1
|
Catanzaro I, Gorbushina AA, Onofri S, Schumacher J. 1,8-Dihydroxynaphthalene (DHN) melanin provides unequal protection to black fungi Knufia petricola and Cryomyces antarcticus from UV-B radiation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70043. [PMID: 39548356 PMCID: PMC11567843 DOI: 10.1111/1758-2229.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024]
Abstract
Black fungi on rock surfaces endure a spectrum of abiotic stresses, including UV radiation. Their ability to tolerate extreme conditions is attributed to the convergent evolution of adaptive traits, primarily highly melanized cell walls. However, studies on fungal melanins have not provided univocal results on their photoprotective functions. Here, we investigated whether the black fungi Knufia petricola and Cryomyces antarcticus only use DHN melanin or may employ alternative mechanisms to counteract UV-induced damage. For this, melanized wild types and non-melanized Δpks1 mutants were exposed to different doses of UV-B (312 nm) followed by incubation in constant darkness or in light-dark cycles to allow light-dependent DNA repair by photolyases (photoreactivation). C. antarcticus could tolerate higher UV-B doses but was sensitive to white light, whereas K. petricola showed the opposite trend. DHN melanin provided UV-B protection in C. antarcticus, whereas the same pigment or even carotenoids proved ineffective in K. petricola. Both fungi demonstrated functional photoreactivation in agreement with the presence of photolyase-encoding genes. Our findings reveal that although the adaptive trait of DHN melanization commonly occurs across black fungi, it is not equally functional and that there are species-specific adaptations towards either UV-induced lesion avoidance or repair strategies.
Collapse
Affiliation(s)
- Ilaria Catanzaro
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Università degli Studi della TusciaViterboItaly
| | - Anna A. Gorbushina
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Freie Universität BerlinGermany
| | | | - Julia Schumacher
- Bundesanstalt für Materialforschung und ‐prüfung (BAM)BerlinGermany
- Freie Universität BerlinGermany
| |
Collapse
|
2
|
Dos Reis JBA, Rodrigues MOS, Furtado LL, de Sousa Queiroz Júnior C, do Vale HMM. Molecular characterization, carbohydrate metabolism and tolerance to abiotic stress of Eremothecium coryli endophytic isolates from fruits of Momordica indica. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01211-x. [PMID: 39453539 DOI: 10.1007/s12223-024-01211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Yeasts are unicellular fungi that occur in a wide range of ecological niches, where they perform numerous functions. Furthermore, these microorganisms are used in industrial processes, food production, and bioremediation. Understanding the physiological and adaptive characteristics of yeasts is of great importance from ecological, biotechnological, and industrial perspectives. In this context, we evaluated the abilities to assimilate and ferment different carbon sources, to produce extracellular hydrolytic enzymes, and to tolerate salt stress, heavy metal stress, and UV-C radiation of two isolates of Eremothecium coryli, isolated from Momordica indica fruits. The two isolates were molecularly identified based on sequencing of the 18S-ITS1-5.8S-ITS2 region. Our isolates were able to assimilate nine carbon sources (dextrose, galactose, mannose, cellobiose, lactose, maltose, sucrose, melezitose, and pectin) and ferment three (glucose, maltose, and sucrose). The highest values of cellular dry weight were observed in the sugars maltose, sucrose, and melezitose. We observed the presence of hyphae and pseudohyphae in all assimilated carbon sources. The two isolates were also capable of producing amylase, catalase, pectinase, and proteases, with the highest values of enzymatic activity found in amylase. Furthermore, the two isolates were able to grow in media supplemented with copper, iron, manganese, nickel, and zinc and to tolerate saline stress in media supplemented with 5% NaCl. However, we observed a decrease in CFU at higher concentrations of these metals and NaCl. We also observed morphological changes in the presence of metals, which include changes in cell shape and cellular dimorphisms. The isolates were sensitive to UV-C radiation in the shortest exposure time (1 min). Our findings reinforce the importance of endophytic yeasts for biotechnological and industrial applications and also help to understand how these microorganisms respond to environmental variations caused by human activities.
Collapse
Affiliation(s)
| | - Mayara Oliveira Sousa Rodrigues
- University of Brasilia (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília, DF, 70910-900, Brazil
| | - Leila Lourenço Furtado
- University of Brasilia (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília, DF, 70910-900, Brazil
| | | | - Helson Mario Martins do Vale
- University of Brasilia (UnB), Institute of Biological Sciences, Department of Phytopathology, Brasília, DF, 70910-900, Brazil
| |
Collapse
|
3
|
Bromham L. Mutation rate is central to understanding evolution. AMERICAN JOURNAL OF BOTANY 2024; 111:e16422. [PMID: 39397293 DOI: 10.1002/ajb2.16422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Lindell Bromham
- Macroevolution and Macroecology Group, Research, School of Biology, Australian National University, Canberra ACT, 0200, Australia
| |
Collapse
|
4
|
Cao M, Zhang X. DNA Adductomics: A Narrative Review of Its Development, Applications, and Future. Biomolecules 2024; 14:1173. [PMID: 39334939 PMCID: PMC11430648 DOI: 10.3390/biom14091173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA adductomics is the global study of all DNA adducts and was first proposed in 2006 by the Matsuda group. Its development has been greatly credited to the advances in mass spectrometric techniques, particularly tandem and multiple-stage mass spectrometry. In fact, liquid chromatography-mass spectrometry (LC-MS)-based methods are virtually the sole technique with practicality for DNA adductomic studies to date. At present, DNA adductomics is primarily used as a tool to search for DNA adducts, known and unknown, providing evidence for exposure to exogenous genotoxins and/or for the molecular mechanisms of their genotoxicity. Some DNA adducts discovered in this way have the potential to predict cancer risks and/or to be associated with adverse health outcomes. DNA adductomics has been successfully used to identify and determine exogenous carcinogens that may contribute to the etiology of certain cancers, including bacterial genotoxins and an N-nitrosamine. Also using the DNA adductomic approach, multiple DNA adducts have been observed to show age dependence and may serve as aging biomarkers. These achievements highlight the capability and power of DNA adductomics in the studies of medicine, biological science, and environmental science. Nonetheless, DNA adductomics is still in its infancy, and great advances are expected in the future.
Collapse
Affiliation(s)
- Mengqiu Cao
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyu Zhang
- School of Public Health, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
5
|
Zgłobicki P, Hermanowicz P, Kłodawska K, Bażant A, Łabuz J, Grzyb J, Dutka M, Kowalska E, Jawor J, Leja K, Banaś AK. The photoreactivation of 6 - 4 photoproducts in chloroplast and nuclear DNA depends on the amount of the Arabidopsis UV repair defective 3 protein. BMC PLANT BIOLOGY 2024; 24:723. [PMID: 39080534 PMCID: PMC11287969 DOI: 10.1186/s12870-024-05439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND 6 - 4 photoproducts are the second most common UV-induced DNA lesions after cyclobutane pyrimidine dimers. In plants, they are mainly repaired by photolyases in a process called photoreactivation. While pyrimidine dimers can be deleterious, leading to mutagenesis or even cell death, 6 - 4 photoproducts can activate specific signaling pathways. Therefore, their removal is particularly important, especially for plants exposed to high UV intensities due to their sessile nature. Although photoreactivation in nuclear DNA is well-known, its role in plant organelles remains unclear. In this paper we analyzed the activity and localization of GFP-tagged AtUVR3, the 6 - 4 photoproduct specific photolyase. RESULTS Using transgenic Arabidopsis with different expression levels of AtUVR3, we confirmed a positive trend between these levels and the rate of 6 - 4 photoproduct removal under blue light. Measurements of 6 - 4 photoproduct levels in chloroplast and nuclear DNA of wild type, photolyase mutants, and transgenic plants overexpressing AtUVR3 showed that the photoreactivation is the main repair pathway responsible for the removal of these lesions in both organelles. The GFP-tagged AtUVR3 was predominantly located in nuclei with a small fraction present in chloroplasts and mitochondria of transgenic Arabidopsis thaliana and Nicotiana tabacum lines. In chloroplasts, this photolyase co-localized with the nucleoid marked by plastid envelope DNA binding protein. CONCLUSIONS Photolyases are mainly localized in plant nuclei, with only a small fraction present in chloroplasts and mitochondria. Despite this unbalanced distribution, photoreactivation is the primary mechanism responsible for the removal of 6 - 4 photoproducts from nuclear and chloroplast DNA in adult leaves. The amount of the AtUVR3 photolyase is the limiting factor influencing the photoreactivation rate of 6 - 4 photoproducts. The efficient photoreactivation of 6 - 4 photoproducts in 35S: AtUVR3-GFP Arabidopsis and Nicotiana tabacum is a promising starting point to evaluate whether transgenic crops overproducing this photolyase are more tolerant to high UV irradiation and how they respond to other abiotic and biotic stresses under field conditions.
Collapse
Affiliation(s)
- Piotr Zgłobicki
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Paweł Hermanowicz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30-387, Poland
| | - Kinga Kłodawska
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Aneta Bażant
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Justyna Łabuz
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, Kraków, 30-387, Poland
| | - Joanna Grzyb
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, Wrocław, 50-383, Poland
| | - Małgorzata Dutka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Ewa Kowalska
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Joanna Jawor
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
| | - Katarzyna Leja
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, prof. S. Łojasiewicza 11, Kraków, 30-348, Poland
| | - Agnieszka Katarzyna Banaś
- Department of Plant Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków, 30-387, Poland.
| |
Collapse
|
6
|
Boycheva I, Bonchev G, Manova V, Stoilov L, Vassileva V. How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response. Int J Mol Sci 2024; 25:7851. [PMID: 39063093 PMCID: PMC11276938 DOI: 10.3390/ijms25147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
Collapse
Affiliation(s)
| | | | | | | | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.B.); (G.B.); (V.M.); (L.S.)
| |
Collapse
|
7
|
Wang J, Ma S, Zhou N, Yang X, Xing J, Hong J. Using ultrasonic washing combined with UV-LEDs as a novel chemical-free method to disinfect fresh ready-to-eat produce. ULTRASONICS SONOCHEMISTRY 2024; 107:106926. [PMID: 38823083 PMCID: PMC11176818 DOI: 10.1016/j.ultsonch.2024.106926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
The consumption of ready-to-eat fresh produce raises the issue of food-borne pathogen infections; thus, disinfecting ready-to-eat produce for commercial use, such as in homes and restaurants, is important to ensure food safety. Chemical sanitizers are typically used for disinfection. Ultraviolet-light emitting diodes (UV-LEDs) are a novel non-thermal disinfection technology that consumes less energy and generates less heat than traditional UV lamps, making them more appealing to consumers. In this study, we combined ultrasonic (US) washing method with UV-LEDs (US-UV-LEDs) to develop a technique for disinfecting fresh produce without using chemical sanitizers and compared its efficacy with three common household sanitizers ("84" (sodium hypochlorite) disinfectant, kettle descaler (citric acid), and vinegar (acetic acid)). In addition, we investigated the efficacy of this method in controlling pathogen numbers in the water used to wash (washing water) the produce to prevent cross-contamination between water and produce. Cherry tomatoes and lettuce were selected as produce models and Salmonella Typhimurium and Escherichia coli O157:H7 were used as the bacterial models. The results showed that US-UV-LEDs reduced the numbers of S. Typhimurium and E. coli O157:H7 on produce by 2.1-2.2 log CFU/g, consistent with the results achieved by the three household sanitizers; however, kettle descaler and vinegar had a limited effect (2.6-3.5 log CFU/mL) on residual pathogens in the washing water. Furthermore, we created washing water with low (754 mg/L) and high (1425 mg/L) chemical oxygen demand (COD) levels and determined the disinfection efficacy of "84" disinfectant and US-UV-LEDs. The results showed that US-UV-LEDs reduced the number of S. Typhimurium and E. coli O157:H7 by 2.0-2.1 and 1.8-2.1 log CFU/g under low and high COD levels, respectively, which was similar a result to that of "84" disinfectant. However, the residual pathogen numbers in the washing water were reduced to 1.4-1.9 log CFU/mL after treatment with US-UV-LED under high COD, whereas the pathogens were undetected in the washing water disinfected with "84" disinfectant. These results suggest that US-UV-LEDs have better application potential than acidic household sanitizers, but chlorine sanitizer remains the most effective disinfecting method.
Collapse
Affiliation(s)
- Jiayi Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| | - Sen Ma
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Ning Zhou
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Xiaofei Yang
- College of Grain Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Jun Xing
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jingyang Hong
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
8
|
Vijayakumar S, Yesudhason BV, Anandharaj JL, Sathyaraj WV, Selvan Christyraj JRS. Impact of double-strand breaks induced by uv radiation on neuroinflammation and neurodegenerative disorders. Mol Biol Rep 2024; 51:725. [PMID: 38851636 DOI: 10.1007/s11033-024-09693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Exposure to UV affects the development and growth of a wide range of organisms. Nowadays, researchers are focusing on the impact of UV radiation and its underlying molecular mechanisms, as well as devising strategies to mitigate its harmful effects. Different forms of UV radiation, their typical exposure effects, the impact of UV on DNA integrity, and the deterioration of genetic material are discussed in this review; furthermore, we also review the effects of UV radiation that affect the biological functions of the organisms. Subsequently, we address the processes that aid organisms in navigating the damage in genetic material, neuroinflammation, and neurodegeneration brought on by UV-mediated double-strand breaks. To emphasize the molecular pathways, we conclude the review by going over the animal model studies that highlight the genes and proteins that are impacted by UV radiation.
Collapse
Affiliation(s)
- Srilakshmi Vijayakumar
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| | - Jenif Leo Anandharaj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
9
|
Al-Adham ISI, Jaber N, Ali Agha ASA, Al-Remawi M, Al-Akayleh F, Al-Muhtaseb N, Collier PJ. Sporadic regional re-emergent cholera: a 19th century problem in the 21st century. J Appl Microbiol 2024; 135:lxae055. [PMID: 38449342 DOI: 10.1093/jambio/lxae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Cholera, caused by Vibrio cholerae, is a severe diarrheal disease that necessitates prompt diagnosis and effective treatment. This review comprehensively examines various diagnostic methods, from traditional microscopy and culture to advanced nucleic acid testing like polymerase spiral reaction and rapid diagnostic tests, highlighting their advantages and limitations. Additionally, we explore evolving treatment strategies, with a focus on the challenges posed by antibiotic resistance due to the activation of the SOS response pathway in V. cholerae. We discuss promising alternative treatments, including low-pressure plasma sterilization, bacteriophages, and selenium nanoparticles. The paper emphasizes the importance of multidisciplinary approaches combining novel diagnostics and treatments in managing and preventing cholera, a persistent global health challenge. The current re-emergent 7th pandemic of cholera commenced in 1961 and shows no signs of abeyance. This is probably due to the changing genetic profile of V. cholerae concerning bacterial pathogenic toxins. Given this factor, we argue that the disease is effectively re-emergent, particularly in Eastern Mediterranean countries such as Lebanon, Syria, etc. This review considers the history of the current pandemic, the genetics of the causal agent, and current treatment regimes. In conclusion, cholera remains a significant global health challenge that requires prompt diagnosis and effective treatment. Understanding the history, genetics, and current treatments is crucial in effectively addressing this persistent and re-emergent disease.
Collapse
Affiliation(s)
- Ibrahim S I Al-Adham
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Nisrein Jaber
- Faculty of Pharmacy, Al Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Ahmed S A Ali Agha
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Mayyas Al-Remawi
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Faisal Al-Akayleh
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Najah Al-Muhtaseb
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| | - Phillip J Collier
- Faculty of Pharmacy and Medical Sciences, University of Petra, Amman 961343, Jordan
| |
Collapse
|
10
|
de Lima PPDABM, Fiorotti J, Paulino PG, Corval ARDC, Mesquita E, Corrêa TA, Lopes ADSC, Oliveira RJVD, Santos HA, Bittencourt VREP, Angelo IDC, Golo PS. Metarhizium pingshaense photolyase expression and virulence to Rhipicephalus microplus after UV-B exposure. J Basic Microbiol 2024; 64:94-105. [PMID: 37696778 DOI: 10.1002/jobm.202300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
The current study examined the impact of ultraviolet (UV)-B radiation in Metarhizium pingshaense blastospores' photolyase expression and their virulence against Rhipicephalus microplus. Blastospores were exposed to UV under laboratory and field conditions. Ticks were treated topically with fungal suspension and exposed to UV-B in the laboratory for three consecutive days. The expression of cyclobutane pyrimidine dimmers (CPDs)-photolyase gene maphr1-2 in blastospores after UV exposure followed by white light exposure was accessed after 0, 8, 12, 24, 36, and 48 h. Average relative germination of blastospores 24 h after in vitro UV exposure was 8.4% lower than 48 h. Despite this, the relative germination of blastospores exposed to UV in the field 18 h (95.7 ± 0.3%) and 28 h (97.3 ± 0.8%) after exposure were not different (p > 0.05). Ticks treated with fungus and not exposed to UV exhibited 0% survival 10 days after the treatment, while fungus-treated ticks exposed to UV exhibited 50 ± 11.2% survival. Expression levels of maphr1-2 8, 12, and 24 h after UV-B exposure were not different from time zero. Maphr1-2 expression peak in M. pingshaense blastospores occurred 36 h after UV-B exposure, in the proposed conditions and times analyzed, suggesting repair mechanisms other than CPD-mediated-photoreactivation might be leading blastospores' germination from 0 to 24 h.
Collapse
Affiliation(s)
- Pamella Pryscila de A B M de Lima
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Jessica Fiorotti
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto SP, Brazil
| | - Patrícia G Paulino
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Amanda R da C Corval
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Emily Mesquita
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Thaís A Corrêa
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Adriani da S C Lopes
- Programa de Pós-Graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, Rio de Janeiro, Brazil
| | - Rafael José V de Oliveira
- Laboratório de Bioprocessos, Centro de Tecnologias Estratégicas do Nordeste (CETENE), Recife, Pernambuco, Brazil
| | - Huarrisson A Santos
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Vânia R E P Bittencourt
- Departamento de Parasitologia Animal, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Isabele da C Angelo
- Departamento de Epidemiologia e Saúde Pública, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| | - Patrícia S Golo
- Departamento de Parasitologia Animal, Instituto de Veterinária, UFRRJ, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Whitworth P, Aldred N, Finlay JA, Reynolds KJ, Plummer J, Clare AS. UV-C LED-induced cyclobutane pyrimidine dimer formation, lesion repair and mutagenesis in the biofilm-forming diatom, Navicula incerta. BIOFOULING 2024; 40:76-87. [PMID: 38384189 DOI: 10.1080/08927014.2024.2319178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
The use of ultraviolet-C (UV-C) irradiation in marine biofouling control is a relatively new and potentially disruptive technology. This study examined effects of UV-C exposure on the biofilm-forming diatom, Navicula incerta. UV-C-induced mutations were identified via Illumina HiSeq. A de novo genome was assembled from control sequences and reads from UV-C-exposed treatments were mapped to this genome, with a quantitative estimate of mutagenesis then derived from the frequency of single nucleotide polymorphisms. UV-C exposure increased cyclobutane pyrimidine dimer (CPD) abundance with a direct correlation between lesion formation and fluency. Cellular repair mechanisms gradually reduced CPDs over time, with the highest UV-C fluence treatments having the fastest repair rates. Mutation abundances were, however, negatively correlated with CPD abundance suggesting that UV-C exposure may influence lesion repair. The threshold fluence for CPD formation exceeding CPD repair was >1.27 J cm-2. Fluences >2.54 J cm-2 were predicted to inhibit repair mechanisms. While UV-C holds considerable promise for marine antifouling, diatoms are just one, albeit an important, component of marine biofouling communities. Determining fluence thresholds for other representative taxa, highlighting the most resistant, would allow UV-C treatments to be specifically tuned to target biofouling organisms, whilst limiting environmental effects and the power requirement.
Collapse
Affiliation(s)
- Paul Whitworth
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nick Aldred
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - John A Finlay
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kevin J Reynolds
- Technology & Innovation Delivery, Marine, Protective and Yacht, AkzoNobel/International Paint Ltd, Felling, Gateshead, United Kingdom
| | - Joseph Plummer
- Physical Sciences Group, Platform Systems Division, Defence Science and Technology Laboratory (DSTL), Porton Down, Salisbury, United Kingdom
| | - Anthony S Clare
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
12
|
Espaldon A, Oguma K. Conformation-dependent UV inactivation efficiency of a conjugative, multi-drug resistant plasmid. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132324. [PMID: 37647660 DOI: 10.1016/j.jhazmat.2023.132324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/01/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
A conjugative, multi-drug-resistant plasmid was irradiated in-vivo and in-vitro with a 265-nm UV-light emitting diode (UV-LED) to investigate the gene inactivation efficiency of a plasmid deoxyribonucleic acid (pDNA) carrying DNA transfer and replication genes. The clinical-isolate 60 kb RP4 plasmid of the IncPα group containing the traG gene, was irradiated intracellularly in E. coli DH5α and extracellularly in a water medium at pH 8.5. Real-time quantitative polymerase chain reaction (RT-qPCR) measurements of the UV-fluence response gene inactivation rate constants revealed a decreasing pattern via a pseudo-1st-order inactivation kinetics in all forms examined. Our findings showed that the intracellular-supercoiled conformation, with k = 6.1 × 10-3 cm2/mJ, has the lowest UV susceptibility (lowest inactivation rate). UV absorbance measurements and a computational approach showed that the host's RNA provides the photo-shielding, demonstrating this high UV resistance. When UV exposure was measured in-vitro, the condensed DNA exhibited a self-shielding effect over supercoiled and denatured DNA due to the hypochromic-hyperchromic effects. This study has shown that large-sized conjugative plasmids with conformation-dependent UV/UV-LED-based gene inactivation play a significant role in preventing the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Achilles Espaldon
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Kumiko Oguma
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Cho DH, Yun JH, Heo J, Lee IK, Lee YJ, Bae S, Yun BS, Kim HS. Identification of Loliolide with Anti-Aging Properties from Scenedesmus deserticola JD052. J Microbiol Biotechnol 2023; 33:1250-1256. [PMID: 37317620 PMCID: PMC10580889 DOI: 10.4014/jmb.2304.04044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/16/2023]
Abstract
Herein, different extracts of Scenedesmus deserticola JD052, a green microalga, were evaluated in vitro as a potential anti-aging bioagent. Although post-treatment of microalgal culture with either UV irradiation or high light illumination did not lead to a substantial difference in the effectiveness of microalgal extracts as a potential anti-UV agent, the results indicated the presence of a highly potent compound in ethyl acetate extract with more than 20% increase in the cellular viability of normal human dermal fibroblasts (nHDFs) compared with the negative control amended with DMSO. The subsequent fractionation of the ethyl acetate extract led to two bioactive fractions with high anti-UV property; one of the fractions was further separated down to a single compound. While electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy analysis identified this single compound as loliolide, its identification has been rarely reported in microalgae previously, prompting thorough systematic investigations into this novel compound for the nascent microalgal industry.
Collapse
Affiliation(s)
- Dae-Hyun Cho
- Cell Factory Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - Jin-Ho Yun
- Cell Factory Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jina Heo
- Cell Factory Research Center, KRIBB, Daejeon 34141, Republic of Korea
| | - In-Kyoung Lee
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Yong-Jae Lee
- Cell Factory Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Seunghee Bae
- Korea Institute for Skin and Clinical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Bong-Sik Yun
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, KRIBB, Daejeon 34141, Republic of Korea
- Department of Environmental Biotechnology, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
- ASK LABS, KRIBB BVC Center 109, Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Johann To Berens P, Golebiewska K, Peter J, Staerck S, Molinier J. UV-B-induced modulation of constitutive heterochromatin content in Arabidopsis thaliana. Photochem Photobiol Sci 2023; 22:2153-2166. [PMID: 37225911 DOI: 10.1007/s43630-023-00438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
Sunlight regulates transcriptional programs and triggers the shaping of the genome throughout plant development. Among the different sunlight wavelengths that reach the surface of the Earth, UV-B (280-315 nm) controls the expression of hundreds of genes for the photomorphogenic responses and also induces the formation of photodamage that interfere with genome integrity and transcriptional programs. The combination of cytogenetics and deep-learning-based analyses allowed determining the location of UV-B-induced photoproducts and quantifying the effects of UV-B irradiation on constitutive heterochromatin content in different Arabidopsis natural variants acclimated to various UV-B regimes. We identified that UV-B-induced photolesions are enriched within chromocenters. Furthermore, we uncovered that UV-B irradiation promotes constitutive heterochromatin dynamics that differs among the Arabidopsis ecotypes having divergent heterochromatin contents. Finally, we identified that the proper restoration of the chromocenter shape, upon DNA repair, relies on the UV-B photoreceptor, UV RESISTANCE LOCUS 8 (UVR8). These findings shed the light on the effect of UV-B exposure and perception in the modulation of constitutive heterochromatin content in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Philippe Johann To Berens
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Kinga Golebiewska
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Jackson Peter
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Sébastien Staerck
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France
| | - Jean Molinier
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67000, Strasbourg, France.
| |
Collapse
|
15
|
Tchonkouang RD, Lima AR, Quintino AC, Cristofoli NL, Vieira MC. UV-C Light: A Promising Preservation Technology for Vegetable-Based Nonsolid Food Products. Foods 2023; 12:3227. [PMID: 37685160 PMCID: PMC10486447 DOI: 10.3390/foods12173227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A variety of bioactive substances present in fruit- and vegetable-processed products have health-promoting properties. The consumption of nutrient-rich plant-based products is essential to address undernutrition and micronutrient deficiencies. Preservation is paramount in manufacturing plant-based nonsolid foods such as juices, purees, and sauces. Thermal processing has been widely used to preserve fruit- and vegetable-based products by reducing enzymatic and microbial activities, thereby ensuring safety and prolonged shelf life. However, the nutritional value of products is compromised due to the deleterious effects of thermal treatments on essential nutrients and bioactive compounds. To prevent the loss of nutrients associated with thermal treatment, alternative technologies are being researched extensively. In studies conducted on nonsolid food, UV-C treatment has been proven to preserve quality and minimize nutrient degradation. This review compiles information on the use of UV-C technology in preserving the nutritional attributes of nonsolid foods derived from fruit and vegetables. The legislation, market potential, consumer acceptance, and limitations of UV-C are reviewed.
Collapse
Affiliation(s)
- Rose Daphnee Tchonkouang
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Alexandre R. Lima
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Andreia C. Quintino
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Nathana L. Cristofoli
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
| | - Margarida C. Vieira
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Faculty of Sciences and Technology, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (R.D.T.); (A.R.L.); (A.C.Q.); (N.L.C.)
- Department of Food Engineering, High Institute of Engineering, Universidade do Algarve, Campus da Penha, 8000-139 Faro, Portugal
| |
Collapse
|
16
|
El Mir J, Fedou S, Thézé N, Morice‐Picard F, Cario M, Fayyad‐Kazan H, Thiébaud P, Rezvani H. Xenopus: An in vivo model for studying skin response to ultraviolet B irradiation. Dev Growth Differ 2023; 65:194-202. [PMID: 36880984 PMCID: PMC11520974 DOI: 10.1111/dgd.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Ultraviolet B (UVB) in sunlight cause skin damage, ranging from wrinkles to photoaging and skin cancer. UVB can affect genomic DNA by creating cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidine (6-4) photoproducts (6-4PPs). These lesions are mainly repaired by the nucleotide excision repair (NER) system and by photolyase enzymes that are activated by blue light. Our main goal was to validate the use of Xenopus laevis as an in vivo model system for investigating the impact of UVB on skin physiology. The mRNA expression levels of xpc and six other genes of the NER system and CPD/6-4PP photolyases were found at all stages of embryonic development and in all adult tissues tested. When examining Xenopus embryos at different time points after UVB irradiation, we observed a gradual decrease in CPD levels and an increased number of apoptotic cells, together with an epidermal thickening and an increased dendricity of melanocytes. We observed a quick removal of CPDs when embryos are exposed to blue light versus in the dark, confirming the efficient activation of photolyases. A decrease in the number of apoptotic cells and an accelerated return to normal proliferation rate was noted in blue light-exposed embryos compared with their control counterparts. Overall, a gradual decrease in CPD levels, detection of apoptotic cells, thickening of epidermis, and increased dendricity of melanocytes, emulate human skin responses to UVB and support Xenopus as an appropriate and alternative model for such studies.
Collapse
Affiliation(s)
| | | | | | - Fanny Morice‐Picard
- University Bordeaux, Inserm, BRICBordeauxFrance
- Department of Dermatology and Pediatric Dermatology, National Reference Centre for Rare DisordersHôpital des Enfants Pellegrin, Centre Hospitalier Universitaire de BordeauxBordeauxFrance
| | - Muriel Cario
- University Bordeaux, Inserm, BRICBordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| | - Hussein Fayyad‐Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences ILebanese UniversityHadathLebanon
| | | | - Hamid‐Reza Rezvani
- University Bordeaux, Inserm, BRICBordeauxFrance
- Aquiderm, University of BordeauxBordeauxFrance
| |
Collapse
|
17
|
Demchenko AP. Proton transfer reactions: from photochemistry to biochemistry and bioenergetics. BBA ADVANCES 2023. [DOI: 10.1016/j.bbadva.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
18
|
Cubillos VM, Ramírez FE, Mardones-Toledo DA, Valdivia N, Chaparro OR, Montory JA, Cruces EA. Specific plasticity of the anemone Anthopleura hermaphroditica to intertidal and subtidal environmental conditions of the Quempillén estuary. PLoS One 2023; 18:e0279482. [PMID: 36603008 PMCID: PMC9815623 DOI: 10.1371/journal.pone.0279482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
The cellular capacity of marine organisms to address rapid fluctuations in environmental conditions is decisive, especially when their bathymetric distribution encompasses intertidal and subtidal zones of estuarine systems. To understand how the bathymetric distribution determines the oxidative damage and antioxidant response of the estuarine anemone Anthopleura hermaphroditica, individuals were collected from upper intertidal and shallow subtidal zones of Quempillén River estuary (Chile), and their response analysed in a fully orthogonal, multifactorial laboratory experiment. The organisms were exposed to the effects of temperature (10°C and 30°C), salinity (10 ppt and 30 ppt) and radiation (PAR, > 400-700 nm; PAR+UV-A, > 320-700 nm; PAR+UV-A+UV-B, > 280-700 nm), and their levels of lipid peroxidation, protein carbonyl and total antioxidant capacity were determined. The results indicated that the intertidal individuals of A. hermaphroditica presented higher levels of tolerance to the stressful ranges of temperature, salinity, and radiation than individuals from the subtidal zone, which was evident from their lower levels of oxidative damage to lipids and proteins. These results were consistent with increased levels of total antioxidant capacity observed in subtidal organisms. Thus intertidal individuals could have greater plasticity to environmental variations than subtidal individuals. Future studies are needed to understand the mechanisms underlying stress adaptation in individuals from this estuarine anemone subjected to different environmental stressors during their life cycles.
Collapse
Affiliation(s)
- Víctor M. Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| | - Felipe E. Ramírez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Daniela A. Mardones-Toledo
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Oscar R. Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | | | - Edgardo A. Cruces
- Centro de Investigaciones Costeras, Universidad de Atacama (CIC-UDA), Copiapó, Chile
| |
Collapse
|
19
|
Zhou Q, Zhang T, Jie J, Hou Y, Hu Z, Jiao Z, Su H. TiO 2 as a Nanozyme Mimicking Photolyase to Repair DNA Damage. J Phys Chem Lett 2022; 13:10929-10935. [PMID: 36399008 DOI: 10.1021/acs.jpclett.2c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cyclobutane pyrimidine dimer (CPD) is the most abundant DNA photolesion, and it can be repaired by photolyases based on electron-transfer mechanisms. However, photolyase is absent in the human body and lacks stability for applications. Can one develop natural enzyme mimetics utilizing nanoparticles (termed nanozymes) to mimic photolyase in repairing DNA damage? Herein, we observe the successful reversal of thymine dimer T<>T to normal T base by TiO2 under UVA irradiation. Time-resolved spectroscopy provides direct evidence that the photogenerated electron of TiO2 transfers to T<>T, causing structural instability and initiating the repair process. T-T- would then undergo bond cleavage to form T and T-, and T- returns an electron to TiO2, finishing the photocatalytic cycle. For the first time, TiO2 is discovered to exhibit photocatalytic properties similar to those of natural enzymes, pointing to its extraordinary application potential as a nanozyme to mimic photolyase in repairing DNA damage.
Collapse
Affiliation(s)
- Qian Zhou
- College of Chemistry, Beijing Normal University, Beijing100875, P.R. China
| | - Tianfeng Zhang
- College of Chemistry, Beijing Normal University, Beijing100875, P.R. China
| | - Jialong Jie
- College of Chemistry, Beijing Normal University, Beijing100875, P.R. China
| | - Yue Hou
- College of Chemistry, Beijing Normal University, Beijing100875, P.R. China
| | - Zheng Hu
- College of Chemistry, Beijing Normal University, Beijing100875, P.R. China
| | - Zeqing Jiao
- College of Chemistry, Beijing Normal University, Beijing100875, P.R. China
| | - Hongmei Su
- College of Chemistry, Beijing Normal University, Beijing100875, P.R. China
| |
Collapse
|
20
|
B. Soro A, Shokri S, Nicolau-Lapeña I, Ekhlas D, Burgess CM, Whyte P, Bolton DJ, Bourke P, Tiwari BK. Current challenges in the application of the UV-LED technology for food decontamination. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Fernández MB, Latorre L, Correa-Aragunde N, Cassia R. A putative bifunctional CPD/ (6-4) photolyase from the cyanobacteria Synechococcus sp. PCC 7335 is encoded by a UV-B inducible operon: New insights into the evolution of photolyases. Front Microbiol 2022; 13:981788. [DOI: 10.3389/fmicb.2022.981788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Photosynthetic organisms are continuously exposed to solar ultraviolet radiation-B (UV-B) because of their autotrophic lifestyle. UV-B provokes DNA damage, such as cyclobutane pyrimidine dimers (CPD) or pyrimidine (6-4) pyrimidone photoproducts (6-4 PPs). The cryptochrome/photolyase family (CPF) comprises flavoproteins that can bind damaged or undamaged DNA. Photolyases (PHRs) are enzymes that repair either CPDs or 6-4 PPs. A natural bifunctional CPD/(6-4)- PHR (PhrSph98) was recently isolated from the UV-resistant bacteria Sphingomonas sp. UV9. In this work, phylogenetic studies of bifunctional CPD/(6-4)- photolyases and their evolutionary relationship with other CPF members were performed. Amino acids involved in electron transfer and binding to FAD cofactor and DNA lesions were conserved in proteins from proteobacteria, planctomycete, bacteroidete, acidobacteria and cyanobacteria clades. Genome analysis revealed that the cyanobacteria Synechococcus sp. PCC 7335 encodes a two-gene assembly operon coding for a PHR and a bifunctional CPD/(6-4) PHR- like. Operon structure was validated by RT-qPCR analysis and the polycistronic transcript accumulated after 15 min of UV-B irradiation. Conservation of structure and evolution is discussed. This study provides evidence for a UV-B inducible PHR operon that encodes a CPD/(6-4)- photolyase homolog with a putative bifunctional role in the repair of CPDs and 6-4 PPs damages in oxygenic photosynthetic organisms.
Collapse
|
22
|
An ML, Miao JL. Genetic and Molecular Characterization of a Dash Cryptochrome Homologous Gene from Antarctic Diatom Phaeodactylum tricornutum ICE-H. Mol Biol 2022. [DOI: 10.1134/s0026893322060024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Finelli R, Moreira BP, Alves MG, Agarwal A. Unraveling the Molecular Impact of Sperm DNA Damage on Human Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1358:77-113. [DOI: 10.1007/978-3-030-89340-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Brancini GTP, Hallsworth JE, Corrochano LM, Braga GÚL. Photobiology of the keystone genus Metarhizium. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112374. [PMID: 34954528 DOI: 10.1016/j.jphotobiol.2021.112374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Metarhizium fungi are soil-inhabiting ascomycetes which are saprotrophs, symbionts of plants, pathogens of insects, and participate in other trophic/ecological interactions, thereby performing multiple essential ecosystem services. Metarhizium species are used to control insect pests of crop plants and insects that act as vectors of human and animal diseases. To fulfil their functions in the environment and as biocontrol agents, these fungi must endure cellular stresses imposed by the environment, one of the most potent of which is solar ultraviolet (UV) radiation. Here, we examine the cellular stress biology of Metarhizium species in context of their photobiology, showing how photobiology facilitates key aspects of their ecology as keystone microbes and as mycoinsectides. The biophysical basis of UV-induced damage to Metarhizium, and mechanistic basis of molecular and cellular responses to effect damage repair, are discussed and interpreted in relation to the solar radiation received on Earth. We analyse the interplay between UV and visible light and how the latter increases cellular tolerance to the former via expression of a photolyase gene. By integrating current knowledge, we propose the mechanism through which Metarhizium species use the visible fraction of (low-UV) early-morning light to mitigate potentially lethal damage from intense UV radiation later in the day. We also show how this mechanism could increase Metarhizium environmental persistence and improve its bioinsecticide performance. We discuss the finding that visible light modulates stress biology in the context of further work needed on Metarhizium ecology in natural and agricultural ecosystems, and as keystone microbes that provide essential services within Earth's biosphere.
Collapse
Affiliation(s)
- Guilherme T P Brancini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK
| | - Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Gilberto Ú L Braga
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-903, Brazil.
| |
Collapse
|
25
|
Huo H, He Y, Chen W, Wu L, Yi X, Wang J. Simultaneously monitoring UVC-induced DNA damage and photoenzymatic repair of cyclobutane pyrimidine dimers by electrochemical impedance spectroscopy. Talanta 2021; 239:123081. [PMID: 34823862 DOI: 10.1016/j.talanta.2021.123081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022]
Abstract
Cyclobutane pyrimidine dimers (CPDs) are the major DNA photoproducts of thymine-thymine dinucleotides upon ultraviolet (UV) irradiation. Failure in the repair of damaged DNA may lead to DNA replication errors, DNA mutations, and even cell death. Photoreactivation can mediate the repair of UV-induced DNA lesions by photolyases upon UVA (315-400 nm) or blue light (400-500 nm) irradiation. Herein, the UVC (254 nm)-induced DNA damage and photoenzymatic repair of the CPD products were simultaneously monitored by electrochemical impedance spectroscopy (EIS). The UVC-damaged dT20 was first immobilized on the gold electrode, and the specific recognition by the anti-CPD antibody leads to significantly increased EIS signals. The electron transfer resistance (Ret) values were linearly proportional to the concentrations of damaged dT20 ranging from 0.005 to 0.1 μM, and a detection limit of 3.06 nM was achieved. Using surface plasmon resonance, the equilibrium dissociation constant (KD) between the CPDs in dT20 and anti-CPD antibody was estimated to be (3.32 ± 0.31) × 10-12 M, indicating the strong binding affinity. Evidenced by EIS, the CPDs in the damaged dT20 could be repaired by the attached DNA photolyase under UVA (365 nm) photoexcitation, and the detachment of the photolyase from the DNA strand was accomplished after completion of the repair process. The repair efficiency was calculated to be 70.0% by EIS, being consistent with that of 71.4% by UV spectroscopy. The electrochemical method is simple, sensitive and straightforward, holding great potential for assaying other types of DNA lesions and their repair processes.
Collapse
Affiliation(s)
- Huan Huo
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Yuhan He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Wenchao Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China
| | - Ling Wu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410004, PR China
| | - Xinyao Yi
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China.
| | - Jianxiu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, PR China.
| |
Collapse
|
26
|
Takatsuka H, Shibata A, Umeda M. Genome Maintenance Mechanisms at the Chromatin Level. Int J Mol Sci 2021; 22:ijms221910384. [PMID: 34638727 PMCID: PMC8508675 DOI: 10.3390/ijms221910384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Genome integrity is constantly threatened by internal and external stressors, in both animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA. In the nucleus, DNA twines around histone proteins to form the higher-order structure “chromatin”. Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-wide alterations in chromatin modifications, globally modulating gene expression required for DNA damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication; and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect DNA. In this review, we highlight the chromatin-level control of genome stability and compare the regulatory systems in plants and animals to find out unique mechanisms maintaining genome integrity under genotoxic stress.
Collapse
Affiliation(s)
- Hirotomo Takatsuka
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-Machi, Kanazawa 920-1192, Japan;
| | - Atsushi Shibata
- Signal Transduction Program, Gunma University Initiative for Advanced Research (GIAR), 3-39-22, Showa-Machi, Maebashi 371-8511, Japan;
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Correspondence:
| |
Collapse
|
27
|
Espinosa-González AM, Estrella-Parra EA, Nolasco-Ontiveros E, García-Bores AM, García-Hernández R, López-Urrutia E, Campos-Contreras JE, González-Valle MDR, Benítez-Flores JDC, Céspedes-Acuña CL, Alarcón-Enos J, Rivera-Cabrera JC, Avila-Acevedo JG. Hyptis mociniana: phytochemical fingerprint and photochemoprotective effect against UV-B radiation-induced erythema and skin carcinogenesis. Food Chem Toxicol 2021; 151:112095. [PMID: 33689855 DOI: 10.1016/j.fct.2021.112095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022]
Abstract
Skin cancer is a public health problem due to its high incidence. Ultraviolet radiation (UVR) is the main etiological agent of this disease. Photochemoprotection involves the use of substances to avoid damage caused by UV exposure. The aim of this work was to determine the phytochemical fingerprint and photochemoprotective effect against UVB radiation-induced skin damage such as erythema and carcinogenesis of H. mociniana methanolic extract (MEHm). The chemical composition of the MEHm was analysed by LC/ESI-MS/MS. Three quercetin derivatives, two pectinolides, and two caffeic acid derivatives were identified in the methanolic extract. MEHm has antioxidant effect and it is not cytotoxic in HaCaT cells. Phytochemicals from H. mociniana have a photochemopreventive effect because they absorb UV light and protect HaCaT cells from UVR-induced cell death. Also, in SKH-1 mice -acute exposure-, it decreased erythema formation, modulating the inflammatory response, reduced the skin damage according to histological analysis and diminished p53 expression. Finally, MEHm protects from photocarcinogenesis by reducing the incidence and multiplicity of skin carcinomas in SKH-1 mice exposed chronically to UVB radiation.
Collapse
Affiliation(s)
- A M Espinosa-González
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - E A Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - E Nolasco-Ontiveros
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - A M García-Bores
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - R García-Hernández
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - E López-Urrutia
- Laboratorio de Genómica Funcional Del Cáncer, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - J E Campos-Contreras
- Laboratorio de Bioquímica Molecular, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - M Del R González-Valle
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - J Del C Benítez-Flores
- Laboratorio de Histología, UMF, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| | - C L Céspedes-Acuña
- Laboratorio de Fitoquímica-Ecológica, Grupo de Química y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Del Bio Bio, Avenida Andrés Bello, 3780000, Chillan, Chile.
| | - J Alarcón-Enos
- Laboratorio de Fitoquímica-Ecológica, Grupo de Química y Biotecnología de Productos Naturales Bioactivos, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Del Bio Bio, Avenida Andrés Bello, 3780000, Chillan, Chile.
| | - J C Rivera-Cabrera
- Laboratorio de Cromatografía de Líquidos, Departamento de Farmacología, Escuela Médico Militar, Cda, Palomas s/n, Lomas de San Isidro, 11200, Ciudad de México, México.
| | - J G Avila-Acevedo
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. De Los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, México.
| |
Collapse
|
28
|
The Dark Side of UV-Induced DNA Lesion Repair. Genes (Basel) 2020; 11:genes11121450. [PMID: 33276692 PMCID: PMC7761550 DOI: 10.3390/genes11121450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Collapse
|