1
|
Salama EAA, Kambale R, Gnanapanditha Mohan SV, Premnath A, Fathy Yousef A, Moursy ARA, Abdelsalam NR, Abd El Moneim D, Muthurajan R, Manikanda Boopathi N. Empowering rice breeding with NextGen genomics tools for rapid enhancement nitrogen use efficiency. Gene 2024; 927:148715. [PMID: 38909967 DOI: 10.1016/j.gene.2024.148715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
As rice has no physiological capacity of fixing nitrogen in the soil, its production had always been reliant on the external application of nitrogen (N) to ensure enhanced productivity. In the light of improving nitrogen use efficiency (NUE) in rice, several advanced agronomic strategies have been proposed. However, the soared increase of the prices of N fertilizers and subsequent environmental downfalls caused by the excessive use of N fertilizers, reinforces the prerequisite adaptation of other sustainable, affordable, and globally acceptable strategies. An appropriate alternative approach would be to develop rice cultivars with better NUE. Conventional breeding techniques, however, have had only sporadic success in improving NUE, and hence, this paper proposes a new schema that employs the wholesome benefits of the recent advancements in omics technologies. The suggested approach promotes multidisciplinary research, since such cooperation enables the synthesis of many viewpoints, approaches, and data that result in a comprehensive understanding of NUE in rice. Such collaboration also encourages innovation that leads to developing rice varieties that use nitrogen more effectively, facilitate smart technology transfer, and promotes the adoption of NUE practices by farmers and stakeholders to minimize ecological impact and contribute to a sustainable agricultural future.
Collapse
Affiliation(s)
- Ehab A A Salama
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt.
| | - Rohit Kambale
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Shobhana V Gnanapanditha Mohan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Ameena Premnath
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut 71524, Egypt.
| | - Ali R A Moursy
- Soil and Water Department, Faculty of Agriculture, Sohag University, Sohag 82524, Egypt.
| | - Nader R Abdelsalam
- Agricultural Botany Department (Genetics), Faculty of Agriculture Saba Basha, Alexandria University, Alexandria 21531, Egypt.
| | - Diaa Abd El Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish 45511, Egypt.
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| | - Narayanan Manikanda Boopathi
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India.
| |
Collapse
|
2
|
Kaushik M, Mulani E, Kumar A, Chauhan H, Saini MR, Bharati A, Gayatri, Iyyappan Y, Madhavan J, Sevanthi AM, Mandal PK. Starch and storage protein dynamics in the developing and matured grains of durum wheat and diploid progenitor species. Int J Biol Macromol 2024; 267:131177. [PMID: 38583842 DOI: 10.1016/j.ijbiomac.2024.131177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Durum wheat, less immunogenically intolerant than bread wheat, originates from diploid progenitors known for nutritional quality and stress tolerance. Present study involves the analysis of major grain parameters, viz. size, weight, sugar, starch, and protein content of Triticum durum (AABB genome) and its diploid progenitors, Triticum monococcum (AA genome) and Aegilops speltoides (BB genome). Samples were collected during 2-5 weeks after anthesis (WAA), and at maturity. The investigation revealed that T. durum displayed the maximum grain size and weight. Expression analysis of Grain Weight 2 (GW2) and Glutamine Synthase (GS2), negative and positive regulators of grain weight and size, respectively, revealed higher GW2 expression in Ae. speltoides and higher GS2 expression in T. durum. Further we explored total starch, sugar and protein content, observing higher levels of starch and sugar in durum wheat while AA genome species exhibited higher protein content dominated by the fractions of albumin/globulin. HPLC profiling revealed unique sub-fractions in all three genome species. Additionally, a comparative transcriptome analysis also corroborated with the starch and protein content in the grains. This study provides valuable insights into the genetic and biochemical distinctions among durum wheat and its diploid progenitors, offering a foundation for their nutritional composition.
Collapse
Affiliation(s)
- Megha Kaushik
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Ekta Mulani
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Amit Kumar
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Harsh Chauhan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Manish Ranjan Saini
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Alka Bharati
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Gayatri
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Yuvaraj Iyyappan
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Jayanthi Madhavan
- Division of Genetics, ICAR - Indian Agriculture Research Institute, Pusa Campus, New Delhi 110012, India
| | - Amitha Mithra Sevanthi
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India
| | - Pranab Kumar Mandal
- Indian Council of Agricultural Research - National Institute for Plant Biotechnology (ICAR-NIPB), LBS Building, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
3
|
Wang Y, Li P, Zhu Y, Shang Y, Wu Z, Tao Y, Wang H, Li D, Zhang C. Transcriptome Profiling Reveals the Gene Network Responding to Low Nitrogen Stress in Wheat. PLANTS (BASEL, SWITZERLAND) 2024; 13:371. [PMID: 38337903 PMCID: PMC10856819 DOI: 10.3390/plants13030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.
Collapse
Affiliation(s)
- Yiwei Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Pengfeng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yuping Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
- College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Yongfu Tao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Hongru Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| | - Dongxi Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China;
| | - Cuijun Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; (P.L.); (Y.Z.); (Y.S.); (Z.W.); (Y.T.); (H.W.)
| |
Collapse
|
4
|
Qin X, Li X, Xiao J, Wu Q, Li Y, Li C, Jiang D, Tang T, Nan W, Liang Y, Zhang H. Transcriptomic and Physiological Analyses of Two Rice Restorer Lines under Different Nitrogen Supplies Provide Novel Insights into Hybrid Rice Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2276. [PMID: 37375901 DOI: 10.3390/plants12122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Improving plant nitrogen-use efficiency (NUE) has great significance for various crops, particularly in hybrid breeding. Reducing nitrogen inputs is key to achieving sustainable rice production and mitigating environmental problems. In this study, we analyzed the transcriptomic and physiological changes in two indica restorer lines (Nanhui511 [NH511] and Minghui23 [MH23]) under high nitrogen (HN) and low nitrogen (LN) conditions. Compared to MH23, NH511 was more sensitive to different nitrogen supplies and exhibited higher nitrogen uptake and NUE under HN conditions by increasing lateral root and tiller numbers in the seedling and maturation stages, respectively. NH511 also exhibited a lower survival rate than MH23 when planted in a chlorate-containing hydroponic solution, indicating its HN uptake ability under different nitrogen-supply conditions. Transcriptomic analysis showed that NH511 has 2456 differentially expressed genes, whereas MH23 had only 266. Furthermore, these genes related to nitrogen utilization showed differential expression in NH511 under HN conditions, while the opposite was observed in MH23. Our findings revealed that NH511 could be regarded as elite rice and used for breeding high-NUE restorer lines by regulating and integrating nitrogen-utilization genes, which provides novel insights for the cultivation of high-NUE hybrid rice.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Juan Xiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tingting Tang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
5
|
Li P, Du R, Li Z, Chen Z, Li J, Du H. An integrated nitrogen utilization gene network and transcriptome analysis reveal candidate genes in response to nitrogen deficiency in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 14:1187552. [PMID: 37229128 PMCID: PMC10203523 DOI: 10.3389/fpls.2023.1187552] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
Nitrogen (N) is an essential factor for crop yield. Here, we characterized 605 genes from 25 gene families that form the complex gene networks of N utilization pathway in Brassica napus. We found unequal gene distribution between the An- and Cn-sub-genomes, and that genes derived from Brassica rapa were more retained. Transcriptome analysis indicated that N utilization pathway gene activity shifted in a spatio-temporal manner in B. napus. A low N (LN) stress RNA-seq of B. napus seedling leaves and roots was generated, which proved that most N utilization related genes were sensitive to LN stress, thereby forming co-expression network modules. Nine candidate genes in N utilization pathway were confirmed to be significantly induced under N deficiency conditions in B. napus roots, indicating their potential roles in LN stress response process. Analyses of 22 representative species confirmed that the N utilization gene networks were widely present in plants ranging from Chlorophyta to angiosperms with a rapid expansion trend. Consistent with B. napus, the genes in this pathway commonly showed a wide and conserved expression profile in response to N stress in other plants. The network, genes, and gene-regulatory modules identified here represent resources that may enhance the N utilization efficiency or the LN tolerance of B. napus.
Collapse
Affiliation(s)
- Pengfeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Runjie Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhaopeng Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhuo Chen
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
6
|
Theerawitaya C, Supaibulwatana K, Tisarum R, Samphumphuang T, Chungloo D, Singh HP, Cha-Um S. Expression levels of nitrogen assimilation-related genes, physiological responses, and morphological adaptations of three indica rice (Oryza sativa L. ssp. indica) genotypes subjected to nitrogen starvation conditions. PROTOPLASMA 2023; 260:691-705. [PMID: 36056227 DOI: 10.1007/s00709-022-01806-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) is an essential nutrient available to the plants in form of nitrate and ammonium. It is a macronutrient important for the plant growth and development, especially in cereal crops, which consume it for the production of amino acids, proteins/enzymes, nucleic acids, cell wall complexes, plant hormones, and vitamins. In rice production, 17 kg N uptake is required to produce 1 ton of rice. Considering this, many techniques have been developed to evaluate leaf greenness or SPAD value for assessing the amount of N application in the rice cultivar to maximize the grain yield. The aim of the present study was to investigate the morpho-physiological characteristics and relative expression level of N assimilation in three different rice genotypes (MT2, RD31, KDML105) under 1.00 × (full N), 0.50 × , 0.25 × (N depletion), and 0.00 × (N deficiency) at seedling stage and the morpho-physiological traits and the grain yield attributes under 1.00 × (full N) and 0.25 × (N depletion) were compared. Leaf chlorosis and growth inhibition in rice seedlings under N deficiency were evidently observed. Shoot height, number of leaves, shoot fresh weight, shoot dry weight, and root fresh weight in KDML105 under N deficiency were decreased by 27.65%, 42.11%, 65.44%, 47.90%, and 54.09% over the control (full N). Likewise, leaf greenness was lowest in KDML105 under N deficiency (78.57% reduction over the full N), leading to low photosynthetic abilities. In addition, expression of nitrogen assimilation-related genes, OsNR1, OsGln1;1, and OsGln2, in KDML105 under N depletion were increased within 3 h and then declined after the long incubation period, whereas those were unchanged in cvs. MT2 and RD31. Similarly, relative expression level of OsNADH-GOGAT, OsFd-GOGAT, and OsAspAt1 in KDML105 was peaked when subjected to 0.50 × N for 6 h and then declined after the long incubation period. Moreover, overall growth characters and physiological changes in cv. RD31 at vegetative stage under 0.25 × N were retained better than those in cvs. KDML105 and MT2, resulting in high yield at the harvesting process. In summary, N assimilated-related genes in rice seedlings under N depletion were rapidly regulated within 3-6 h, especially cv. KDML105 and MT2, then downregulated, resulting in physiological changes, growth inhibition, and yield reduction.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Kanyaratt Supaibulwatana
- Department of Biotechnology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Daonapa Chungloo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
7
|
Xie S, Liu H, Ma T, Shen S, Zheng H, Yang L, Liu L, Wei Z, Xin W, Zou D, Wang J. Global Phosphoproteomic Analysis Reveals the Defense and Response Mechanisms of Japonica Rice under Low Nitrogen Stress. Int J Mol Sci 2023; 24:ijms24097699. [PMID: 37175411 PMCID: PMC10178291 DOI: 10.3390/ijms24097699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Nitrogen-based nutrients are the main factors affecting rice growth and development. As the nitrogen (N) application rate increased, the nitrogen use efficiency (NUE) of rice decreased. Therefore, it is important to understand the molecular mechanism of rice plant morphological, physiological, and yield formation under low N conditions to improve NUE. In this study, changes in the rice morphological, physiological, and yield-related traits under low N (13.33 ppm) and control N (40.00 ppm) conditions were performed. These results show that, compared with control N conditions, photosynthesis and growth were inhibited and the carbon (C)/N and photosynthetic nitrogen use efficiency (PNUE) were enhanced under low N conditions. To understand the post-translational modification mechanism underlying the rice response to low N conditions, comparative phosphoproteomic analysis was performed, and differentially modified proteins (DMPs) were further characterized. Compared with control N conditions, a total of 258 DMPs were identified under low N conditions. The modification of proteins involved in chloroplast development, chlorophyll synthesis, photosynthesis, carbon metabolism, phytohormones, and morphology-related proteins were differentially altered, which was an important reason for changes in rice morphological, physiological, and yield-related traits. Additionally, inconsistent changes in level of transcription and protein modification, indicates that the study of phosphoproteomics under low N conditions is also important for us to better understand the adaptation mechanism of rice to low N stress. These results provide insights into global changes in the response of rice to low N stress and may facilitate the development of rice cultivars with high NUE by regulating the phosphorylation level of carbon metabolism and rice morphology-related proteins.
Collapse
Affiliation(s)
- Shupeng Xie
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Tianze Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Shen Shen
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Lichao Liu
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Zhonghua Wei
- Suihua Branch of Heilongjiang Academy of Agricultural Science, Suihua 152052, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
8
|
Sharma N, Jaiswal DK, Kumari S, Dash GK, Panda S, Anandan A, Raghuram N. Genome-Wide Urea Response in Rice Genotypes Contrasting for Nitrogen Use Efficiency. Int J Mol Sci 2023; 24:6080. [PMID: 37047052 PMCID: PMC10093866 DOI: 10.3390/ijms24076080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 04/14/2023] Open
Abstract
Rice is an ideal crop for improvement of nitrogen use efficiency (NUE), especially with urea, its predominant fertilizer. There is a paucity of studies on rice genotypes contrasting for NUE. We compared low urea-responsive transcriptomes of contrasting rice genotypes, namely Nidhi (low NUE) and Panvel1 (high NUE). Transcriptomes of whole plants grown with media containing normal (15 mM) and low urea (1.5 mM) revealed 1497 and 2819 differentially expressed genes (DEGs) in Nidhi and Panvel1, respectively, of which 271 were common. Though 1226 DEGs were genotype-specific in Nidhi and 2548 in Panvel1, there was far higher commonality in underlying processes. High NUE is associated with the urea-responsive regulation of other nutrient transporters, miRNAs, transcription factors (TFs) and better photosynthesis, water use efficiency and post-translational modifications. Many of their genes co-localized to NUE-QTLs on chromosomes 1, 3 and 9. A field evaluation under different doses of urea revealed better agronomic performance including grain yield, transport/uptake efficiencies and NUE of Panvel1. Comparison of our urea-based transcriptomes with our previous nitrate-based transcriptomes revealed many common processes despite large differences in their expression profiles. Our model proposes that differential involvement of transporters and TFs, among others, contributes to better urea uptake, translocation, utilization, flower development and yield for high NUE.
Collapse
Affiliation(s)
- Narendra Sharma
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Dinesh Kumar Jaiswal
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Supriya Kumari
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| | - Goutam Kumar Dash
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
| | - Siddharth Panda
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
- Institute of Agricultural Sciences, SOA (DU), Bhubaneswar 751003, India
| | - Annamalai Anandan
- Crop Improvement Division, Indian Council of Agricultural Research (ICAR)-National Rice Research Institute (NRRI), Cuttack 753006, India
- Regional Station, Indian Council of Agricultural Research (ICAR)-Indian Institute of Seed Science, Bengaluru 560065, India
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078, India
| |
Collapse
|
9
|
Bashir SS, Siddiqi TO, Kumar D, Ahmad A. Physio-biochemical, agronomical, and gene expression analysis reveals different responsive approach to low nitrogen in contrasting rice cultivars for nitrogen use efficiency. Mol Biol Rep 2023; 50:1575-1593. [PMID: 36520360 DOI: 10.1007/s11033-022-08160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Nitrogen (N) is an essential macronutrient for plant growth and development as it is an essential constituent of biomolecules. Its availability directly impacts crop yield. Increased N application in crop fields has caused environmental and health problems, and decreasing nitrogen inputs are in demand to maintain crop production sustainability. Understanding the molecular mechanism of N utilization could play a crucial role in improving the nitrogen use efficiency (NUE) of crop plants. METHODS AND RESULTS In the present study, the effect of low N supply on plant growth, physio-biochemical, chlorophyll fluorescence attributes, yield components, and gene expression analysis were measured at six developmental stages in rice cultivars. Two rice cultivars were grown with a supply of optimium (120 kg ha-1) and low N (60 kg ha-1). Cultivar Vikramarya excelled Aditya at low N supply, and exhibits enhanced plant growth, physiological efficiency, agronomic efficiency, and improved NUE due to higher N uptake and utilization at low N treatment. Moreover, plant biomass, leaf area, and photosynthetic rate were significantly higher in cv. Vikramarya than cv. Aditya at different growth stages, under low N treatment. In addition, enzymatic activities in cultivar Vikramarya were higher than cultivar Aditya under low nitrogen, indicating its greater potential for N metabolism. Gene expression analysis was carried out for the most important nitrogen assimilatory enzymes, such as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), and glutamate synthase (GOGAT). Expression levels of these genes at different growth stages were significantly higher in cv. Vikramarya compared to cv. Aditya at low N supply. Our findings suggest that improving NUE needs specific revision in N metabolism and physiological assimilation. CONCLUSION Overall differences in plant growth, physiological efficiency, biochemical activities, and expression levels of N metabolism genes in N-efficient and N-inefficient rice cultivars need a specific adaptation to N metabolism. Regulatory genes may separately or in conjunction, enhance the NUE. These results provide a platform for selecting crop cultivars for nitrogen utilization efficiency at low N treatment.
Collapse
Affiliation(s)
- Sheikh Shanawaz Bashir
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Tariq Omar Siddiqi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Dinesh Kumar
- Division of Agronomy, Indian Agricultural Research Institute, New Delhi, India
| | - Altaf Ahmad
- Department of Botany, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
10
|
Maize Breeding for Low Nitrogen Inputs in Agriculture: Mechanisms Underlying the Tolerance to the Abiotic Stress. STRESSES 2023. [DOI: 10.3390/stresses3010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nitrogen (N) is essential for sustaining life on Earth and plays a vital role in plant growth and thus agricultural production. The excessive use of N fertilizers not only harms the economy, but also the environment. In the context of the environmental impacts caused by agriculture, global maize improvement programs aim to develop cultivars with high N-use efficiency (NUE) to reduce the use of N fertilizers. Since N is highly mobile in plants, NUE is related to numerous little-known morphophysiological and molecular mechanisms. In this review paper we present an overview of the morpho-physiological adaptations of shoot and root, molecular mechanisms involved in plant response to low nitrogen environment, and the genetic effects involved in the control of key traits for NUE. Some studies show that the efficiency of cultivars growing under low N is related to deep root architecture, more lateral roots (LR), and sparser branching of LR, resulting in lower metabolic costs. The NUE cultivars also exhibit more efficient photosynthesis, which affects plant growth under suboptimal nitrogen conditions. In this sense, obtaining superior genotypes for NUE can be achieved with the exploitation of heterosis, as non-additive effects are more important in the expression of traits associated with NUE.
Collapse
|
11
|
Saini MR, Chandran LP, Barbadikar KM, Sevanthi AMV, Chawla G, Kaushik M, Mulani E, Phule AS, Govindannagari R, Sonth B, Sinha SK, Sundaram RM, Mandal PK. Understanding plant-microbe interaction of rice and soybean with two contrasting diazotrophic bacteria through comparative transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:939395. [PMID: 36483966 PMCID: PMC9724235 DOI: 10.3389/fpls.2022.939395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
Understanding the beneficial plant-microbe interactions is becoming extremely critical for deploying microbes imparting plant fitness and achieving sustainability in agriculture. Diazotrophic bacteria have the unique ability to survive without external sources of nitrogen and simultaneously promote host plant growth, but the mechanisms of endophytic interaction in cereals and legumes have not been studied extensively. We have studied the early interaction of two diazotrophic bacteria, Gluconacetobacter diazotrophicus (GAB) and Bradyrhizobium japonicum (BRH), in 15-day-old seedlings of rice and soybean up to 120 h after inoculation (hai) under low-nitrogen medium. Root colonization of GAB in rice was higher than that of BRH, and BRH colonization was higher in soybean roots as observed from the scanning electron microscopy at 120 hai. Peroxidase enzyme was significantly higher at 24 hai but thereafter was reduced sharply in soybean and gradually in rice. The roots of rice and soybean inoculated with GAB and BRH harvested from five time points were pooled, and transcriptome analysis was executed along with control. Two pathways, "Plant pathogen interaction" and "MAPK signaling," were specific to Rice-Gluconacetobacter (RG), whereas the pathways related to nitrogen metabolism and plant hormone signaling were specific to Rice-Bradyrhizobium (RB) in rice. Comparative transcriptome analysis of the root tissues revealed that several plant-diazotroph-specific differentially expressed genes (DEGs) and metabolic pathways of plant-diazotroph-specific transcripts, viz., chitinase, brassinosteroid, auxin, Myeloblastosis (MYB), nodulin, and nitrate transporter (NRT), were common in all plant-diazotroph combinations; three transcripts, viz., nitrate transport accessory protein (NAR), thaumatin, and thionin, were exclusive in rice and another three transcripts, viz., NAC (NAM: no apical meristem, ATAF: Arabidopsis thaliana activating factor, and CUC: cup-shaped cotyledon), ABA (abscisic acid), and ammonium transporter, were exclusive in soybean. Differential expression of these transcripts and reduction in pathogenesis-related (PR) protein expression show the early interaction. Based on the interaction, it can be inferred that the compatibility of rice and soybean is more with GAB and BRH, respectively. We propose that rice is unable to identify the diazotroph as a beneficial microorganism or a pathogen from an early response. So, it expressed the hypersensitivity-related transcripts along with PR proteins. The molecular mechanism of diazotrophic associations of GAB and BRH with rice vis-à-vis soybean will shed light on the basic understanding of host responses to beneficial microorganisms.
Collapse
Affiliation(s)
- Manish Ranjan Saini
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
- Kalinga Institute of Industrial Technology (KIIT) School of Biotechnology, KIIT University, Bhubaneswar, India
| | | | | | - Amitha Mithra V. Sevanthi
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| | - Gautam Chawla
- Division of Nematology, ICAR- Indian Agriculture Research Institute, New Delhi, India
| | - Megha Kaushik
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| | - Ekta Mulani
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| | | | | | - Bandeppa Sonth
- ICAR-Indian Institute of Rice Research, Hyderabad, India
| | - Subodh Kumar Sinha
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| | | | - Pranab Kumar Mandal
- Indian Council of Agricultural Research (ICAR) National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
12
|
Kumar S, Kumar S, Krishnan GS, Mohapatra T. Molecular basis of genetic plasticity to varying environmental conditions on growing rice by dry/direct-sowing and exposure to drought stress: Insights for DSR varietal development. FRONTIERS IN PLANT SCIENCE 2022; 13:1013207. [PMID: 36352870 PMCID: PMC9638133 DOI: 10.3389/fpls.2022.1013207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/28/2022] [Indexed: 06/01/2023]
Abstract
Rice requires plenty of water for its cultivation by transplanting. This poses several challenges to its cultivation due to erratic rainfall resulting in drought, flood, and other abiotic stresses of varying intensity. Dry/direct-sown rice (DSR) has emerged as a water-saving/climate-smart alternative to transplanted rice (TPR). The performance of a rice cultivar on growing by different methods of planting under varying environmental conditions varies considerably. However, the molecular basis of the observed phenotypic plasticity of rice to varying environmental conditions is still elusive. Resilience to various environmental fluctuations is important to ensure sustainable rice production in the present era of global climate change. Our observations on exclusively up-regulated genes in leaf of Nagina 22 (N 22) grown by dry/direct-sowing and subjected to drought stress at panicle initiation stage (compared to that in leaf of IR 64), and another set of genes exclusively down-regulated in leaf of N 22 (compared to that in leaf of IR 64) indicate important roles of leaf in stress resilience. A large number of genes down-regulated exclusively in root of N 22 on dry/direct-sowing subjected to drought stress indicates a major contribution of roots in stress tolerance. The genes for redox-homeostasis, transcription factors, stress signaling, carbohydrate metabolism, and epigenetic modifications play important roles in making N 22 better adapted to DSR conditions. More importantly, the involvement of genes in rendering genetic plasticity to N 22 under changing environmental conditions was confirmed by reversal of the method of planting. To the best of our knowledge, this is the first report on decoding the molecular basis of genetic plasticity of rice grown by two different methods of planting subjected to drought stress at the reproductive stage of plant growth. This might help in DSR varietal development program to enhance water-productivity, conserve natural resources, and minimize the emission of greenhouse gases, thus achieving the objectives of negative-emission agriculture.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Gopala S. Krishnan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
13
|
Adu BG, Argete AYS, Egawa S, Nagano AJ, Shimizu A, Ohmori Y, Fujiwara T. A Koshihikari X Oryza rufipogon Introgression Line with a High Capacity to Take up Nitrogen to Maintain Growth and Panicle Development under Low Nitrogen Conditions. PLANT & CELL PHYSIOLOGY 2022; 63:1215-1229. [PMID: 35791818 DOI: 10.1093/pcp/pcac097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) is an important macronutrient for plant growth and development. Currently, N fertilizers are required for the efficient production of modern crops such as rice due to their limited capacity to take up N when present at low concentrations. Wild rice represents a useful genetic resource for improving crop responses to low nutrient stress. Here, we describe the isolation and characterization of an introgression line, KRIL37, that carries a small region of the Oryza rufipogon genome in the Oryza sativa L. cv Koshihikari (KH) background. This line was found to grow better under low N conditions and have similar or lower C/N ratios in aerial portions compared to those in the parental KH cultivar, suggesting that KRIL37 has a higher capacity to take up and assimilate N when present at low concentrations. KRIL37 performance in the field was also better than that of KH cultivated without N and fertilizer (-F). Transcriptome analyses of 3-week-old seedlings based on RNA-sequencing revealed that KH induced a wider suite of genes than the tolerant line KRIL37 in response to low N conditions. Some ammonium transporters and N assimilation genes were found to be induced under low N in KRIL37, but not in KH. Our findings suggest that the superior growth performance of KRIL37 under limited N conditions could be due to the expression of wild alleles influencing N uptake and assimilation. Our study demonstrates the potential to use wild rice genomes to improve modern crops for low nutrient tolerance.
Collapse
Affiliation(s)
- Bright G Adu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Aizelle Y S Argete
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Sakiko Egawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, 520-2194, Japan
- Institute of Advanced Biosciences, Keio University, Tsuruoka, 997-0017, Japan
| | - Akifumi Shimizu
- School of Environmental Science, The University of Shiga Prefecture, Hassaka-cho, Hikone-City, Shiga 522-8533 Japan
| | - Yoshihiro Ohmori
- Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, 113-8657 Japan
| |
Collapse
|
14
|
Sharma N, Kumari S, Jaiswal DK, Raghuram N. Comparative Transcriptomic Analyses of Nitrate-Response in Rice Genotypes With Contrasting Nitrogen Use Efficiency Reveals Common and Genotype-Specific Processes, Molecular Targets and Nitrogen Use Efficiency-Candidates. FRONTIERS IN PLANT SCIENCE 2022; 13:881204. [PMID: 35774823 PMCID: PMC9237547 DOI: 10.3389/fpls.2022.881204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/26/2022] [Indexed: 05/05/2023]
Abstract
The genetic basis for nitrogen (N)-response and N use efficiency (NUE) must be found in N-responsive gene expression or protein regulation. Our transcriptomic analysis of nitrate response in two contrasting rice genotypes of Oryza sativa ssp. Indica (Nidhi with low NUE and Panvel1 with high NUE) revealed the processes/functions underlying differential N-response/NUE. The microarray analysis of low nitrate response (1.5 mM) relative to normal nitrate control (15 mM) used potted 21-days old whole plants. It revealed 1,327 differentially expressed genes (DEGs) exclusive to Nidhi and 666 exclusive to Panvel1, apart from 70 common DEGs, of which 10 were either oppositely expressed or regulated to different extents. Gene ontology analyses revealed that photosynthetic processes were among the very few processes common to both the genotypes in low N response. Those unique to Nidhi include cell division, nitrogen utilization, cytoskeleton, etc. in low N-response, whereas those unique to Panvel1 include signal transduction, protein import into the nucleus, and mitochondria. This trend of a few common but mostly unique categories was also true for transporters, transcription factors, microRNAs, and post-translational modifications, indicating their differential involvement in Nidhi and Panvel1. Protein-protein interaction networks constructed using DEG-associated experimentally validated interactors revealed subnetworks involved in cytoskeleton organization, cell wall, etc. in Nidhi, whereas in Panvel1, it was chloroplast development. NUE genes were identified by selecting yield-related genes from N-responsive DEGs and their co-localization on NUE-QTLs revealed the differential distribution of NUE-genes between genotypes but on the same chromosomes 1 and 3. Such hotspots are important for NUE breeders.
Collapse
Affiliation(s)
| | | | | | - Nandula Raghuram
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
15
|
Tantray AY, Hazzazi Y, Ahmad A. Physiological, Agronomical, and Proteomic Studies Reveal Crucial Players in Rice Nitrogen Use Efficiency under Low Nitrogen Supply. Int J Mol Sci 2022; 23:6410. [PMID: 35742855 PMCID: PMC9224494 DOI: 10.3390/ijms23126410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Excessive use of nitrogenous fertilizers to enhance rice productivity has become a significant source of nitrogen (N) pollution and reduced sustainable agriculture. However, little information about the physiology of different growth stages, agronomic traits, and associated genetic bases of N use efficiency (NUE) are available at low-N supply. Two rice (Oryza sativa L.) cultivars were grown with optimum N (120 kg ha-1) and low N (60 kg ha-1) supply. Six growth stages were analyzed to measure the growth and physiological traits, as well as the differential proteomic profiles, of the rice cultivars. Cultivar Panvel outclassed Nagina 22 at low-N supply and exhibited improved growth and physiology at most of the growth stages and agronomic efficiency due to higher N uptake and utilization at low-N supply. On average, photosynthetic rate, chlorophyll content, plant biomass, leaf N content, and grain yield were decreased in cultivar Nagina 22 than Panvel was 8%, 11%, 21%, 19%, and 22%, respectively, under low-N supply. Furthermore, proteome analyses revealed that many proteins were upregulated and downregulated at the different growth stages under low-N supply. These proteins are associated with N and carbon metabolism and other physiological processes. This supports the genotypic differences in photosynthesis, N assimilation, energy stabilization, and rice-protein yield. Our study suggests that enhancing NUE at low-N supply demands distinct modifications in N metabolism and physiological assimilation. The NUE may be regulated by key identified differentially expressed proteins. These proteins might be the targets for improving crop NUE at low-N supply.
Collapse
Affiliation(s)
- Aadil Yousuf Tantray
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| | - Yehia Hazzazi
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK;
- Biology Department, Faculty of Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| |
Collapse
|
16
|
Abdirad S, Ghaffari MR, Majd A, Irian S, Soleymaniniya A, Daryani P, Koobaz P, Shobbar ZS, Farsad LK, Yazdanpanah P, Sadri A, Mirzaei M, Ghorbanzadeh Z, Kazemi M, Hadidi N, Haynes PA, Salekdeh GH. Genome-Wide Expression Analysis of Root Tips in Contrasting Rice Genotypes Revealed Novel Candidate Genes for Water Stress Adaptation. FRONTIERS IN PLANT SCIENCE 2022; 13:792079. [PMID: 35265092 PMCID: PMC8899714 DOI: 10.3389/fpls.2022.792079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 06/02/2023]
Abstract
Root system architecture (RSA) is an important agronomic trait with vital roles in plant productivity under water stress conditions. A deep and branched root system may help plants to avoid water stress by enabling them to acquire more water and nutrient resources. Nevertheless, our knowledge of the genetics and molecular control mechanisms of RSA is still relatively limited. In this study, we analyzed the transcriptome response of root tips to water stress in two well-known genotypes of rice: IR64, a high-yielding lowland genotype, which represents a drought-susceptible and shallow-rooting genotype; and Azucena, a traditional, upland, drought-tolerant and deep-rooting genotype. We collected samples from three zones (Z) of root tip: two consecutive 5 mm sections (Z1 and Z2) and the following next 10 mm section (Z3), which mainly includes meristematic and maturation regions. Our results showed that Z1 of Azucena was enriched for genes involved in cell cycle and division and root growth and development whereas in IR64 root, responses to oxidative stress were strongly enriched. While the expansion of the lateral root system was used as a strategy by both genotypes when facing water shortage, it was more pronounced in Azucena. Our results also suggested that by enhancing meristematic cell wall thickening for insulation purposes as a means of confronting stress, the sensitive IR64 genotype may have reduced its capacity for root elongation to extract water from deeper layers of the soil. Furthermore, several members of gene families such as NAC, AP2/ERF, AUX/IAA, EXPANSIN, WRKY, and MYB emerged as main players in RSA and drought adaptation. We also found that HSP and HSF gene families participated in oxidative stress inhibition in IR64 root tip. Meta-quantitative trait loci (QTL) analysis revealed that 288 differentially expressed genes were colocalized with RSA QTLs previously reported under drought and normal conditions. This finding warrants further research into their possible roles in drought adaptation. Overall, our analyses presented several major molecular differences between Azucena and IR64, which may partly explain their differential root growth responses to water stress. It appears that Azucena avoided water stress through enhancing growth and root exploration to access water, whereas IR64 might mainly rely on cell insulation to maintain water and antioxidant system to withstand stress. We identified a large number of novel RSA and drought associated candidate genes, which should encourage further exploration of their potential to enhance drought adaptation in rice.
Collapse
Affiliation(s)
- Somayeh Abdirad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Ahmad Majd
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Parisa Daryani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Laleh Karimi Farsad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Yazdanpanah
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Amirhossein Sadri
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Zahra Ghorbanzadeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mehrbano Kazemi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Naghmeh Hadidi
- Department of Clinical Research and Electronic Microscope, Pasteur Institute of Iran, Tehran, Iran
| | - Paul A. Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
17
|
Kumar S, Seem K, Kumar S, Mohapatra T. RNA-seq analysis reveals the genes/pathways responsible for genetic plasticity of rice to varying environmental conditions on direct-sowing and transplanting. Sci Rep 2022; 12:2241. [PMID: 35145168 PMCID: PMC8831524 DOI: 10.1038/s41598-022-06009-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/21/2022] [Indexed: 01/23/2023] Open
Abstract
Rice cultivation by transplanting requires plenty of water. It might become a challenging task in future to grow rice by transplanting due to the climatic change, water and labor scarcities. Direct-sown rice (DSR) is emerging as a resource-conserving and climate-smart alternative to transplanted rice (TPR). However, no specific variety has been bred for dry/direct-sown conditions. The present study was undertaken to decipher the molecular basis of genetic plasticity of rice under different planting methods. Comparative RNA-seq analysis revealed a number (6133) of genes exclusively up-regulated in Nagina-22 (N-22) leaf under DSR conditions, compared to that (3538) in IR64 leaf. Several genes up-regulated in N-22 were down-regulated in IR64. Genes for growth-regulation and nutrient-reservoir activities, transcription factors, translational machinery, carbohydrate metabolism, cell cycle/division, and chromatin organization/epigenetic modifications were considerably up-regulated in the leaf of N-22 under DSR conditions. Complementary effects of these factors in rendering genetic plasticity were confirmed by the agronomic/physiological performance of rice cultivar. Thus, growth-regulation/nutrient-reservoir activities, transcription factors, and translational machinery are important molecular factors responsible for the observed genetic plasticity/adaptability of Nagina-22 to different planting methods. This might help to develop molecular markers for DSR breeding, replacing TPR with DSR for better water-productivity, and minimizing greenhouse-gas emission necessary for negative emission agriculture.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Karishma Seem
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | | |
Collapse
|
18
|
Transcriptome Differences in Response Mechanisms to Low-Nitrogen Stress in Two Wheat Varieties. Int J Mol Sci 2021; 22:ijms222212278. [PMID: 34830160 PMCID: PMC8622133 DOI: 10.3390/ijms222212278] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022] Open
Abstract
Nitrogen plays a crucial role in wheat growth and development. Here, we analyzed the tolerance of wheat strains XM26 and LM23 to low-nitrogen stress using a chlorate sensitivity experiment. Subsequently, we performed transcriptome analyses of both varieties exposed to low-nitrogen (LN) and normal (CK) treatments. Compared with those under CK treatment, 3534 differentially expressed genes (DEGs) were detected in XM26 in roots and shoots under LN treatment (p < 0.05, and |log2FC| > 1). A total of 3584 DEGs were detected in LM23. A total of 3306 DEGs, including 863 DEGs in roots and 2443 DEGs in shoots, were specifically expressed in XM26 or showed huge differences between XM26 and LM23 (log2FC ratio > 3). These were selected for gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The calcium-mediated plant–pathogen interaction, MAPK signaling, and phosphatidylinositol signaling pathways were enriched in XM26 but not in LM23. We also verified the expression of important genes involved in these pathways in the two varieties using qRT-PCR. A total of 156 transcription factors were identified among the DEGs, and their expression patterns were different between the two varieties. Our findings suggest that calcium-related pathways play different roles in the two varieties, eliciting different tolerances to low-nitrogen stress.
Collapse
|
19
|
Zhao C, Ma G, Zhou L, Zhang S, Su L, Sun X, Borrás-Hidalgo O, Li K, Yue Q, Zhao L. Effects of nitrogen levels on gene expression and amino acid metabolism in Welsh onion. BMC Genomics 2021; 22:803. [PMID: 34743697 PMCID: PMC8573885 DOI: 10.1186/s12864-021-08130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
Background Welsh onion constitutes an important crop due to its benefits in traditional medicine. Nitrogen is an important nutrient for plant growth and yield; however, little is known about its influence on the mechanisms of Welsh onion regulation genes. In this study, we introduced a gene expression and amino acid analysis of Welsh onion treated with different concentrations of nitrogen (N0, N1, and N2 at 0 kg/ha, 130 kg/ha, and 260 kg/ha, respectively). Results Approximately 1,665 genes were differentially regulated with different concentrations of nitrogen. Gene ontology enrichment analysis revealed that the genes involved in metabolic processes, protein biosynthesis, and transportation of amino acids were highly represented. KEGG analysis indicated that the pathways were related to amino acid metabolism, cysteine, beta-alanine, arginine, proline, and glutathione. Differential gene expression in response to varying nitrogen concentrations resulted in different amino acid content. A close relationship between gene expression and the content of amino acids was observed. Conclusions This work examined the effects of nitrogen on gene expression and amino acid synthesis and provides important evidence on the efficient use of nitrogen in Welsh onion.
Collapse
Affiliation(s)
- Chen Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Guanchu Ma
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lin Zhou
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Orlando Borrás-Hidalgo
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Kunlun Li
- Jinan Hangchen Biotechnology Co., Ltd, Jinan, China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Shandong Provincial Key Lab. of Microbial Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
20
|
Chen C, Chu Y, Huang Q, Zhang W, Ding C, Zhang J, Li B, Zhang T, Li Z, Su X. Morphological, physiological, and transcriptional responses to low nitrogen stress in Populus deltoides Marsh. clones with contrasting nitrogen use efficiency. BMC Genomics 2021; 22:697. [PMID: 34579659 PMCID: PMC8474845 DOI: 10.1186/s12864-021-07991-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Background Nitrogen (N) is one of the main factors limiting the wood yield in poplar cultivation. Understanding the molecular mechanism of N utilization could play a guiding role in improving the nitrogen use efficiency (NUE) of poplar. Results In this study, three N-efficient genotypes (A1-A3) and three N-inefficient genotypes (C1-C3) of Populus deltoides were cultured under low N stress (5 μM NH4NO3) and normal N supply (750 μM NH4NO3). The dry matter mass, leaf morphology, and chlorophyll content of both genotypes decreased under N starvation. The low nitrogen adaptation coefficients of the leaves and stems biomass of group A were significantly higher than those of group C (p < 0.05). Interestingly, N starvation induced fine root growth in group A, but not in group C. Next, a detailed time-course analysis of enzyme activities and gene expression in leaves identified 2062 specifically differentially expressed genes (DEGs) in group A and 1118 in group C. Moreover, the sensitivity to N starvation of group A was weak, and DEGs related to hormone signal transduction and stimulus response played an important role in the low N response this group. Weighted gene co-expression network analysis identified genes related to membranes, catalytic activity, enzymatic activity, and response to stresses that might be critical for poplar’s adaption to N starvation and these genes participated in the negative regulation of various biological processes. Finally, ten influential hub genes and twelve transcription factors were identified in the response to N starvation. Among them, four hub genes were related to programmed cell death and the defense response, and PodelWRKY18, with high connectivity, was involved in plant signal transduction. The expression of hub genes increased gradually with the extension of low N stress time, and the expression changes in group A were more obvious than those in group C. Conclusions Under N starvation, group A showed stronger adaptability and better NUE than group C in terms of morphology and physiology. The discovery of hub genes and transcription factors might provide new information for the analysis of the molecular mechanism of NUE and its improvement in poplar. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07991-7.
Collapse
Affiliation(s)
- Cun Chen
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Yanguang Chu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Qinjun Huang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Weixi Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Jing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Bo Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Tengqian Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Zhenghong Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China
| | - Xiaohua Su
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China. .,Key Laboratory of Tree Breeding and Cultivation, State Forestry and Grassland Administration, Beijing, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
21
|
Sun Q, Lu H, Zhang Q, Wang D, Chen J, Xiao J, Ding X, Li Q. Transcriptome sequencing of wild soybean revealed gene expression dynamics under low nitrogen stress. J Appl Genet 2021; 62:389-404. [PMID: 33770376 DOI: 10.1007/s13353-021-00628-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Nitrogen is one of the essential elements for plant growth. Wild soybeans (Glycine soja) have strong abilities to survive in harsh and barren environments, and hence become ideal plant model for studying plant adaptability to low nitrogen (LN) conditions. In this study, we analyzed and compared the transcriptomes of wild soybean subjected to LN treatments. We totally identified 1095 (681 up and 414 down) and 5490 (2998 up and 2492 down) differentially expressed genes (DEGs) in the aerial parts (leaf and stem, LS) and roots, respectively. Gene ontology classification analysis revealed that the categories related to LN stress (including oxidation reduction, transcriptional regulation, membrane, and protein phosphorylation) were highly enriched among DEGs. In addition, a total of 784 transcription factor (TF) and 84 transporter protein (TP) genes were determined in LS DEGs, of which some TF genes (NAC1, NAC35, ZFP1, CIM1, and WRKY25) and TP genes like NRT2.5 (nitrate transporter) and ABCC12 (ABC transporter) were widely upregulated under LN stress. Nevertheless, a total of 3859 TF and 370 TP genes were identified in root DEGs, of which some TF genes (NAC6, NAC14, MYB29, MYB92, bZIP62, bZIP72, WRKY60, WRKY58) and TP genes like NRT2.4 and HAK5 (potassium transporter) were upregulated under LN stress. These findings suggest that the identified DEGs may play vital roles in plant responses to LN stress, providing important genetic resources for further functional dissection of plant molecular mechanisms to LN stress.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Haoran Lu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Qing Zhang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Di Wang
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jun Chen
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Jialei Xiao
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodong Ding
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| | - Qiang Li
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
22
|
Transcriptome Analysis of Two Near-Isogenic Lines with Different NUE under Normal Nitrogen Conditions in Wheat. BIOLOGY 2021; 10:biology10080787. [PMID: 34440020 PMCID: PMC8389668 DOI: 10.3390/biology10080787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary High nitrogen use efficiency (NUE) in wheat (Triticum aestivum L.) is the key to ensure high yield and reduce pollution. Understanding the physiological and molecular changes that regulate NUE is important for the breeding of high-NUE wheat varieties. Carbon and nitrogen metabolism are the basic metabolic pathways in plants. It becomes important to reveal the underlying molecular mechanisms related to carbon and nitrogen metabolism, which may be helpful to improve NUE. In this paper, two wheat near-isogenic lines (NILs) with contrasting NUE were performed RNA-Sequencing (RNA-Seq) to identify candidate genes associated with carbon/nitrogen metabolism under normal nitrogen conditions. Our research may provide new insights into the comprehensive understanding of the molecular mechanism underlying NUE. Abstract Nitrogen (N) is an essential nutrient element for crop productivity. Unfortunately, the nitrogen use efficiency (NUE) of crop plants gradually decreases with the increase of the N application rate. Nevertheless, little has been known about the molecular mechanisms of differences in NUE among genotypes of wheat. In this study, we used RNA-Sequencing (RNA-Seq) to compare the transcriptome profiling of flag leaves at the stage of anthesis in wheat NILs (1Y, high-NUE, and 1W, low-NUE) under normal nitrogen conditions (300 kg N ha−1, corresponding to 1.6 g N pot−1). We identified 7023 DEGs (4738 upregulated and 2285 downregulated) in the comparison between lines 1Y and 1W. The responses of 1Y and 1W to normal N differed in the transcriptional regulatory mechanisms. Several genes belonging to the GS and GOGAT gene families were upregulated in 1Y compared with 1W, and the enhanced carbon metabolism might lead 1Y to produce more C skeletons, metabolic energy, and reductants for nitrogen metabolism. A subset of transcription factors (TFs) family members, such as ERF, WRKY, NAC, and MYB, were also identified. Collectively, these identified candidate genes provided new information for a further understanding of the genotypic difference in NUE.
Collapse
|
23
|
Sevanthi AM, Sinha SK, V S, Rani M, Saini MR, Kumari S, Kaushik M, Prakash C, K V, Singh GP, Mohapatra T, Mandal PK. Integration of Dual Stress Transcriptomes and Major QTLs from a Pair of Genotypes Contrasting for Drought and Chronic Nitrogen Starvation Identifies Key Stress Responsive Genes in Rice. RICE (NEW YORK, N.Y.) 2021; 14:49. [PMID: 34089405 PMCID: PMC8179884 DOI: 10.1186/s12284-021-00487-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 05/05/2021] [Indexed: 05/19/2023]
Abstract
We report here the genome-wide changes resulting from low N (N-W+), low water (N+W-)) and dual stresses (N-W-) in root and shoot tissues of two rice genotypes, namely, IR 64 (IR64) and Nagina 22 (N22), and their association with the QTLs for nitrogen use efficiency. For all the root parameters, except for root length under N-W+, N22 performed better than IR64. Chlorophyll a, b and carotenoid content were higher in IR64 under N+W+ treatment and N-W+ and N+W- stresses; however, under dual stress, N22 had higher chlorophyll b content. While nitrite reductase, glutamate synthase (GS) and citrate synthase assays showed better specific activity in IR64, glutamate dehydrogenase showed better specific activity in N22 under dual stress (N-W-); the other N and C assimilating enzymes showed similar but low specific activities in both the genotypes. A total of 8926 differentially expressed genes (DEGs) were identified compared to optimal (N+W+) condition from across all treatments. While 1174, 698 and 903 DEGs in IR64 roots and 1197, 187 and 781 in N22 roots were identified, nearly double the number of DEGs were found in the shoot tissues; 3357, 1006 and 4005 in IR64 and 4004, 990 and 2143 in N22, under N-W+, N+W- and N-W- treatments, respectively. IR64 and N22 showed differential expression in 15 and 11 N-transporter genes respectively, under one or more stress treatments, out of which four showed differential expression also in N+W- condition. The negative regulators of N- stress, e.g., NIGT1, OsACTPK1 and OsBT were downregulated in IR64 while in N22, OsBT was not downregulated. Overall, N22 performed better under dual stress conditions owing to its better root architecture, chlorophyll and porphyrin synthesis and oxidative stress management. We identified 12 QTLs for seed and straw N content using 253 recombinant inbred lines derived from IR64 and N22 and a 5K SNP array. The QTL hotspot region on chromosome 6 comprised of 61 genes, of which, five were DEGs encoding for UDP-glucuronosyltransferase, serine threonine kinase, anthocyanidin 3-O-glucosyltransferase, and nitrate induced proteins. The DEGs, QTLs and candidate genes reported in this study can serve as a major resource for both rice improvement and functional biology.
Collapse
Affiliation(s)
| | - Subodh Kumar Sinha
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Sureshkumar V
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Manju Rani
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Manish Ranjan Saini
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Sapna Kumari
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Megha Kaushik
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Chandra Prakash
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Venkatesh K
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - G P Singh
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Trilochan Mohapatra
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India
| | - Pranab Kumar Mandal
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
24
|
Liu C, Chen S, Wang S, Zhao X, Li K, Chen S, Qu GZ. A genome wide transcriptional study of Populus alba x P. tremula var. glandulosa in response to nitrogen deficiency stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1277-1293. [PMID: 34220043 PMCID: PMC8212198 DOI: 10.1007/s12298-021-01012-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Poplar 84 K (Populus alba x P. tremula var. glandulosa) is a good resource for genetic engineering due to its rapid growth and wide adaptability, and it is also an excellent ornamental tree species. In this study, we used 84 K plantlets grown in the nitrogen-limited medium as experimental materials to explore the molecular mechanism in 84 K leaves under nitrogen deficiency. A total of 5,868 differentially expressed genes (DEGs) were identified using the transcriptional information from RNA-seq data. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment results revealed that the DEGs were mainly involved in energy metabolism and anthocyanin biosynthesis. We then identified differentially expressed transcription factors (TFs) and constructed TF centered gene co-expression networks for chlorophyll and anthocyanin biosynthesis pathway genes. Twenty potential regulators were finally identified. We speculated the transcription factors that control the pigmentation in leaves with the MYB-bHLH-WD40 (MBW) pigment regulatory model. Such identification will clarify the genetic basis of the secondary metabolism in 84 K, and being a source of candidate genes for future plant genetic engineering. Our work broadens the researchers' understanding of the regulation of anthocyanin synthesis in trees and provides new perspectives for ornamental 84 K poplar breeding. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01012-3.
Collapse
Affiliation(s)
- Caixia Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Sui Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kailong Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guan-zheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
25
|
Meng X, Wang X, Zhang Z, Xiong S, Wei Y, Guo J, Zhang J, Wang L, Ma X, Tegeder M. Transcriptomic, proteomic, and physiological studies reveal key players in wheat nitrogen use efficiency under both high and low nitrogen supply. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4435-4456. [PMID: 33829261 DOI: 10.1093/jxb/erab153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 06/12/2023]
Abstract
The effective use of available nitrogen (N) to improve crop grain yields provides an important strategy to reduce environmental N pollution and promote sustainable agriculture. However, little is known about the common genetic basis of N use efficiency (NUE) at varying N availability. Two wheat (Triticum aestivum L.) cultivars were grown in the field with high, moderate, and low N supply. Cultivar Zhoumai 27 outperformed Aikang 58 independent of the N supply and showed improved growth, canopy leaf area index, flag leaf surface area, grain number, and yield, and enhanced NUE due to both higher N uptake and utilization efficiency. Further, transcriptome and proteome analyses were performed using flag leaves that provide assimilates for grain growth. The results showed that many genes or proteins that are up- or down-regulated under all N regimes are associated with N and carbon metabolism and transport. This was reinforced by cultivar differences in photosynthesis, assimilate phloem transport, and grain protein/starch yield. Overall, our study establishes that improving NUE at both high and low N supply requires distinct adjustments in leaf metabolism and assimilate partitioning. Identified key genes/proteins may individually or concurrently regulate NUE and are promising targets for maximizing crop NUE irrespective of the N supply.
Collapse
Affiliation(s)
- Xiaodan Meng
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
- School of Biological Sciences, Washington State University, Pullman, WAUSA
| | - Xiaochun Wang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
| | - Zhiyong Zhang
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Shuping Xiong
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Yihao Wei
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Jianbiao Guo
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Jie Zhang
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Lulu Wang
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Xinming Ma
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, ZhengzhouChina
- College of Agronomy, Henan Agricultural University, ZhengzhouChina
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WAUSA
| |
Collapse
|
26
|
Chaudhary S, Kalkal M. Rice Transcriptome Analysis Reveals Nitrogen Starvation Modulates Differential Alternative Splicing and Transcript Usage in Various Metabolism-Related Genes. Life (Basel) 2021; 11:285. [PMID: 33801769 PMCID: PMC8066416 DOI: 10.3390/life11040285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Nitrogen (N) is crucial for plant growth and development; however, excessive use of N fertilizers cause many problems including environmental damage, degradation of soil fertility, and high cost to the farmers. Therefore, immediate implementation is required to develop N efficient crop varieties. Rice being low nitrogen use efficiency (NUE) and a high demand staple food across the world has become a favorite crop to study the NUE trait. In the current study, we used the publicly available transcriptome data generated from the root and shoot tissues of two rice genotypes IR-64 and Nagina-22 (N-22) under optimum N supply (N+) and chronic N-starvation (N-). A stringent pipeline was applied to detect differentially expressed genes (DEGs), alternatively spliced (DAS) genes, differentially expressed transcripts (DETs) and differential transcript usage (DTU) transcripts in both the varieties and tissues under N+ and N- conditions. The DAS genes and DTU transcripts identified in the study were found to be involved in several metabolic and biosynthesis processes. We suggest alternative splicing (AS) plays an important role in fine-tuning the regulation of metabolic pathways related genes in genotype, tissue, and condition-dependent manner. The current study will help in understanding the transcriptional dynamics of NUE traits in the future.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Meenu Kalkal
- Parasite-Host Biology, National Institute of Malaria Research, Dwarka, New Delhi 110077, India;
| |
Collapse
|
27
|
Neeraja CN, Barbadikar KM, Krishnakanth T, Bej S, Rao IS, Srikanth B, Rao DS, Subrahmanyam D, Rao PR, Voleti SR. Down regulation of transcripts involved in selective metabolic pathways as an acclimation strategy in nitrogen use efficient genotypes of rice under low nitrogen. 3 Biotech 2021; 11:80. [PMID: 33505835 DOI: 10.1007/s13205-020-02631-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/28/2020] [Indexed: 11/26/2022] Open
Abstract
To understand the molecular mechanism of nitrogen use efficiency (NUE) in rice, two nitrogen (N) use efficient genotypes and two non-efficient genotypes were characterized using transcriptome analyses. The four genotypes were evaluated for 3 years under low and recommended N field conditions for 12 traits/parameters of yield, straw, nitrogen content along with NUE indices and 2 promising donors for rice NUE were identified. Using the transcriptome data generated from GS FLX 454 Roche and Illumina HiSeq 2000 of two efficient and two non-efficient genotypes grown under field conditions of low N and recommended N and their de novo assembly, differentially expressed transcripts and pathways during the panicle development were identified. Down regulation was observed in 30% of metabolic pathways in efficient genotypes and is being proposed as an acclimation strategy to low N. Ten sub metabolic pathways significantly enriched with additional transcripts either in the direction of the common expression or contra-regulated to the common expression were found to be critical for NUE in rice. Among the up-regulated transcripts in efficient genotypes, a hypothetical protein OsI_17904 with 2 alternative forms suggested the role of alternative splicing in NUE of rice and a potassium channel SKOR transcript (LOC_Os06g14030) has shown a positive correlation (0.62) with single plant yield under low N in a set of 16 rice genotypes. From the present study, we propose that the efficient genotypes appear to down regulate several not so critical metabolic pathways and divert the thus conserved energy to produce seed/yield under long-term N starvation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-020-02631-5.
Collapse
Affiliation(s)
- C N Neeraja
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - Kalyani M Barbadikar
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - T Krishnakanth
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - Sonali Bej
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - I Subhakara Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - B Srikanth
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - D Sanjeeva Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - D Subrahmanyam
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - P Raghuveer Rao
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| | - S R Voleti
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, Telangana India
| |
Collapse
|
28
|
Takehisa H, Sato Y. Transcriptome-based approaches for clarification of nutritional responses and improvement of crop production. BREEDING SCIENCE 2021; 71:76-88. [PMID: 33762878 PMCID: PMC7973498 DOI: 10.1270/jsbbs.20098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/01/2020] [Indexed: 06/12/2023]
Abstract
Genome-wide transcriptome profiling is a powerful tool for identifying key genes and pathways involved in plant development and physiological processes. This review summarizes studies that have used transcriptome profiling mainly in rice to focus on responses to macronutrients such as nitrogen, phosphorus and potassium, and spatio-temporal root profiling in relation to the regulation of root system architecture as well as nutrient uptake and transport. We also discuss strategies based on meta- and co-expression analyses with different attributed transcriptome data, which can be used for investigating the regulatory mechanisms and dynamics of nutritional responses and adaptation, and speculate on further advances in transcriptome profiling that could have potential application to crop breeding and cultivation.
Collapse
Affiliation(s)
- Hinako Takehisa
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Yutaka Sato
- Institute of Crop Science, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
29
|
Xin W, Zhang L, Gao J, Zhang W, Yi J, Zhen X, Bi C, He D, Liu S, Zhao X. Adaptation Mechanism of Roots to Low and High Nitrogen Revealed by Proteomic Analysis. RICE (NEW YORK, N.Y.) 2021; 14:5. [PMID: 33411084 PMCID: PMC7790981 DOI: 10.1186/s12284-020-00443-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/06/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Nitrogen-based nutrients are the main factors affecting rice growth and development. Root systems play an important role in helping plants to obtain nutrients from the soil. Root morphology and physiology are often closely related to above-ground plant organs performance. Therefore, it is important to understand the regulatory effects of nitrogen (N) on rice root growth to improve nitrogen use efficiency. RESULTS In this study, changes in the rice root traits under low N (13.33 ppm), normal N (40 ppm) and high N (120 ppm) conditions were performed through root morphology analysis. These results show that, compared with normal N conditions, root growth is promoted under low N conditions, and inhibited under high N conditions. To understand the molecular mechanism underlying the rice root response to low and high N conditions, comparative proteomics analysis was performed using a tandem mass tag (TMT)-based approach, and differentially abundant proteins (DAPs) were further characterized. Compared with normal N conditions, a total of 291 and 211 DAPs were identified under low and high N conditions, respectively. The abundance of proteins involved in cell differentiation, cell wall modification, phenylpropanoid biosynthesis, and protein synthesis was differentially altered, which was an important reason for changes in root morphology. Furthermore, although both low and high N can cause nitrogen stress, rice roots revealed obvious differences in adaptation to low and high N. CONCLUSIONS These results provide insights into global changes in the response of rice roots to nitrogen availability and may facilitate the development of rice cultivars with high nitrogen use efficiency through root-based genetic improvements.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Lina Zhang
- Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Jiping Gao
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenzhong Zhang
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jun Yi
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoxi Zhen
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Congyuan Bi
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Dawei He
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Shiming Liu
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinyu Zhao
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
30
|
Kumari S, Sharma N, Raghuram N. Meta-Analysis of Yield-Related and N-Responsive Genes Reveals Chromosomal Hotspots, Key Processes and Candidate Genes for Nitrogen-Use Efficiency in Rice. FRONTIERS IN PLANT SCIENCE 2021; 12:627955. [PMID: 34168661 PMCID: PMC8217879 DOI: 10.3389/fpls.2021.627955] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/04/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen-use efficiency (NUE) is a function of N-response and yield that is controlled by many genes and phenotypic parameters that are poorly characterized. This study compiled all known yield-related genes in rice and mined them from the N-responsive microarray data to find 1,064 NUE-related genes. Many of them are novel genes hitherto unreported as related to NUE, including 80 transporters, 235 transcription factors (TFs), 44 MicroRNAs (miRNAs), 91 kinases, and 8 phosphatases. They were further shortlisted to 62 NUE-candidate genes following hierarchical methods, including quantitative trait locus (QTL) co-localization, functional evaluation in the literature, and protein-protein interactions (PPIs). They were localized to chromosomes 1, 3, 5, and 9, of which chromosome 1 with 26 genes emerged as a hotspot for NUE spanning 81% of the chromosomes. Further, co-localization of the NUE genes on NUE-QTLs resolved differences in the earlier studies that relied mainly on N-responsive genes regardless of their role in yield. Functional annotations and PPIs for all the 1,064 NUE-related genes and also the shortlisted 62 candidates revealed transcription, redox, phosphorylation, transport, development, metabolism, photosynthesis, water deprivation, and hormonal and stomatal function among the prominent processes. In silico expression analysis confirmed differential expression of the 62 NUE-candidate genes in a tissue/stage-specific manner. Experimental validation in two contrasting genotypes revealed that high NUE rice shows better photosynthetic performance, transpiration efficiency and internal water-use efficiency in comparison to low NUE rice. Feature Selection Analysis independently identified one-third of the common genes at every stage of hierarchical shortlisting, offering 6 priority targets to validate for improving the crop NUE.
Collapse
|
31
|
Marzec M, Situmorang A, Brewer PB, Brąszewska A. Diverse Roles of MAX1 Homologues in Rice. Genes (Basel) 2020; 11:E1348. [PMID: 33202900 PMCID: PMC7709044 DOI: 10.3390/genes11111348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Cytochrome P450 enzymes encoded by MORE AXILLARY GROWTH1 (MAX1)-like genes produce most of the structural diversity of strigolactones during the final steps of strigolactone biosynthesis. The diverse copies of MAX1 in Oryza sativa provide a resource to investigate why plants produce such a wide range of strigolactones. Here we performed in silico analyses of transcription factors and microRNAs that may regulate each rice MAX1, and compared the results with available data about MAX1 expression profiles and genes co-expressed with MAX1 genes. Data suggest that distinct mechanisms regulate the expression of each MAX1. Moreover, there may be novel functions for MAX1 homologues, such as the regulation of flower development or responses to heavy metals. In addition, individual MAX1s could be involved in specific functions, such as the regulation of seed development or wax synthesis in rice. Our analysis reveals potential new avenues of strigolactone research that may otherwise not be obvious.
Collapse
Affiliation(s)
- Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| | - Apriadi Situmorang
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Philip B. Brewer
- ARC Centre of Excellence in Plant Energy Biology, Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia; (A.S.); (P.B.B.)
| | - Agnieszka Brąszewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland;
| |
Collapse
|
32
|
Sultana N, Islam S, Juhasz A, Yang R, She M, Alhabbar Z, Zhang J, Ma W. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front Genet 2020; 11:583785. [PMID: 33193713 PMCID: PMC7554635 DOI: 10.3389/fgene.2020.583785] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity. Knowledge about the physiological and transcriptomic changes that regulate NUE, in particular how plants cope with nitrogen (N) stress during flowering and the grain filling period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in different tissues and shows significant genetic variability. A comparative transcriptome study was carried out using RNA-seq analysis to investigate the effect of nitrogen levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs) were identified under nitrogen stress where down-regulated DEGs were predominantly associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and defense response, whereas the up-regulated DEGs were associated with nucleotide metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis further revealed that highly interacted down-regulated DEGs were involved in light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in steroid biosynthesis under N stress. The common down-regulated genes across the cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein 1589 of uncharacterized protein function, etc., whereas common up-regulated genes included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein, and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism and proteolysis. The DEGs with high abundance in high NUE cultivar can be good candidates to develop nitrogen stress-tolerant variety with improved NUE.
Collapse
Affiliation(s)
- Nigarin Sultana
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Shahidul Islam
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Angela Juhasz
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Rongchang Yang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zaid Alhabbar
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wujun Ma
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
33
|
Subudhi PK, Garcia RS, Coronejo S, Tapia R. Comparative Transcriptomics of Rice Genotypes with Contrasting Responses to Nitrogen Stress Reveals Genes Influencing Nitrogen Uptake through the Regulation of Root Architecture. Int J Mol Sci 2020; 21:ijms21165759. [PMID: 32796695 PMCID: PMC7460981 DOI: 10.3390/ijms21165759] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 02/02/2023] Open
Abstract
The indiscriminate use of nitrogenous fertilizers continues unabated for commercial crop production, resulting in air and water pollution. The development of rice varieties with enhanced nitrogen use efficiency (NUE) will require a thorough understanding of the molecular basis of a plant’s response to low nitrogen (N) availability. The global expression profiles of root tissues collected from low and high N treatments at different time points in two rice genotypes, Pokkali and Bengal, with contrasting responses to N stress and contrasting root architectures were examined. Overall, the number of differentially expressed genes (DEGs) in Pokkali (indica) was higher than in Bengal (japonica) during low N and early N recovery treatments. Most low N DEGs in both genotypes were downregulated whereas early N recovery DEGs were upregulated. Of these, 148 Pokkali-specific DEGs might contribute to Pokkali’s advantage under N stress. These DEGs included transcription factors and transporters and were involved in stress responses, growth and development, regulation, and metabolism. Many DEGs are co-localized with quantitative trait loci (QTL) related to root growth and development, chlorate-resistance, and NUE. Our findings suggest that the superior growth performance of Pokkali under low N conditions could be due to the genetic differences in a diverse set of genes influencing N uptake through the regulation of root architecture.
Collapse
|
34
|
Pathak RR, Jangam AP, Malik A, Sharma N, Jaiswal DK, Raghuram N. Transcriptomic and network analyses reveal distinct nitrate responses in light and dark in rice leaves (Oryza sativa Indica var. Panvel1). Sci Rep 2020; 10:12228. [PMID: 32699267 PMCID: PMC7376017 DOI: 10.1038/s41598-020-68917-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/30/2020] [Indexed: 12/03/2022] Open
Abstract
Nitrate (N) response is modulated by light, but not understood from a genome-wide perspective. Comparative transcriptomic analyses of nitrate response in light-grown and etiolated rice leaves revealed 303 and 249 differentially expressed genes (DEGs) respectively. A majority of them were exclusive to light (270) or dark (216) condition, whereas 33 DEGs were common. The latter may constitute response to N signaling regardless of light. Functional annotation and pathway enrichment analyses of the DEGs showed that nitrate primarily modulates conserved N signaling and metabolism in light, whereas oxidation–reduction processes, pentose-phosphate shunt, starch-, sucrose- and glycerolipid-metabolisms in the dark. Differential N-regulation of these pathways by light could be attributed to the involvement of distinctive sets of transporters, transcription factors, enriched cis-acting motifs in the promoters of DEGs as well as differential modulation of N-responsive transcriptional regulatory networks in light and dark. Sub-clustering of DEGs-associated protein–protein interaction network constructed using experimentally validated interactors revealed that nitrate regulates a molecular complex consisting of nitrite reductase, ferredoxin-NADP reductase and ferredoxin. This complex is associated with flowering time, revealing a meeting point for N-regulation of N-response and N-use efficiency. Together, our results provide novel insights into distinct pathways of N-signaling in light and dark conditions.
Collapse
Affiliation(s)
- Ravi Ramesh Pathak
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Annie Prasanna Jangam
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Aakansha Malik
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Narendra Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Dinesh Kumar Jaiswal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Nandula Raghuram
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
35
|
Shao CH, Qiu CF, Qian YF, Liu GR. Nitrate deficiency decreased photosynthesis and oxidation-reduction processes, but increased cellular transport, lignin biosynthesis and flavonoid metabolism revealed by RNA-Seq in Oryza sativa leaves. PLoS One 2020; 15:e0235975. [PMID: 32649704 PMCID: PMC7351185 DOI: 10.1371/journal.pone.0235975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/26/2020] [Indexed: 11/19/2022] Open
Abstract
Rice cultivar "Weiyou916" (Oryza sativa L. ssp. Indica) were cultured with control (10 mM NO3-) and nitrate deficient solution (0 mM NO3-) for four weeks. Nitrogen (N) deficiency significantly decreased the content of N and P, dry weight (DW) of the shoots and roots, but increased the ratio of root to shoot in O. sativa. N deficiency decreased the photosynthesis rate and the maximum quantum yield of primary photochemistry (Fv/Fm), however, increased the intercellular CO2 concentration and primary fluorescence (Fo). N deficiency significantly increased the production of H2O2 and membrane lipid peroxidation revealed as increased MDA content in O. sativa leaves. N deficiency significantly increased the contents of starch, sucrose, fructose, and malate, but did not change that of glucose and total soluble protein in O. sativa leaves. The accumulated carbohydrates and H2O2 might further accelerate biosynthesis of lignin in O. sativa leaves under N limitation. A total of 1635 genes showed differential expression in response to N deficiency revealed by Illumina sequencing. Gene Ontology (GO) analysis showed that 195 DEGs were found to highly enrich in nine GO terms. Most of DEGs involved in photosynthesis, biosynthesis of ethylene and gibberellins were downregulated, whereas most of DEGs involved in cellular transport, lignin biosynthesis and flavonoid metabolism were upregulated by N deficiency in O. sativa leaves. Results of real-time quantitative PCR (RT-qPCR) further verified the RNA-Seq data. For the first time, DEGs involved oxygen-evolving complex, phosphorus response and lignin biosynthesis were identified in rice leaves. Our RNA-Seq data provided a global view of transcriptomic profile of principal processes implicated in the adaptation of N deficiency in O. sativa and shed light on the candidate direction in rice breeding for green and sustainable agriculture.
Collapse
Affiliation(s)
- Cai-Hong Shao
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Cai-Fei Qiu
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yin-Fei Qian
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Guang-Rong Liu
- Institute of Soil Fertilizer and Resources Environment, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
36
|
Dasgupta P, Das A, Datta S, Banerjee I, Tripathy S, Chaudhuri S. Understanding the early cold response mechanism in IR64 indica rice variety through comparative transcriptome analysis. BMC Genomics 2020; 21:425. [PMID: 32580699 PMCID: PMC7315535 DOI: 10.1186/s12864-020-06841-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cellular reprogramming in response to environmental stress involves alteration of gene expression, changes in the protein and metabolite profile for ensuring better stress management in plants. Similar to other plant species originating in tropical and sub-tropical areas, indica rice is highly sensitive to low temperature that adversely affects its growth and grain productivity. Substantial work has been done to understand cold induced changes in gene expression in rice plants. However, adequate information is not available for early gene expression, especially in indica variety. Therefore, a transcriptome profile was generated for cold shock treated seedlings of IR64 variety to identify early responsive genes. Results The functional annotation of early DEGs shows enrichment of genes involved in altered membrane rigidity and electrolytic leakage, the onset of calcium signaling, ROS generation and activation of stress responsive transcription factors in IR64. Gene regulatory network suggests that cold shock induced Ca2+ signaling activates DREB/CBF pathway and other groups of transcription factors such as MYB, NAC and ZFP; for activating various cold-responsive genes. The analysis also indicates that cold induced signaling proteins like RLKs, RLCKs, CDPKs and MAPKK and ROS signaling proteins. Further, several late-embryogenesis-abundant (LEA), dehydrins and low temperature-induced-genes were upregulated under early cold shock condition, indicating the onset of water-deficit conditions. Expression profiling in different high yielding cultivars shows high expression of cold-responsive genes in Heera and CB1 indica varieties. These varieties show low levels of cold induced ROS production, electrolytic leakage and high germination rate post-cold stress, compared to IR36 and IR64. Collectively, these results suggest that these varieties may have improved adaptability to cold stress. Conclusions The results of this study provide insights about early responsive events in Oryza sativa l.ssp. indica cv IR64 in response to cold stress. Our data shows the onset of cold response is associated with upregulation of stress responsive TFs, hydrophilic proteins and signaling molecules, whereas, the genes coding for cellular biosynthetic enzymes, cell cycle control and growth-related TFs are downregulated. This study reports that the generation of ROS is integral to the early response to trigger the ROS mediated signaling events during later stages.
Collapse
Affiliation(s)
- Pratiti Dasgupta
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Abhishek Das
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Sambit Datta
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Ishani Banerjee
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India
| | - Sucheta Tripathy
- Structural Biology & Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, Kolkata, 700032, India
| | - Shubho Chaudhuri
- Division of Plant Biology, Bose Institute, P1/12 CIT Scheme VII M, Kolkata, 700054, India.
| |
Collapse
|
37
|
Ni J, Su S, Li H, Geng Y, Zhou H, Feng Y, Xu X. Distinct physiological and transcriptional responses of leaves of paper mulberry (Broussonetia kazinoki × B. papyrifera) under different nitrogen supply levels. TREE PHYSIOLOGY 2020; 40:667-682. [PMID: 32211806 DOI: 10.1093/treephys/tpaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 01/21/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Paper mulberry, a vigorous pioneer species used for ecological reclamation and a high-protein forage plant for economic development, has been widely planted in China. To further develop its potential value, it is necessary to explore the regulatory mechanism of nitrogen metabolism for rational nitrogen utilization. In this study, we investigated the morphology, physiology and transcriptome of a paper mulberry hybrid (Broussonetia kazinoki × B. papyrifera) in response to different nitrogen concentrations. Moderate nitrogen promoted plant growth and biomass accumulation. Photosynthetic characteristics, concentration of nitrogenous compounds and activities of enzymes were stimulated under nitrogen treatment. However, these enhancements were slightly or severely inhibited under excessive nitrogen supply. Nitrite reductase and glutamate synthase were more sensitive than nitrate reductase and glutamine synthetase and more likely to be inhibited under high nitrogen concentrations. Transcriptome analysis of the leaf transcriptome identified 161,961 unigenes. The differentially expressed genes associated with metabolism of nitrogen, alanine, aspartate, glutamate and glycerophospholipid showed high transcript abundances after nitrogen application, whereas those associated with glycerophospholipid, glycerolipid, amino sugar and nucleotide sugar metabolism were down-regulated. Combined with weighted gene coexpression network analysis, we uncovered 16 modules according to similarity in expression patterns. Asparagine synthetase and inorganic pyrophosphatase were considered two hub genes in two modules, which were associated with nitrogen metabolism and phosphorus metabolism, respectively. The expression characteristics of these genes may explain the regulation of morphological, physiological and other related metabolic strategies harmoniously. This multifaceted study provides valuable insights to further understand the mechanism of nitrogen metabolism and to guide utilization of paper mulberry.
Collapse
Affiliation(s)
- Jianwei Ni
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shang Su
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Hui Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yonghang Geng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Houjun Zhou
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yanzhi Feng
- Paulownia Research and Development Center of National Forestry and Grassland Administration, Zhengzhou, Henan 450003, China
| | - Xinqiao Xu
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
38
|
Transcriptomic Analysis Reveals the Molecular Adaptation of Three Major Secondary Metabolic Pathways to Multiple Macronutrient Starvation in Tea ( Camellia sinensis). Genes (Basel) 2020; 11:genes11030241. [PMID: 32106614 PMCID: PMC7140895 DOI: 10.3390/genes11030241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 02/07/2023] Open
Abstract
Tea (Camellia sinensis (L.) O. Kuntze) is a widely consumed beverage. Lack of macronutrients is a major cause of tea yield and quality losses. Though the effects of macronutrient starvation on tea metabolism have been studied, little is known about their molecular mechanisms. Hence, we investigated changes in the gene expression of tea plants under nitrogen (N), phosphate (P), and potassium (K) deficient conditions by RNA-sequencing. A total of 9103 differentially expressed genes (DEG) were identified. Function enrichment analysis showed that many biological processes and pathways were common to N, P, and K starvation. In particular, cis-element analysis of promoter of genes uncovered that members of the WRKY, MYB, bHLH, NF-Y, NAC, Trihelix, and GATA families were more likely to regulate genes involved in catechins, l-theanine, and caffeine biosynthetic pathways. Our results provide a comprehensive insight into the mechanisms of responses to N, P, and K starvation, and a global basis for the improvement of tea quality and molecular breeding.
Collapse
|
39
|
Tiwari JK, Buckseth T, Zinta R, Saraswati A, Singh RK, Rawat S, Dua VK, Chakrabarti SK. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Sci Rep 2020; 10:1152. [PMID: 31980689 PMCID: PMC6981199 DOI: 10.1038/s41598-020-58167-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Potato crop requires high dose of nitrogen (N) to produce high tuber yield. Excessive application of N causes environmental pollution and increases cost of production. Hence, knowledge about genes and regulatory elements is essential to strengthen research on N metabolism in this crop. In this study, we analysed transcriptomes (RNA-seq) in potato tissues (shoot, root and stolon) collected from plants grown in aeroponic culture under controlled conditions with varied N supplies i.e. low N (0.2 milli molar N) and high N (4 milli molar N). High quality data ranging between 3.25 to 4.93 Gb per sample were generated using Illumina NextSeq500 that resulted in 83.60-86.50% mapping of the reads to the reference potato genome. Differentially expressed genes (DEGs) were observed in the tissues based on statistically significance (p ≤ 0.05) and up-regulation with ≥ 2 log2 fold change (FC) and down-regulation with ≤ -2 log2 FC values. In shoots, of total 19730 DEGs, 761 up-regulated and 280 down-regulated significant DEGs were identified. Of total 20736 DEGs in roots, 572 (up-regulated) and 292 (down-regulated) were significant DEGs. In stolons, of total 21494 DEG, 688 and 230 DEGs were significantly up-regulated and down-regulated, respectively. Venn diagram analysis showed tissue specific and common genes. The DEGs were functionally assigned with the GO terms, in which molecular function domain was predominant in all the tissues. Further, DEGs were classified into 24 KEGG pathways, in which 5385, 5572 and 5594 DEGs were annotated in shoots, roots and stolons, respectively. The RT-qPCR analysis validated gene expression of RNA-seq data for selected genes. We identified a few potential DEGs responsive to N deficiency in potato such as glutaredoxin, Myb-like DNA-binding protein, WRKY transcription factor 16 and FLOWERING LOCUS T in shoots; high-affinity nitrate transporter, protein phosphatase-2c, glutaredoxin family protein, malate synthase, CLE7, 2-oxoglutarate-dependent dioxygenase and transcription factor in roots; and glucose-6-phosphate/phosphate translocator 2, BTB/POZ domain-containing protein, F-box family protein and aquaporin TIP1;3 in stolons, and many genes of unknown function. Our study highlights that these potential genes play very crucial roles in N stress tolerance, which could be useful in augmenting research on N metabolism in potato.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Tanuja Buckseth
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Rasna Zinta
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Aastha Saraswati
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Rajesh Kumar Singh
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Shashi Rawat
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vijay Kumar Dua
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Swarup Kumar Chakrabarti
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
40
|
Tang W, He X, Qian L, Wang F, Zhang Z, Sun C, Lin L, Guan C. Comparative Transcriptome Analysis in Oilseed Rape ( Brassica napus) Reveals Distinct Gene Expression Details between Nitrate and Ammonium Nutrition. Genes (Basel) 2019; 10:genes10050391. [PMID: 31121949 PMCID: PMC6562433 DOI: 10.3390/genes10050391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022] Open
Abstract
Nitrate (NO3-) and ammonium (NH4+) are the main inorganic nitrogen (N) sources absorbed by oilseed rape, a plant that exhibits genotypic differences in N efficiency. In our previous study, the biomass, N accumulation, and root architecture of two oilseed rape cultivars, Xiangyou 15 (high N efficiency, denoted "15") and 814 (low N efficiency, denoted "814"), were inhibited under NH4+ nutrition, though both cultivars grew normally under NO3- nutrition. To gain insight into the underlying molecular mechanisms, transcriptomic changes were investigated in the roots of 15 and 814 plants subjected to nitrogen-free (control, CK), NO3- (NT), and NH4+ (AT) treatments at the seedling stage. A total of 14,355 differentially expressed genes (DEGs) were identified. Among the enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway categories of these DEGs, carbohydrate metabolism, lipid metabolism, protein metabolism, and cell wall biogenesis were inhibited by AT treatment. Interestingly, DEGs such as N transporters, genes involved in N assimilation and CESA genes related to cellulose synthase were also mostly downregulated in the AT treatment group. This downregulation of genes related to crucial metabolic pathways resulted in inhibition of oilseed rape growth after AT treatment.
Collapse
Affiliation(s)
- Weijie Tang
- National Center of Oilseed Crops Improvement, Hunan Branch, Hunan Agricultural University, Changsha 410128, China.
- College of Agronomy and Biotechnology, Yunan Agricultural University, Kunming 650201, China.
| | - Xin He
- National Center of Oilseed Crops Improvement, Hunan Branch, Hunan Agricultural University, Changsha 410128, China.
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China.
| | - Lunwen Qian
- National Center of Oilseed Crops Improvement, Hunan Branch, Hunan Agricultural University, Changsha 410128, China.
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha 410128, China.
| | - Feng Wang
- National Center of Oilseed Crops Improvement, Hunan Branch, Hunan Agricultural University, Changsha 410128, China.
| | - Zhenhua Zhang
- National Center of Oilseed Crops Improvement, Hunan Branch, Hunan Agricultural University, Changsha 410128, China.
| | - Chao Sun
- College of Agronomy and Biotechnology, Yunan Agricultural University, Kunming 650201, China.
| | - Liangbin Lin
- College of Agronomy and Biotechnology, Yunan Agricultural University, Kunming 650201, China.
| | - Chunyun Guan
- National Center of Oilseed Crops Improvement, Hunan Branch, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
41
|
Gupta S, Akhatar J, Kaur P, Sharma A, Sharma P, Mittal M, Bharti B, Banga SS. Genetic analyses of nitrogen assimilation enzymes in Brassica juncea (L.) Czern & Coss. Mol Biol Rep 2019; 46:4235-4244. [PMID: 31115836 DOI: 10.1007/s11033-019-04878-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Nitrogen (N) is a critical input for plant growth and development. A better understanding of N uptake and utilization is important to develop plant breeding strategies for improving nitrogen use efficiency (NUE). With that objective in mind, we assayed a SNP-genotyped association panel comprising 92 inbred lines for the activities of nitrate reductase (NR), nitrite reductase (NIR), glutamine synthetase (GS) and glutamate synthase (GOGAT). All these enzymes are associated with N assimilation. The experiments were carried out at two levels of N application: no added N (N0) and agrnomically recommened dose (100 kg/ha) of N application (N100). Genome wide association studies (GWAS) helped to identify several marker-trait associations (MTAs), involving chromosomes A01, A06, A08, B02, B04, B05 and B08. These explained high phenotypic variation (up to 32%). Annotation of the genomic region(s) in or around significant SNPs allowed prediction of genes encoding high affinity nitrate transporters, glutamine synthetase 1.3, myb-like transcription factor family protein, bidirectional amino acid transporter 1, auxin signaling F-box 3 and oxidoreductases. This is the first attempt to use GWAS for identification of enzyme QTLs to explain variation for nitrogen assimilation enzymes in Brassica juncea.
Collapse
Affiliation(s)
- Shilpa Gupta
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Palminder Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Anju Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Pushp Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Baudh Bharti
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India
| | - Surinder Singh Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141001, India.
| |
Collapse
|
42
|
An Integrated Analysis of the Rice Transcriptome and Metabolome Reveals Differential Regulation of Carbon and Nitrogen Metabolism in Response to Nitrogen Availability. Int J Mol Sci 2019; 20:ijms20092349. [PMID: 31083591 PMCID: PMC6539487 DOI: 10.3390/ijms20092349] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/19/2023] Open
Abstract
Nitrogen (N) is an extremely important macronutrient for plant growth and development. It is the main limiting factor in most agricultural production. However, it is well known that the nitrogen use efficiency (NUE) of rice gradually decreases with the increase of the nitrogen application rate. In order to clarify the underlying metabolic and molecular mechanisms of this phenomenon, we performed an integrated analysis of the rice transcriptome and metabolome. Both differentially expressed genes (DEGs) and metabolite Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that carbon and nitrogen metabolism is significantly affected by nitrogen availability. Further analysis of carbon and nitrogen metabolism changes in rice under different nitrogen availability showed that high N inhibits nitrogen assimilation and aromatic metabolism pathways by regulating carbon metabolism pathways such as the tricarboxylic acid (TCA) cycle and the pentose phosphate pathway (PPP). Under low nitrogen, the TCA cycle is promoted to produce more energy and α-ketoglutarate, thereby enhancing nitrogen transport and assimilation. PPP is also inhibited by low N, which may be consistent with the lower NADPH demand under low nitrogen. Additionally, we performed a co-expression network analysis of genes and metabolites related to carbon and nitrogen metabolism. In total, 15 genes were identified as hub genes. In summary, this study reveals the influence of nitrogen levels on the regulation mechanisms for carbon and nitrogen metabolism in rice and provides new insights into coordinating carbon and nitrogen metabolism and improving nitrogen use efficiency in rice.
Collapse
|
43
|
Borah P, Das A, Milner MJ, Ali A, Bentley AR, Pandey R. Long Non-Coding RNAs as Endogenous Target Mimics and Exploration of Their Role in Low Nutrient Stress Tolerance in Plants. Genes (Basel) 2018; 9:E459. [PMID: 30223541 PMCID: PMC6162444 DOI: 10.3390/genes9090459] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022] Open
Abstract
Long non-coding RNA (lncRNA) research in plants has recently gained momentum taking cues from studies in animals systems. The availability of next-generation sequencing has enabled genome-wide identification of lncRNA in several plant species. Some lncRNAs are inhibitors of microRNA expression and have a function known as target mimicry with the sequestered transcript known as an endogenous target mimic (eTM). The lncRNAs identified to date show diverse mechanisms of gene regulation, most of which remain poorly understood. In this review, we discuss the role of identified putative lncRNAs that may act as eTMs for nutrient-responsive microRNAs (miRNAs) in plants. If functionally validated, these putative lncRNAs would enhance current understanding of the role of lncRNAs in nutrient homeostasis in plants.
Collapse
Affiliation(s)
- Priyanka Borah
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India.
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Antara Das
- ICAR-National Research Centre on Plant Biotechnology, New Delhi 110012, India.
| | - Matthew J Milner
- The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge CB30LE, UK.
| | - Arif Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Alison R Bentley
- The John Bingham Laboratory, National Institute of Agricultural Botany (NIAB), Huntingdon Road, Cambridge CB30LE, UK.
| | - Renu Pandey
- Mineral Nutrition Laboratory, Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110 012, India.
| |
Collapse
|
44
|
Ali J, Jewel ZA, Mahender A, Anandan A, Hernandez J, Li Z. Molecular Genetics and Breeding for Nutrient Use Efficiency in Rice. Int J Mol Sci 2018; 19:E1762. [PMID: 29899204 PMCID: PMC6032200 DOI: 10.3390/ijms19061762] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/26/2018] [Accepted: 06/01/2018] [Indexed: 11/17/2022] Open
Abstract
In the coming decades, rice production needs to be carried out sustainably to keep the balance between profitability margins and essential resource input costs. Many fertilizers, such as N, depend primarily on fossil fuels, whereas P comes from rock phosphates. How long these reserves will last and sustain agriculture remains to be seen. Therefore, current agricultural food production under such conditions remains an enormous and colossal challenge. Researchers have been trying to identify nutrient use-efficient varieties over the past few decades with limited success. The concept of nutrient use efficiency is being revisited to understand the molecular genetic basis, while much of it is not entirely understood yet. However, significant achievements have recently been observed at the molecular level in nitrogen and phosphorus use efficiency. Breeding teams are trying to incorporate these valuable QTLs and genes into their rice breeding programs. In this review, we seek to identify the achievements and the progress made so far in the fields of genetics, molecular breeding and biotechnology, especially for nutrient use efficiency in rice.
Collapse
Affiliation(s)
- Jauhar Ali
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines.
| | - Zilhas Ahmed Jewel
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines.
| | - Anumalla Mahender
- Rice Breeding Platform, International Rice Research Institute (IRRI), Los Baños, Laguna 4031, Philippines.
| | - Annamalai Anandan
- ICAR-National Rice Research Institute, Cuttack, Odisha 753006, India.
| | - Jose Hernandez
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Laguna 4031, Philippines.
| | - Zhikang Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|