID-19 outbreak, necessitates the search for natural immune- and cognitive-enhancing agents. 10-Hydroxy-trans-2-decenoic acid (10-H2DA), the main fatty acid of royal jelly, has several pharmacological activities. Given the fundamental role of astrocytes in regulating immune responses of the central nervous system, we used cortical astrocytes to examine the effect of 10-H2DA on the expression of genes associated with neuroinflammation and the production of neurotrophins, as well as cellular resistance to H2O2-induced cytotoxicity. Astrocytes, pretreated with a range of concentrations of 10-H2DA for 24 h, were exposed to lipopolysaccharide (LPS) for 3 h, after which the expression of proinflammatory cytokines (IL-1β, IL-6, and tumor necrosis factor-α (TNF-α)) and neurotrophic factors (BDNF, GDNF, and IGF-1) was evaluated. In the absence of LPS, 10-H2DA had no significant effect on the mRNA expression of neurotrophins or cytokines except for IL-1β, which significantly increased with low doses of 10-H2DA (3 µM). 10-H2DA (10 µM) pretreatment of LPS-stimulated cells did not significantly inhibit the expression of cytokine encoding genes; however, it significantly lowered the mRNA expression of GDNF and tended to decrease BDNF and IGF-1 expression compared with LPS alone. Additionally, 10-H2DA did not protect astrocytes against H2O2-induced oxidative stress. Our data indicate no anti-inflammatory, antioxidant, or neurotrophic effect of 10-H2DA in astrocytes undergoing inflammation or oxidative stress. The effect of IGF-1 inhibition by 10-H2DA on neuronal ketogenesis needs investigation.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Dry eye disease (DED) is a multifactorial disease affecting approximately 5-50% of individuals in various populations. Contributors to DED include, but are not limited to, lacrimal gland hypofunction, meibomian gland dysfunction (MGD), ocular surface inflammation, and corneal nerve dysfunction. Current DED treatments target some facets of the disease, such as ocular surface inflammation, but not all individuals experience adequate symptom relief. As such, this review focuses on alternative and adjunct approaches that are being explored to target underlying contributors to DED. RECENT FINDINGS Neuromodulation, stem cell treatments, and oral royal jelly have all been studied in individuals with DED and lacrimal gland hypofunction, with promising results. In individuals with MGD, devices that provide eyelid warming or intense pulsed light therapy may reduce DED symptoms and signs, as may topical Manuka honey. For those with ocular surface inflammation, naturally derived anti-inflammatory agents may be helpful, with the compound trehalose being farthest along in the process of investigation. Nerve growth factor, blood-derived products, corneal neurotization, and to a lesser degree, fatty acids have been studied in individuals with DED and neurotrophic keratitis (i.e. corneal nerve hyposensitivity). Various adjuvant therapies have been investigated in individuals with DED with neuropathic pain (i.e. corneal nerve hypersensitivity) including nerve blocks, neurostimulation, botulinum toxin, and acupuncture, although study numbers and design are generally weaker than for the other DED sub-types. SUMMARY Several alternatives and adjunct DED therapies are being investigated that target various aspects of disease. For many, more robust studies are required to assess their sustainability and applicability.
Collapse
Affiliation(s)
- Rhiya Mittal
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Sneh Patel
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
| | - Anat Galor
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, FL, USA
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA
- Research Services, Miami Veterans Affairs Medical Center, Miami, FL, USA
| |
Collapse
|
39
|
Ali AM, Ali EM, Mousa AA, Ahmed ME, Hendawy AO. Bee honey and exercise for improving physical performance, reducing fatigue, and promoting an active lifestyle during COVID-19. SPORTS MEDICINE AND HEALTH SCIENCE 2021; 3:177-180. [PMID: 34189483 PMCID: PMC8226034 DOI: 10.1016/j.smhs.2021.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Active lifestyle has enormous health benefits. However, physical activity has globally decreased since the beginning of the current coronavirus disease 2019 (COVID-19) outbreak because of social distancing measures. Older adults and people with age-related diseases (e.g., diabetes, obesity, cancer, cardiovascular disorders, etc.) are widely affected by COVID-19 and its grave adverse effects because of their baseline poor immune function. Although they are in intense need for the therapeutic benefits of exercise, they may express a low capacity for exercising due to skeletal muscle dysfunction and low motivation. Honey is a natural energy-rich, low glycemic index food with a variety of biological activities. It is reported to correct muscle pathology in diseased conditions. Because skeletal muscle is the key structure involved in exercise, we explored the literature for the exercise-promoting potential of natural honey. Bee honey improves physical performance at moderate levels of activity, and it reduces the production of inflammatory cytokines and biomarkers of fatigue following strenuous exercise among athletes. Supplementing ischemic heart disease patients with honey combined with floral pollen improved patients' tolerance for physical loads and corrected metabolism. Therefore, the therapeutic use of honey may have implications for to increasing the capacity for exercise in aged and diseased individuals. Soundly designed studies are needed to evaluate such possibility.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria, Egypt
| | - Esraa Mohammed Ali
- Department of Educational Sciences, Faculty of Early Childhood Education, Alexandria University, Alexandria, Egypt
| | | | - Mostafa Elsayed Ahmed
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.,Institute of Apiculture Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Amin Omar Hendawy
- Department of Animal and Poultry Production, Faculty of Agriculture, Damanhour University, Damanhour, Egypt.,Department of Biological Production, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
40
|
Ali AM, Kunugi H. Screening for Sarcopenia (Physical Frailty) in the COVID-19 Era. Int J Endocrinol 2021; 2021:5563960. [PMID: 34113379 PMCID: PMC8152925 DOI: 10.1155/2021/5563960] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/22/2021] [Accepted: 04/30/2021] [Indexed: 01/08/2023] Open
Abstract
Although the numbers of aged populations have risen considerably in the last few decades, the current coronavirus disease 2019 (COVID-19) has revealed an extensive vulnerability among these populations. Sarcopenia is an age-related disorder that increases hospitalization, dependencies, and mortality in older adults. It starts to develop in midlife or even earlier as a result of unbalanced diet/poor nutrition and low levels of physical activity, in addition to chronic disorders such as obesity and diabetes mellitus. Given that social isolation is adopted as the most protective measure against COVID-19, the level of physical activity and the intake of adequate diet have considerably declined, especially among older adults-denoting an increased possibility for developing sarcopenia. Research also shows a higher vulnerability of sarcopenic people to COVID-19 as well as the development of wasting disorders such as sarcopenia and cachexia in a considerable proportion of symptomatic and recovering COVID-19 patients. Muscular wasting in COVID-19 is associated with poor prognosis. Accordingly, early detection and proper management of sarcopenia and wasting conditions in older adults and COVID-19 patients may minimize morbidity and mortality during the current COVID-19 crisis. This review explored different aspects of screening for sarcopenia, stressing their relevance to the detection of altered muscular structure and performance in patients with COVID-19. Current guidelines recommend prior evaluation of muscle strength by simple measures such as grip strength to identify individuals with proven weakness who then would be screened for muscle mass loss. The latter is best measured by MRI and CT. However, due to the high cost and radiation risk entailed by these techniques, other simpler and cheaper techniques such as DXA and ultrasound are given preference. Muscle loss in COVID-19 patients was measured during the acute phase by CT scanning of the pectoralis muscle simultaneously during a routine check for lung fibrosis, which seems to be an efficient evaluation of sarcopenia among those patients with no additional cost. In recovering patients, muscle strength and physical performance have been evaluated by electromyography and traditional tests such as the six-minute walk test. Effective preventive and therapeutic interventions are necessary in order to prevent muscle loss and associated physical decline in COVID-19 patients.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo 187-8553, Japan
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria, Egypt
| | - Hiroshi Kunugi
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo, Japan
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW Sarcopenia is prevalent in cancer patients and can occur as a result of cancer as well as cancer-related therapies. It is related to high postoperative complications, long hospitalization, slow recovery as well as low tolerance to chemotherapy. Patients with sarcopenia also have poor oncological outcomes. Oral nutritional supplements (ONS) and physical activity have shown great potentials in managing this debilitating condition. We summarized the recent developments in the assessment of sarcopenia and its management with ONS and physical activity. RECENT FINDINGS Many methods were developed to evaluate sarcopenia including muscle quality/quantity measurement and functional tests. Recent studies have shown that ONS and physical training can be used in managing sarcopenia, especially when used together as part of a multimodal intervention. However, barriers such as low awareness and lack of training and support for both patients and healthcare workers still exist and need attention. SUMMARY Recent findings highlighted the benefits of identifying sarcopenia and managing those at risk. The details of a multimodal protocol, such as components of nutritional substrates, the intensity of physical exercise, and the use of medication need to be further looked into for an optimum approach. Education and training programs need to be developed to overcome the barriers in managing sarcopenia.
Collapse
Affiliation(s)
- Junjie Wang
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | |
Collapse
|
42
|
Ali AM, Kunugi H. Approaches to Nutritional Screening in Patients with Coronavirus Disease 2019 (COVID-19). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2772. [PMID: 33803339 PMCID: PMC7967488 DOI: 10.3390/ijerph18052772] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
Malnutrition is common among severe patients with coronavirus disease 2019 (COVID-19), mainly elderly adults and patients with comorbidities. It is also associated with atypical presentation of the disease. Despite the possible contribution of malnutrition to the acquisition and severity of COVID-19, it is not clear which nutritional screening measures may best diagnose malnutrition in these patients at early stages. This is of crucial importance given the urgency and rapid progression of the disease in vulnerable groups. Accordingly, this review examines the available literature for different nutritional screening approaches implemented among COVID-19 patients, with a special focus on elderly adults. After a literature search, we selected and scrutinized 14 studies assessing malnutrition among COVID-19 patients. The Nutrition Risk Screening 2002 (NRS-2002) has demonstrated superior sensitivity to other traditional screening measures. The controlling nutritional status (CONUT) score, which comprises serum albumin level, cholesterol level, and lymphocytes count, as well as a combined CONUT-lactate dehydrogenase-C-reactive protein score expressed a predictive capacity even superior to that of NRS-2002 (0.81% and 0.92% vs. 0.79%) in midlife and elder COVID-19 patients. Therefore, simple measures based on routinely conducted laboratory investigations such as the CONUT score may be timely, cheap, and valuable alternatives for identifying COVID-19 patients with high nutritional risk. Mini Nutritional Assessment (MNA) was the only measure used to detect residual malnutrition and high malnutrition risk in remitting patients-MNA scores correlated with hypoalbuminemia, hypercytokinemia, and weight loss. Older males with severe inflammation, gastrointestinal symptoms, and pre-existing comorbidities (diabetes, obesity, or hypertension) are more prone to malnutrition and subsequently poor COVID-19 prognosis both during the acute phase and during convalescence. Thus, they are in need of frequent nutritional monitoring and support while detecting and treating malnutrition in the general public might be necessary to increase resilience against COVID-19.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- National Center of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- National Center of Neurology and Psychiatry, Department of Mental Disorder Research, National Institute of Neuroscience, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
43
|
Ali AM, Kunugi H. Propolis, Bee Honey, and Their Components Protect against Coronavirus Disease 2019 (COVID-19): A Review of In Silico, In Vitro, and Clinical Studies. Molecules 2021; 26:1232. [PMID: 33669054 PMCID: PMC7956496 DOI: 10.3390/molecules26051232] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the virulence and high fatality of coronavirus disease 2019 (COVID-19), no specific antiviral treatment exists until the current moment. Natural agents with immune-promoting potentials such as bee products are being explored as possible treatments. Bee honey and propolis are rich in bioactive compounds that express strong antimicrobial, bactericidal, antiviral, anti-inflammatory, immunomodulatory, and antioxidant activities. This review examined the literature for the anti-COVID-19 effects of bee honey and propolis, with the aim of optimizing the use of these handy products as prophylactic or adjuvant treatments for people infected with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Molecular simulations show that flavonoids in propolis and honey (e.g., rutin, naringin, caffeic acid phenyl ester, luteolin, and artepillin C) may inhibit viral spike fusion in host cells, viral-host interactions that trigger the cytokine storm, and viral replication. Similar to the potent antiviral drug remdesivir, rutin, propolis ethanolic extract, and propolis liposomes inhibited non-structural proteins of SARS-CoV-2 in vitro, and these compounds along with naringin inhibited SARS-CoV-2 infection in Vero E6 cells. Propolis extracts delivered by nanocarriers exhibit better antiviral effects against SARS-CoV-2 than ethanolic extracts. In line, hospitalized COVID-19 patients receiving green Brazilian propolis or a combination of honey and Nigella sativa exhibited earlier viral clearance, symptom recovery, discharge from the hospital as well as less mortality than counterparts receiving standard care alone. Thus, the use of bee products as an adjuvant treatment for COVID-19 may produce beneficial effects. Implications for treatment outcomes and issues to be considered in future studies are discussed.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
44
|
Jaime L, Santoyo S. The Health Benefits of the Bioactive Compounds in Foods. Foods 2021; 10:foods10020325. [PMID: 33557012 PMCID: PMC7913708 DOI: 10.3390/foods10020325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/25/2022] Open
Abstract
The health benefits of consuming certain foods have been commonly known since ancient times [...].
Collapse
Affiliation(s)
- Laura Jaime
- Correspondence: (L.J.); (S.S.); Tel.: +34-910017925 (L.J.); +34-910017926 (S.S.)
| | - Susana Santoyo
- Correspondence: (L.J.); (S.S.); Tel.: +34-910017925 (L.J.); +34-910017926 (S.S.)
| |
Collapse
|
45
|
Ali AM, Kunugi H. Intermittent Fasting, Dietary Modifications, and Exercise for the Control of Gestational Diabetes and Maternal Mood Dysregulation: A Review and a Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9379. [PMID: 33333828 PMCID: PMC7765295 DOI: 10.3390/ijerph17249379] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
Gestational diabetes mellitus (GDM) is a common pregnancy-related condition afflicting 5-36% of pregnancies. It is associated with many morbid maternal and fetal outcomes. Mood dysregulations (MDs, e.g., depression, distress, and anxiety) are common among women with GDM, and they exacerbate its prognosis and hinder its treatment. Hence, in addition to early detection and proper management of GDM, treating the associated MDs is crucial. Maternal hyperglycemia and MDs result from a complex network of genetic, behavioral, and environmental factors. This review briefly explores mechanisms that underlie GDM and prenatal MDs. It also describes the effect of exercise, dietary modification, and intermittent fasting (IF) on metabolic and affective dysfunctions exemplified by a case report. In this patient, interventions such as IF considerably reduced maternal body weight, plasma glucose, and psychological distress without any adverse effects. Thus, IF is one measure that can control GDM and maternal MDs; however, more investigations are warranted.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|
46
|
Ali AM. COVID-19: A pandemic that threatens physical and mental health by promoting physical inactivity. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:221-223. [PMID: 34189487 PMCID: PMC7685939 DOI: 10.1016/j.smhs.2020.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/22/2020] [Accepted: 11/22/2020] [Indexed: 12/18/2022] Open
Abstract
Ever since the outbreak of Coronavirus disease 2019 (COVID-19) in late 2019, it has killed millions of people worldwide. Even people not stricken by this disease are not spared from its negative economic, social, and health-related drawbacks. This commentary provides insight into the potential mechanisms involved in the development of depression and emotional negativity escalating during the current pandemic. In particular, preventive measures of COVID-19, such as staying at home, are sedentarism measures that decrease physical activity. Physical inactivity alters gut microbiome structure in a fashion that promotes gut dysbiosis and flaring of systemic inflammation, leading to the buildup of body fat. Obesity, which contributes to a trail of health-depleting disorders, furthers gut microbial disintegration while fat tissue stimulates the release of cytokines, promotes metabolic resistance, and alters signaling involved in the production of antioxidants. As a result, the body gets flooded by toxic molecules such pro-inflammatory mediators, free radicals, and advanced glycation end products. These toxic molecules alter cellular function in all body tissues, including those of the brain. Neuroinflammation is associated with progressive declines in cognitive and motor functions along with dysregulation in emotions. Counteracting the sedentarism enforced by the COVID-19 pandemic through the participation in suitable indoors activities and the intake of healthy food is likely to protect against or revert physiological impairments that may affect people retreating to their homes during the current crisis, eventually restoring physical and mental health.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Corresponding author. National Center of Neurology and Psychiatry, 4-1-1, Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.
| |
Collapse
|
47
|
Ali AM, Kunugi H. Royal Jelly as an Intelligent Anti-Aging Agent-A Focus on Cognitive Aging and Alzheimer's Disease: A Review. Antioxidants (Basel) 2020; 9:E937. [PMID: 33003559 PMCID: PMC7601550 DOI: 10.3390/antiox9100937] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/08/2023] Open
Abstract
The astronomical increase of the world's aged population is associated with the increased prevalence of neurodegenerative diseases, heightened disability, and extremely high costs of care. Alzheimer's Disease (AD) is a widespread, age-related, multifactorial neurodegenerative disease that has enormous social and financial drawbacks worldwide. The unsatisfactory outcomes of available AD pharmacotherapy necessitate the search for alternative natural resources that can target various the underlying mechanisms of AD pathology and reduce disease occurrence and/or progression. Royal jelly (RJ) is the main food of bee queens; it contributes to their fertility, long lifespan, and memory performance. It represents a potent nutraceutical with various pharmacological properties, and has been used in a number of preclinical studies to target AD and age-related cognitive deterioration. To understand the mechanisms through which RJ affects cognitive performance both in natural aging and AD, we reviewed the literature, elaborating on the metabolic, molecular, and cellular mechanisms that mediate its anti-AD effects. Preclinical findings revealed that RJ acts as a multidomain cognitive enhancer that can restore cognitive performance in aged and AD models. It promotes brain cell survival and function by targeting multiple adversities in the neuronal microenvironment such as inflammation, oxidative stress, mitochondrial alterations, impaired proteostasis, amyloid-β toxicity, Ca excitotoxicity, and bioenergetic challenges. Human trials using RJ in AD are limited in quantity and quality. Here, the limitations of RJ-based treatment strategies are discussed, and directions for future studies examining the effect of RJ in cognitively impaired subjects are noted.
Collapse
Affiliation(s)
- Amira Mohammed Ali
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatric Nursing and Mental Health, Faculty of Nursing, Alexandria University, Alexandria 21527, Egypt
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo 187-0031, Japan;
- Department of Psychiatry, Teikyo University School of Medicine, Tokyo 173-8605, Japan
| |
Collapse
|