1
|
Li K, Zhang Y, Li L, Cui K, Li Y, Li C, Dai Y, Xiao W, Wang Q. Identification of sensitive endpoints for the assessment of phthalates-induced reproductive and developmental toxicity: A literature mining study. Food Chem Toxicol 2024; 188:114686. [PMID: 38663762 DOI: 10.1016/j.fct.2024.114686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), two common types of phthalates, are known to cause reproductive and developmental toxicity in animals and humans. The reference doses (RfD) of DBP and DEHP should be determined by sensitive endpoints. We here aimed to identify sensitive endpoints for DBP- and DEHP-induced such toxicity using published literatures. By examining the impacts of maternal exposure to DBP or DEHP on anogenital distance (AGD) and semen quality of offspring, we discovered that DBP or DEHP caused AGD decline in boys but increase in girls with DBP being more potent and the first 14weeks of pregnancy being more susceptible, suggesting a chemical- and time-dependent phenomenon. We also identified AGD shortening and total sperm count reduction as two sensitive endpoints for DBP- or DEHP-induced reproductive and developmental toxicity, respectively. Based upon these two endpoints and the employment of the Bayesian benchmark dose approach with an uncertainty factor of 3,000, we estimated the RfD values of DBP and DEHP were 15 μg/kg/day and 36 μg/kg/day, respectively. Thus, we uncover previously unrecognized phenomena of DBP- or DEHP-induced reproductive and developmental toxicity and establish new and comparable or more conservative RfDs for the risk assessment of phthalates exposure in humans.
Collapse
Affiliation(s)
- Kai Li
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yiping Zhang
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ludi Li
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Kanglong Cui
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yingzi Li
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Chunying Li
- Peking University Health Science Library, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yufei Dai
- National Institute of Environmental Health, China CDC, 7 Panjiayuan South Li, Chaoyang District, Beijing, 100021, China.
| | - Wusheng Xiao
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China; Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
2
|
Zhang X, Xu C, Li Y, Chen Z, Xu F, Zhang H, Ding L, Lin Y, Zhao N. Association between phthalate metabolite mixture in neonatal cord serum and birth outcomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170614. [PMID: 38316308 DOI: 10.1016/j.scitotenv.2024.170614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Prenatal exposure to phthalates (PAEs) is ubiquitous among Chinese neonates. PAEs entering the body will be transformed to various hydrolyzed and oxidated PAE metabolites (mPAEs). PAEs and mPAEs exposure may lead to adverse birth outcomes through disruption of multiple hormone signaling pathways, induction of oxidative stress, and alterations in intracellular signaling processes. In this study, the concentrations of 11 mPAEs in 318 umbilical cord serum samples from neonates in Jinan were quantified with HPLC-ESI-MS. Multiple linear regression, Bayesian kernel machine regression, and quantile g-computation models were utilized to investigate the effects of both individual mPAE and mPAE mixture on birth outcomes. Stratified analysis was performed to explore whether these effects were gender-specific. mPAE mixture was negatively associated with birth length (BL) z-score, birth weight (BW) z-score, head circumference (HC) z-score, and ponderal index (PI). Mono(2-ethylhexyl) phthalate (MEHP) manifested negative associations with BL(z-score), BW(z-score), HC(z-score), and PI, whereas mono(2-carboxymethylhexyl) phthalate (MCMHP) was negatively associated with BW(z-score) and PI within the mPAE mixture. Stratified analysis revealed that the negative associations between mPAE mixture and four birth outcomes were attenuated in female infants, while the positive impact of mono(2-ethyl-5carboxypentyl) phthalate (MECPP) on BL(z-score) and BW(z-score) could be detected only in females. In summary, our findings suggest that prenatal exposure to phthalates may be associated with intrauterine growth restriction, and these effects vary according to the gender of the infant.
Collapse
Affiliation(s)
- Xiaozhen Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Caihong Xu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yahui Li
- Jinan Digital Application Center of Ecology and Environment (Jinan Grid Supervision Center of Ecological and Environmental Protection), Jinan 250102, China
| | - Zhongkai Chen
- Jinan Digital Application Center of Ecology and Environment (Jinan Grid Supervision Center of Ecological and Environmental Protection), Jinan 250102, China
| | - Fei Xu
- School of Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Haoyu Zhang
- School of Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Lei Ding
- School of Environmental Research Institute, Shandong University, Qingdao 266237, China
| | - Yongfeng Lin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao 266071, China
| | - Nan Zhao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, Shandong, China.
| |
Collapse
|
3
|
Rosen EM, Stevens DR, McNell EE, Wood ME, Engel SM, Keil AP, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Variability and Longitudinal Trajectories of Phthalate and Replacement Biomarkers across Pregnancy in the Human Placenta and Phthalates Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13036-13046. [PMID: 37607343 PMCID: PMC10513743 DOI: 10.1021/acs.est.3c04043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Human exposure to phthalates is widespread, but assessment of variability across pregnancy has been hampered by short half-lives of phthalate biomarkers and a few repeated measures in prior studies. We aimed to characterize the variability and longitudinal profiles of phthalate and replacement biomarkers across pregnancy. Within the Human Placenta and Phthalates Study, 303 pregnant women provided urine samples at up to 8 visits across gestation. Concentrations of 14 metabolites of phthalates and 4 metabolites of replacements were quantified in each sample, and subject-specific averages within each trimester were calculated. We examined variability in individual biomarker concentrations across the 8 visits, within trimesters, and across trimester-specific averages using intraclass correlation coefficients (ICCs). To explore longitudinal exposure biomarker profiles, we applied group-based trajectory modeling to trimester-specific averages over pregnancy. Pooling multiple visits into trimester-specific averages improved the ICCs for all biomarkers. Most biomarkers generally showed stable concentrations across gestation, i.e., high-, medium-, and low-concentration profiles, with small proportions of participants falling into the "high"-exposure groups. Variability over pregnancy is likely attributable to random fluctuations around a baseline exposure rather than true changes in concentrations over time.
Collapse
Affiliation(s)
- Emma M. Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| | - Erin E. McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Mollie E. Wood
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Stephanie M. Engel
- Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Alexander P. Keil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - George Saade
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina 27709, USA
| |
Collapse
|
4
|
Stevens DR, Rosen EM, Van Wickle K, McNell EE, Bommarito PA, Calafat AM, Botelho JC, Sinkovskaya E, Przybylska A, Saade G, Abuhamad A, Ferguson KK. Early pregnancy phthalates and replacements in relation to fetal growth: The human placenta and phthalates study. ENVIRONMENTAL RESEARCH 2023; 229:115975. [PMID: 37094650 PMCID: PMC10201455 DOI: 10.1016/j.envres.2023.115975] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Pregnant persons are exposed ubiquitously to phthalates and increasingly to chemicals introduced to replace phthalates. In early pregnancy, exposure to these chemicals may disrupt fetal formation and development, manifesting adverse fetal growth. Previous studies examining the consequences of early pregnancy exposure relied on single spot urine measures and did not investigate replacement chemicals. OBJECTIVE Characterize associations between urinary phthalate and replacement biomarkers in early pregnancy and fetal growth outcomes. METHODS Analyses were conducted among 254 pregnancies in the Human Placenta and Phthalates Study, a prospective cohort with recruitment 2017-2020. Exposures were geometric mean concentrations of phthalate and replacement biomarkers quantified in two spot urine samples collected around 12- and 14-weeks of gestation. Outcomes were fetal ultrasound biometry (head and abdominal circumferences, femur length, estimated fetal weight) collected in each trimester and converted to z-scores. Adjusted linear mixed effects (single-pollutant) and quantile g-computation (mixture) models with participant-specific random effects estimated the difference, on average, in longitudinal fetal growth for a one-interquartile range (IQR) increase in individual (single-pollutant) or all (mixture) early pregnancy phthalate and replacement biomarkers. RESULTS Mono carboxyisononyl phthalate and the sums of metabolites of di-n-butyl, di-iso-butyl, and di-2-ethylhexyl phthalate were inversely associated with fetal head and abdominal circumference z-scores. A one-IQR increase in the phthalate and replacement biomarker mixture was inversely associated with fetal head circumference (β: -0.36 [95% confidence interval: -0.56, -0.15]) and abdominal circumference (-0.31 [-0.49, -0.12]) z-scores. This association was mainly driven by phthalate biomarkers. CONCLUSIONS Urine concentrations of phthalate biomarkers, but not replacement biomarkers, in early pregnancy were associated with reductions in fetal growth. Though the clinical implications of these differences are unclear, reduced fetal growth contributes to excess morbidity and mortality across the lifecourse. Given widespread global exposure to phthalates, findings suggest a substantial population health burden resulting from early pregnancy phthalate exposure.
Collapse
Affiliation(s)
- Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Emma M Rosen
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Kimi Van Wickle
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Department of Epidemiology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Erin E McNell
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Curriculum in Toxicology and Environmental Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Julianne C Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Elena Sinkovskaya
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ann Przybylska
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - George Saade
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Alfred Abuhamad
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
5
|
Welch BM, Keil AP, Buckley JP, Calafat AM, Christenbury KE, Engel SM, O'Brien KM, Rosen EM, James-Todd T, Zota AR, Ferguson KK. Associations Between Prenatal Urinary Biomarkers of Phthalate Exposure and Preterm Birth: A Pooled Study of 16 US Cohorts. JAMA Pediatr 2022; 176:895-905. [PMID: 35816333 PMCID: PMC9274448 DOI: 10.1001/jamapediatrics.2022.2252] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 01/16/2023]
Abstract
Importance Phthalate exposure is widespread among pregnant women and may be a risk factor for preterm birth. Objective To investigate the prospective association between urinary biomarkers of phthalates in pregnancy and preterm birth among individuals living in the US. Design, Setting, and Participants Individual-level data were pooled from 16 preconception and pregnancy studies conducted in the US. Pregnant individuals who delivered between 1983 and 2018 and provided 1 or more urine samples during pregnancy were included. Exposures Urinary phthalate metabolites were quantified as biomarkers of phthalate exposure. Concentrations of 11 phthalate metabolites were standardized for urine dilution and mean repeated measurements across pregnancy were calculated. Main Outcomes and Measures Logistic regression models were used to examine the association between each phthalate metabolite with the odds of preterm birth, defined as less than 37 weeks of gestation at delivery (n = 539). Models pooled data using fixed effects and adjusted for maternal age, race and ethnicity, education, and prepregnancy body mass index. The association between the overall mixture of phthalate metabolites and preterm birth was also examined with logistic regression. G-computation, which requires certain assumptions to be considered causal, was used to estimate the association with hypothetical interventions to reduce the mixture concentrations on preterm birth. Results The final analytic sample included 6045 participants (mean [SD] age, 29.1 [6.1] years). Overall, 802 individuals (13.3%) were Black, 2323 (38.4%) were Hispanic/Latina, 2576 (42.6%) were White, and 328 (5.4%) had other race and ethnicity (including American Indian/Alaskan Native, Native Hawaiian, >1 racial identity, or reported as other). Most phthalate metabolites were detected in more than 96% of participants. Higher odds of preterm birth, ranging from 12% to 16%, were observed in association with an interquartile range increase in urinary concentrations of mono-n-butyl phthalate (odds ratio [OR], 1.12 [95% CI, 0.98-1.27]), mono-isobutyl phthalate (OR, 1.16 [95% CI, 1.00-1.34]), mono(2-ethyl-5-carboxypentyl) phthalate (OR, 1.16 [95% CI, 1.00-1.34]), and mono(3-carboxypropyl) phthalate (OR, 1.14 [95% CI, 1.01-1.29]). Among approximately 90 preterm births per 1000 live births in this study population, hypothetical interventions to reduce the mixture of phthalate metabolite levels by 10%, 30%, and 50% were estimated to prevent 1.8 (95% CI, 0.5-3.1), 5.9 (95% CI, 1.7-9.9), and 11.1 (95% CI, 3.6-18.3) preterm births, respectively. Conclusions and Relevance Results from this large US study population suggest that phthalate exposure during pregnancy may be a preventable risk factor for preterm delivery.
Collapse
Affiliation(s)
- Barrett M. Welch
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | | | - Jessie P. Buckley
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Kate E. Christenbury
- Social & Scientific Systems, Inc, a DLH Holdings Company, Raleigh, North Carolina
| | | | - Katie M. O'Brien
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Emma M. Rosen
- University of North Carolina at Chapel Hill, Chapel Hill
| | | | - Ami R. Zota
- Milken School of Public Health, George Washington University, Washington, DC
| | - Kelly K. Ferguson
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | | |
Collapse
|
6
|
Stevens DR, Bommarito PA, Keil AP, McElrath TF, Trasande L, Barrett ES, Bush NR, Nguyen RHN, Sathyanarayana S, Swan S, Ferguson KK. Urinary phthalate metabolite mixtures in pregnancy and fetal growth: Findings from the infant development and the environment study. ENVIRONMENT INTERNATIONAL 2022; 163:107235. [PMID: 35429919 PMCID: PMC9075822 DOI: 10.1016/j.envint.2022.107235] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Prenatal phthalate exposure has been linked to reductions in fetal growth in animal and laboratory studies, but epidemiologic evidence is equivocal. OBJECTIVE Examine the association between prenatal phthalate metabolite mixtures and fetal growth and evaluate whether that association is modified by fetal sex or omega-3 intake during pregnancy. METHODS Analyses included 604 singleton pregnancies from TIDES, a prospective pregnancy cohort with spot urine samples and questionnaires collected in each trimester. Pregnancy-averaged phthalate exposure estimates were calculated as the geometric means of specific-gravity corrected phthalate metabolites. Fetal growth outcomes included birthweight and length, and ultrasound-derived size and velocity of estimated fetal weight, femur length, abdominal and head circumferences in the second and third trimesters. We used a novel application of quantile g-computation to estimate the joint association between pregnancy-averaged phthalate exposure and fetal growth, and to examine effect modification of that association by infant sex or omega-3 intake during pregnancy. RESULTS There were few statistically significant differences in birth size and fetal growth by exposure. A one-quartile increase in the phthalate mixture was modestly associated with reduced birthweight(β [95% confidence interval)]: -54.6 [-128.9, 19.7] grams; p = 0.15) and length (-0.2 [-0.6, 0.2] centimeters; p = 0.40). A one-quartile increase in the phthalate mixture was associated with reduced birth length in males (-0.5 [-1.0, 0.0] centimeters) but not for females (0.1 [-0.2, 0.3] centimeters); interaction p = 0.05. The phthalate metabolite mixture was inversely associated with ultrasound-derived fetal growth among those with adequate omega-3 intake. For example, a one-quartile increase in the phthalate mixture was associated with reduced abdominal circumference in the third trimesters in those with adequate omega-3 intake (-3.3 [-6.8, 0.1] millimeters) but not those with inadequate omega-3 intake (1.8 [-0.8, 4.5] millimeters); interaction p = 0.01. CONCLUSION Prenatal phthalate exposure was not significantly associated with fetal growth outcomes, with some exceptions for certain subgroups.
Collapse
Affiliation(s)
- Danielle R Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Paige A Bommarito
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Alexander P Keil
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA; Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas F McElrath
- Division of Maternal-Fetal Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Leonardo Trasande
- Departments of Pediatrics, Environmental Medicine, and Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Nicole R Bush
- Department of Psychiatry Behavioral Sciences, Department of Pediatrics, University of California at San Francisco, San Francisco, CA, USA
| | - Ruby H N Nguyen
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Shanna Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly K Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, Durham, NC, USA.
| |
Collapse
|
7
|
Urinary Phthalate Biomarkers during Pregnancy, and Maternal Endocrine Parameters in Association with Anthropometric Parameters of Newborns. CHILDREN 2022; 9:children9030413. [PMID: 35327785 PMCID: PMC8947339 DOI: 10.3390/children9030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Adverse birth outcomes present risk factors resulting in neonatal morbidity and mortality. Sufficient maternal hormonal concentrations are crucial for normal foetal development. Previous studies have shown a relationship between phthalate exposure and maternal hormonal levels during pregnancy. This study aims to investigate if neonatal anthropometric parameters are associated with maternal endocrine parameters during the ≤15th week of gestation and the third trimester of pregnancy concerning phthalate exposure in pregnant women from Nitra, Slovakia. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to quantify urinary concentrations of phthalates and serum concentrations of hormones and sex hormone-binding globulin (SHBG), respectively. We observed a mostly positive correlation between neonatal anthropometric parameters (gestational age, birth length, birth weight, head circumference) and maternal concentration of phthalate metabolites (p ≤ 0.05). The hierarchical multivariate regression results showed a statistically significant association between Apgar score at 5 min after delivery, gestational age, birth weight, head circumference, and maternal endocrine parameters during pregnancy (p ≤ 0.05), adjusted to phthalate metabolites. To the best of our knowledge, our study is the first to indicate that prenatal exposure to phthalates may also affect birth outcomes through interaction with the maternal endocrine system.
Collapse
|
8
|
Chang CH, Tsai YA, Huang YF, Tsai MS, Hou JW, Lin CL, Wang PW, Huang LW, Chen CY, Wu CF, Hsieh CJ, Wu MT, Wang SL, Chen ML. The sex-specific association of prenatal phthalate exposure with low birth weight and small for gestational age: A nationwide survey by the Taiwan Maternal and Infant Cohort Study (TMICS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151261. [PMID: 34715222 DOI: 10.1016/j.scitotenv.2021.151261] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 05/16/2023]
Abstract
The Taiwan Maternal and Infant Cohort Study (TMICS) was launched with the aim to assess the effects of prenatal exposure to phthalic acid esters (PAEs) on infant health. A total of 1102 pregnant women were enrolled in this study from 2012 to 2015. All participants completed a structured questionnaire, and provided urine specimens. The urinary concentrations of PAE metabolites in the third trimester were measured using liquid chromatography-electrospray ionization tandem mass spectrometry. Generalized additive model-penalized regression splines and logistic regression models were employed to determine the risk for low birth weight (LBW) or small for gestational age (SGA) among pregnant women exposed to PAEs. After adjustments for other covariates, each incremental unit of ln-transformed mono-n-butyl phthalate (MnBP) for pregnant women increased the odds of SGA in male neonates by 1.44 (95% CI: 0.92-2.23). An inverse association between SGA and maternal MnBP exposure level was observed in female neonates. An increase in one ln-transformed MnBP concentration unit decreased the risk of female SGA to 0.50 (95% CI: 0.24-0.97). In the penalized regression splines, increased risks of LBW/SGA in male neonates were presented while pregnant women exposed to increased MnBP levels. However, an association in the opposite direction was observed between maternal MnBP and LBW or SGA for male and female neonates. This study indicated that high maternal MnBP exposure in the third trimester was associated with LBW or SGA for male infants. Adverse effects on susceptible populations exposed to high levels of PAEs should be of concern.
Collapse
Affiliation(s)
- Chia-Huang Chang
- School of Public Health, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Global Health and Health Security, Taipei Medical University, Taipei, Taiwan
| | - Yen-An Tsai
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Fang Huang
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, Taiwan
| | - Ming-Song Tsai
- Department of OBS & GYN, Cathay General Hospital, Taipei, Taiwan
| | - Jia-Woei Hou
- Department of Pediatrics, Cathay General Hospital, Taipei, Taiwan
| | - Ching-Ling Lin
- Department of Endocrinology and Metabolism, Cathay General Hospital, Taipei, Taiwan
| | - Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pediatrics, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Li-Wei Huang
- Department of Obstetrics & Gynecology, Taipei City Hospital, Heping Fuyou Branch, Taipei, Taiwan
| | - Chih-Yao Chen
- Division of Obstetrics and High Risk Pregnancy, Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chia-Fang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; International Master Program of Translational Medicine, National United University, Miaoli, Taiwan
| | - Chia-Jung Hsieh
- Department of Public Health, Tzu Chi University, Hualien, Taiwan
| | - Ming-Tsang Wu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shu-Li Wang
- Division of Environmental Health & Occupational Medicine, National Health Research Institutes, Miaoli, Taiwan.
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
9
|
Nidens N, Krönke A, Jurkutat A, Schlingmann M, Poulain T, Nüchter M, Kiviranta H, Körner A, Vogel M, Lindh C, Bornehag CG, Kiess W. Associations of prenatal exposure to phthalates and one phthalate substitute with anthropometric measures in early life: Results from the German LIFE Child cohort study. Best Pract Res Clin Endocrinol Metab 2021; 35:101532. [PMID: 34238682 DOI: 10.1016/j.beem.2021.101532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Exposure to phthalates is widespread and especially early life stages represent a critical window of exposure. In the present study, we investigated the effect of prenatal exposure to phthalates on birth outcomes and weight development in early life. In 130 mother-child pairs, we estimated the association of concentrations of 13 phthalates in spot-urine samples collected during pregnancy and birth outcomes and weight gain in the first two years of life using robust linear regression. High molecular weight phthalates were inversely associated with birth weight in girls but not in boys. Thus, prenatal exposure to phthalates may affect birth weight in a sex-specific manner.
Collapse
Affiliation(s)
- Nathalie Nidens
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, Leipzig University, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig University, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Anna Krönke
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, Leipzig University, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig University, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Anne Jurkutat
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, Leipzig University, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig University, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Maike Schlingmann
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, Leipzig University, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig University, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Tanja Poulain
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, Leipzig University, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig University, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Matthias Nüchter
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, Leipzig University, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany
| | - Hannu Kiviranta
- Department of Health Security, National Institute for Health and Welfare (THL), FI-70150 Kuopio, Finland
| | - Antje Körner
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, Leipzig University, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig University, Liebigstraße 20a, D-04103, Leipzig, Germany; Integrated Research and Treatment Center Adiposity Diseases, Leipzig University, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany
| | - Mandy Vogel
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, Leipzig University, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig University, Liebigstraße 20a, D-04103, Leipzig, Germany.
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine Lund University, SE-223 81, Lund, Sweden
| | - Carl-Gustaf Bornehag
- Department of Health Sciences, Karlstad University, 651 88 SE, Karlstad, Sweden; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Wieland Kiess
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, Leipzig University, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Pediatric Research, Leipzig University, Liebigstraße 20a, D-04103, Leipzig, Germany
| |
Collapse
|
10
|
Nidens N, Vogel M, Körner A, Kiess W. Prenatal exposure to phthalate esters and its impact on child development. Best Pract Res Clin Endocrinol Metab 2021; 35:101478. [PMID: 33608224 DOI: 10.1016/j.beem.2020.101478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Endocrine disruptive chemicals (EDCs) cause adverse health effects through interaction with endocrine systems. They are classified by chemical structure, effects on specific endocrine systems, their bioaccumulation and/or persistence in the environment, and/or clinically observable effects. In industrial nations, people are exposed to complex mixtures of many different substances all of which may have multiple and deleterious effects upon the individual. The clinical importance of epigenetic changes caused by the action of EDCs during vulnerable phases of development is currently unclear but of particular relevance. Epidemiological studies are criticized because reproducibility is not always guaranteed. Nevertheless, they remain the method of choice for the development and analysis of suitable model systems. Positive associations, despite of sometimes conflicting results, are the key in the selection of factors that can then be analyzed in model systems in an unbiased way. This article reports EDC-caused effects in the fields of growth and metabolism, neurocognitive development and sexual development and reproduction focusing mainly on phthalates and their metabolites. However, research will have to focus on the interactions of different EDCs and their consequences of prenatal and early life exposure.
Collapse
Affiliation(s)
- Nathalie Nidens
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Paediatric Research, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Mandy Vogel
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Paediatric Research, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Antje Körner
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Paediatric Research, Liebigstraße 20a, D-04103, Leipzig, Germany
| | - Wieland Kiess
- Leipzig Research Center for Civilization Diseases (LIFE), LIFE Child, University of Leipzig, Faculty of Medicine, Philipp-Rosenthal-Straße 27, D-04103, Leipzig, Germany; Hospital for Children and Adolescents, Center for Paediatric Research, Liebigstraße 20a, D-04103, Leipzig, Germany.
| |
Collapse
|
11
|
Li J, Qian X, Zhou Y, Li Y, Xu S, Xia W, Cai Z. Trimester-specific and sex-specific effects of prenatal exposure to di(2-ethylhexyl) phthalate on fetal growth, birth size, and early-childhood growth: A longitudinal prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146146. [PMID: 33684750 DOI: 10.1016/j.scitotenv.2021.146146] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
Prenatal exposure to di(2-ethylhexyl) phthalate (DEHP) may cause adverse health outcomes. However, trimester-specific impacts of DEHP exposure on offspring growth from fetal to early childhood stage have not been thoroughly evaluated. In this study, participants who provided a full series of urine specimens at three trimesters were selected from a birth cohort conducted at Wuhan, China from 2014 to 2015. 814 mother-offspring pairs were included in the study. Urinary concentrations of DEHP metabolites were determined using liquid chromatography-tandem mass spectrometry. Z-scores for ultrasound-measured fetal growth parameters at 14.0-18.9, 22.6-27.0, and 29.0-33.9 weeks of gestation, were calculated. Weight, height, and body mass index (BMI) at 6, 12, and 24 months were standardized to z-scores using sex-specific and age-specific WHO child growth standards. Linear regressions with generalized estimating equations were used to assess the relationships of DEHP levels per trimester to fetal growth, birth size, and growth at 6, 12, and 24 months to explore the trimester-specific impacts of DEHP exposure on offspring development. Among males, the1st-trimester DEHP was negatively related to fetal growth (β < 0, p < 0.05), but positively related to 24-month BMI. The 2nd-trimester DEHP was negatively related to birth weight and birth length, but positively related to weight gain rates from birth to 24 months old. The 3rd-trimester DEHP was positively (β > 0, p < 0.05) associated with birth weight and BMI at 6 and 12 months. Among females, the 1st-trimester DEHP was associated with increased birth length, while the 2nd-trimester DEHP was negatively associated with BMI at 6 and 12 months. A negative association between DEHP and weight gain rates at 6 months was noted among females. This prospective cohort revealed the sex-specific and trimester-specific relationships of DEHP exposure to offspring growth from fetal to early-childhood stage.
Collapse
Affiliation(s)
- Jiufeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xi Qian
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiu Zhou
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
12
|
Cuellar AE, Adams LM, de Jonge L, Espina V, Espinoza L, Fischer SF, Frankenfeld CL, Hines DA, Kornienko O, Lawrence HY, Rana ZH, Ramezani N, Rossheim ME, Short JL, Waithaka EN, Wilson AN, Cheskin LJ. Protocol for the Mason: Health Starts Here prospective cohort study of young adult college students. BMC Public Health 2021; 21:897. [PMID: 33980206 PMCID: PMC8114021 DOI: 10.1186/s12889-021-10969-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/04/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Young adulthood is a period of increasing independence for the 40% of young adults enrolled in U.S. colleges. Previous research indicates differences in how students' health behaviors develop and vary by gender, race, ethnicity, and socioeconomic status. George Mason University is a state institution that enrolls a highly diverse student population, making it an ideal setting to launch a longitudinal cohort study using multiple research methods to evaluate the effects of health behaviors on physical and psychological functioning, especially during the COVID-19 pandemic. RESULTS Mason: Health Starts Here was developed as a longitudinal cohort study of successive waves of first year students that aims to improve understanding of the natural history and determinants of young adults' physical health, mental health, and their role in college completion. The study recruits first year students who are 18 to 24 years old and able to read and understand English. All incoming first year students are recruited through various methods to participate in a longitudinal cohort for 4 years. Data collection occurs in fall and spring semesters, with online surveys conducted in both semesters and in-person clinic visits conducted in the fall. Students receive physical examinations during clinic visits and provide biospecimens (blood and saliva). CONCLUSIONS The study will produce new knowledge to help understand the development of health-related behaviors during young adulthood. A long-term goal of the cohort study is to support the design of effective, low-cost interventions to encourage young adults' consistent performance of healthful behaviors, improve their mental health, and improve academic performance.
Collapse
Affiliation(s)
- Alison E Cuellar
- Department of Health Administration and Policy, George Mason University, Fairfax, USA
| | - Leah M Adams
- Departments of Psychology, and of Women & Gender Studies, George Mason University, Fairfax, USA
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Peterson Hall 4113, Fairfax, USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, USA
| | - Laurette Espinoza
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Peterson Hall 4113, Fairfax, USA
| | - Sarah F Fischer
- Department of Psychology, George Mason University, Fairfax, USA
| | - Cara L Frankenfeld
- Department of Global and Community Health, George Mason University, Fairfax, USA
| | - Denise A Hines
- Department of Social Work, George Mason University, Fairfax, USA
| | - Olga Kornienko
- Department of Psychology, George Mason University, Fairfax, USA
| | | | - Ziaul H Rana
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Peterson Hall 4113, Fairfax, USA
| | | | - Matthew E Rossheim
- Department of Global and Community Health, George Mason University, Fairfax, USA
| | - Jerome L Short
- Department of Psychology, George Mason University, Fairfax, USA
| | - Eric N Waithaka
- Department of Social Work, George Mason University, Fairfax, USA
| | - Alyssa N Wilson
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Peterson Hall 4113, Fairfax, USA
| | - Lawrence J Cheskin
- Department of Nutrition and Food Studies, College of Health and Human Services, George Mason University, Peterson Hall 4113, Fairfax, USA.
| |
Collapse
|
13
|
Vrachnis N, Loukas N, Vrachnis D, Antonakopoulos N, Christodoulaki C, Tsonis O, George M, Iliodromiti Z. Phthalates and fetal growth velocity: tracking down the suspected links. J Matern Fetal Neonatal Med 2021; 35:4985-4993. [PMID: 33467971 DOI: 10.1080/14767058.2021.1873943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fetuses that have not achieved their full growth potential are associated with adverse perinatal and long-term outcomes; thus, it is essential to identify environmental factors that can potentially impair normal intrauterine development. Endocrine disrupting compounds (EDCs), substances capable of altering the homeostasis of the endocrine system, are thought to play a role in restriction of growth velocity, with phthalates being among the most common EDCs to which pregnant women are exposed. Such exposure can potentially lead to changes to the epigenome, placental structure, and hormone function and trigger oxidative stress. Given that these pathways have been linked to fetal growth restriction, we reviewed the literature on the relationship between phthalates and fetal growth. The majority of the studies, which used birth weight as an indicator of intrauterine development, showed contradictory results, the main reason being the EDCs' rapid metabolism. However, we can draw more consistent conclusions when phthalates are quantified at more than one time point during pregnancy. In this narrative review, we present current data indicating the role of phthalates, and especially di-(2-ethylhexyl) phthalate (DEHP), in abnormal fetal growth velocity.
Collapse
Affiliation(s)
- Nikolaos Vrachnis
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece.,Vascular Biology, Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Nikolaos Loukas
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece
| | - Dionysios Vrachnis
- Endocrinology Unit, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| | - Nikolaos Antonakopoulos
- 3rd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Attikon Hospital, Athens, Greece
| | - Chryssi Christodoulaki
- Department of Obstetrics and Gynecology, Chania General Hospital "St. George", Crete, Greece
| | - Orestis Tsonis
- Department of Obstetrics and Gynecology, Medical School, University of Ioannina, Ioannina, Greece
| | - Mastorakos George
- Endocrinology Unit, 2nd Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| | - Zoi Iliodromiti
- Department of Neonatology, National and Kapodistrian University of Athens Medical School, Aretaieio Hospital, Athens, Greece
| |
Collapse
|
14
|
Martínez-Razo LD, Martínez-Ibarra A, Vázquez-Martínez ER, Cerbón M. The impact of Di-(2-ethylhexyl) Phthalate and Mono(2-ethylhexyl) Phthalate in placental development, function, and pathophysiology. ENVIRONMENT INTERNATIONAL 2021; 146:106228. [PMID: 33157377 DOI: 10.1016/j.envint.2020.106228] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 10/19/2020] [Indexed: 05/21/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a chemical widely distributed in the environment as is extensively used in the plastic industry. DEHP is considered an endocrine disruptor chemical (EDC) and humans are inevitably and unintentionally exposed to this EDC through several sources including food, beverages, cosmetics, medical devices, among others. DEHP exposure has been associated and may be involved in the development of various pathologies; importantly, pregnant women are a particular risk group considering that endocrine alterations during gestation may impact fetal programming leading to the development of several chronic diseases in adulthood. Recent studies have indicated that exposure to DEHP and its metabolite Mono(2-ethylhexyl) phthalate (MEHP) may impair placental development and function, which in turn would have a negative impact on fetal growth. Studies performed in several trophoblastic and placental models have shown the negative impact of DEHP and MEHP in key processes related to placental development such as implantation, differentiation, invasion and angiogenesis. In addition, many alterations in placental functions like hormone signaling, metabolism, transfer of nutrients, immunomodulation and oxidative stress response have been reported. Moreover, clinical-epidemiological evidence supports the association between DEHP exposure and adverse pregnancy outcomes and pathologies. In this review, we aim to summarize for the first time current knowledge about the impact of DEHP and MEHP exposure on placental development and pathophysiology, as well as the mechanisms involved. We also remark the importance of exploring DEHP and MEHP effects in different trophoblast cell populations and discuss new perspectives regarding this topic.
Collapse
Affiliation(s)
- Luis Daniel Martínez-Razo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - Alejandra Martínez-Ibarra
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico; Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Ciudad de México 04960, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología "Isidro Espinosa de los Reyes" - Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 11000, Mexico.
| |
Collapse
|
15
|
Qian Y, Shao H, Ying X, Huang W, Hua Y. The Endocrine Disruption of Prenatal Phthalate Exposure in Mother and Offspring. Front Public Health 2020; 8:366. [PMID: 32984231 PMCID: PMC7483495 DOI: 10.3389/fpubh.2020.00366] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Phthalates are a group of ubiquitous synthetic endocrine-disrupting chemicals. Fetal and neonatal periods are particularly susceptible to endocrine disorders, which prenatal exposure to phthalates causes. There is increasing evidence concerning the potential endocrine disrupting for phthalate exposure during pregnancy. This article aims to review the endocrine impairment and potential outcomes of prenatal phthalate exposure. Prenatal exposure phthalates would disrupt the levels of thyroid, sex hormone, and 25-hydroxyvitamin D in pregnant women or offspring, which results in preterm birth, preeclampsia, maternal glucose disorders, infant cryptorchidism, infant hypospadias, and shorter anogenital distance in newborns, as well as growth restriction not only in infants but also in early adolescence and childhood. The relationship of prenatal phthalate exposure with maternal and neonatal outcomes in human beings was often sex-specific associations. Because of the potentially harmful influence of prenatal phthalate exposure, steps should be taken to prevent or reduce phthalate exposure during pregnancy.
Collapse
Affiliation(s)
- Yiyu Qian
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hailing Shao
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinxin Ying
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenle Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Embryonic exposures to mono-2-ethylhexyl phthalate induce larval steatosis in zebrafish independent of Nrf2a signaling. J Dev Orig Health Dis 2020; 12:132-140. [PMID: 32063256 DOI: 10.1017/s2040174420000057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mono-2-ethylhexyl phthalate (MEHP) is the primary metabolite of the ubiquitous plasticizer and toxicant, di-2-ethylhexyl phthalate. MEHP exposure has been linked to abnormal development, increased oxidative stress, and metabolic syndrome in vertebrates. Nuclear factor, Erythroid 2 Like 2 (Nrf2), is a transcription factor that regulates gene expression in response to oxidative stress. We investigated the role of Nrf2a in larval steatosis following embryonic exposure to MEHP. Wild-type and nrf2a mutant (m) zebrafish embryos were exposed to 0 or 200 μg/l MEHP from 6 to either 96 (histology) or 120 hours post fertilization (hpf). At 120 hpf, exposures were ceased and fish were maintained in clean conditions until 15 days post fertilization (dpf). At 15 dpf, fish lengths and lipid content were examined, and the expression of genes involved in the antioxidant response and lipid processing was quantified. At 96 hpf, a subset of animals treated with MEHP had vacuolization in the liver. At 15 dpf, deficient Nrf2a signaling attenuated fish length by 7.7%. MEHP exposure increased hepatic steatosis and increased expression of peroxisome proliferator-activated receptor alpha target fabp1a1. Cumulatively, these data indicate that developmental exposure alone to MEHP may increase risk for hepatic steatosis and that Nrf2a does not play a major role in this phenotype.
Collapse
|
17
|
Goodrich JM, Ingle ME, Domino SE, Treadwell MC, Dolinoy DC, Burant C, Meeker JD, Padmanabhan V. First trimester maternal exposures to endocrine disrupting chemicals and metals and fetal size in the Michigan Mother-Infant Pairs study. J Dev Orig Health Dis 2019; 10:447-458. [PMID: 30696509 PMCID: PMC6660406 DOI: 10.1017/s204017441800106x] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exposures to endocrine disrupting chemicals and metals are near ubiquitous worldwide, and their potential impact on children is a major public health concern. This pilot study was designed to characterize exposures to phthalates, phenols and metals among pregnant women in the first trimester, and to examine associations with fetal biometrics and birth weight. A total of 41 chemicals and elements were analyzed in urine from 56 mothers with full-term newborns from the Michigan Mother-Infant Pairs study. Bivariate analyses identified predictors of exposure biomarkers. Associations between birth weight, Fenton z-scores and second trimester fetal biometrics with toxicants were examined via multivariable linear regression. An average of 30 toxicants were detected in maternal urine. Fast food consumption was associated with several phthalate metabolites, phenols and metals, and canned food consumption with bisphenol F (P <0.05). Mono (3-carboxypropyl) phthalate was significantly associated with higher birth weight and Fenton z-score while the opposite was observed for bisphenol S. Estimated femur length from ultrasonography was significantly inversely associated with arsenic, barium and lead. While limited by sample size, this study is one of the first to evaluate birth outcomes with respect to emerging endocrine disrupting chemicals and to examine associations between toxicants and fetal biometrics. Exposure assessment was provided by the National Institute of Environmental Health Sciences' Children's Health Exposure Analysis Resource (NIEHS CHEAR), a resource available to children's studies with the goal of combining data across cohorts in an effort to characterize the impact of toxicants on child health from birth and beyond.
Collapse
Affiliation(s)
- Jaclyn M. Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Mary E. Ingle
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Steven E. Domino
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Marjorie C. Treadwell
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Charles Burant
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John D. Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
| | - Vasantha Padmanabhan
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
18
|
Broe A, Pottegård A, Hallas J, Ahern TP, Lamont RF, Damkier P. Phthalate exposure from drugs during pregnancy and possible risk of preterm birth and small for gestational age. Eur J Obstet Gynecol Reprod Biol 2019; 240:293-299. [PMID: 31400564 DOI: 10.1016/j.ejogrb.2019.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/30/2023]
Abstract
BACKGROUND Phthalates are chemical compounds present in a wide range of consumer products and are thought to be endocrine disruptors. Though not commonly known, phthalates are present in some medication with previous studies finding up to 50-fold higher urinary metabolite concentrations among exposed compared to the general population. Previous studies on environmental phthalate exposure and pregnancy outcomes have been contradictory and inconclusive and all previous studies have assessed phthalate exposure using biomarkers despite a known rapid metabolism of phthalates. OBJECTIVE To determine whether phthalate exposure from pharmaceutical drugs have effects on preterm birth (PTB) and small for gestational age (SGA). STUDY DESIGN We conducted a nested case-control study among women in Denmark with a recorded singleton birth and included women who conceived between January 1st, 2004 and December 31st, 2015. To mitigate drug effect and confounding by underlying disease we included pregnancies exposed to selected study drugs, and compared pregnancies exposed to phthalate containing drugs to pregnancies exposed to phthalate free generic drugs. Using Danish health registries, we identified 30,899 singleton pregnancies exposed to study drugs available in both phthalate-containing and phthalate free versions. Using conditional logistic regression, we estimated associations between phthalate exposure and the risk of PTB and SGA. Birth weight according to gestational age was defined by INTERGROWTH-21st (SGA-I) and by Marsal's equation (SGA-M) for expected birthweight. RESULTS We included 1965 PTBs, 1315 SGA-Is, and 891 SGA-M cases, matched to 19,537, 12,008, and 7573 controls, respectively. Orthophthalate exposure during the third trimester was positively associated with PTB with a crude OR of 1.36 (95% CI: 1.06-1.76). The association was mainly due to diethyl phthalate. Exposure to phthalate polymers in third trimester was associated with a risk of PTB with crude ORs of 2.08 (CI: 1.16-3.71. No associations were found between orthophthalate or phthalate polymer exposure and SGA. CONCLUSION Exposure to some phthalate-containing pharmaceutical drugs during third trimester is associated with preterm birth.
Collapse
Affiliation(s)
- Anne Broe
- Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, Denmark; Clinical Pharmacology & Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark.
| | - Anton Pottegård
- Clinical Pharmacology & Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Jesper Hallas
- Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, Denmark; Clinical Pharmacology & Pharmacy, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Thomas Patrick Ahern
- Departments of Surgery and Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| | - Ronald Francis Lamont
- Department of Gynaecology and Obstetrics, Odense University Hospital, Odense, Denmark; Division of Surgery, University College London, Northwick Park Institute of Medical Research Campus, London, England
| | - Per Damkier
- Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Bloom MS, Wenzel AG, Brock JW, Kucklick JR, Wineland RJ, Cruze L, Unal ER, Yucel RM, Jiyessova A, Newman RB. Racial disparity in maternal phthalates exposure; Association with racial disparity in fetal growth and birth outcomes. ENVIRONMENT INTERNATIONAL 2019; 127:473-486. [PMID: 30981018 DOI: 10.1016/j.envint.2019.04.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/21/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Experimental and observational data implicate phthalates as developmental toxicants. However, few data are available to assess the maternal risks of gestational exposure by race and infant sex. To begin to address this data gap, we characterized associations between maternal urinary phthalate metabolites and birth outcomes among African American and white mothers from a southeastern U.S. population. We enrolled pregnant African American (n = 152) and white (n = 158) women with singleton live births between 18 and 22 weeks gestation. We measured phthalate metabolites (mono-n-butyl phthalate (MBP), monoisobutyl phthalate (MiBP), monobenzyl phthalate (MBzP), mono(2-ethylhexyl) phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP), monoethyl phthalate (MEP), monomethyl phthalate (MMP), and the sums of DEHP (ΣDEHP) and DBP (ΣDBP) metabolites) in up to two gestational urine specimens from mothers, and evaluated confounder-adjusted associations per natural log unit greater concentration with birth weight for gestational age z-score, small for gestational age (SGA; <10th %tile), preterm birth (PTB; <37 weeks gestation), and low birth weight (LBW; <2500 g). We also tested for interactions by maternal race and infant sex. We found that lower z-scores were associated with greater MiBP (β = -0.28; 95% CI: -0.54, -0.02) and MMP (β = -0.30; 95% CI: -0.52, -0.09) concentrations, while MEP interacted with race (p = 0.04), indicating an association among whites (β = -0.14; 95% CI: -0.28, 0.001) but not among African Americans (β = 0.05; 95% CI = -0.09, 0.19). Greater MiBP (OR = 2.82; 95% CI: 1.21, 6.56) and MEOHP (OR = 2.80; 95% CI: 1.05, 7.42) were associated with an overall higher SGA risk, greater MEHP was associated with higher SGA risk (p = 0.10) in whites (OR = 3.26 95% CI: 0.64, 16.56) but not in African Americans (OR = 0.71 95% CI: 0.07, 7.17), and the associations for MiBP (p = 0.02) and ΣDBP (p = 0.02) varied by infant sex. We detected interactions for PTB in which African Americans were at higher risk than whites for greater MiBP (p = 0.08) and MEP (p = 0.02) although lower risk for greater MEHP (p = 0.09). Greater MEP was associated with an overall higher LBW risk (OR = 1.33; 95% CI: 0.95, 1.86), and males were at higher risk than females with greater MBP (p = 0.002), MiBP (p = 0.02), MBzP (p = 0.01), MEP (p = 0.002), MMP (p = 0.09), and ΣDBP (p = 0.01) concentrations. Overall, our results suggest that gestational phthalate exposure is associated with adverse maternal birth outcomes, and that the effects vary by maternal race and infant sex.
Collapse
Affiliation(s)
- Michael S Bloom
- Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer, NY, USA; Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA.
| | - Abby G Wenzel
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - John W Brock
- Department of Chemistry, University of North Carolina-Asheville, Asheville, NC, USA
| | - John R Kucklick
- National Institute of Standards and Technology, Hollings Marine Laboratory, Charleston, SC, USA
| | - Rebecca J Wineland
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| | - Lori Cruze
- Department of Biology, Wofford College, Spartanburg, SC, USA
| | - Elizabeth R Unal
- Department of Obstetrics and Gynecology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Recai M Yucel
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Assem Jiyessova
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, NY, USA
| | - Roger B Newman
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
20
|
Kamai EM, McElrath TF, Ferguson KK. Fetal growth in environmental epidemiology: mechanisms, limitations, and a review of associations with biomarkers of non-persistent chemical exposures during pregnancy. Environ Health 2019; 18:43. [PMID: 31068204 PMCID: PMC6505101 DOI: 10.1186/s12940-019-0480-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/16/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Non-persistent chemicals, such as phthalates, environmental phenols, organophosphate pesticides, and others, are challenging to study because of their ubiquity in the environment, diverse exposure routes, and high temporal variability of biomarkers. Nonetheless, there is interest in understanding how gestational exposure to these chemicals may affect fetal growth, as perturbations to normal fetal growth are related to a plethora of adverse health outcomes in childhood and adulthood. METHODS The purpose of this review is to describe the state of the science on this topic. We searched PubMed for studies that included both 1) biomarkers of non-persistent chemicals collected during pregnancy and 2) fetal growth outcomes measured at birth (e.g., birth weight) or by ultrasound in utero (e.g., estimated fetal weight). RESULTS The bulk of the literature we found uses biomarkers measured at a single time point in pregnancy and birth weight as the primary measure of fetal growth. There is a small, but growing, body of research that uses ultrasound measures to assess fetal growth during pregnancy. In addition to summarizing the findings of the publications we identified, we describe inconsistencies in methodology, areas for improvement, and gaps in existing knowledge that can be targeted for improvement in future work. This literature is characterized by variability in methodology, likely contributing to the inconsistency of results reported. We further discuss maternal, placental, and fetal pathways by which these classes of chemicals may affect fetal growth. CONCLUSIONS To improve understanding of how everyday chemical exposures affect fetal growth, and ultimately lifelong health outcomes, mechanisms of toxicant action should be considered alongside improved study designs for future hypothesis-driven research.
Collapse
Affiliation(s)
- Elizabeth M. Kamai
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 135 Dauer Drive, 2101 McGavran-Greenberg Hall, CB #7435, Chapel Hill, NC 27599 USA
| | - Thomas F. McElrath
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115 USA
| | - Kelly K. Ferguson
- Epidemiology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, 111 TW Alexander Drive, Research Triangle Park, NC 27709 USA
| |
Collapse
|
21
|
Zhu Y, Wan Y, Zhang B, Zhou A, Huo W, Wu C, Liu H, Jiang Y, Chen Z, Jiang M, Peng Y, Xu S, Xia W, Li Y. Relationship between maternal phthalate exposure and offspring size at birth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1072-1078. [PMID: 28892847 DOI: 10.1016/j.scitotenv.2017.08.207] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/26/2017] [Accepted: 08/20/2017] [Indexed: 05/25/2023]
Abstract
Research findings on effects of prenatal phthalate exposure on fetal growth were inconsistent. Increasing evidence from animal studies has indicated a potential sex-specific effect of phthalates on fetal growth, but the current human data was limited. In this study, we aimed to estimate the relationships between maternal phthalate exposure and infant birth size. Six major phthalate metabolite levels of urine samples were measured among pregnant women (n=1002) from the Healthy Baby Cohort (HBC), China. The associations between urinary phthalate metabolites levels and birth size (birth weight, birth length, birth weight z-scores and ponderal index) were estimated using linear regression models. In boys, the ln-transformed di-2-ethylhexyl phthalate (DEHP) metabolite levels were significantly associated with increased birth weight and birth weight z-scores. Additionally, each ln-unit increase in mono-(2-ethyl-5-carbox-ypentyl) phthalate (MECPP) was associated with a 0.25kg/m3 [95% confidence interval (CI): 0.03, 0.47] increase in ponderal index in boys. However, we did not observe any significant association of maternal phthalate metabolite levels with any of the outcomes in girls. Our data suggested potential sex-specific associations of maternal phthalate exposure with increased birth weight and ponderal index, which were merely apparent in boys.
Collapse
Affiliation(s)
- Yingshuang Zhu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Yanjian Wan
- CDC of Yangtze River Administration and Navigational Affairs, General Hospital of the Yangtze River Shipping, Wuhan 430019, Hubei, PR China
| | - Bin Zhang
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430015, Hubei, PR China
| | - Aifen Zhou
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430015, Hubei, PR China
| | - Wenqian Huo
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Chuansha Wu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Yangqian Jiang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Zong Chen
- Women and Children Medical and Healthcare Center of Wuhan, Wuhan 430015, Hubei, PR China
| | - Minmin Jiang
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Yang Peng
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China
| | - Wei Xia
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health (HUST), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, PR China.
| |
Collapse
|
22
|
Messerlian C, Braun JM, Mínguez-Alarcón L, Williams PL, Ford JB, Mustieles V, Calafat AM, Souter I, Toth T, Hauser R. Paternal and maternal urinary phthalate metabolite concentrations and birth weight of singletons conceived by subfertile couples. ENVIRONMENT INTERNATIONAL 2017; 107:55-64. [PMID: 28666241 PMCID: PMC5563279 DOI: 10.1016/j.envint.2017.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/16/2017] [Accepted: 06/16/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND Prenatal phthalate exposure has been inconsistently associated with fetal growth and infant birth weight. However, the effect of exposure during the paternal and maternal preconception period remains understudied. OBJECTIVES To investigate associations of paternal and maternal preconception and maternal prenatal urinary phthalate metabolite concentrations with birth weight. METHODS The study comprised 364 singletons born to 364 mothers and 195 fathers (195 couples) from the EARTH Study, a prospective cohort of couples from Boston, MA. Births were categorized by mode of conception: in-vitro fertilization based (IVF) (n=208) or non-IVF based (n=156, intrauterine insemination or non-medically assisted/natural conception). We measured urinary concentrations of eleven phthalate metabolites in maternal (n=1425) and paternal (n=489) preconception and maternal prenatal (n=781) samples. Birth weight was abstracted from delivery records. Covariate-adjusted associations between loge-phthalate metabolite concentrations and birth weight were evaluated separately by mode of conception using multivariable linear regression. RESULTS Each loge-unit increase in paternal urinary concentration of the sum of di(2-ethylhexyl) phthalate (ΣDEHP) metabolites was associated with a 90 gram (95% CI: -165, -15) decrease in birth weight among IVF singletons, but not among non-IVF singletons (18g; 95% CI: -76, 113). Additional adjustment for maternal prenatal ΣDEHP concentrations modestly strengthened findings among IVF singletons. While few associations were found with maternal preconception phthalate metabolites, we observed an inverse relationship between several maternal prenatal urinary phthalate metabolite concentrations and birth weight among IVF singletons in covariate-adjusted models. However, with further adjustment for specific paternal phthalate metabolite concentrations, these associations were attenuated and no longer significant. CONCLUSIONS Paternal preconception urinary concentration of ΣDEHP metabolites was associated with a decrease in birth weight among IVF-conceived singletons. These results, if replicated, highlight the importance of preconception health, especially among subfertile couples.
Collapse
Affiliation(s)
- Carmen Messerlian
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Lidia Mínguez-Alarcón
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Paige L Williams
- Department of Biostatistics, Harvard T.H. Chan School of Public Health Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health Boston, MA, USA
| | - Jennifer B Ford
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Vicente Mustieles
- University of Granada, Centro de Investigación Biomédica, Granada, Spain
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Irene Souter
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Harvard Medical School, Boston, MA, USA
| | - Thomas Toth
- Massachusetts General Hospital Fertility Center, Department of Obstetrics and Gynecology, Harvard Medical School, Boston, MA, USA
| | - Russ Hauser
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health Boston, MA, USA; Vincent Obstetrics and Gynecology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Impact of Periconceptional Exposure to Phthalates on Pregnancy, Birth, and Neonatal Outcomes. CURR EPIDEMIOL REP 2017. [DOI: 10.1007/s40471-017-0110-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Gao H, Xu YY, Huang K, Ge X, Zhang YW, Yao HY, Xu YQ, Yan SQ, Jin ZX, Sheng J, Zhu P, Hao JH, Tao FB. Cumulative risk assessment of phthalates associated with birth outcomes in pregnant Chinese women: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:549-556. [PMID: 28024814 DOI: 10.1016/j.envpol.2016.11.026] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/14/2016] [Accepted: 11/09/2016] [Indexed: 05/02/2023]
Abstract
A prospective cohort study of a Chinese population of mother-neonate pairs (n = 3103) was conducted to investigate the relationship between the cumulative hazard index (HI) of combined diethyl phthalate (DEP), dibutyl phthalate (DBP), dibenzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) exposure and birth outcomes. The estimated HI for phthalates was based on phthalate metabolite concentrations in urine collected between 5th and 14th gestational weeks. The median HI values according to the European Food Safety Authority tolerable daily intake (HITDI) and U.S. Environmental Protection Agency reference dose (HIRfD) were 0.358 and 0.187, respectively. A total of 16.3% and 1.9% of the women exhibited HITDI and HIRfD exceeding the value of one, respectively. In unadjusted models, the categories (low < P25, median P25-P50, high > P75) of HITDI were associated with decreased birth weight (β = -26.34 g, p = 0.021) and head circumference (β = -0.09 cm, p = 0.029), whereas those for HIRfD were negatively associated with birth weight (β = -31.74 g, p = 0.005), birth length (β = -0.11 cm, p = 0.032), head circumference (β = -0.13 cm, p = 0.003) and chest circumference (β = -0.10 cm, p = 0.021) in all neonates. Adjustment for potential confounders revealed that HIRfD was inversely associated with head circumference (β = -0.10 cm, p = 0.020). Stratification by gender indicated that HIRfD was associated with decreased birth length (β = -0.17 cm, p = 0.041) in infant boys and HITDI was associated with decreased birth weight (β = -33.12 g, p = 0.036) and head circumference (β = -0.13 cm, p = 0.027) in girls. This is the first study on the cumulative risk assessment of phthalate exposures in pregnant Chinese women. We found that the HI values of multiple phthalate co-exposure were sex-specifically related to birth outcomes.
Collapse
Affiliation(s)
- Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuan-Yuan Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xing Ge
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yun-Wei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hui-Yuan Yao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Ye-Qing Xu
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, China
| | - Shuang-Qin Yan
- Ma'anshan Maternal and Child Health (MCH) Center, Ma'anshan, China
| | - Zhong-Xiu Jin
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Jie Sheng
- Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, China.
| |
Collapse
|