1
|
Kaya C, Uğurlar F, Adamakis IDS. Molecular Mechanisms of CBL-CIPK Signaling Pathway in Plant Abiotic Stress Tolerance and Hormone Crosstalk. Int J Mol Sci 2024; 25:5043. [PMID: 38732261 PMCID: PMC11084290 DOI: 10.3390/ijms25095043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Abiotic stressors, including drought, salt, cold, and heat, profoundly impact plant growth and development, forcing elaborate cellular responses for adaptation and resilience. Among the crucial orchestrators of these responses is the CBL-CIPK pathway, comprising calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs). While CIPKs act as serine/threonine protein kinases, transmitting calcium signals, CBLs function as calcium sensors, influencing the plant's response to abiotic stress. This review explores the intricate interactions between the CBL-CIPK pathway and plant hormones such as ABA, auxin, ethylene, and jasmonic acid (JA). It highlights their role in fine-tuning stress responses for optimal survival and acclimatization. Building on previous studies that demonstrated the enhanced stress tolerance achieved by upregulating CBL and CIPK genes, we explore the regulatory mechanisms involving post-translational modifications and protein-protein interactions. Despite significant contributions from prior research, gaps persist in understanding the nuanced interplay between the CBL-CIPK system and plant hormone signaling under diverse abiotic stress conditions. In contrast to broader perspectives, our review focuses on the interaction of the pathway with crucial plant hormones and its implications for genetic engineering interventions to enhance crop stress resilience. This specialized perspective aims to contribute novel insights to advance our understanding of the potential of the CBL-CIPK pathway to mitigate crops' abiotic stress.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | | |
Collapse
|
2
|
Sharma P, Mishra S, Pandey B, Singh G. Genome-wide identification and expression analysis of the NHX gene family under salt stress in wheat ( Triticum aestivum L). FRONTIERS IN PLANT SCIENCE 2023; 14:1266699. [PMID: 38111881 PMCID: PMC10726055 DOI: 10.3389/fpls.2023.1266699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/06/2023] [Indexed: 12/20/2023]
Abstract
Salt stress affects plant growth and development, resulting in the loss of crop yield across the world, and sodium-proton antiporters (NHXs) are one of the genes known to promote salt tolerance in transgenic plants. In this study, we conducted a comprehensive genome-wide analysis and expression profile of NHX genes in wheat under salinity stress. We identified 30 TaNHX genes in wheat based on the Na+/H+ exchanger domain, with all genes containing an amiloride motif except one, a known for inhibiting Na+ ions in plants. Phylogenetic analysis classified these genes into three classes with subfamilies: 12 were localized in vacuoles, while 18 were in the endoplasmic reticulum and plasma membrane. Promoter analysis revealed stress-related cis-acting elements, indicating their potential role in abiotic stress tolerance. The non-synonymous (Ka)/synonymous (Ks) ratios highlighted that the majority of TaNHX genes experienced robust purifying selection throughout their evolutionary history. Transcriptomis data analysis and qRT-PCR demonstrated distinct expression patterns for TaNHX genes across various tissues when subjected to salt stress. Additionally, we predicted 20 different miRNA candidates targeting the identified TaNHX genes. Protein-protein interaction prediction revealed NHX6's involvement in the SOS1 pathway, while NHX1 gene exhibit proton antiporter activity. Molecular dynamics (MD) simulations were also conducted to examine the interactions of TaNHX1, TaNHX2, and TaNHX3. These results represent a significant advancement in our understanding of the molecular mechanisms governing Na+ transporters. This may also offer promising avenues for future studies aimed at unraveling the intricate details of their biological roles and applications.
Collapse
Affiliation(s)
- Pradeep Sharma
- Crop Improvement division, ICAR-Indian Institute of Wheat and Barley Researh, Karnal, India
| | - Shefali Mishra
- Crop Improvement division, ICAR-Indian Institute of Wheat and Barley Researh, Karnal, India
| | - Bharati Pandey
- Division of AgriBioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Singh
- Crop Improvement division, ICAR-Indian Institute of Wheat and Barley Researh, Karnal, India
| |
Collapse
|
3
|
Jia Q, Song J, Zheng C, Fu J, Qin B, Zhang Y, Liu Z, Jia K, Liang K, Lin W, Fan K. Genome-Wide Analysis of Cation/Proton Antiporter Family in Soybean ( Glycine max) and Functional Analysis of GmCHX20a on Salt Response. Int J Mol Sci 2023; 24:16560. [PMID: 38068884 PMCID: PMC10705888 DOI: 10.3390/ijms242316560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Monovalent cation proton antiporters (CPAs) play crucial roles in ion and pH homeostasis, which is essential for plant development and environmental adaptation, including salt tolerance. Here, 68 CPA genes were identified in soybean, phylogenetically dividing into 11 Na+/H+ exchangers (NHXs), 12 K+ efflux antiporters (KEAs), and 45 cation/H+ exchangers (CHXs). The GmCPA genes are unevenly distributed across the 20 chromosomes and might expand largely due to segmental duplication in soybean. The GmCPA family underwent purifying selection rather than neutral or positive selections. The cis-element analysis and the publicly available transcriptome data indicated that GmCPAs are involved in development and various environmental adaptations, especially for salt tolerance. Based on the RNA-seq data, twelve of the chosen GmCPA genes were confirmed for their differentially expression under salt or osmotic stresses using qRT-PCR. Among them, GmCHX20a was selected due to its high induction under salt stress for the exploration of its biological function on salt responses by ectopic expressing in Arabidopsis. The results suggest that the overexpression of GmCHX20a increases the sensitivity to salt stress by altering the redox system. Overall, this study provides comprehensive insights into the CPA family in soybean and has the potential to supply new candidate genes to develop salt-tolerant soybean varieties.
Collapse
Affiliation(s)
- Qi Jia
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Junliang Song
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Chengwen Zheng
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Jiahui Fu
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Bin Qin
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| | - Yongqiang Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Zhongjuan Liu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kunzhi Jia
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kangjing Liang
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
| | - Wenxiong Lin
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.Z.); (Z.L.); (K.J.)
| | - Kai Fan
- Key Laboratory for Genetics Breeding and Multiple Utilization of Crops, Ministry of Education/College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.S.); (C.Z.); (J.F.); (B.Q.); (K.L.)
- Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou 350002, China;
| |
Collapse
|
4
|
Karumanchi AR, Sivan P, Kummari D, Rajasheker G, Kumar SA, Reddy PS, Suravajhala P, Podha S, Kishor PBK. Root and Leaf Anatomy, Ion Accumulation, and Transcriptome Pattern under Salt Stress Conditions in Contrasting Genotypes of Sorghum bicolor. PLANTS (BASEL, SWITZERLAND) 2023; 12:2400. [PMID: 37446963 DOI: 10.3390/plants12132400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Roots from salt-susceptible ICSR-56 (SS) sorghum plants display metaxylem elements with thin cell walls and large diameter. On the other hand, roots with thick, lignified cell walls in the hypodermis and endodermis were noticed in salt-tolerant CSV-15 (ST) sorghum plants. The secondary wall thickness and number of lignified cells in the hypodermis have increased with the treatment of sodium chloride stress to the plants (STN). Lignin distribution in the secondary cell wall of sclerenchymatous cells beneath the lower epidermis was higher in ST leaves compared to the SS genotype. Casparian thickenings with homogenous lignin distribution were observed in STN roots, but inhomogeneous distribution was evident in SS seedlings treated with sodium chloride (SSN). Higher accumulation of K+ and lower Na+ levels were noticed in ST compared to the SS genotype. To identify the differentially expressed genes among SS and ST genotypes, transcriptomic analysis was carried out. Both the genotypes were exposed to 200 mM sodium chloride stress for 24 h and used for analysis. We obtained 70 and 162 differentially expressed genes (DEGs) exclusive to SS and SSN and 112 and 26 DEGs exclusive to ST and STN, respectively. Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis unlocked the changes in metabolic pathways in response to salt stress. qRT-PCR was performed to validate 20 DEGs in each SSN and STN sample, which confirms the transcriptomic results. These results surmise that anatomical changes and higher K+/Na+ ratios are essential for mitigating salt stress in sorghum apart from the genes that are differentially up- and downregulated in contrasting genotypes.
Collapse
Affiliation(s)
- Appa Rao Karumanchi
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 209, India
| | - Pramod Sivan
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Albanova University Center, SE-10691 Stockholm, Sweden
| | - Divya Kummari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - G Rajasheker
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (Deemed to Be University), Guntur 522 213, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | | | - Sudhakar Podha
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 209, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| |
Collapse
|
5
|
Mulaudzi T, Sias G, Nkuna M, Ndou N, Hendricks K, Ikebudu V, Koo AJ, Ajayi RF, Iwuoha E. Seed Priming with MeJa Prevents Salt-Induced Growth Inhibition and Oxidative Damage in Sorghum bicolor by Inducing the Expression of Jasmonic Acid Biosynthesis Genes. Int J Mol Sci 2023; 24:10368. [PMID: 37373514 DOI: 10.3390/ijms241210368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Salinity is one of the major detrimental abiotic stresses at the forefront of deterring crop productivity globally. Although the exogenous application of phytohormones has formerly proven efficacious to plants, their effect on the moderately stress-tolerant crop "Sorghum bicolor" remains elusive. To investigate this, S. bicolor seeds primed with methyl jasmonate (0; 10 and 15 μM MeJa) were exposed to salt (200 mM NaCl) stress, and their morpho-physiological, biochemical, and molecular attributes were measured. Salt stress significantly decreased shoot length and fresh weight by 50%, whereas dry weight and chlorophyll content were decreased by more than 40%. Furthermore, salt-stress-induced oxidative damage was evident by the formation of brown formazan spots (indicative of H2O2 production) on sorghum leaves and a more than 30% increase in MDA content. However, priming with MeJa improved growth, increased chlorophyll content, and prevented oxidative damage under salt stress. While 15 µM MeJa maintained proline content to the same level as the salt-stressed samples, total soluble sugars were maintained under 10 µM MeJa, indicating a high degree of osmotic adjustment. Shriveling and thinning of the epidermis and xylem tissues due to salt stress was prevented by MeJa, followed by a more than 70% decrease in the Na+/K+ ratio. MeJa also reversed the FTIR spectral shifts observed for salt-stressed plants. Furthermore, salt stress induced the expression of the jasmonic acid biosynthesis genes; linoleate 92-lipoxygenase 3, allene oxide synthase 1, allene oxide cyclase, and 12-oxophytodienoate reductase 1. In MeJa-primed plants, their expression was reduced, except for the 12-oxophytodienoate reductase 1 transcript, which further increased by 67%. These findings suggest that MeJa conferred salt-stress tolerance to S. bicolor through osmoregulation and synthesis of JA-related metabolites.
Collapse
Affiliation(s)
- Takalani Mulaudzi
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Gershwin Sias
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Mulisa Nkuna
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Nzumbululo Ndou
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Kaylin Hendricks
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Vivian Ikebudu
- Life Sciences Building, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Rachel F Ajayi
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| | - Emmanuel Iwuoha
- SensorLab, Department of Chemical Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
6
|
Shen C, Yuan J, Li X, Chen R, Li D, Wang F, Liu X, Li X. Genome-wide identification of NHX (Na +/H + antiporter) gene family in Cucurbita L. and functional analysis of CmoNHX1 under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1136810. [PMID: 36998676 PMCID: PMC10043322 DOI: 10.3389/fpls.2023.1136810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Soil salinization, which is the accumulation of salt in soil, can have a negative impact on crop growth and development by creating an osmotic stress that can reduce water uptake and cause ion toxicity. The NHX gene family plays an important role in plant response to salt stress by encoding for Na+/H+ antiporters that help regulate the transport of sodium ions across cellular membranes. In this study, we identified 26 NHX genes in three cultivars of Cucurbita L., including 9 Cucurbita moschata NHXs (CmoNHX1-CmoNHX9), 9 Cucurbita maxima NHXs (CmaNHX1-CmaNHX9) and 8 Cucurbita pepo NHXs (CpNHX1-CpNHX8). The evolutionary tree splits the 21 NHX genes into three subfamilies: the endosome (Endo) subfamily, the plasma membrane (PM) subfamily, and the vacuole (Vac) subfamily. All the NHX genes were irregularly distributed throughout the 21 chromosomes. 26 NHXs were examined for conserved motifs and intron-exon organization. These findings suggested that the genes in the same subfamily may have similar functions while genes in other subfamilies may have functional diversity. The circular phylogenetic tree and collinearity analysis of multi-species revealed that Cucurbita L. had a substantially greater homology relationship than Populus trichocarpa and Arabidopsis thaliana in terms of NHX gene homology. We initially examined the cis-acting elements of the 26 NHXs in order to investigate how they responded to salt stress. We discovered that the CmoNHX1, CmaNHX1, CpNHX1, CmoNHX5, CmaNHX5, and CpNHX5 all had numerous ABRE and G-box cis-acting elements that were important to salt stress. Previous transcriptome data showed that in the mesophyll and veins of leaves, many CmoNHXs and CmaNHXs, such as CmoNHX1, responded significantly to salt stress. In addition, we heterologously expressed in A. thaliana plants in order to further confirm the response of CmoNHX1 to salt stress. The findings demonstrated that during salt stress, A. thaliana that had CmoNHX1 heterologously expression was found to have decreased salt tolerance. This study offers important details that will aid in further elucidating the molecular mechanism of NHX under salt stress.
Collapse
Affiliation(s)
- Changwei Shen
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Jingping Yuan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Xin Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Ruixiang Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Daohan Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| | - Fei Wang
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Xing Liu
- School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research Center of the Development and Utilization of Characteristic Horticultural Plants, Xinxiang, China
| |
Collapse
|
7
|
Creighton MT, Nemie-Feyissa D, Zaman N, Johansen SS, Dysjaland H, Heidari B, Lillo C. Loss of LEUCINE CARBOXYL METHYLTRANSFERASE 1 interferes with metal homeostasis in Arabidopsis and enhances susceptibility to environmental stresses. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153843. [PMID: 36265226 DOI: 10.1016/j.jplph.2022.153843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The biochemical function of LEUCINE CARBOXYL METHYLTRANSFERASE 1 (LCMT1) is to transfer a methyl group from the methyl donor S-adenosylmethionine (SAM) to the catalytic subunits of PROTEIN PHOSPHATASE 2A (PP2Ac), PP4 and PP6. This post-translational modification by LCMT1 is found throughout eukaryotes from yeast to animals and plants, indicating that its function is essential. However, Arabidopsis with knocked out LCMT1 still grows and develops almost normally, at least under optimal growth conditions. We therefore proposed that the presence of LCMT1 would be important under non-optimal growth conditions and favoured plant survival during evolution. To shed light on the physiological functions of plant LCMT1, phenotypes of the lcmt1 mutant and wild type Arabidopsis were compared under various conditions including exposure to heavy metals, variable chelator concentrations, and increased temperature. The lcmt1 mutant was found to be more susceptible to these environmental changes than wild type and resulted in poor growth of seedlings and rosette stage plants. Element analysis of rosette stage plants mainly showed a difference between the lcmt1 mutant and wild type regarding concentrations of sodium and boron, two-fold up or halved, respectively. In both lcmt1 and wild type, lack of EDTA in the growth medium resulted in enhanced concentration of copper, manganese, zinc and sulphur, and especially lcmt1 growth was hampered by these conditions. The altered phenotype in response to stress, the element and mRNA transcript analysis substantiate that LCMT1 has an important role in metal homeostasis and show that functional LCMT1 is necessary to prevent damages from heat, heavy metals or lack of chelator.
Collapse
Affiliation(s)
- Maria T Creighton
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Dugassa Nemie-Feyissa
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Nabeela Zaman
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Sverre S Johansen
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Hege Dysjaland
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Behzad Heidari
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway
| | - Cathrine Lillo
- IKBM, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, 4036, Stavanger, Norway.
| |
Collapse
|
8
|
Li Y, Zhang Y, Li B, Hou L, Yu J, Jia C, Wang Z, Chen S, Zhang M, Qin J, Cao N, Cui J, Shi W. Preliminary Expression Analysis of the OSCA Gene Family in Maize and Their Involvement in Temperature Stress. Int J Mol Sci 2022; 23:13658. [PMID: 36362446 PMCID: PMC9656168 DOI: 10.3390/ijms232113658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 12/01/2023] Open
Abstract
Hyperosmolality-gated calcium-permeable channels (OSCA) are characterized as an osmosensor in plants; they are able to recognize and respond to exogenous and endogenous osmotic changes, and play a vital role in plant growth and adaptability to environmental stress. To explore the potential biological functions of OSCAs in maize, we performed a bioinformatics and expression analysis of the ZmOSCA gene family. Using bioinformatics methods, we identified twelve OSCA genes from the genome database of maize. According to their sequence composition and phylogenetic relationship, the maize OSCA family was classified into four groups (Ⅰ, Ⅱ, Ⅲ, and Ⅳ). Multiple sequence alignment analysis revealed a conserved DUF221 domain in these members. We modeled the calcium binding sites of four OSCA families using the autodocking technique. The expression profiles of ZmOSCA genes were analyzed in different tissues and under diverse abiotic stresses such as drought, salt, high temperature, and chilling using quantitative real-time PCR (qRT-PCR). We found that the expression of twelve ZmOSCA genes is variant in different tissues of maize. Furthermore, abiotic stresses such as drought, salt, high temperature, and chilling differentially induced the expression of twelve ZmOSCA genes. We chose ZmOSCA2.2 and ZmOSCA2.3, which responded most strongly to temperature stress, for prediction of protein interactions. We modeled the calcium binding sites of four OSCA families using autodocking tools, obtaining a number of new results. These results are helpful in understanding the function of the plant OSCA gene family for study of the molecular mechanism of plant osmotic stress and response, as well as exploration of the interaction between osmotic stress, high-temperature stress, and low-temperature stress signal transduction mechanisms. As such, they can provide a theoretical basis for crop breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Wuliang Shi
- Center for Emerging Agricultural Education & Advanced Interdisciplinary Science, College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
9
|
Rajasheker G, Nagaraju M, Varghese RP, Jalaja N, Somanaboina AK, Singam P, Ramakrishna C, Penna S, Sreenivasulu N, Kishor PBK. Identification and analysis of proline-rich proteins and hybrid proline-rich proteins super family genes from Sorghum bicolor and their expression patterns to abiotic stress and zinc stimuli. FRONTIERS IN PLANT SCIENCE 2022; 13:952732. [PMID: 36226297 PMCID: PMC9549341 DOI: 10.3389/fpls.2022.952732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
Systematic genome-wide analysis of Sorghum bicolor revealed the identification of a total of 48 homologous genes comprising 21 proline-rich proteins (PRPs) and 27 hybrid proline-rich proteins (HyPRPs). Comprehensive scrutiny of these gene homologs was conducted for gene structure, phylogenetic investigations, chromosome mapping, and subcellular localization of proteins. Promoter analysis uncovered the regions rich with phosphorous- (BIHD), ammonium-, sulfur-responsive (SURE), and iron starvation-responsive (IRO2) along with biotic, abiotic, and development-specific cis-elements. Further, PRPs exhibit more methylation and acetylation sites in comparison with HyPRPs. miRNAs have been predicted which might play a role in cleavage and translation inhibition. Several of the SbPRP genes were stimulated in a tissue-specific manner under drought, salt, heat, and cold stresses. Additionally, exposure of plants to abscisic acid (ABA) and zinc (Zn) also triggered PRP genes in a tissue-dependent way. Among them, SbPRP17 has been found upregulated markedly in all tissues irrespective of the stress imposed. The expressions of SbHyPRPs, especially SbHyPRP2, SbHyPRP6, and SbHyPRP17 were activated under all stresses in all three tissues. On the other hand, SbHyPRP8 (root only) and SbHyPRP12 (all three tissues) were highly responsive to cold stress and ABA while SbHyPRP26 was induced by drought and Zn in the stem. Taken together, this study indicates the critical roles that SbPRPs and SbHyPRPs play during diverse abiotic stress conditions and notably the plausible roles that these genes play upon exposure to zinc, the crucial micronutrient in plants.
Collapse
Affiliation(s)
| | - Marka Nagaraju
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Rinku Polachirakkal Varghese
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Naravula Jalaja
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| | - Anil Kumar Somanaboina
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| | - Prashant Singam
- Department of Genetics and Biotechnology, Osmania University, Hyderabad, India
| | | | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology, Bhabha Atomic Research Center, Mumbai, India
| | - Nese Sreenivasulu
- Consumer-driven Grain Quality and Nutrition Research Unit, International Rice Research Institute, Los Baños, Philippines
| | - P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Vadlamudi, India
| |
Collapse
|
10
|
Islam MS, Mohtasim M, Islam T, Ghosh A. Aldehyde dehydrogenase superfamily in sorghum: genome-wide identification, evolution, and transcript profiling during development stages and stress conditions. BMC PLANT BIOLOGY 2022; 22:316. [PMID: 35786175 PMCID: PMC9252066 DOI: 10.1186/s12870-022-03708-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND Aldehyde dehydrogenases (ALDHs) are a family of NAD(P)+ dependent enzymes that detoxify aldehydes by promoting their oxidation to respective carboxylic acids. The role of ALDH enzymes in various plant species has been extensively studied, revealing their critical role in salinity, drought, heat, and heavy metal stress tolerance. Despite their physiological significance, ALDH genes in Sorghum bicolor have yet to be studied thoroughly. RESULTS In this study, a total of 19 ALDH genes have been identified that have been grouped into ten families based on the criteria of the ALDH gene nomenclature committee. Segmental duplication assisted more in the enhancement of SbALDH gene family members than tandem duplication. All the identified SbALDH members made a cluster with monocot rice and maize in the phylogenetic tree rather than dicot species, suggesting the pre-eudicot-monocot separation of the ALDH superfamily members. The gene structure and protein domain were found to be mostly conserved in separate phylogenetic classes, indicating that each family played an important role in evolution. Expression analysis revealed that several SbALDHs were expressed in various tissues, developmental stages, and in response to abiotic stresses, indicating that they can play roles in plant growth, development, or stress adaptation. Interestingly, the majority of the SbALDH genes were found to be highly responsive to drought stress, and the SbALDH18B1 transcript showed maximum enhancement in all the stress conditions. The presence of cis-acting elements (mainly ABRE and MBS) in the promoter region of these genes might have a significant role in drought tolerance. CONCLUSIONS Our findings add to the current understanding, evolutionary history, and contribution of SbALDHs in stress tolerance, and smooth the path of further functional validation of these genes.
Collapse
Affiliation(s)
- Md Sifatul Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Munira Mohtasim
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tahmina Islam
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh.
| |
Collapse
|
11
|
Ankit A, Kamali S, Singh A. Genomic & structural diversity and functional role of potassium (K +) transport proteins in plants. Int J Biol Macromol 2022; 208:844-857. [PMID: 35367275 DOI: 10.1016/j.ijbiomac.2022.03.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
Potassium (K+) is an essential macronutrient for plant growth and productivity. It is the most abundant cation in plants and is involved in various cellular processes. Variable K+ availability is sensed by plant roots, consequently K+ transport proteins are activated to optimize K+ uptake. In addition to K+ uptake and translocation these proteins are involved in other important physiological processes like transmembrane voltage regulation, polar auxin transport, maintenance of Na+/K+ ratio and stomata movement during abiotic stress responses. K+ transport proteins display tremendous genomic and structural diversity in plants. Their key structural features, such as transmembrane domains, N-terminal domains, C-terminal domains and loops determine their ability of K+ uptake and transport and thus, provide functional diversity. Most K+ transporters are regulated at transcriptional and post-translational levels. Genetic manipulation of key K+ transporters/channels could be a prominent strategy for improving K+ utilization efficiency (KUE) in plants. This review discusses the genomic and structural diversity of various K+ transport proteins in plants. Also, an update on the function of K+ transport proteins and their regulatory mechanism in response to variable K+ availability, in improving KUE, biotic and abiotic stresses is provided.
Collapse
Affiliation(s)
- Ankit Ankit
- National Institute of Plant Genome Research, New Delhi 110067, India
| | | | - Amarjeet Singh
- National Institute of Plant Genome Research, New Delhi 110067, India.
| |
Collapse
|
12
|
Paul A, Chatterjee A, Subrahmanya S, Shen G, Mishra N. NHX Gene Family in Camellia sinensis: In-silico Genome-Wide Identification, Expression Profiles, and Regulatory Network Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:777884. [PMID: 34987532 PMCID: PMC8720784 DOI: 10.3389/fpls.2021.777884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Salt stress affects the plant growth and productivity worldwide and NHX is one of those genes that are well known to improve salt tolerance in transgenic plants. It is well characterized in several plants, such as Arabidopsis thaliana and cotton; however, not much is known about NHXs in tea plant. In the present study, NHX genes of tea were obtained through a genome-wide search using A. thaliana as reference genome. Out of the 9 NHX genes in tea, 7 genes were localized in vacuole while the remaining 2 genes were localized in the endoplasmic reticulum (ER; CsNHX8) and plasma membrane (PM; CsNHX9), respectively. Furthermore, phylogenetic relationships along with structural analysis which includes gene structure, location, and protein-conserved motifs and domains were systematically examined and further, predictions were validated by the expression analysis. The dN/dS values show that the majority of tea NHX genes is subjected to strong purifying selection under the course of evolution. Also, functional interaction was carried out in Camellia sinensis based on the orthologous genes in A. thaliana. The expression profiles linked to various stress treatments revealed wide involvement of NHX genes from tea in response to various abiotic factors. This study provides the targets for further comprehensive identification, functional study, and also contributed for a better understanding of the NHX regulatory network in C. sinensis.
Collapse
Affiliation(s)
| | | | | | - Guoxin Shen
- Sericultural Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Neelam Mishra
- Department of Botany, St. Joseph’s College Autonomous, Bangalore, India
| |
Collapse
|
13
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
14
|
Maharajan T, Krishna TPA, Kiriyanthan RM, Ignacimuthu S, Ceasar SA. Improving abiotic stress tolerance in sorghum: focus on the nutrient transporters and marker-assisted breeding. PLANTA 2021; 254:90. [PMID: 34609619 DOI: 10.1007/s00425-021-03739-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Identification of molecular markers and characterization of nutrient transporters could help to improve the tolerance under abiotic and low nutrient stresses in sorghum ensuring higher yield to conserve food security Sorghum is an important cereal crop delivering food and energy security in the semi-arid tropics of the world. Adverse climatic conditions induced by global warming and low input agriculture system in developing countries demand for the improvement of sorghum to tolerate various abiotic stresses. In this review, we discuss the application of marker-assisted breeding and nutrient transporter characterization studies targeted towards improving the tolerance of sorghum under drought, salinity, cold, low phosphate and nitrogen stresses. Family members of some nutrient transporters such as nitrate transporter (NRT), phosphate transporter (PHT) and sulphate transporter (SULTR) were identified and characterized for improving the low nutrient stress tolerance in sorghum. Several quantitative trait loci (QTL) were identified for drought, salinity and cold stresses with an intention to enhance the tolerance of sorghum under these stresses. A very few QTL and nutrient transporters have been identified and validated under low nitrogen and phosphorus stresses compared to those under drought, salinity and cold stresses. Marker-assisted breeding and nutrient transporter characterization have not yet been attempted in sorghum under other macro- and micro-nutrient stresses. We hope this review will raise awareness among plant breeders, scientists and biotechnologists about the importance of sorghum and need to conduct the studies on marker-assisted breeding and nutrient transporter under low nutrient stresses to improve the sorghum production.
Collapse
Affiliation(s)
- T Maharajan
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, India
| | - T P Ajeesh Krishna
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, India
| | - Rose Mary Kiriyanthan
- PG and Research Department of Botany, Bharathi Women's College, Chennai, Tamil Nadu, India
| | - S Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Palayamkottai, India
| | - S Antony Ceasar
- Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, India.
| |
Collapse
|
15
|
Mansour MMF, Emam MM, Salama KHA, Morsy AA. Sorghum under saline conditions: responses, tolerance mechanisms, and management strategies. PLANTA 2021; 254:24. [PMID: 34224010 DOI: 10.1007/s00425-021-03671-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
An overview is presented of recent advances in our knowledge of responses and mechanisms rendering adaptation to saline conditions in sorghum. Different strategies deployed to enhance salinity stress tolerance in sorghum are also pointed out. Salinity stress is a growing problem worldwide. Sorghum is the fifth key crop among cereals. Understanding responses and tolerance strategies in sorghum would be therefore helpful effort for providing biomarkers for designing greatest salinity-tolerant sorghum genotypes. When sorghum exposed to salinity, salinity-tolerant genotypes most probably reprogram their gene expression to activate adaptive biochemical and physiological responses for survival. The review thus discusses the possible physiological and biochemical responses that confer salinity tolerance to sorghum under saline conditions. Although it is not characterized in sorghum, salinity perceiving and transmitting signals to downstream responses via signaling transduction pathways most likely are essential strategy for sorghum adaptation to salinity stress. Sorghum has also shown to withstand moderate saline environments and retain the germination, growth, and photosynthetic activities. Salinity-tolerant sorghum genotypes show the ability to exclude excessive Na+ from reaching shoots and induce ion homeostasis. Osmotic homeostasis and ROS detoxification are also evident as salinity tolerance strategies in sorghum. These above mechanisms lead to re-establishment of cellular ionic, osmotic, and redox homeostasis as well as photosynthesis efficiency. It is noteworthy that these mechanisms act individually or co-operatively to minimize the salinity hazards and enhance acclimation in sorghum. We conclude, however, that although these responses contribute to sorghum tolerance to salinity stress, they seem to be not adequate at higher concentrations of salinity, which agrees with sorghum ranking as moderately salinity-tolerant crop. Also, some of these tolerance strategies reported in other crops are not well studied and documented in sorghum, but most probably have roles in sorghum. Further improvement in sorghum salinity tolerance using different approaches is definitely necessary to meet the requirements of its harsh production environments, and therefore, these approaches are addressed.
Collapse
Affiliation(s)
| | - Manal Mohamed Emam
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | | | - Amal Ahmed Morsy
- Department of Botany, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
16
|
GhNHX3D, a Vacuolar-Localized Na +/H + Antiporter, Positively Regulates Salt Response in Upland Cotton. Int J Mol Sci 2021; 22:ijms22084047. [PMID: 33919933 PMCID: PMC8070948 DOI: 10.3390/ijms22084047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Vacuolar sodium/proton (Na+/H+) antiporters (NHXs) can stabilize ion contents to improve the salt tolerance of plants. Here, GhNHX3D was cloned and characterized from upland cotton (Gossypium hirsutum). Phylogenetic and sequence analyses showed that GhNHX3D belongs to the vacuolar-type NHXs. The GhNHX3D-enhanced green fluorescent protein (eGFP) fusion protein localized on the vacuolar membrane when transiently expressed in Arabidopsis protoplasts. The quantitative real-time PCR (qRT-PCR) analysis showed that GhNHX3D was induced rapidly in response to salt stress in cotton leaves, and its transcript levels increased with the aggravation of salt stress. The introduction of GhNHX3D into the salt-sensitive yeast mutant ATX3 improved its salt tolerance. Furthermore, silencing of GhNHX3D in cotton plants by virus-induced gene silencing (VIGS) increased the Na+ levels in the leaves, stems, and roots and decreased the K+ content in the roots, leading to greater salt sensitivity. Our results indicate that GhNHX3D is a member of the vacuolar NHX family and can confer salt tolerance by adjusting the steady-state balance of cellular Na+ and K+ ions.
Collapse
|
17
|
Santander C, Aroca R, Cartes P, Vidal G, Cornejo P. Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:396-409. [PMID: 33248899 DOI: 10.1016/j.plaphy.2020.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 05/02/2023]
Abstract
The aim was to identify the effects of AM symbiosis on the expression patterns of genes associated with K+ and Na+ compartmentalization and translocation and on K+/Na+ homeostasis in some lettuce (Lactuca sativa) cultivars as well as the effects of the relative abundance of plant AQPs on plant water status. Two AM fungi species (Funneliformis mosseae and Claroideoglomus lamellosum) isolated from the hyper-arid Atacama Desert (northern Chile) were inoculated to two lettuce cultivars (Grand Rapids and Lollo Bionda), and watered with 0 and 60 mM NaCl. At 60 days of plant growth, the AM symbiotic development, biomass production, nutrient content (Pi, Na+, K+), physiological parameters, gene expressions of ion channels and transporters (NHX and HKT1), and aquaporins proteins abundance (phosphorylated and non-phosphorylated) were evaluated. Salinity increased the AM root colonization by both inocula. AM lettuce plants showed an improved growth, increased relative water content and improved of K/Na ratio in root. In Grand Rapids cultivar, the high efficiency of photosystem II was higher than Lollo Bionda cultivar; on the contrary, stomatal conductance was higher in Lollo Bionda. Nevertheless, both parameters were increased by AM colonization. In the same way, LsaHKT1;1, LsaHKT1;6, LsaNHX2, LsaNHX4, LsaNHX6 and LsaNHX8 genes and aquaporins PIP2 were up-regulated differentially by both AM fungi. The improved plant growth was closely related to a higher water status due to increased PIP2 abundance, as well as to the upregulation of LsaNHX gene expression, which concomitantly improved plant nutrition and K+/Na+ homeostasis maintenance.
Collapse
Affiliation(s)
- Christian Santander
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile; Universidad Arturo Prat, Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Vivar 493 2nd floor, Iquique, Chile
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Paula Cartes
- Scientific and Technological Bioresource Nucleus, BIOREN-UFRO, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Gladys Vidal
- Grupo de Ingeniería y Biotecnología Ambiental, Facultad de Ciencias Ambientales y Centro EULA-Chile, Universidad de Concepción, Concepción, Chile
| | - Pablo Cornejo
- Centro de Investigación en Micorrizas y Sustentabilidad Agroambiental, CIMYSA, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
18
|
Joshi S, Kaur K, Khare T, Srivastava AK, Suprasanna P, Kumar V. Genome-wide identification, characterization and transcriptional profiling of NHX-type (Na +/H +) antiporters under salinity stress in soybean. 3 Biotech 2021; 11:16. [PMID: 33442515 DOI: 10.1007/s13205-020-02555-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 11/25/2022] Open
Abstract
This study was aimed at the genome-wide identification, a comprehensive in silico characterization of NHX genes from soybean (Glycine max L.) and their tissue-specific expression under varied levels (0-200 mM NaCl) of salinity stress. A total of nine putative NHX genes were identified from soybean. The phylogenetic analysis confirmed a total of five sub-groups and GmNHXs were distributed in three of them. Bioinformatics analyses confirmed all GmNHXs as ion transporters in nature, and all were localized on the vacuolar membrane. Several cis-acting regulatory elements involved in hormonal signal-responsiveness and abiotic stress including salinity responses were identified in the promoter regions of GmNHXs. Amiloride, which is a known Na+/H+ exchanger activity inhibitor, binding motifs were observed in all the GmNHXs. Furthermore, the identified GmNHXs were predicted-targets of 75 different miRNA candidates. To gain an insight into the functional divergence of GmNHX transporters, qRT-PCR based gene expression analysis was done in control and salt-treated root, stem and leaf tissues of two contrasting Indian soybean varieties MAUS-47 (tolerant) and Gujosoya-2 (sensitive). The gene up-regulation was tissue-specific and varied amongst the soybean varieties, with higher induction in tolerant variety. Maximum induction was observed in GmNHX2 in root tissues of MAUS-47 at 200 mM NaCl stress. Overall, identified GmNHXs may be explored further as potential gene candidates for soybean improvement.
Collapse
Affiliation(s)
- Shrushti Joshi
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Kawaljeet Kaur
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
| | - Tushar Khare
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007 India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085 India
- Homi Bhabha National Institute, Mumbai, 400094 India
| | - Vinay Kumar
- Department of Biotechnology, Modern College of Arts, Science and Commerce (Savitribai Phule Pune University), Ganeshkhind, Pune, 411016 India
- Department of Environmental Science, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
19
|
Karim R, Bouchra B, Fatima G, Abdelkarim FM, Laila S. Plant NHX Antiporters: From Function to Biotechnological Application, with Case Study. Curr Protein Pept Sci 2020; 22:60-73. [PMID: 33143624 DOI: 10.2174/1389203721666201103085151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 09/06/2020] [Indexed: 11/22/2022]
Abstract
Salt stress is one of the major abiotic stresses that negatively affect crops worldwide. Plants have evolved a series of mechanisms to cope with the limitations imposed by salinity. Molecular mechanisms, including the upregulation of cation transporters such as the Na+/H+ antiporters, are one of the processes adopted by plants to survive in saline environments. NHX antiporters are involved in salt tolerance, development, cell expansion, growth performance and disease resistance of plants. They are integral membrane proteins belonging to the widely distributed CPA1 sub-group of monovalent cation/H+ antiporters and provide an important strategy for ionic homeostasis in plants under saline conditions. These antiporters are known to regulate the exchange of sodium and hydrogen ions across the membrane and are ubiquitous to all eukaryotic organisms. With the genomic approach, previous studies reported that a large number of proteins encoding Na+/H+ antiporter genes have been identified in many plant species and successfully introduced into desired species to create transgenic crops with enhanced tolerance to multiple stresses. In this review, we focus on plant antiporters and all the aspects from their structure, classification, function to their in silico analysis. On the other hand, we performed a genome-wide search to identify the predicted NHX genes in Argania spinosa L. We highlighted for the first time the presence of four putative NHX (AsNHX1-4) from the Argan tree genome, whose phylogenetic analysis revealed their classification in one distinct vacuolar cluster. The essential information of the four putative NHXs, such as gene structure, subcellular localization and transmembrane domains was analyzed.
Collapse
Affiliation(s)
- Rabeh Karim
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Belkadi Bouchra
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Gaboun Fatima
- Plant Breeding Unit, National Institute for Agronomic Research, Regional Center of Rabat, B.P. 6356-Rabat-Instituts, Morocco
| | - Filali-Maltouf Abdelkarim
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| | - Sbabou Laila
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, B.P. 1014 RP, Morocco
| |
Collapse
|
20
|
Ma W, Ren Z, Zhou Y, Zhao J, Zhang F, Feng J, Liu W, Ma X. Genome-Wide Identification of the Gossypium hirsutum NHX Genes Reveals that the Endosomal-Type GhNHX4A is Critical for the Salt Tolerance of Cotton. Int J Mol Sci 2020; 21:E7712. [PMID: 33081060 PMCID: PMC7589573 DOI: 10.3390/ijms21207712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/10/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022] Open
Abstract
Soil salinization, which is primarily due to excessive Na+ levels, is a major abiotic stress adversely affecting plant growth and development. The Na+/H+ antiporter (NHX) is a transmembrane protein mediating the transport of Na+ or K+ and H+ across the membrane to modulate the ionic balance of plants in response to salt stress. Research regarding NHXs has mainly focused on the vacuolar-type NHX family members. However, the biological functions of the endosomal-type NHXs remain relatively uncharacterized. In this study, 22 NHX family members were identified in Gossypium hirsutum. A phylogenetic analysis divided the GhNHX genes into two categories, with 18 and 4 in the vacuolar and endosomal groups, respectively. The chromosomal distribution of the NHX genes revealed the significant impact of genome-wide duplication during the polyploidization process on the number of GhNHX genes. Analyses of gene structures and conserved motifs indicated that GhNHX genes in the same phylogenetic cluster are conserved. Additionally, the salt-induced expression patterns confirmed that the expression levels of most of the GhNHX genes are affected by salinity. Specifically, in the endosomal group, GhNHX4A expression was substantially up-regulated by salt stress. A yeast functional complementation test proved that GhNHX4A can partially restore the salt tolerance of the salt-sensitive yeast mutant AXT3. Silencing GhNHX4A expression decreased the resistance of cotton to salt stress because of an increase in the accumulation of Na+ in stems and a decrease in the accumulation of K+ in roots. The results of this study may provide the basis for an in-depth characterization of the regulatory functions of NHX genes related to cotton salt tolerance, especially the endosomal-type GhNHX4A. Furthermore, the presented data may be useful for selecting appropriate candidate genes for the breeding of new salt-tolerant cotton varieties.
Collapse
Affiliation(s)
- Wenyu Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Yang Zhou
- Hainan Key Laboratory for Biotechnology of Salt Tolerant Crops, College of Horticulture, Hainan University, Haikou 570228, China;
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| | - Junping Feng
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China;
| | - Wei Liu
- Collaborative Innovation Center of Henan Grain Crops, Agronomy College, Henan Agricultural University, Zhengzhou 450002, China;
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (W.M.); (Z.R.); (J.Z.); (F.Z.)
| |
Collapse
|
21
|
Genome-Wide Characterization and Expression Analysis of NHX Gene Family under Salinity Stress in Gossypium barbadense and Its Comparison with Gossypium hirsutum. Genes (Basel) 2020; 11:genes11070803. [PMID: 32708576 PMCID: PMC7397021 DOI: 10.3390/genes11070803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/06/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cotton is an important economic crop affected by different abiotic stresses at different developmental stages. Salinity limits the growth and productivity of crops worldwide. Na+/H+ antiporters play a key role during the plant development and in its tolerance to salt stress. The aim of the present study was a genome-wide characterization and expression pattern analysis under the salinity stress of the sodium-proton antiporter (NHX) of Gossypium barbadense in comparison with Gossypium hirsutum. In G. barbadense, 25 NHX genes were identified on the basis of the Na+_H+ exchanger domain. All except one of the G. barbadense NHX transporters have an Amiloride motif that is a known inhibitor of Na+ ions in plants. A phylogenetic analysis inferred three classes of GbNHX genes-viz., Vac (GbNHX1, 2 and 4), Endo (GbNHX6), and PM (GbNHX7). A high number of the stress-related cis-acting elements observed in promoters show their role in tolerance against abiotic stresses. The Ka/Ks values show that the majority of GbNHX genes are subjected to strong purifying selection under the course of evolution. To study the functional divergence of G. barbadense NHX transporters, the real-time gene expression was analyzed under salt stress in the root, stem, and leaf tissues. In G. barbadense, the expression was higher in the stem, while in G. hirsutum the leaf and root showed a high expression. Moreover, our results revealed that NHX2 homologues in both species have a high expression under salinity stress at higher time intervals, followed by NHX7. The protein-protein prediction study revealed that GbNHX7 is involved in the CBL-CIPK protein interaction pathway. Our study also provided valuable information explaining the molecular mechanism of Na+ transport for the further functional study of Gossypium NHX genes.
Collapse
|
22
|
Calcium Improves Germination and Growth of Sorghum bicolor Seedlings under Salt Stress. PLANTS 2020; 9:plants9060730. [PMID: 32531914 PMCID: PMC7356090 DOI: 10.3390/plants9060730] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022]
Abstract
Salinity is a major constraint limiting plant growth and productivity worldwide. Thus, understanding the mechanism underlying plant stress response is of importance to developing new approaches that will increase salt tolerance in crops. This study reports the effects of salt stress on Sorghum bicolor during germination and the role of calcium (Ca2+) to ameliorate some of the effects of salt. To this end, sorghum seeds were germinated in the presence and absence of different NaCl (200 and 300 mM) and Ca2+ (5, 15, or 35 mM) concentrations. Salt stress delayed germination, reduced growth, increased proline, and hydrogen peroxide (H2O2) contents. Salt also induced the expression of key antioxidant (ascorbate peroxidase and catalase) and the Salt Overlay Sensitive1 genes, whereas in the presence of Ca2+ their expression was reduced except for the vacuolar Na+/H+ exchanger antiporter2 gene, which increased by 65-fold compared to the control. Ca2+ reversed the salt-induced delayed germination and promoted seedling growth, which was concomitant with reduced H2O2 and Na+/K+ ratio, indicating a protective effect. Ca2+ also effectively protected the sorghum epidermis and xylem layers from severe damage caused by salt stress. Taken together, our findings suggest that sorghum on its own responds to high salt stress through modulation of osmoprotectants and regulation of stress-responsive genes. Finally, 5 mM exogenously applied Ca2+ was most effective in enhancing salt stress tolerance by counteracting oxidative stress and improving Na+/K+ ratio, which in turn improved germination efficiency and root growth in seedlings stressed by high NaCl.
Collapse
|
23
|
Long L, Zhao JR, Guo DD, Ma XN, Xu FC, Yang WW, Gao W. Identification of NHXs in Gossypium species and the positive role of GhNHX1 in salt tolerance. BMC PLANT BIOLOGY 2020; 20:147. [PMID: 32268879 PMCID: PMC7140369 DOI: 10.1186/s12870-020-02345-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 03/20/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant Na+/H+ antiporters (NHXs) are membrane-localized proteins that maintain cellular Na+/K+ and pH homeostasis. Considerable evidence highlighted the critical roles of NHX family in plant development and salt response; however, NHXs in cotton are rarely studied. RESULTS The comprehensive and systematic comparative study of NHXs in three Gossypium species was performed. We identified 12, 12, and 23 putative NHX proteins from G. arboreum, G. raimondii, and G. hirsutum, respectively. Phylogenetic study revealed that repeated polyploidization of Gossypium spp. contributed to the expansion of NHX family. Gene structure analysis showed that cotton NHXs contain many introns, which will lead to alternative splicing and help plants to adapt to high salt concentrations in soil. The expression changes of NHXs indicate the possible differences in the roles of distinct NHXs in salt response. GhNHX1 was proved to be located in the vacuolar system and intensively induced by salt stress in cotton. Silencing of GhNHX1 resulted in enhanced sensitivity of cotton seedlings to high salt concentrations, which suggests that GhNHX1 positively regulates cotton tolerance to salt stress. CONCLUSION We characterized the gene structure, phylogenetic relationship, chromosomal location, and expression pattern of NHX genes from G. arboreum, G. raimondii, and G. hirsutum. Our findings indicated that the cotton NHX genes are regulated meticulously and differently at the transcription level with possible alternative splicing. The tolerance of plants to salt stress may rely on the expression level of a particular NHX, rather than the number of NHXs in the genome. This study could provide significant insights into the function of plant NHXs, as well as propose promising candidate genes for breeding salt-resistant cotton cultivars.
Collapse
Affiliation(s)
- Lu Long
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan P. R. China
| | - Jing-Ruo Zhao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Dan-Dan Guo
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Xiao-Nan Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan P. R. China
| | - Fu-Chun Xu
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Wen-Wen Yang
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Science, Henan University, Kaifeng, Henan, P. R. China
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, Henan P. R. China
| |
Collapse
|
24
|
Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor PB. Engineering salinity tolerance in plants: progress and prospects. PLANTA 2020; 251:76. [PMID: 32152761 DOI: 10.1007/s00425-020-03366-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/24/2020] [Indexed: 05/20/2023]
Abstract
There is a need to integrate conceptual framework based on the current understanding of salt stress responses with different approaches for manipulating and improving salt tolerance in crop plants. Soil salinity exerts significant constraints on global crop production, posing a serious challenge for plant breeders and biotechnologists. The classical transgenic approach for enhancing salinity tolerance in plants revolves by boosting endogenous defence mechanisms, often via a single-gene approach, and usually involves the enhanced synthesis of compatible osmolytes, antioxidants, polyamines, maintenance of hormone homeostasis, modification of transporters and/or regulatory proteins, including transcription factors and alternative splicing events. Occasionally, genetic manipulation of regulatory proteins or phytohormone levels confers salinity tolerance, but all these may cause undesired reduction in plant growth and/or yields. In this review, we present and evaluate novel and cutting-edge approaches for engineering salt tolerance in crop plants. First, we cover recent findings regarding the importance of regulatory proteins and transporters, and how they can be used to enhance salt tolerance in crop plants. We also evaluate the importance of halobiomes as a reservoir of genes that can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of microRNAs as critical post-transcriptional regulators in plant adaptive responses to salt stress is reviewed and their use for engineering salt-tolerant crop plants is critically assessed. The potentials of alternative splicing mechanisms and targeted gene-editing technologies in understanding plant salt stress responses and developing salt-tolerant crop plants are also discussed.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, 1053, Hungary
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, 522 213, India
| |
Collapse
|
25
|
Wu GQ, Wang JL, Li SJ. Genome-Wide Identification of Na +/H + Antiporter (NHX) Genes in Sugar Beet (Beta vulgaris L.) and Their Regulated Expression under Salt Stress. Genes (Basel) 2019; 10:E401. [PMID: 31137880 PMCID: PMC6562666 DOI: 10.3390/genes10050401] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/12/2019] [Accepted: 05/22/2019] [Indexed: 12/23/2022] Open
Abstract
Salinity is one of the major environment factors that limits the growth of plants and the productivity of crops worldwide. It has been shown that Na+ transporters play a central role in salt tolerance and development of plants. The objective of this study was to identify Na+/H+ antiporter (NHX) genes and investigate their expression patterns in sugar beet (Beta vulgaris L.) subjected to various concentrations of NaCl. A total of five putative NHX genes were identified and distributed on four chromosomes in sugar beet. Phylogenetic analysis revealed that these BvNHX genes are grouped into three major classes, viz Vac- (BvNHX1, -2 and -3), Endo- (BvNHX4), and PM-class NHX (BvNHX5/BvSOS1), and within each class the exon/intron structures are conserved. The amiloride-binding site is found in TM3 at N-terminus of Vac-class NHX proteins. Protein-protein interaction (PPI) prediction suggested that only BvNHX5 putatively interacts with calcineurin B-like proteins (CBL) and CBL-interacting protein kinases (CIPK), implying it might be the primary NHX involved in CBL-CIPK pathway under saline condition. It was also found that BvNHX5 contains one abscisic acid (ABA)-responsive element (ABRE), suggesting that BvNHX5 might be involved in ABA signal responsiveness. Additionally, the qRT-PCR analysis showed that all the BvNHX genes in both roots and leaves are significantly up-regulated by salt, and the transcription levels under high salinity are significantly higher than those under either low or moderate salinity. Taken together, this work gives a detailed overview of the BvNHX genes and their expression patterns under salt stress. Our findings also provide useful information for elucidating the molecular mechanisms of Na+ homeostasis and further functional identification of the BvNHX genes in sugar beet.
Collapse
Affiliation(s)
- Guo-Qiang Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Jin-Long Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| | - Shan-Jia Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China.
| |
Collapse
|
26
|
Suratanee A, Chokrathok C, Chutimanukul P, Khrueasan N, Buaboocha T, Chadchawan S, Plaimas K. Two-State Co-Expression Network Analysis to Identify Genes Related to Salt Tolerance in Thai rice. Genes (Basel) 2018; 9:E594. [PMID: 30501128 PMCID: PMC6316690 DOI: 10.3390/genes9120594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Khao Dawk Mali 105 (KDML105) rice is one of the most important crops of Thailand. It is a challenging task to identify the genes responding to salinity in KDML105 rice. The analysis of the gene co-expression network has been widely performed to prioritize significant genes, in order to select the key genes in a specific condition. In this work, we analyzed the two-state co-expression networks of KDML105 rice under salt-stress and normal grown conditions. The clustering coefficient was applied to both networks and exhibited significantly different structures between the salt-stress state network and the original (normal-grown) network. With higher clustering coefficients, the genes that responded to the salt stress formed a dense cluster. To prioritize and select the genes responding to the salinity, we investigated genes with small partners under normal conditions that were highly expressed and were co-working with many more partners under salt-stress conditions. The results showed that the genes responding to the abiotic stimulus and relating to the generation of the precursor metabolites and energy were the great candidates, as salt tolerant marker genes. In conclusion, in the case of the complexity of the environmental conditions, gaining more information in order to deal with the co-expression network provides better candidates for further analysis.
Collapse
Affiliation(s)
- Apichat Suratanee
- Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok 10800, Thailand.
| | - Chidchanok Chokrathok
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Panita Chutimanukul
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | | | - Teerapong Buaboocha
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Supachitra Chadchawan
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Kitiporn Plaimas
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
27
|
Genome-Wide Identification and Characterization of Aquaporins and Their Role in the Flower Opening Processes in Carnation ( Dianthus caryophyllus). Molecules 2018; 23:molecules23081895. [PMID: 30060619 PMCID: PMC6222698 DOI: 10.3390/molecules23081895] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Aquaporins (AQPs) are associated with the transport of water and other small solutes across biological membranes. Genome-wide identification and characterization will pave the way for further insights into the AQPs’ roles in the commercial carnation (Dianthus caryophyllus). This study focuses on the analysis of AQPs in carnation (DcaAQPs) involved in flower opening processes. Thirty DcaAQPs were identified and grouped to five subfamilies: nine PIPs, 11 TIPs, six NIPs, three SIPs, and one XIP. Subsequently, gene structure, protein motifs, and co-expression network of DcaAQPs were analyzed and substrate specificity of DcaAQPs was predicted. qRT-PCR, RNA-seq, and semi-qRTRCR were used for DcaAQP genes expression analysis. The analysis results indicated that DcaAQPs were relatively conserved in gene structure and protein motifs, that DcaAQPs had significant differences in substrate specificity among different subfamilies, and that DcaAQP genes’ expressions were significantly different in roots, stems, leaves and flowers. Five DcaAQP genes (DcaPIP1;3, DcaPIP2;2, DcaPIP2;5, DcaTIP1;4, and DcaTIP2;2) might play important roles in flower opening process. However, the roles they play are different in flower organs, namely, sepals, petals, stamens, and pistils. Overall, this study provides a theoretical basis for further functional analysis of DcaAQPs.
Collapse
|