1
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
2
|
Bryan JN. Updates in Osteosarcoma. Vet Clin North Am Small Anim Pract 2024; 54:523-539. [PMID: 38158305 DOI: 10.1016/j.cvsm.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Clinical care of osteosarcoma (OSA) in dogs has seen little change during the past 2 decades, relying on amputation and platinum-based chemotherapy for pain control and survival. Recent advancements offer hope for improved outcomes. Genomic research reveals shared genetic abnormalities between canine and human OSA. Multidimensional imaging provides valuable staging and prognostic information. Limb-sparing approaches including stereotactic body radiation therapy are routine. Ablative therapies such as microwave ablation and histotripsy show promise. Immunotherapy including cell therapy and immune checkpoint inhibition are available. Radiopharmaceuticals are tuned to target OSA cells directly. These innovations may enhance treatment and prognosis for dogs with OSA.
Collapse
Affiliation(s)
- Jeffrey N Bryan
- Comparative Oncology Radiobiology and Epigenetics Laboratory, University of Missouri Columbia, Ellis Fischel Cancer Center, 900 East Campus Drive, Columbia, MO 65211, USA.
| |
Collapse
|
3
|
Blake JM, Thompson J, HogenEsch H, Ekenstedt KJ. Heritability and genome-wide association study of vaccine-induced immune response in Beagles: A pilot study. Vaccine 2024; 42:3099-3106. [PMID: 38604911 PMCID: PMC11144447 DOI: 10.1016/j.vaccine.2024.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.
Collapse
Affiliation(s)
- Jeanna M Blake
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - James Thompson
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, MI, USA
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases, West Lafayette, IN, USA
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
4
|
Silver KI, Mannheimer JD, Saba C, Hendricks WPD, Wang G, Day K, Warrier M, Beck JA, Mazcko C, LeBlanc AK. Clinical, pathologic and molecular findings in 2 Rottweiler littermates with appendicular osteosarcoma. RESEARCH SQUARE 2024:rs.3.rs-4223759. [PMID: 38659878 PMCID: PMC11042397 DOI: 10.21203/rs.3.rs-4223759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Appendicular osteosarcoma was diagnosed and treated in a pair of littermate Rottweiler dogs, resulting in distinctly different clinical outcomes despite similar therapy within the context of a prospective, randomized clinical trial (NCI-COTC021/022). Histopathology, immunohistochemistry, mRNA sequencing, and targeted DNA hotspot sequencing techniques were applied to both dogs' tumors to define factors that could underpin their differential response to treatment. We describe the comparison of their clinical, histologic and molecular features, as well as those from a companion cohort of Rottweiler dogs, providing new insight into potential prognostic biomarkers for canine osteosarcoma.
Collapse
Affiliation(s)
| | | | | | - William P D Hendricks
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Guannan Wang
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Kenneth Day
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | - Manisha Warrier
- Vidium Animal Health, A Subsidiary of The Translational Genomics Research Institute (TGen)
| | | | | | | |
Collapse
|
5
|
Yang YT, Engleberg AI, Yuzbasiyan-Gurkan V. Establishment and Characterization of Cell Lines from Canine Metastatic Osteosarcoma. Cells 2023; 13:25. [PMID: 38201229 PMCID: PMC10778184 DOI: 10.3390/cells13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024] Open
Abstract
Despite the advancements in treatments for other cancers, the outcomes for osteosarcoma (OSA) patients have not improved in the past forty years, especially in metastatic patients. Moreover, the major cause of death in OSA patients is due to metastatic lesions. In the current study, we report on the establishment of three cell lines derived from metastatic canine OSA patients and their transcriptome as compared to normal canine osteoblasts. All the OSA cell lines displayed significant upregulation of genes in the epithelial mesenchymal transition (EMT) pathway, and upregulation of key cytokines such as CXCL8, CXCL10 and IL6. The two most upregulated genes are MX1 and ISG15. Interestingly, ISG15 has recently been identified as a potential therapeutic target for OSA. In addition, there is notable downregulation of cell cycle control genes, including CDKN2A, CDKN2B and THBS1. At the protein level, p16INK4A, coded by CDKN2A, was undetectable in all the canine OSA cell lines, while expression of the tumor suppressor PTEN was variable, with one cell line showing complete absence and others showing low levels of expression. In addition, the cells express a variety of actionable genes, including KIT, ERBB2, VEGF and immune checkpoint genes. These findings, similar to those reported in human OSA, point to some genes that can be used for prognosis, targeted therapies and novel drug development for both canine and human OSA patients.
Collapse
Affiliation(s)
- Ya-Ting Yang
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Alexander I. Engleberg
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA; (Y.-T.Y.); (A.I.E.)
- Department of Microbiology & Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
6
|
Estabrooks T, Gurinovich A, Pietruska J, Lewis B, Harvey G, Post G, Lambert L, Miller A, Rodrigues L, White ME, Lopes C, London CA, Megquier K. Identification of genomic alterations with clinical impact in canine splenic hemangiosarcoma. Vet Comp Oncol 2023; 21:623-633. [PMID: 37734854 DOI: 10.1111/vco.12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/23/2023]
Abstract
Canine hemangiosarcoma (HSA) is an aggressive cancer of endothelial cells with short survival times. Understanding the genomic landscape of HSA may aid in developing therapeutic strategies for dogs and may also inform therapies for the rare and aggressive human cancer angiosarcoma. The objectives of this study were to build a framework for leveraging real-world genomic and clinical data that could provide the foundation for precision medicine in veterinary oncology, and to determine the relationships between genomic and clinical features in canine splenic HSA. One hundred and nine dogs with primary splenic HSA treated by splenectomy that had tumour sequencing via the FidoCure® Precision Medicine Platform targeted sequencing panel were enrolled. Patient signalment, weight, metastasis at diagnosis and overall survival time were retrospectively evaluated. The incidence of genomic alterations in individual genes and their relationship to patient variables including outcome were assessed. Somatic mutations in TP53 (n = 44), NRAS (n = 20) and PIK3CA (n = 19) were most common. Survival was associated with presence of metastases at diagnosis and germline variants in SETD2 and NOTCH1. Age at diagnosis was associated with somatic NRAS mutations and breed. TP53 and PIK3CA somatic mutations were found in larger dogs, while germline SETD2 variants were found in smaller dogs. We identified both somatic mutations and germline variants associated with clinical variables including age, breed and overall survival. These genetic changes may be useful prognostic factors and provide insight into the genomic landscape of hemangiosarcoma.
Collapse
Affiliation(s)
- Timothy Estabrooks
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | | | - Jodie Pietruska
- MassBio, UMass Chan Medical School, Worcester, Massachusetts, USA
| | | | | | - Gerald Post
- One Health Company, Palo Alto, California, USA
| | | | | | | | | | | | - Cheryl A London
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Leeb T. Special Issue: "Canine Genetics 2". Genes (Basel) 2023; 14:1930. [PMID: 37895280 PMCID: PMC10606197 DOI: 10.3390/genes14101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Wolves were the first animal species to become domesticated by humans, approximately 30,000-50,000 years ago. Human-directed dog breeding over thousands of generations has generated more than 350 recognized breeds displaying surprisingly different phenotypes with respect to morphology, behavior and disease predispositions. The domestication of wolves and the subsequent breeding of dogs can be viewed as one of humankind's oldest and largest genetic experiments and provides us with unique opportunities for research. Dogs have not only become human's best friend but were also described as geneticists' best friend in a past issue of Science. In recognition of the importance of canine genetics, this Special Issue, entitled "Canine Genetics 2", was compiled. It represents a sequel to the former Special Issue "Canine Genetics", which was published in 2019. During the last 15 years, the canine community has heavily relied on a reference genome derived from the female Boxer Tasha. "Canine Genetics 2" includes an article describing a greatly improved version of this important community resource. This Special Issue further contains several reports related to monogenic or complex inherited diseases in dogs. Finally, important aspects of wild canid research, genetic diversity in different populations and canine morphology were investigated.
Collapse
Affiliation(s)
- Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
8
|
Wright SN, Leger BS, Rosenthal SB, Liu SN, Jia T, Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Garcia Martinez A, George A, Gileta AF, Han W, Netzley AH, King CP, Lamparelli A, Martin C, St Pierre CL, Wang T, Bimschleger H, Richards J, Ishiwari K, Chen H, Flagel SB, Meyer P, Robinson TE, Solberg Woods LC, Kreisberg JF, Ideker T, Palmer AA. Genome-wide association studies of human and rat BMI converge on synapse, epigenome, and hormone signaling networks. Cell Rep 2023; 42:112873. [PMID: 37527041 PMCID: PMC10546330 DOI: 10.1016/j.celrep.2023.112873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023] Open
Abstract
A vexing observation in genome-wide association studies (GWASs) is that parallel analyses in different species may not identify orthologous genes. Here, we demonstrate that cross-species translation of GWASs can be greatly improved by an analysis of co-localization within molecular networks. Using body mass index (BMI) as an example, we show that the genes associated with BMI in humans lack significant agreement with those identified in rats. However, the networks interconnecting these genes show substantial overlap, highlighting common mechanisms including synaptic signaling, epigenetic modification, and hormonal regulation. Genetic perturbations within these networks cause abnormal BMI phenotypes in mice, too, supporting their broad conservation across mammals. Other mechanisms appear species specific, including carbohydrate biosynthesis (humans) and glycerolipid metabolism (rodents). Finally, network co-localization also identifies cross-species convergence for height/body length. This study advances a general paradigm for determining whether and how phenotypes measured in model species recapitulate human biology.
Collapse
Affiliation(s)
- Sarah N Wright
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Brittany S Leger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Program in Biomedical Sciences, University of California San Diego, La Jolla, CA 93093, USA
| | - Sara Brin Rosenthal
- Center for Computational Biology & Bioinformatics, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophie N Liu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tongqiu Jia
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Katie Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Angel Garcia Martinez
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Anthony George
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Alexander F Gileta
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Wenyan Han
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Alesa H Netzley
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christopher P King
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Connor Martin
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | | | - Tengfei Wang
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Hannah Bimschleger
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA
| | - Jerry Richards
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA; Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY 14203, USA
| | - Hao Chen
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Shelly B Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paul Meyer
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Terry E Robinson
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jason F Kreisberg
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA 93093, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Arendt ML, Dobson JM. Sarcoma Predisposition in Dogs with a Comparative View to Human Orthologous Disease. Vet Sci 2023; 10:476. [PMID: 37505880 PMCID: PMC10385400 DOI: 10.3390/vetsci10070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Sarcomas are malignant tumors arising from the embryonic mesodermal cell lineage. This group of cancers covers a heterogenous set of solid tumors arising from soft tissues or bone. Many features such as histology, biological behavior and molecular characteristics are shared between sarcomas in humans and dogs, suggesting that human sarcoma research can be informative for canine disease, and that dogs with sarcomas can serve as relevant translational cancer models, to aid in the understanding of human disease and cancer biology. In the present paper, risk factors for the development of sarcoma in dogs are reviewed, with a particular focus on recent advances in clinical genetics, and on the identification of simple and complex genetic risk factors with a comparison with what has been found in human orthologous disease.
Collapse
Affiliation(s)
- Maja L Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Jane M Dobson
- Queens Veterinary School Hospital, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
10
|
O'Neill DG, Edmunds GL, Urquhart-Gilmore J, Church DB, Rutherford L, Smalley MJ, Brodbelt DC. Dog breeds and conformations predisposed to osteosarcoma in the UK: a VetCompass study. Canine Med Genet 2023; 10:8. [PMID: 37365662 DOI: 10.1186/s40575-023-00131-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Osteosarcoma is a malignant bone neoplasia that has high welfare consequences for affected dogs. Awareness of breed and canine conformational risk factors for osteosarcoma can assist with earlier diagnosis and improved clinical management. Study of osteosarcoma in dogs also offers translational value for humans. Anonymised clinical data within VetCompass on dogs under primary veterinary care in the UK were searched for osteosarcoma cases. Descriptive statistics reported overall and breed-specific prevalence. Risk factor analysis used multivariable logistic regression modelling. RESULTS From 905,552 study dogs, 331 osteosarcoma cases were confirmed yielding a one-year period prevalence of 0.037% (95% CI: 0.033-0.041). Breeds with the highest annual prevalence were the Scottish Deerhound (3.28%, 95% CI 0.90-8.18), Leonberger (1.48%, 95% CI 0.41- 3.75), Great Dane (0.87%, 95% CI 0.43- 1.55) and Rottweiler (0.84%, 95% CI 0.64-1.07). The median age at diagnosis was 9.64 years (IQR: 7.97-11.41). Following multivariable modelling, 11 breeds showed increased odds of osteosarcoma compared with crossbred dogs. Breeds with the highest odds included Scottish Deerhound (OR 118.40, 95% CI 41.12-340.95), Leonberger (OR 55.79, 95% CI 19.68-158.15), Great Dane (OR 34.24, 95% CI 17.81-65.83) and Rottweiler (OR 26.67, 95% CI 18.57-38.29). Compared with breeds with mesocephalic skull conformation, breeds with dolichocephalic skull conformation (OR 2.72, 95% CI 2.06-3.58) had increased odds while breeds with brachycephalic skull conformation showed reduced odds (OR 0.50, 95% CI 0.32-0.80). Chondrodystrophic breeds had 0.10 times the odds (95% CI 0.06-0.15) compared with non-chondrodystrophic breeds. Increasing adult bodyweight was associated with increasing odds of osteosarcoma. CONCLUSIONS The current study cements the concept that breed, bodyweight and longer leg or longer skull length are all strong risk factors for osteosarcoma in dogs. With this awareness, veterinarians can update their clinical suspicion and judgement, breeders can select towards lower-risk animals, and researchers can robustly define more useful study populations for fundamental and translational bioscience.
Collapse
Affiliation(s)
- Dan G O'Neill
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK.
| | - Grace L Edmunds
- School of Veterinary Sciences, University of Bristol and Langford Vets, Stock Lane, Langford, BS40 5DU, UK
| | - Jade Urquhart-Gilmore
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| | - David B Church
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Lynda Rutherford
- Clinical Science and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts, AL9 7TA, UK
| | - Matthew J Smalley
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Dave C Brodbelt
- Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, Herts, UK
| |
Collapse
|
11
|
Simpson S, Rizvanov AA, Jeyapalan JN, de Brot S, Rutland CS. Canine osteosarcoma in comparative oncology: Molecular mechanisms through to treatment discovery. Front Vet Sci 2022; 9:965391. [PMID: 36570509 PMCID: PMC9773846 DOI: 10.3389/fvets.2022.965391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Cancer is a leading cause of non-communicable morbidity and mortality throughout the world, similarly, in dogs, the most frequent cause of mortality is tumors. Some types of cancer, including osteosarcoma (OSA), occur at much higher rates in dogs than people. Dogs therefore not only require treatment themselves but can also act as an effective parallel patient population for the human disease equivalent. It should be noted that although there are many similarities between canine and human OSA, there are also key differences and it is important to research and highlight these features. Despite progress using chorioallantoic membrane models, 2D and 3D in vitro models, and rodent OSA models, many more insights into the molecular and cellular mechanisms, drug development, and treatment are being discovered in a variety of canine OSA patient populations.
Collapse
Affiliation(s)
- Siobhan Simpson
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Albert A. Rizvanov
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Jennie N. Jeyapalan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Faculty of Medicine and Health Science, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simone de Brot
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
- Comparative Pathology Platform (COMPATH), Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Catrin S. Rutland
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|