1
|
Bae M, Le C, Mehta RS, Dong X, Pieper LM, Ramirez L, Alexander M, Kiamehr S, Turnbaugh PJ, Huttenhower C, Chan AT, Balskus EP. Metatranscriptomics-guided discovery and characterization of a polyphenol-metabolizing gut microbial enzyme. Cell Host Microbe 2024:S1931-3128(24)00360-3. [PMID: 39471822 DOI: 10.1016/j.chom.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Gut microbial catechol dehydroxylases are a largely uncharacterized family of metalloenzymes that potentially impact human health by metabolizing dietary polyphenols. Here, we use metatranscriptomics (MTX) to identify highly transcribed catechol-dehydroxylase-encoding genes in human gut microbiomes. We discover a prevalent, previously uncharacterized catechol dehydroxylase (Gp Hcdh) from Gordonibacter pamelaeae that dehydroxylates hydrocaffeic acid (HCA), an anti-inflammatory gut microbial metabolite derived from plant-based foods. Further analyses suggest that the activity of Gp Hcdh may reduce anti-inflammatory benefits of polyphenol-rich foods. Together, these results show the utility of combining MTX analysis and biochemical characterization for gut microbial enzyme discovery and reveal a potential link between host inflammation and a specific polyphenol-metabolizing gut microbial enzyme.
Collapse
Affiliation(s)
- Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chi Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Raaj S Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xueyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lindsey M Pieper
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margaret Alexander
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Andrew T Chan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Leti Maggio E, Zucca C, Grande M, Carrano R, Infante A, Bei R, Lucarini V, De Maio F, Focaccetti C, Palumbo C, Marini S, Ferretti E, Cifaldi L, Masuelli L, Benvenuto M, Bei R. Polyphenols Regulate the Activity of Endocrine-Disrupting Chemicals, Having Both Positive and Negative Effects. J Xenobiot 2024; 14:1378-1405. [PMID: 39449418 PMCID: PMC11503411 DOI: 10.3390/jox14040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are chemical substances that can interfere with any hormone action. They are categorized according to origin and use, such as industrial chemicals like polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs), plastics like bisphenol A (BPA), plasticizers like phthalates, pesticides like dichlorodiphenyltrichloroethane (DDT), fungicides like vinclozolin, and pharmaceuticals like diethylstilbestrol (DES). Natural EDCs, such as phytoestrogens, are present in the diet of both humans and animals. Polyphenols are a large group of natural compounds derived from plants and are found in beverages and food. They are grouped based on their chemical structure into flavonoids and nonflavonoids and are reported to have many beneficial effects on health, including, but not limited to, anticancer, antioxidant, and anti-inflammatory effects. Moreover, polyphenols have both pro- and antioxidant characteristics, and due to their antioxidant and anti-inflammatory potential, they presumably have a protective effect against damage induced by EDCs. However, polyphenols may act as EDCs. In this review, we report that polyphenols regulate the activity of EDCs, having both positive and negative effects. Hence, a better understanding of the associations between EDCs and polyphenols will allow the establishment of improved approaches to protect human health from EDCs.
Collapse
Affiliation(s)
- Eleonora Leti Maggio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Carlotta Zucca
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Martina Grande
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Raffaele Carrano
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Antonio Infante
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Riccardo Bei
- Medical School, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (A.I.); (R.B.)
| | - Valeria Lucarini
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Fernando De Maio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Chiara Focaccetti
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Camilla Palumbo
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Loredana Cifaldi
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Laura Masuelli
- Department of Experimental Medicine, University of Rome “Sapienza”, Viale Regina Elena 324, 00161 Rome, Italy; (V.L.); (E.F.); (L.M.)
| | - Monica Benvenuto
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.L.M.); (C.Z.); (M.G.); (R.C.); (F.D.M.); (C.F.); (C.P.); (S.M.); (L.C.); (M.B.)
| |
Collapse
|
3
|
Tain YL, Hsu CN. Maternal Polyphenols and Offspring Cardiovascular-Kidney-Metabolic Health. Nutrients 2024; 16:3168. [PMID: 39339768 PMCID: PMC11434705 DOI: 10.3390/nu16183168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The convergence of cardiovascular, kidney, and metabolic disorders at the pathophysiological level has led to the recognition of cardiovascular-kidney-metabolic (CKM) syndrome, which represents a significant global health challenge. Polyphenols, a group of phytochemicals, have demonstrated potential health-promoting effects. METHODS This review highlights the impact of maternal polyphenol supplementation on the CKM health of offspring. RESULTS Initially, we summarize the interconnections between polyphenols and each aspect of CKM syndrome. We then discuss in vivo studies that have investigated the use of polyphenols during pregnancy and breastfeeding, focusing on their role in preventing CKM syndrome in offspring. Additionally, we explore the common mechanisms underlying the protective effects of maternal polyphenol supplementation. CONCLUSIONS Overall, this review underscores the potential of early-life polyphenol interventions in safeguarding against CKM syndrome in offspring. It emphasizes the importance of continued research to advance our understanding and facilitate the clinical translation of these interventions.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Lin X, Liu W, Hu X, Liu Z, Wang F, Wang J. The role of polyphenols in modulating mitophagy: Implications for therapeutic interventions. Pharmacol Res 2024; 207:107324. [PMID: 39059613 DOI: 10.1016/j.phrs.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
This review rigorously assesses the burgeoning research into the role of polyphenols in modulating mitophagy, an essential cellular mechanism for the targeted removal of impaired mitochondria. These natural compounds, known for their low toxicity, are underscored for their potential in therapeutic strategies against a diverse array of diseases, such as neurodegenerative, cardiovascular, and musculoskeletal disorders. The analysis penetrates deeply into the molecular mechanisms whereby polyphenols promote mitophagy, particularly by influencing crucial signaling pathways and transcriptional regulators, including the phosphatase and tensin homolog (PTEN) induced putative kinase 1 (PINK1)/parkin and forkhead box O3 (FOXO3a) pathways. Noteworthy discoveries include the neuroprotective properties of resveratrol and curcumin, which affect both autophagic pathways and mitochondrial dynamics, and the pioneering integration of polyphenols with other natural substances to amplify therapeutic effectiveness. Furthermore, the review confronts the issue of polyphenol bioavailability and emphasizes the imperative for clinical trials to corroborate their therapeutic viability. By delivering an exhaustive synthesis of contemporary insights and recent advancements in polyphenol and mitophagy research, this review endeavors to catalyze additional research and foster the creation of innovative therapeutic modalities that exploit the distinctive attributes of polyphenols to manage and prevent disease.
Collapse
Affiliation(s)
- Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenkai Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Xizhuo Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqiang Liu
- Deyang Sixth People's Hospital, Deyang 618000, China
| | - Fang Wang
- Chengdu First People's Hospital, Sichuan, China
| | - Jinlian Wang
- Traditional Chinese Medicine Hospital of Meishan, Meishan 620010, China.
| |
Collapse
|
5
|
Castelnuovo G, Perez-Diaz-Del-Campo N, Rosso C, Armandi A, Caviglia GP, Bugianesi E. A Healthful Plant-Based Diet as an Alternative Dietary Approach in the Management of Metabolic Dysfunction-Associated Steatotic Liver Disease. Nutrients 2024; 16:2027. [PMID: 38999775 PMCID: PMC11243448 DOI: 10.3390/nu16132027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Plant-based diets (PBDs) are gaining attention as a sustainable and health-conscious alternative for managing various chronic conditions, including metabolic dysfunction-associated steatotic liver disease (MASLD). In the absence of pharmacological treatments, exploring the potential of lifestyle modifications to improve biochemical and pathological outcomes becomes crucial. The adoption of PBDs has demonstrated beneficial effects such as weight control, increased metabolic health and improved coexisting diseases. Nonetheless, challenges persist, including adherence difficulties, ensuring nutritional adequacy, and addressing potential deficiencies. The aim of this review is to provide a comprehensive overview of the impact of PBDs on MASLD, emphasizing the need for tailored dietary interventions with professional support to optimize their effectiveness in preventing and treating metabolic diseases.
Collapse
Affiliation(s)
| | | | - Chiara Rosso
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Angelo Armandi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Elisabetta Bugianesi
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
- Gastroenterology Unit, Città della Salute e della Scienza-Molinette Hospital, 10126 Turin, Italy
| |
Collapse
|
6
|
Favari C, Rinaldi de Alvarenga JF, Sánchez-Martínez L, Tosi N, Mignogna C, Cremonini E, Manach C, Bresciani L, Del Rio D, Mena P. Factors driving the inter-individual variability in the metabolism and bioavailability of (poly)phenolic metabolites: A systematic review of human studies. Redox Biol 2024; 71:103095. [PMID: 38428187 PMCID: PMC10912651 DOI: 10.1016/j.redox.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024] Open
Abstract
This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria. Inter-individual differences were mainly related to gut microbiota composition and activity but also to genetic polymorphisms, age, sex, ethnicity, BMI, (patho)physiological status, and physical activity, depending on the (poly)phenol sub-class considered. Most of the IIV has been poorly characterised. Two major types of IIV were observed. One resulted in metabolite gradients that can be further classified into high and low excretors, as seen for all flavonoids, phenolic acids, prenylflavonoids, alkylresorcinols, and hydroxytyrosol. The other type of IIV is based on clusters of individuals defined by qualitative differences (producers vs. non-producers), as for ellagitannins (urolithins), isoflavones (equol and O-DMA), resveratrol (lunularin), and preliminarily for avenanthramides (dihydro-avenanthramides), or by quali-quantitative metabotypes characterized by different proportions of specific metabolites, as for flavan-3-ols, flavanones, and even isoflavones. Future works are needed to shed light on current open issues limiting our understanding of this phenomenon that likely conditions the health effects of dietary (poly)phenols.
Collapse
Affiliation(s)
- Claudia Favari
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy.
| | | | - Lorena Sánchez-Martínez
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence 'Campus Mare Nostrum', Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital 'Virgen de La Arrixaca', Universidad de Murcia, Espinardo, Murcia, Spain
| | - Nicole Tosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Cristiana Mignogna
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, CA, USA; Department of Environmental Toxicology, University of California, Davis, CA, USA
| | - Claudine Manach
- Université Clermont Auvergne, INRAE, Human Nutrition Unit, Clermont-Ferrand, France
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| |
Collapse
|
7
|
Shin S, Park J, Choi HY, Lee K. Hypotensive and Endothelium-Dependent Vasorelaxant Effects of Grayblue Spicebush Ethanol Extract in Rats. Foods 2023; 12:4282. [PMID: 38231748 DOI: 10.3390/foods12234282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Hypertension is one of the most common chronic diseases, and its prevalence is increasing worldwide. Lindera glauca (Siebold & Zucc.) Blume, known as grayblue spicebush (GS), has been used as food and for medicinal purposes; however, studies about its hypotensive or vasorelaxant effects are lacking. Therefore, the hypotensive effect of an ethanolic extract of the GS branch (GSE) was investigated in 15-week-old spontaneously hypertensive rats (SHRs) using the tail cuff method. The GSE administration group (1000 mg/kg SHR body weight) showed a decrease in their systolic and diastolic blood pressure measured 4 h after its administration. In addition, we investigated its vasorelaxant effect using the thoracic aorta dissected from Sprague-Dawley rats. The GSE (0.5, 1, 2, 5, 10, and 20 μg/mL) showed an endothelium-dependent vasorelaxant effect, and its mechanisms were found to be relevant to the inward rectifier, voltage-dependent, and non-selective K+ channels. Moreover, the GSE (20 μg/mL) showed an inhibitory effect on aortic rings constricted with angiotensin II. Considering its hypotensive and vasorelaxant effects, GSE has potential as a functional food to help treat and prevent high blood pressure. However, further studies on the identification of the active components of GSE and safety evaluations of its use are needed.
Collapse
Affiliation(s)
- Sujin Shin
- Department of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junkyu Park
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ho-Young Choi
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyungjin Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Spiegel M. Theoretical Insights into the Oxidative Stress-Relieving Properties of Pinocembrin─An Isolated Flavonoid from Honey and Propolis. J Phys Chem B 2023; 127:8769-8779. [PMID: 37816048 PMCID: PMC10591471 DOI: 10.1021/acs.jpcb.3c03545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/13/2023] [Indexed: 10/12/2023]
Abstract
Bee products are a valuable group of substances that have a wide range of applications for humans. They contain a high level of polyphenolic compounds, which have been shown to combat radicals and effectively reduce oxidative stress. In this study, density functional theory was utilized to determine the anti-OOH activity, sequestration of free Cu(II) and Fe(III) ions, the potential pro-oxidative activity of the formed complexes, and the repairing capabilities toward essential biomolecules. The kinetic constants for scavenging of hydroperoxide radical were found to be low, with an order of magnitude not exceeding 10-3 M-1 s-1. Chelating properties showed slightly more satisfactory outcomes, although most complexes exhibited pro-oxidant activity. Pinocembrin, however, proved effective in repairing oxidatively damaged biological compounds and restoring their original functionality. The study found that whilst the system displays limited type I and type II antioxidant activity, it may support the role of physiological reductants already present in the biological matrix.
Collapse
Affiliation(s)
- Maciej Spiegel
- Department of Pharmacognosy
and Herbal Medicines, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
9
|
Kiyimba T, Yiga P, Bamuwamye M, Ogwok P, Van der Schueren B, Matthys C. Efficacy of Dietary Polyphenols from Whole Foods and Purified Food Polyphenol Extracts in Optimizing Cardiometabolic Health: A Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2023; 14:270-282. [PMID: 36796437 PMCID: PMC10229382 DOI: 10.1016/j.advnut.2023.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023] Open
Abstract
The evidence from clinical trials concerning the efficacy of dietary polyphenols on cardiometabolic health is divergent. Therefore, this review aimed to determine the pooled effect of dietary polyphenols on cardiometabolic risk markers and compare the difference in efficacy between whole polyphenol-rich foods and purified food polyphenol extracts. We conducted a random-effect model meta-analysis of randomized controlled trials (RCTs) on the effect of polyphenols on blood pressure, lipid profile, flow-mediated dilation (FMD), fasting blood glucose (FBG), waist circumference, and markers of inflammation. Effect size was expressed as weighted mean difference and 95% CI. RCTs published in English between 2000 and 2021 involving adult participants with cardiometabolic risks were searched in electronic databases. Forty-six RCTs involving 2494 participants with a mean age of 53.3 ±10 y were included in this review. Whole polyphenol-rich food but not purified food polyphenol extracts significantly reduced systolic blood pressure (SBP, -3.69 mmHg; 95% CI: -4.24, -3.15 mmHg; P = 0.00001) and diastolic blood pressure (DBP, -1.44 mmHg; 95% CI: -2.56, -0.31 mmHg; P = 0.0002). Concerning waist circumference, purified food polyphenol extracts led to a larger effect (-3.04 cm; 95% CI: -7.06, -0.98 cm; P = 0.14). Significant effects on total cholesterol (-9.03 mg/dL; 95% CI: -16.46, -1.06 mg/dL; P = 0.02) and TGs (-13.43 mg/dL; 95% CI: -23.63, -3.23; P = 0.01) were observed when purified food polyphenol extracts were considered separately. None of the intervention materials significantly affected LDL-cholesterol, HDL-cholesterol, FBG, IL-6, and CRP. When both whole food and extracts were pooled together, there was a significant reduction in SBP, DBP, FMD, TGs, and total cholesterol. These findings suggest that polyphenols both as whole food and purified extracts can be efficacious in reducing cardiometabolic risks. However, these results must be interpreted with caution because of high heterogeneity and risk of bias among RCTs. This study was registered on PROSPERO as CRD42021241807.
Collapse
Affiliation(s)
- Tonny Kiyimba
- Department of Food Science and Technology, Kyambogo University, Kampala, Uganda; Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Peter Yiga
- Department of Food Science and Technology, Kyambogo University, Kampala, Uganda; Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Michael Bamuwamye
- Department of Food Science and Technology, Kyambogo University, Kampala, Uganda
| | - Patrick Ogwok
- Department of Food Science and Technology, Kyambogo University, Kampala, Uganda
| | - Bart Van der Schueren
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Christophe Matthys
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium; Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Highlights on the Role of Galectin-3 in Colorectal Cancer and the Preventive/Therapeutic Potential of Food-Derived Inhibitors. Cancers (Basel) 2022; 15:cancers15010052. [PMID: 36612048 PMCID: PMC9817985 DOI: 10.3390/cancers15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of death worldwide. Despite advances in surgical and therapeutic management, tumor metastases and resistance to therapy still represent major hurdles. CRC risk is highly modifiable by lifestyle factors, including diet, which strongly influences both cancer incidence and related mortality. Galectin-3 (Gal-3) is a multifaceted protein involved in multiple pathophysiological pathways underlying chronic inflammation and cancer. Its versatility is given by the ability to participate in a wide range of tumor-promoting processes, including cell-cell/cell-matrix interactions, cell growth regulation and apoptosis, and the immunosuppressive tumor microenvironment. This review provides an updated summary of preclinical and observational human studies investigating the pathogenetic role of Gal-3 in intestinal inflammation and CRC, as well as the potential of Gal-3 activity inhibition by plant-source food-derived bioactive compounds to control CRC onset/growth. These studies highlight both direct and immuno-mediated effects of Gal-3 on tumor growth and invasiveness and its potential role as a CRC prognostic biomarker. Substantial evidence indicates natural food-derived Gal-3 inhibitors as promising candidates for CRC prevention and therapy. However, critical issues, such as their bioavailability and efficacy, in controlled human studies need to be addressed to translate research progress into clinical applications.
Collapse
|
11
|
Visco DB, Manhães de Castro R, Guzman-Quevedo O, Toscano AE. Could polyphenols be used as a neuroprotector therapeutic agent in perinatal brain disorders? Nutr Neurosci 2022; 25:2458-2460. [PMID: 34404336 DOI: 10.1080/1028415x.2021.1968104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Diego Bulcão Visco
- Postgraduate Program in Nutrition (Posnutri), Federal University of Pernambuco, Pernambuco, Recife, Brazil.,Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Raul Manhães de Castro
- Postgraduate Program in Nutrition (Posnutri), Federal University of Pernambuco, Pernambuco, Recife, Brazil.,Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Omar Guzman-Quevedo
- Instituto Tecnológico Superior de Tacámbaro, Tacámbaro, México.,Postgraduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| | - Ana Elisa Toscano
- Studies in Nutrition and Phenotypic Plasticity Unit, Department of Nutrition, Federal University of Pernambuco, Recife, Brazil.,Nursing Unit, Vitória Academic Center, Federal University of Pernambuco, Vitória de Santo Antão, Brazil.,Postgraduate Program in Neuropsychiatry and Behavioral Sciences (Posneuro), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
12
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
13
|
Jin T. Fibroblast growth factor 21 and dietary interventions: what we know and what we need to know next. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:524-530. [PMID: 37724164 PMCID: PMC10388781 DOI: 10.1515/mr-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 09/20/2023]
Abstract
Dietary interventions include the change of dietary styles, such as fasting and dietary or nutrient restrictions; or the addition of plant-derived compounds (such as polyphenols known as curcumin, resveratrol, or anthocyanin, or other nutraceuticals) into the diet. During the past a few decades, large number of studies have demonstrated therapeutic activities of these dietary interventions on metabolic and other diseases in human subjects or various animal models. Mechanisms underlying those versatile therapeutic activities, however, remain largely unclear. Interestingly, recent studies have shown that fibroblast growth factor 21 (FGF21), a liver-derived hormone or hepatokine, mediates metabolic beneficial effects of certain dietary polyphenols as well as protein restriction. Here I have briefly summarized functions of FGF21, highlighted related dietary interventions, and presented literature discussions on role of FGF21 in mediating function of dietary polyphenol intervention and protein restriction. This is followed by presenting my perspective view, with the involvement of gut microbiota. It is anticipated that further breakthroughs in this field in the near future will facilitate conceptual merge of classical medicine and modern medicine.
Collapse
Affiliation(s)
- Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, TorontoCanada
- Banting and Best Diabetes Centre, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, TorontoCanada
| |
Collapse
|
14
|
A Comprehensive Literature Review on Cardioprotective Effects of Bioactive Compounds Present in Fruits of Aristotelia chilensis Stuntz (Maqui). Molecules 2022; 27:molecules27196147. [PMID: 36234679 PMCID: PMC9571323 DOI: 10.3390/molecules27196147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Some fruits and vegetables, rich in bioactive compounds such as polyphenols, flavonoids, and anthocyanins, may inhibit platelet activation pathways and therefore reduce the risk of suffering from CVD when consumed regularly. Aristotelia chilensis Stuntz (Maqui) is a shrub or tree native to Chile with outstanding antioxidant activity, associated with its high content in anthocyanins, polyphenols, and flavonoids. Previous studies reveal different pharmacological properties for this berry, but its cardioprotective potential has been little studied. Despite having an abundant composition, and being rich in bioactive products with an antiplatelet role, there are few studies linking this berry with antiplatelet activity. This review summarizes and discusses relevant information on the cardioprotective potential of Maqui, based on its composition of bioactive compounds, mainly as a nutraceutical antiplatelet agent. Articles published between 2000 and 2022 in the following bibliographic databases were selected: PubMed, ScienceDirect, and Google Scholar. Our search revealed that Maqui is a promising cardiovascular target since extracts from this berry have direct effects on the reduction in cardiovascular risk factors (glucose index, obesity, diabetes, among others). Although studies on antiplatelet activity in this fruit are recent, its rich chemical composition clearly shows that the presence of chemical compounds (anthocyanins, flavonoids, phenolic acids, among others) with high antiplatelet potential can provide this berry with antiplatelet properties. These bioactive compounds have antiplatelet effects with multiple targets in the platelet, particularly, they have been related to the inhibition of thromboxane, thrombin, ADP, and GPVI receptors, or through the pathways by which these receptors stimulate platelet aggregation. Detailed studies are needed to clarify this gap in the literature, as well as to specifically evaluate the mechanism of action of Maqui extracts, due to the presence of phenolic compounds.
Collapse
|
15
|
Zhang B, Zhang Y, Xing X, Wang S. Health benefits of dietary polyphenols: Insight into interindividual variability in absorption and metabolism. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Fisicaro F, Lanza G, Pennisi M, Vagli C, Cantone M, Falzone L, Pennisi G, Ferri R, Bella R. Daily mocha coffee intake and psycho-cognitive status in non-demented non-smokers subjects with subcortical ischaemic vascular disease. Int J Food Sci Nutr 2022; 73:821-828. [PMID: 35285390 DOI: 10.1080/09637486.2022.2050999] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coffee intake has been recently associated with better cognition and mood in mild vascular cognitive impairment (mVCI). As tobacco can reduce the caffeine half-life, we excluded smokers from the original sample. Hamilton Depression Rating Scale (HDRS), mini-mental state examination (MMSE), Stroop Colour-Word Interference Test (Stroop), activities of daily living (ADL0) and instrumental ADL were the outcome measures. Significant differences were observed in higher consumption groups (moderate intake for HDRS; high intake for MMSE and Stroop) compared to the other groups, as well as in age and education. With age, education and coffee used as independent predictors, and HDRS, Stroop and MMSE as dependent variables, a correlation was found between age and both MMSE and Stroop, as well as between education and MMSE and between HDRS and Stroop; coffee intake negatively correlated with HDRS and Stroop. Higher coffee consumption was associated with better psycho-cognitive status among non-smokers with mVCI.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carla Vagli
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| | - Mariagiovanna Cantone
- Department of Neurology, Sant'Elia Hospital, ASP Caltanissetta, Caltanissetta, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, Instituto Nazionale Tumori-IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Clinical Neurophysiology Research Unit, Oasi Research Institute-IRCCS, Troina, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, University of Catania, Catania, Italy
| |
Collapse
|
17
|
Quarta S, Massaro M, Carluccio MA, Calabriso N, Bravo L, Sarria B, García-Conesa MT. An Exploratory Critical Review on TNF-α as a Potential Inflammatory Biomarker Responsive to Dietary Intervention with Bioactive Foods and Derived Products. Foods 2022; 11:2524. [PMID: 36010524 PMCID: PMC9407274 DOI: 10.3390/foods11162524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
This review collects and critically examines data on the levels of tumour necrosis factor-alpha (TNF-α) in lean, overweight and obese subjects, and the effects of intervention with different foods and food products containing bioactive constituents in overweight/obese individuals. We additionally explore the influence of different single nucleotide polymorphisms (SNPs) on TNF-α levels and compare the response to food products with that to some anti-obesity drugs. Our aim was to provide an overview of the variability, consistency, and magnitude of the reported effects of dietary factors on TNF-α, and to envisage the reliability of measuring changes in the levels of this cytokine as a biomarker responsive to food intervention in association with the reduction in body weight. Regarding the circulating levels of TNF-α, we report: (i) a large intra-group variability, with most coefficients of variation (CV%) values being ≥30% and, in many cases, >100%; (ii) a large between-studies variability, with baseline TNF-α values ranging from <1.0 up to several hundred pg/mL; (iii) highly variable effects of the different dietary approaches with both statistically significant and not significant decreases or increases of the protein, and the absolute effect size varying from <0.1 pg/mL up to ≈50 pg/mL. Within this scenario of variability, it was not possible to discern clear differentiating limits in TNF-α between lean, overweight, and obese individuals or a distinct downregulatory effect on this cytokine by any of the different dietary approaches reviewed, i.e., polyunsaturated fatty acids (PUFAs), Vitamin-D (VitD), mixed (micro)nutrients, (poly)phenols or other phytochemicals. Further, there was not a clear relationship between the TNF-α responses and body weight changes. We found similarities between dietary and pharmacological treatments in terms of variability and limited evidence of the TNF-α response. Different factors that contribute to this variability are discussed and some specific recommendations are proposed to reinforce the need to improve future studies looking at this cytokine as a potential biomarker of response to dietary approaches.
Collapse
Affiliation(s)
- Stefano Quarta
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
| | - Marika Massaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | | | - Nadia Calabriso
- National Research Council (CNR), Institute of Clinical Physiology (IFC), 73100 Lecce, Italy
| | - Laura Bravo
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - Beatriz Sarria
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), José Antonio Nováis 10, 28040 Madrid, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
18
|
Chen S, Zhu H, Luo Y. Chitosan-based oral colon-specific delivery systems for polyphenols: recent advances and emerging trends. J Mater Chem B 2022; 10:7328-7348. [PMID: 35766297 DOI: 10.1039/d2tb00874b] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oral colon-targeted delivery systems (OCDSs) have attracted great attention in the delivery of active compounds targeted to the colon for the treatment of colon and non-colon diseases with the advantages of enhanced efficacy and reduced side effects. Chitosan, the second-most abundant biopolymer next to cellulose, has great biocompatibility, is non-toxic, is sensitive to colonic flora and shows strong adhesion to colonic mucus, making it an ideal biomaterial candidate for the construction of OCDSs. Being rich in functional groups, the chitosan structure is easily modified, both physically and chemically, for the fabrication of delivery systems with diverse geometries, including nanoparticles, microspheres/microparticles, and hydrogels, that are resistant to the harsh environment of the upper gastrointestinal tract (GIT). This review offers a detailed overview of the preparation of chitosan-based delivery systems as the basis for building OCDSs. A variety of natural polyphenols with potent biological activities are used to treat diseases of the colon, or to be metabolized as active ingredients by colonic microorganisms to intervene in remote organ diseases after absorption into the circulation. However, the poor solubility of polyphenols limits their application, and the acidic environment of the upper GIT and various enzymes in the small intestine disrupt their structure and activity. As a result, the development of OCDSs for polyphenols has become an emerging and popular area of current research in the past decade. Thus, the second objective of this review is to systematically summarize the most recent research findings in this area and shed light on the future development of chitosan-based OCDSs for nutritional and biomedical applications.
Collapse
Affiliation(s)
- Sunni Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Honglin Zhu
- Nanotechnology and Biodelivery Laboratory, Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| | - Yangchao Luo
- Nanotechnology and Biodelivery Laboratory, Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
19
|
Tain YL, Hsu CN. Novel Insights on Dietary Polyphenols for Prevention in Early-Life Origins of Hypertension: A Review Focusing on Preclinical Animal Models. Int J Mol Sci 2022; 23:6620. [PMID: 35743061 PMCID: PMC9223825 DOI: 10.3390/ijms23126620] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/01/2023] Open
Abstract
Polyphenols are the largest group of phytochemicals with health benefits. Early life appears to offer a critical window of opportunity for launching interventions focused on preventing hypertension, as increasing evidence supports the supposition that hypertension can originate in early life. Although polyphenols have antihypertensive actions, knowledge of the potential beneficial action of the early use of polyphenols to avert the development of hypertension is limited. Thus, in this review, we first provide a brief summary of the chemistry and biological function of polyphenols. Then, we present the current epidemiological and experimental evidence supporting the early-life origins of hypertension. We also document animal data on the use of specific polyphenols as an early-life intervention to protect offspring against hypertension in adulthood and discuss underlying mechanisms. Continued research into the use of polyphenols to prevent hypertension from starting early in life will have far-reaching implications for future health.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
20
|
Dall’Asta M, Barbato M, Rocchetti G, Rossi F, Lucini L, Marsan PA, Colli L. Nutrigenomics: an underestimated contribution to the functional role of polyphenols. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Dinu M, Pagliai G, Del Bo' C, Porrini M, Riso P, Serafini M, Sofi F, Martini D, Angelino D. DIet and Health From reGIstered Trials on ClinicalTrials.gov: The DIGIT Study. Front Nutr 2022; 9:870776. [PMID: 35548571 PMCID: PMC9083457 DOI: 10.3389/fnut.2022.870776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background Clinical trial registration has become a valuable tool that can be used to track the status and nature of trials conducted on a specific topic. This approach has been applied to many areas of research, but less is known about the characteristics and trends over time of clinical trials focused on diet and health. The aim of this study was to analyze diet-related clinical trials registered on the National Institute of Health “ClinicalTrials.gov” web platform in the last 10 years, to list and describe their characteristics, and to identify possible gaps to be filled in the future research. Methods A search was performed on the ClinicalTrials.gov database. Intervention studies registered from January 2010 to December 2020, conducted on adults, with a follow-up of ≥2 weeks, evaluating the impact of different diets on all outcomes except those assessed with scales or questionnaires were considered. Results At the end of the selection process, a total of 1,016 registered clinical trials were identified and included in the analysis. The most investigated dietary approaches were balanced diets (n = 381 trials), followed by those based on a modification of macronutrients (n = 288) and time-restricted feeding and intermittent fasting diets (n = 140). The main measured outcomes included anthropometric parameters and body composition (57.8%), glycemic control parameters (49.7%), lipid parameters (40.1%), inflammatory markers (29.1%), and blood pressure and/or heart rate (24.5%). A growing body of studies also focused on microbiota and host metabolism (17.8%). Most studies had a duration of less than 12 weeks (~60%), and more than 90% of studies enrolled volunteers with overweight/obesity or other diseases. Regarding aging, only 21 studies focused only on older adults. Conclusion The number of studies investigating the relationship between diet and health has increased over the years. Despite the growing interest in the topic, there are some gaps, such as the limited duration of most trials, the underrepresentation of some population groups, and the limited number of studies for some diets that, although popular in the population, lack robust scientific evidence.
Collapse
Affiliation(s)
- Monica Dinu
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giuditta Pagliai
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Mauro Serafini
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|
22
|
Muratori L, Fregnan F, Maurina M, Haastert-Talini K, Ronchi G. The Potential Benefits of Dietary Polyphenols for Peripheral Nerve Regeneration. Int J Mol Sci 2022; 23:ijms23095177. [PMID: 35563568 PMCID: PMC9102183 DOI: 10.3390/ijms23095177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerves are frequently affected by lesions caused by trauma (work accidents, car incidents, combat injuries) and following surgical procedures (for instance cancer resection), resulting in loss of motor and sensory function with lifelong impairments. Irrespective of the intrinsic capability of the peripheral nervous system for regeneration, spontaneous or surgically supported regeneration is often unsatisfactory with the limited functional success of nerve repair. For this reason, many efforts have been made to improve the regeneration process. Beyond innovative microsurgical methods that, in certain cases, are necessary to repair nerve injuries, different nonsurgical treatment approaches and adjunctive therapies have been investigated to enhance nerve regeneration. One possibility could be taking advantage of a healthy diet or lifestyle and their relation with proper body functions. Over the years, scientific evidence has been obtained on the benefits of the intake of polyphenols or polyphenol-rich foods in humans, highlighting the neuroprotective effects of these compounds in many neurodegenerative diseases. In order to improve the available knowledge about the potential beneficial role of polyphenols in the process of peripheral nerve regeneration, this review assessed the biological effects of polyphenol administration in supporting and promoting the regenerative process after peripheral nerve injury.
Collapse
Affiliation(s)
- Luisa Muratori
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, (Torino), Italy
| | - Federica Fregnan
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, (Torino), Italy
| | - Monica Maurina
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
| | - Kirsten Haastert-Talini
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany;
- Center for Systems Neuroscience (ZSN), 30559 Hannover, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, (Torino), Italy; (L.M.); (F.F.); (M.M.)
- Neuroscience Institute Cavalieri Ottolenghi (NICO), 10043 Orbassano, (Torino), Italy
- Correspondence: ; Tel.: +39-011-6705-433; Fax: +39-011-9038-639
| |
Collapse
|
23
|
Bukhari SNA. Dietary Polyphenols as Therapeutic Intervention for Alzheimer’s Disease: A Mechanistic Insight. Antioxidants (Basel) 2022; 11:antiox11030554. [PMID: 35326204 PMCID: PMC8945272 DOI: 10.3390/antiox11030554] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 02/06/2023] Open
Abstract
Dietary polyphenols encompass a diverse range of secondary metabolites found in nature, such as fruits, vegetables, herbal teas, wine, and cocoa products, etc. Structurally, they are either derivatives or isomers of phenol acid, isoflavonoids and possess hidden health promoting characteristics, such as antioxidative, anti-aging, anti-cancerous and many more. The use of such polyphenols in combating the neuropathological war raging in this generation is currently a hotly debated topic. Lately, Alzheimer’s disease (AD) is emerging as the most common neuropathological disease, destroying the livelihoods of millions in one way or another. Any therapeutic intervention to curtail its advancement in the generation to come has been in vain to date. Using dietary polyphenols to construct the barricade around it is going to be an effective strategy, taking into account their hidden potential to counter multifactorial events taking place under such pathology. Besides their strong antioxidant properties, naturally occurring polyphenols are reported to have neuroprotective effects by modulating the Aβ biogenesis pathway in Alzheimer’s disease. Thus, in this review, I am focusing on unlocking the hidden secrets of dietary polyphenols and their mechanistic advantages to fight the war with AD and related pathology.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Aljouf 2014, Saudi Arabia
| |
Collapse
|
24
|
What Is the Current Direction of the Research on Carotenoids and Human Health? An Overview of Registered Clinical Trials. Nutrients 2022; 14:nu14061191. [PMID: 35334849 PMCID: PMC8955529 DOI: 10.3390/nu14061191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/24/2022] [Accepted: 03/10/2022] [Indexed: 12/15/2022] Open
Abstract
Carotenoids have been the object of numerous observational, pre-clinical and interventional studies focused on elucidating their potential impacts on human health. However, the large heterogeneity among the trials, in terms of study duration and characteristics of participants, makes any conclusion difficult to draw. The present study aimed to explore the current carotenoid research trends by analyzing the characteristics of the registered clinical trials. A total of 193 registered trials on ClinicalTrials.gov and ISRCTN were included in the revision. Eighty-three studies were performed with foods, one-hundred-five with food supplements, and five with both. Among the foods tested, tomatoes and tomato-based foods, and eggs were the most studied. Lutein, lycopene, and astaxanthin were the most carotenoids investigated. Regarding the goals, 52 trials were focused on studying carotenoids’ bioavailability, and 140 studies investigated the effects of carotenoids on human health. The main topics included eye and cardiovascular health. Recently, the research has focused also on two new topics: cognitive function and carotenoid–gut microbiota interactions. However, the current research on carotenoids is still mostly focused on the bioavailability and metabolism of carotenoids from foods and food supplements. Within this context, the impacts/contributions of food technologies and the development of new carotenoid formulations are discussed. In addition, the research is still corroborating the previous findings on vision and cardiovascular health. Much attention has also been devoted to new research areas, such as the carotenoid–microbiota interactions, which could contribute to explaining the metabolism and the health effects of carotenoids; and the relation between carotenoids and cognitive function. However, for these topics the research is still only beginning, and further studies are need.
Collapse
|
25
|
Ullah MF, Ahmad A, Bhat SH, Abuduhier FM, Mustafa SK, Usmani S. Diet-derived small molecules (nutraceuticals) inhibit cellular proliferation by interfering with key oncogenic pathways: an overview of experimental evidence in cancer chemoprevention. Biol Futur 2022; 73:55-69. [PMID: 35040098 DOI: 10.1007/s42977-022-00110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Discouraging statistics of cancer disease has projected an increase in the global cancer burden from 19.3 to 28.4 million incidences annually within the next two decades. Currently, there has been a revival of interest in nutraceuticals with evidence of pharmacological properties against human diseases including cancer. Diet is an integral part of lifestyle, and it has been proposed that an estimated one-third of human cancers can be prevented through appropriate lifestyle modification including dietary habits; hence, it is considered significant to explore the pharmacological benefits of these agents, which are easily accessible and have higher safety index. Accordingly, an impressive embodiment of evidence supports the concept that the dietary factors are critical modulators to prevent, retard, block, or reverse carcinogenesis. Such an action reflects the ability of these molecules to interfere with multitude of pathways to subdue and neutralize several oncogenic factors and thereby keep a restraint on neoplastic transformations. This review provides a series of experimental evidence based on the current literature to highlight the translational potential of nutraceuticals for the prevention of the disease through consumption of enriched diets and its efficacious management by means of novel interventions. Specifically, this review provides the current understanding of the chemopreventive pharmacology of nutraceuticals such as cucurbitacins, morin, fisetin, curcumin, luteolin and garcinol toward their potential as anticancer agents.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia.
| | - Aamir Ahmad
- University of Alabama at Birmingham, Birmingham, AL, USA
- Interim Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Showket H Bhat
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Medical Laboratory Technology and Molecular Diagnostics, Center for Vocational Studies, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India
| | - Faisel M Abuduhier
- Prince Fahd Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Syed Khalid Mustafa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
26
|
Marino M, Gardana C, Scialpi A, Giorgini G, Simonetti P, Del Bo’ C. An in vitro approach to study the absorption of a new oral formulation of berberine. PHARMANUTRITION 2021. [DOI: 10.1016/j.phanu.2021.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Regulation of Key Antiplatelet Pathways by Bioactive Compounds with Minimal Bleeding Risk. Int J Mol Sci 2021; 22:ijms222212380. [PMID: 34830261 PMCID: PMC8620148 DOI: 10.3390/ijms222212380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Cardiovascular disease is strongly influenced by platelet activation. Platelet activation and thrombus formation at atherosclerotic plaque rupture sites is a dynamic process regulated by different signaling networks. Therefore, there are now focused efforts to search for novel bioactive compounds which target receptors and pathways in the platelet activation process while preserving normal hemostatic function. The antiplatelet activity of numerous fruits and vegetables and their multiple mechanisms of action have recently been highlighted. In this review, we review the antiplatelet actions of bioactive compounds via key pathways (protein disulfide isomerase, mitogen-activated protein kinases, mitochondrial function, cyclic adenosine monophosphate, Akt, and shear stress-induced platelet aggregation) with no effects on bleeding time. Therefore, targeting these pathways might lead to the development of effective antiplatelet strategies that do not increase the risk of bleeding.
Collapse
|
28
|
Marino M, Martini D, Venturi S, Tucci M, Porrini M, Riso P, Del Bo' C. An Overview of Registered Clinical Trials on Glucosinolates and Human Health: The Current Situation. Front Nutr 2021; 8:730906. [PMID: 34778334 PMCID: PMC8578719 DOI: 10.3389/fnut.2021.730906] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/24/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological studies suggest a potential role of glucosinolates (GSLs) and isothiocyanates on human health. However, evidence from intervention studies, due to heterogeneity in features of study design, duration, participants, food or food components administered, and outcomes analyzed, is still insufficient. The current review aims to provide an overview of the trials on GSLs and GSL-rich foods registered over the last 20 years with the intention to summarize the main topics and results, but also the existing gaps that still need to be covered. Studies were collected by using ClinicalTrials.gov and the International Standard Randomized Controlled Trial Number (ISRCTN) registry. A total of 87 registered trials were identified with which most of them were performed by using extracts or pure compounds (n = 60) while few were conducted with GSL-rich foods (n = 27). In detail, sulforaphane was the most investigated compound, while broccoli was the most frequent food tested in the trials. The majority of the studies assessed the health effects of GSLs focusing on outcomes related to cancer and cognitive function, even if the current findings are not univocal. Emerging topics also included the study of GSLs and gut microbiota interaction and impact on skin health. Further attention was also drawn to the bioavailability of GSLs and/or derivatives from foods, extracts, and single compounds by also considering the contribution of the different genetic polymorphisms. In conclusion, although considerable efforts have been made to study GSLs and GSL-rich foods, further studies are necessary to provide evidence-based research and to corroborate the findings obtained. The interindividual response due to genetic polymorphisms should be further investigated in order to explore the contribution to the overall beneficial effect.
Collapse
Affiliation(s)
| | | | | | | | | | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, Italy
| | | |
Collapse
|
29
|
Marino M, Del Bo C, Tucci M, Venturi S, Mantegazza G, Taverniti V, Møller P, Riso P, Porrini M. A mix of chlorogenic and caffeic acid reduces C/EBPß and PPAR-γ1 levels and counteracts lipid accumulation in macrophages. Eur J Nutr 2021; 61:1003-1014. [PMID: 34698900 DOI: 10.1007/s00394-021-02714-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Chlorogenic acid (CGA) and caffeic acid (CA) are bioactive compounds in whole grains, berries, apples, some citrus fruits and coffee, which are hypothesized to promote health-beneficial effects on the cardiovascular system. This study aimed to evaluate the capacity of CGA and CA to reduce lipid accumulation in macrophages, recognized as a critical stage in the progression of atherosclerosis. Furtherly, the modulation of CCAAT/enhancer-binding protein β (C/EBPβ) and peroxisome proliferator-activated receptor- γ1 (PPAR-γ1), as transcription factors involved in lipid metabolism, was evaluated. METHODS THP-1-derived macrophages were treated for 24 h with 0.03, 0.3, 3 and 30 μM of CGA and CA, tested alone or in combination, and a solution of oleic/palmitic acid (500 μM, 2:1 ratio). Lipid storage was assessed spectrophotometrically through fluorescent staining of cells with Nile red. C/EBPβ and PPAR-γ1 mRNA and protein levels were evaluated by RT-PCR and enzyme-linked immunosorbent assay, respectively. RESULTS The mix of CGA + CA (1:1 ratio) reduced lipid accumulation at all concentrations tested, except for the highest one. The greatest effect ( - 65%; p < 0.01) was observed at the concentration of 0.3 μM for each compound. The same concentration significantly (p < 0.01) downregulated C/EBPβ and PPAR-γ1 gene expression and reduced their protein levels at 2 h and 24 h, respectively. CONCLUSION The results indicate that the capacity of CGA + CA mix to reduce lipid storage in macrophages is mediated by a reduction in the expression of transcription factors C/EBPβ and PPAR-γ1.
Collapse
Affiliation(s)
- Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Cristian Del Bo
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Massimiliano Tucci
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Samuele Venturi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Giacomo Mantegazza
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Valentina Taverniti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, 1014, Copenhagen K, Denmark
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università Degli Studi Di Milano, 20133, Milan, Italy
| |
Collapse
|
30
|
Condezo-Hoyos L, Gazi C, Pérez-Jiménez J. Design of polyphenol-rich diets in clinical trials: A systematic review. Food Res Int 2021; 149:110655. [PMID: 34600657 DOI: 10.1016/j.foodres.2021.110655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/27/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022]
Abstract
Most randomized clinical trials of polyphenols focus on individual foods. Nevertheless, due to their presence in many foods and in order to reflect a real situation, clinical trials based on polyphenol-rich diets are particularly important. This systematic review explores the characteristics of the polyphenol-rich diets used in intervention studies. The bibliography search for English-language scientific papers was performed in the Elsevier Scopus Database and PUBMED in March 2020, and focused on intervention studies with whole polyphenol-rich diets, establishing several exclusion criteria. In studies fulfilling the requirements, information on the design of the polyphenol-rich diet and associated polyphenol intake was extracted and compared. A total of 5 studies were selected. Among them, substantial differences were found in the design of the polyphenol-rich diets, regarding specific instructions and concerning the foods provided. Similarly, although a median daily polyphenol intake of 2,564 mg/day (17,945 mg/week) was obtained from the studies, which corresponds to a nutritional dose, intake values varied widely both for total polyphenols (the difference between studies reached threefold), and for individual polyphenol intake (for hydroxycinnamic acids, a tenfold difference was found between percentile 25 and percentile 75 values). These differences made the comparison of results difficult and may affected the observed health effects. Thus, despite the relevance of studying polyphenol-rich diets as a whole, this systematic review found substantial differences between the studies performed, making direct comparisons difficult.
Collapse
Affiliation(s)
- Luis Condezo-Hoyos
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain; Universidad Nacional Agraria la Molina, Facultad de Industrias Alimentarias, Innovative Technology, Food and Health Research Group, La Molina, Lima, Perú
| | - Christina Gazi
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain.
| |
Collapse
|
31
|
Carregosa D, Mota S, Ferreira S, Alves-Dias B, Loncarevic-Vasiljkovic N, Crespo CL, Menezes R, Teodoro R, dos Santos CN. Overview of Beneficial Effects of (Poly)phenol Metabolites in the Context of Neurodegenerative Diseases on Model Organisms. Nutrients 2021; 13:2940. [PMID: 34578818 PMCID: PMC8464690 DOI: 10.3390/nu13092940] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
The rise of neurodegenerative diseases in an aging population is an increasing problem of health, social and economic consequences. Epidemiological and intervention studies have demonstrated that diets rich in (poly)phenols can have potent health benefits on cognitive decline and neurodegenerative diseases. Meanwhile, the role of gut microbiota is ever more evident in modulating the catabolism of (poly)phenols to dozens of low molecular weight (poly)phenol metabolites that have been identified in plasma and urine. These metabolites can reach circulation in higher concentrations than parent (poly)phenols and persist for longer periods of time. However, studies addressing their potential brain effects are still lacking. In this review, we will discuss different model organisms that have been used to study how low molecular weight (poly)phenol metabolites affect neuronal related mechanisms gathering critical insight on their potential to tackle the major hallmarks of neurodegeneration.
Collapse
Affiliation(s)
- Diogo Carregosa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Sara Mota
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| | - Sofia Ferreira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Beatriz Alves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Natasa Loncarevic-Vasiljkovic
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Carolina Lage Crespo
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Regina Menezes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
- CBIOS, University Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Rita Teodoro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
| | - Cláudia Nunes dos Santos
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 1169-056 Lisboa, Portugal; (D.C.); (S.M.); (S.F.); (B.A.-D.); (N.L.-V.); (C.L.C.); (R.M.); (R.T.)
- iBET, Institute of Experimental and Technological Biology, Apartado 12, 2781-901 Oeiras, Portugal
| |
Collapse
|
32
|
Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021; 26:molecules26164887. [PMID: 34443483 PMCID: PMC8398525 DOI: 10.3390/molecules26164887] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.
Collapse
|
33
|
Martini D, Domínguez-Perles R, Rosi A, Tassotti M, Angelino D, Medina S, Ricci C, Guy A, Oger C, Gigliotti L, Durand T, Marino M, Gottfried-Genieser H, Porrini M, Antonini M, Dei Cas A, Bonadonna RC, Ferreres F, Scazzina F, Brighenti F, Riso P, Del Bo’ C, Mena P, Gil-Izquierdo A, Del Rio D. Effect of Coffee and Cocoa-Based Confectionery Containing Coffee on Markers of DNA Damage and Lipid Peroxidation Products: Results from a Human Intervention Study. Nutrients 2021; 13:2399. [PMID: 34371907 PMCID: PMC8308525 DOI: 10.3390/nu13072399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 12/28/2022] Open
Abstract
The effect of coffee and cocoa on oxidative damage to macromolecules has been investigated in several studies, often with controversial results. This study aimed to investigate the effect of one-month consumption of different doses of coffee or cocoa-based products containing coffee on markers of DNA damage and lipid peroxidation in young healthy volunteers. Twenty-one volunteers were randomly assigned into a three-arm, crossover, randomized trial. Subjects were assigned to consume one of the three following treatments: one cup of espresso coffee/day (1C), three cups of espresso coffee/day (3C), and one cup of espresso coffee plus two cocoa-based products containing coffee (PC) twice per day for 1 month. At the end of each treatment, blood samples were collected for the analysis of endogenous and H2O2-induced DNA damage and DNA oxidation catabolites, while urines were used for the analysis of oxylipins. On the whole, four DNA catabolites (cyclic guanosine monophosphate (cGMP), 8-OH-2'-deoxy-guanosine, 8-OH-guanine, and 8-NO2-cGMP) were detected in plasma samples following the one-month intervention. No significant modulation of DNA and lipid damage markers was documented among groups, apart from an effect of time for DNA strand breaks and some markers of lipid peroxidation. In conclusion, the consumption of coffee and cocoa-based confectionery containing coffee was apparently not able to affect oxidative stress markers. More studies are encouraged to better explain the findings obtained and to understand the impact of different dosages of these products on specific target groups.
Collapse
Affiliation(s)
- Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (L.G.); (M.M.); (M.P.); (P.R.)
| | - Raúl Domínguez-Perles
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Espinardo, 30100 Murcia, Spain; (R.D.-P.); (S.M.)
| | - Alice Rosi
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy; (A.R.); (M.T.); (F.S.); (F.B.); (D.D.R.)
| | - Michele Tassotti
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy; (A.R.); (M.T.); (F.S.); (F.B.); (D.D.R.)
| | - Donato Angelino
- Faculty of Bioscience and Technology for Food, Agriculture, and Environment, University of Teramo, 64100 Teramo, Italy;
| | - Sonia Medina
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Espinardo, 30100 Murcia, Spain; (R.D.-P.); (S.M.)
| | - Cristian Ricci
- Pediatric Epidemiology, Department of Pediatrics, University Medicine Leipzig, 04103 Leipzig, Germany;
| | - Alexandre Guy
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (C.O.); (T.D.)
| | - Camille Oger
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (C.O.); (T.D.)
| | - Letizia Gigliotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (L.G.); (M.M.); (M.P.); (P.R.)
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, IBMM, University of Montpellier, CNRS, ENSCM, 34093 Montpellier, France; (A.G.); (C.O.); (T.D.)
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (L.G.); (M.M.); (M.P.); (P.R.)
| | | | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (L.G.); (M.M.); (M.P.); (P.R.)
| | - Monica Antonini
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.D.C.); (R.C.B.)
| | - Alessandra Dei Cas
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.D.C.); (R.C.B.)
| | - Riccardo C. Bonadonna
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (M.A.); (A.D.C.); (R.C.B.)
| | - Federico Ferreres
- Department of Food Technology and Nutrition, Molecular Recognition and Encapsulation (REM) Group, Universidad Católica de Murcia, UCAM, 30107 Murcia, Spain;
| | - Francesca Scazzina
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy; (A.R.); (M.T.); (F.S.); (F.B.); (D.D.R.)
| | - Furio Brighenti
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy; (A.R.); (M.T.); (F.S.); (F.B.); (D.D.R.)
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (L.G.); (M.M.); (M.P.); (P.R.)
| | - Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (D.M.); (L.G.); (M.M.); (M.P.); (P.R.)
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy; (A.R.); (M.T.); (F.S.); (F.B.); (D.D.R.)
| | - Angel Gil-Izquierdo
- Research Group on Quality, Safety, and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Espinardo, 30100 Murcia, Spain; (R.D.-P.); (S.M.)
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, 43125 Parma, Italy; (A.R.); (M.T.); (F.S.); (F.B.); (D.D.R.)
| |
Collapse
|
34
|
Effects of a Fruit and Vegetable-Based Nutraceutical on Biomarkers of Inflammation and Oxidative Status in the Plasma of a Healthy Population: A Placebo-Controlled, Double-Blind, and Randomized Clinical Trial. Molecules 2021; 26:molecules26123604. [PMID: 34204618 PMCID: PMC8231220 DOI: 10.3390/molecules26123604] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/08/2023] Open
Abstract
There is scientific evidence of the positive effect of polyphenols from plant foods on inflammation and oxidative status. The aim of the present study was to investigate whether treatment with a high-polyphenolic nutraceutical reduces the plasmatic concentration of certain oxidative and inflammatory biomarkers in a healthy population. One hundred and eight subjects were selected and stratified by sex in the intervention group (n = 53) and the placebo group (n = 55). Ninety-two subjects completed the study after two 16-week treatment periods separated by a four-week washout period. The results revealed statistically significant differences in subjects treated with the polyphenolic extract compared to the placebo: A decrease in homocysteine, oxidized low-density lipoprotein (OxLDL), TNF-α, sTNFR1, and C-reactive protein (CRP). The most significant decrease was observed for OxLDL (from 78.98 ± 24.48 to 69.52 ± 15.64; p < 0.05) and CRP (from 1.50 ± 0.33 to 1.39 ± 0.37; p < 0.05), both showing significant differences compared to the placebo (p < 0.001). Moreover, catecholamines increased after the administration of the product under investigation, especially in the case of dopamine (from 15.43 ± 2.66 to 19.61 ± 5.73; p < 0.05). Therefore, the consumption of a nutraceutical based on fruit and vegetables with a high polyphenol content seems to improve the parameters related to health benefits (oxidative and inflammatory biomarkers), including remarkable changes in the expression of catecholamines.
Collapse
|
35
|
Hejazi J, Hosseinpour-Niazi S, Yuzbashian E, Mirmiran P, Azizi F. The protective effects of dietary intake of flavonoids and its subclasses on metabolic syndrome incidence. Int J Food Sci Nutr 2021; 73:116-126. [PMID: 34096437 DOI: 10.1080/09637486.2021.1928008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
This study aimed to evaluate the association between the intake of total flavonoids and flavonoid subclasses and metabolic syndrome (MetS) risk and to assess the modulating effects of lifestyle factors on these associations. A total of 1915 participants from the Tehran Lipid and Glucose Study were followed-up during 2006-2008 and 2016-2018. Their dietary intake was assessed by a food frequency questionnaire at baseline and within three-year intervals afterward. Moreover, the modifying effect of weight gain on the association between total flavonoids and MetS was assessed by Cox regression analysis. Participants in the highest tertile of flavonoid, flavonol, and flavone had a significantly lower MetS risk as compared to those in the lowest tertile. Also, in participants with weight gain <7%, all flavonoid subclasses had a more pronounced risk-reducing effect. Overall, the total flavonoid, flavonol, and flavone reduced the risk of MetS; this association could be modified by weight gain.
Collapse
Affiliation(s)
- Jalal Hejazi
- Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Somayeh Hosseinpour-Niazi
- Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Emad Yuzbashian
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
| | - Parvin Mirmiran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Dupuit M, Chavanelle V, Chassaing B, Perriere F, Etienne M, Plissonneau C, Boscaro A, Barnich N, Pialoux V, Maugard T, Le Joubioux F, Peltier S, Sirvent P, Otero YF, Boisseau N. The TOTUM-63 Supplement and High-Intensity Interval Training Combination Limits Weight Gain, Improves Glycemic Control, and Influences the Composition of Gut Mucosa-Associated Bacteria in Rats on a High Fat Diet. Nutrients 2021; 13:nu13051569. [PMID: 34066988 PMCID: PMC8151333 DOI: 10.3390/nu13051569] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity and prediabetes are the two strongest risk factors of type 2 diabetes. It has been reported that TOTUM-63, a polyphenol-rich plant extract, has beneficial effects on body weight (BW) and insulin resistance in mice fed a high fat diet (HFD). The study aim was to determine whether high-intensity interval training (HIIT) and/or TOTUM-63 supplementation improved body composition and glycemic control and gut microbiota composition in a Western diet-induced obesity rat model. Wistar rats received a standard diet (CTRL; control; n = 12) or HFD (HFD; n = 48) for 16 weeks. Then, HFD rats were divided in four groups: HFD, HFD + TOTUM-63 (T63), HFD + HIIT (HIIT), and HFD + HIIT +T63 (HIIT + T63). Training was performed 4 days/week for 12 weeks. TOTUM-63 was included in diet composition (2%). The HIIT + T63 combination significantly limited BW gain, without any energy intake modulation, and improved glycemic control. BW variation was correlated with increased α-diversity of the colon mucosa microbiota in the HIIT + T63 group. Moreover, the relative abundance of Anaeroplasma, Christensenellaceae and Oscillospira was higher in the HIIT + T63 group. Altogether, these results suggest that the HIIT and TOTUM-63 combination could be proposed for the management of obesity and prediabetes.
Collapse
Affiliation(s)
- Marine Dupuit
- Laboratoire des Adaptations Métaboliques à l’Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.D.); (M.E.); (C.P.); (A.B.)
| | - Vivien Chavanelle
- Valbiotis R&D, Riom Center, 63200 Riom, France; (V.C.); (P.S.); (Y.F.O.)
| | - Benoit Chassaing
- Inserm U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases”, Université de Paris, CNRS UMR 8104, 75014 Paris, France;
| | - Fanny Perriere
- Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, CNRS, 63000 Clermont-Ferrand, France;
| | - Monique Etienne
- Laboratoire des Adaptations Métaboliques à l’Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.D.); (M.E.); (C.P.); (A.B.)
| | - Claire Plissonneau
- Laboratoire des Adaptations Métaboliques à l’Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.D.); (M.E.); (C.P.); (A.B.)
| | - Audrey Boscaro
- Laboratoire des Adaptations Métaboliques à l’Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.D.); (M.E.); (C.P.); (A.B.)
| | - Nicolas Barnich
- Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), UMR 1071 Inserm, USC-INRAE 2018, Université Clermont Auvergne, CRNH Auvergne, 63000 Clermont-Ferrand, France;
| | - Vincent Pialoux
- Laboratoire Interuniversitaire de la Biologie et de la Motricité (LIBM), Université Claude Bernard Lyon 1, EA 7424, 69266 Villeurbane, France;
| | - Thierry Maugard
- UMR 7266 CNRS-ULR, LIENSs, Equipe BCBS, La Rochelle Université, 17042 La Rochelle, France;
| | - Florian Le Joubioux
- Valbiotis R&D, La Rochelle Center, 17000 La Rochelle, France; (F.L.J.); (S.P.)
| | - Sébastien Peltier
- Valbiotis R&D, La Rochelle Center, 17000 La Rochelle, France; (F.L.J.); (S.P.)
| | - Pascal Sirvent
- Valbiotis R&D, Riom Center, 63200 Riom, France; (V.C.); (P.S.); (Y.F.O.)
| | - Yolanda F. Otero
- Valbiotis R&D, Riom Center, 63200 Riom, France; (V.C.); (P.S.); (Y.F.O.)
| | - Nathalie Boisseau
- Laboratoire des Adaptations Métaboliques à l’Exercice en conditions Physiologiques et Pathologiques (AME2P), Université Clermont Auvergne, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.D.); (M.E.); (C.P.); (A.B.)
- Correspondence: ; Tel.: +33-4-73-40-55-19
| |
Collapse
|
37
|
Del Bo’ C, Martini D, Bernardi S, Gigliotti L, Marino M, Gargari G, Meroño T, Hidalgo-Liberona N, Andres-Lacueva C, Kroon PA, Cherubini A, Guglielmetti S, Porrini M, Riso P. Association between Food Intake, Clinical and Metabolic Markers and DNA Damage in Older Subjects. Antioxidants (Basel) 2021; 10:antiox10050730. [PMID: 34066373 PMCID: PMC8148130 DOI: 10.3390/antiox10050730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
The use of DNA damage as marker of oxidative stress, metabolic dysfunction and age-related diseases is debated. The present study aimed at assessing the level of DNA damage (evaluated as DNA strand-breaks, endogenous and oxidatively-induced DNA damage) in a group of older subjects with intestinal permeability enrolled within the MaPLE (Gut and Blood Microbiomics for Studying the Effect of a Polyphenol-Rich Dietary Pattern on Intestinal Permeability in the Elderly) intervention trial, to evaluate its association with clinical, metabolic and dietary markers. DNA damage in peripheral blood mononuclear cells was assessed by the comet assay in 49 older subjects participating in the study. Clinical and metabolic markers, markers of inflammation, vascular function and intestinal permeability were determined in serum. Food intake was estimated by weighted food diaries. On the whole, a trend towards higher levels of DNA damage was observed in men compared to women (p = 0.071). A positive association between DNA damage and clinical/metabolic markers (e.g., uric acid, lipid profile) and an inverse association with dietary markers (e.g., vitamin C, E, B6, folates) were found and differed based on sex. By considering the importance of DNA stability during aging, the results obtained on sex differences and the potential role of dietary and metabolic factors on DNA damage underline the need for further investigations in a larger group of older adults to confirm the associations found and to promote preventive strategies.
Collapse
Affiliation(s)
- Cristian Del Bo’
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Daniela Martini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Stefano Bernardi
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Letizia Gigliotti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Giorgio Gargari
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Tomas Meroño
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, CIBERFES-ISCIII, 08028 Barcelona, Spain; (T.M.); (N.H.-L.); (C.A.-L.)
- Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Nicole Hidalgo-Liberona
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, CIBERFES-ISCIII, 08028 Barcelona, Spain; (T.M.); (N.H.-L.); (C.A.-L.)
- Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, CIBERFES-ISCIII, 08028 Barcelona, Spain; (T.M.); (N.H.-L.); (C.A.-L.)
- Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Paul A. Kroon
- Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UG, UK;
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di ricerca per l’invecchiamento, IRCCS INRCA, 60127 Ancona, Italy;
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
- Correspondence: (M.P.); (P.R.); Tel.: +39-02-50316720 (M.P.); +39-02-50316726 (P.R.)
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy; (C.D.B.); (D.M.); (S.B.); (L.G.); (M.M.); (G.G.); (S.G.)
- Correspondence: (M.P.); (P.R.); Tel.: +39-02-50316720 (M.P.); +39-02-50316726 (P.R.)
| |
Collapse
|
38
|
Dietary Phenolic Acids and Their Major Food Sources Are Associated with Cognitive Status in Older Italian Adults. Antioxidants (Basel) 2021; 10:antiox10050700. [PMID: 33946636 PMCID: PMC8145289 DOI: 10.3390/antiox10050700] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Life expectancy is increasing along with the rising prevalence of cognitive disorders. Among the factors that may contribute to their prevalence, modifiable risk factors such as diet may be of primary importance. Unarguably, plant-based diets rich in bioactive compounds, such as polyphenols, showed their potential in decreasing risk of neurodegenerative disorders. Therefore, the aim of the present study is to investigate whether exposure to components of plant-based diets, namely phenolic acids, may affect cognitive status in older Italian adults. METHODS The demographic, lifestyle and dietary habits of a sample of individuals living in southern Italy were analyzed. Dietary intake was assessed through food frequency questionnaires (FFQs). Data on the phenolic acids content in foods were estimated using the Phenol-Explorer database. Cognitive status was evaluated using The Short Portable Mental Status Questionnaire. Multivariate logistic regression analyses were used to assess the associations. RESULTS The mean intake of phenolic acids was 346.6 mg/d. After adjustment for potential confounding factors, individuals in the highest quartile of total phenolic acid intake were less likely to have impaired cognitive status (OR = 0.36 (95% CI: 0.14, 0.92)); similarly, the analysis for subclasses of phenolic acids showed the beneficial effect toward cognitive status of greater intake of hydroxycinnamic acids (OR = 0.35 (95% CI: 0.13, 0.91)). Among individual compounds, only higher intake of caffeic acid was inversely associated with impaired cognitive status (OR = 0.32 (95% CI: 0.11, 0.93)); notably, the association with ferulic acid intake was significant only when adjusting for background characteristics, and not for adherence to the Mediterranean diet. CONCLUSIONS This study revealed that greater intakes of dietary phenolic acids were significantly inversely associated with impaired cognition, emphasizing the possible role of phenolic acids in the prevention of cognitive disorders.
Collapse
|
39
|
Kay KL, Strauch RC, Granillo CD, Bame MW, Xiong J, Mast AC, Burton-Freeman B, Kay CD, Lila MA. The berry health tool chest - an evidence map and interactive resource. Nutr Rev 2021; 80:68-77. [PMID: 33837434 DOI: 10.1093/nutrit/nuab011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Berry consumption is linked to diverse health benefits, but numerous questions remain regarding mechanism of action, dose efficacy, and optimal duration and frequency of intake. Addressing these outstanding questions requires an organized assessment of current research, to inform future study designs and fill critical knowledge gaps. Tools that organize such information will also facilitate consumer messaging, targeted nutritional health initiatives, and dietary intake guidelines. This review aimed to describe the development and utility of the "Berry Health Tool Chest," an evidence map summarizing trial design features of studies characterizing the impact of berry consumption upon human health biomarkers. A systematic search strategy identified relevant high-quality human feeding studies, whose study design parameters were collected and compiled into an evidence map that is freely available as an interactive online interface enabling tabulated data to be interrogated, filtered, and exported. Of the 231 included studies, approximately 70% were of less than 3 months' duration and/or fewer than 50 participants, illustrating research gaps that could potentially inform the design of future studies.
Collapse
Affiliation(s)
- Kristine L Kay
- K.L. Kay, R.C. Strauch, C.D. Granillo, M.W Bame, J. Xiong, A.C. Mast, C.D. Kay, and M.A. Lila are with the Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA. B. Burton-Freeman is with the Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Ilinois, USA
| | - Renee C Strauch
- K.L. Kay, R.C. Strauch, C.D. Granillo, M.W Bame, J. Xiong, A.C. Mast, C.D. Kay, and M.A. Lila are with the Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA. B. Burton-Freeman is with the Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Ilinois, USA
| | - Cheryl D Granillo
- K.L. Kay, R.C. Strauch, C.D. Granillo, M.W Bame, J. Xiong, A.C. Mast, C.D. Kay, and M.A. Lila are with the Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA. B. Burton-Freeman is with the Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Ilinois, USA
| | - Megan W Bame
- K.L. Kay, R.C. Strauch, C.D. Granillo, M.W Bame, J. Xiong, A.C. Mast, C.D. Kay, and M.A. Lila are with the Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA. B. Burton-Freeman is with the Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Ilinois, USA
| | - Jia Xiong
- K.L. Kay, R.C. Strauch, C.D. Granillo, M.W Bame, J. Xiong, A.C. Mast, C.D. Kay, and M.A. Lila are with the Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA. B. Burton-Freeman is with the Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Ilinois, USA
| | - Aubrey C Mast
- K.L. Kay, R.C. Strauch, C.D. Granillo, M.W Bame, J. Xiong, A.C. Mast, C.D. Kay, and M.A. Lila are with the Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA. B. Burton-Freeman is with the Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Ilinois, USA
| | - Britt Burton-Freeman
- K.L. Kay, R.C. Strauch, C.D. Granillo, M.W Bame, J. Xiong, A.C. Mast, C.D. Kay, and M.A. Lila are with the Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA. B. Burton-Freeman is with the Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Ilinois, USA
| | - Colin D Kay
- K.L. Kay, R.C. Strauch, C.D. Granillo, M.W Bame, J. Xiong, A.C. Mast, C.D. Kay, and M.A. Lila are with the Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA. B. Burton-Freeman is with the Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Ilinois, USA
| | - Mary Ann Lila
- K.L. Kay, R.C. Strauch, C.D. Granillo, M.W Bame, J. Xiong, A.C. Mast, C.D. Kay, and M.A. Lila are with the Food Bioprocessing and Nutrition Sciences Department, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, USA. B. Burton-Freeman is with the Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, Ilinois, USA
| |
Collapse
|
40
|
Micek A, Raźny U, Paweł K. Association between health risk factors and dietary flavonoid intake in cohort studies. Int J Food Sci Nutr 2021; 72:1019-1034. [PMID: 33827357 DOI: 10.1080/09637486.2021.1908965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to identify the health risk factors associated with flavonoid intake in cohort studies investigating the association between dietary polyphenols and the risk of cardiovascular disease (CVD). A systematic search of the PubMed and EMBASE databases was performed. Prospective studies with the background characteristics given for categories of flavonoid intake were eligible to inclusion. A bivariate meta-analysis summarising the intercepts and slopes of the linear regression and a dose-response meta-analysis of differences in means were used to analyse the relationships. The intake of total flavonoids was inversely associated with BMI, alcohol consumption, saturated fat intake, and current smoking, and positively associated with vitamin E, folate, fibre, beta-carotene intake, multivitamin supplement use, and high physical activity. The results of this study underline the importance of considering the association between dietary flavonoid consumption and CVD risk in the context of a healthy lifestyle.
Collapse
Affiliation(s)
- Agnieszka Micek
- Faculty of Health Sciences, Institute of Nursing and Midwifery, Department of Nursing Management and Epidemiology Nursing, Jagiellonian University Medical College, Krakow, Poland
| | - Urszula Raźny
- Faculty of Medicine, Department of Clinical Biochemistry, Jagiellonian University Medical College, Krakow, Poland
| | - Kawalec Paweł
- Faculty of Health Sciences, Institute of Public Health, Department of Nutrition and Drug Research, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
41
|
Micek A, Godos J, Del Rio D, Galvano F, Grosso G. Dietary Flavonoids and Cardiovascular Disease: A Comprehensive Dose-Response Meta-Analysis. Mol Nutr Food Res 2021; 65:e2001019. [PMID: 33559970 DOI: 10.1002/mnfr.202001019] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/18/2021] [Indexed: 12/13/2022]
Abstract
SCOPE Dietary flavonoids have shown potential in the prevention of noncommunicable diseases. The aim of the present study is to conduct a dose-response meta-analysis on the association between dietary intake of total, subclasses and individual flavonoids and risk of cardiovascular disease (CVD). METHODS AND RESULTS Electronic databases are searched. A total of 39 prospective cohort studies are included, comprising 1 501 645 individuals and a total of 33 637 cases of CVD, 23 664 of coronary heart disease (CHD), and 11 860 of stroke. Increasing dietary intake of total flavonoids is linearly associated with a lower risk of CVD. Among the main classes of flavonoids, increasing intake of anthocyanins and flavan-3-ols is inversely associated with risk of CVD, while flavonols and flavones with CHD. Only increasing flavanones showed a linear inverse association with stroke risk. Catechins showed a favorable effect toward all cardiovascular outcomes. Among individual compounds, intake of quercetin and kaempferol is linearly associated with lower risk of CHD and CVD, respectively. However, higher intake of all the aforementioned compounds is associated, with a various extent, with a lower risk of CVD when considering comparison of extreme categories of consumption. CONCLUSION The results of this study provide evidence of potential cardiovascular benefits of a flavonoid-rich diet.
Collapse
Affiliation(s)
- Agnieszka Micek
- Department of Nursing Management and Epidemiology Nursing, Faculty of Health Sciences, Jagiellonian University Medical College, Kraków, Poland
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Del Rio
- School of Advanced Studies on Food and Nutrition, University of Parma, Parma, Italy.,Department of Veterinary Science, University of Parma, Parma, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
42
|
Martini D, Godos J, Marventano S, Tieri M, Ghelfi F, Titta L, Lafranconi A, Trigueiro H, Gambera A, Alonzo E, Sciacca S, Buscemi S, Ray S, Galvano F, Del Rio D, Grosso G. Nut and legume consumption and human health: an umbrella review of observational studies. Int J Food Sci Nutr 2021; 72:871-878. [PMID: 33541169 DOI: 10.1080/09637486.2021.1880554] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Consumption of nuts and legumes has been associated with several health benefits. The aim of this study was to systematically review existing meta-analyses of observational studies on nut and legume intake and non-communicable diseases, and assess the level of evidence. Out of the six meta-analyses focussed on legume and 15 on nut intake, a possible association with decreased risk of colorectal adenoma and coronary heart disease was found for higher legume consumption, and a decreased risk of cardiovascular and cancer mortality, colon cancer, hypertension and ischaemic stroke for higher nut consumption. The association between legume consumption and cardiovascular diseases (CVDs), as well as nut consumption and risk of cancer, CVD incidence and all-cause mortality, was deemed as "limited" due to heterogeneity between results and/or potential confounding factors. General benefit towards better health can be observed for nut and legume consumption. Further studies are needed to better elucidate potential confounding factors.
Collapse
Affiliation(s)
- Daniela Martini
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Milan, Italy
| | - Justyna Godos
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Stefano Marventano
- Childhood and Adolescent Department, Rimini Women's Health, AUSL Romagna, Rimini, Italy
| | - Maria Tieri
- SmartFood Program, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Ghelfi
- Fondazione De Marchi-Department of Pediatrics, IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
| | - Lucilla Titta
- SmartFood Program, Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Alessandra Lafranconi
- University of Milano - Bicocca, Milan, Italy.,Care and Public Health Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Helena Trigueiro
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
| | - Angelo Gambera
- Azienda Ospedaliero-Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Elena Alonzo
- Food and Nutrition Security and Public Health Service, ASP Catania, Catania, Italy
| | - Salvatore Sciacca
- Integrated Cancer Registry of Catania-Messina-Siracusa-Enna, Azienda Ospedaliero-Universitaria Policlinico-Vittorio Emanuele, Catania, Italy
| | - Silvio Buscemi
- Biomedical Department of Internal and Specialist Medicine (DIBIMIS), University of Palermo, Palermo, Italy
| | - Sumantra Ray
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK.,Wolfson College, University of Cambridge, Cambridge, UK.,Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, UK.,Human Nutrition Research Unit, Medical Research Council (MRC), Cambridge, UK
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Daniele Del Rio
- NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK.,Human Nutrition Unit, Department of Veterinary Science, University of Parma, Parma, Italy.,School of Advanced Studies on Food and Nutrition, University of Parma, Parma, Italy
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,NNEdPro Global Centre for Nutrition and Health, St John's Innovation Centre, Cambridge, UK
| |
Collapse
|