1
|
Li B, Suzuki-Kerr H, Martis RM, Lim CJJ, Wang ZA, Nguyen TX, Donaldson PJ, Poulsen RC, Lim JC. Time of day differences in the regulation of glutathione levels in the rat lens. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1407582. [PMID: 39211001 PMCID: PMC11358124 DOI: 10.3389/fopht.2024.1407582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Introduction Evidence in non-ocular tissues indicate that the antioxidant glutathione (GSH) may be regulated in a circadian manner leading to the idea that GSH levels in the lens may also be controlled in a circadian manner to anticipate periods of oxidative stress. Methods Male rat Wistar lenses (6 weeks) were collected every 4 hours over a 24-hour period at 6am, 10am, 2pm, 6pm, 10pm and 2am and quantitative-PCR, western blotting and immunohistochemistry performed to examine the expression of core clock genes and proteins (BMAL1, CLOCK, CRY1-2, PER 1-3) and their subcellular localisation over a 24-hour period. Western blotting of lenses was also performed to examine the expression of NRF2, a transcription factor involved in regulating genes involved in GSH homeostasis and GSH related enzymes (GCLC, GS and GR) over the 24-hour period. Finally, HLPC was used to measure GSH levels in the aqueous humour and lenses every 4 hours over a 24-hour period. Results The rat lens contains the core molecular components of a circadian clock with the expression of core clock proteins, NRF2 and GSH related enzymes fluctuating over a 24-hour period. BMAL1 expression was highest during the day, with BMAL1 localised to the nuclei at 10am. NRF2 expression remained constant over the 24-hour period, although appeared to move in and out of the nuclei every 4 hours. GSH related enzyme expression tended to peak at the start of night which correlated with high levels of GSH in the lens and lower levels of GSH in the aqueous humour. Conclusion The lens contains the key components of a circadian clock, and time-of-day differences exist in the expression of GSH and GSH related enzymes involved in maintaining GSH homeostasis. GSH levels in the rat lens were highest at the start of night which represents the active phase of the rat when high GSH levels may be required to counteract oxidative stress induced by cellular metabolism. Future work to directly link the clock to regulation of GSH levels in the lens will be important in determining whether the clock can be used to help restore GSH levels in the lens.
Collapse
Affiliation(s)
- Bo Li
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Haruna Suzuki-Kerr
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Renita M. Martis
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Christopher J. J. Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Zhou-ai Wang
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Tai X. Nguyen
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Paul J. Donaldson
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Raewyn C. Poulsen
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Julie C. Lim
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Kuntic M, Hahad O, Al-Kindi S, Oelze M, Lelieveld J, Daiber A, Münzel T. Pathomechanistic Synergy Between Particulate Matter and Traffic Noise-Induced Cardiovascular Damage and the Classical Risk Factor Hypertension. Antioxid Redox Signal 2024. [PMID: 38874533 DOI: 10.1089/ars.2024.0659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Affiliation(s)
- Marin Kuntic
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Omar Hahad
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Sadeer Al-Kindi
- Cardiovascular Prevention & Wellness and Center for CV Computational & Precision Health, Houston Methodist DeBakey Heart & Vascular Center, Houston, Texas, USA
| | - Matthias Oelze
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| | - Thomas Münzel
- Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Mainz, Germany
| |
Collapse
|
3
|
Ribble A, Hellmann J, Conklin DJ, Bhatnagar A, Haberzettl P. Fine particulate matter (PM 2.5)-induced pulmonary oxidative stress contributes to increases in glucose intolerance and insulin resistance in a mouse model of circadian dyssynchrony. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162934. [PMID: 36934930 PMCID: PMC10164116 DOI: 10.1016/j.scitotenv.2023.162934] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 05/06/2023]
Abstract
Results of human and animal studies independently suggest that either ambient fine particulate matter (PM2.5) air pollution exposure or a disturbed circadian rhythm (circadian dyssynchrony) are important contributing factors to the rapidly evolving type-2-diabetes (T2D) epidemic. The objective of this study is to investigate whether circadian dyssynchrony increases the susceptibility to PM2.5 and how PM2.5 affects metabolic health in circadian dyssynchrony. We examined systemic and organ-specific changes in glucose homeostasis and insulin sensitivity in mice maintained on a regular (12/12 h light/dark) or disrupted (18/6 h light/dark, light-induced circadian dyssynchrony, LICD) light cycle exposed to air or concentrated PM2.5 (CAP, 6 h/day, 30 days). Exposures during Zeitgeber ZT3-9 or ZT11-17 (Zeitgeber in circadian time, ZT0 = begin of light cycle) tested for time-of-day PM2.5 sensitivity (chronotoxicity). Mice transgenic for lung-specific overexpression of extracellular superoxide dismutase (ecSOD-Tg) were used to assess the contribution of CAP-induced pulmonary oxidative stress. Both, CAP exposure from ZT3-9 or ZT11-17, decreased glucose tolerance and insulin sensitivity in male mice with LICD, but not in female mice or in mice kept on a regular light cycle. Although changes in glucose homeostasis in CAP-exposed male mice with LICD were not associated with obesity, they were accompanied by white adipose tissue (WAT) inflammation, impaired insulin signaling in skeletal muscle and liver, and systemic and pulmonary oxidative stress. Preventing CAP-induced oxidative stress in the lungs mitigated the CAP-induced decrease in glucose tolerance and insulin sensitivity in LICD. Our results demonstrate that circadian dyssynchrony is a novel susceptibility state for PM2.5 and suggest that PM2.5 by inducing pulmonary oxidative stress increases glucose intolerance and insulin resistance in circadian dyssynchrony.
Collapse
Affiliation(s)
- Amanda Ribble
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Jason Hellmann
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Daniel J Conklin
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Petra Haberzettl
- Diabetes and Obesity Center, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
4
|
Jiang J, Gu Y, Ding S, Zhang G, Ding J. Resveratrol reversed ambient particulate matter exposure-perturbed oscillations of hepatic glucose metabolism by regulating SIRT1 in mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:31821-31834. [PMID: 36459324 DOI: 10.1007/s11356-022-24434-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Much evidence has shown that ambient particulate matter (PM) exposure is associated with abnormal glucose metabolism, but the underlying mechanism has not yet been fully characterized. Circadian disruption has adverse effects on glucose metabolism. In this study, we investigated the effects of long-term ambient PM exposure on the hepatic circadian clock and the expression rhythm of genes associated with hepatic glucose metabolism in mice. C57BL/6 mice were exposed to filtered air (FA), ambient PM, or ambient PM plus resveratrol (RES). After 15 weeks (12 h per day, 7 days per week) of exposure, glucose homeostasis, the rhythmic expression of clock genes, and genes associated with hepatic glucose metabolism were determined. Our results found that PM exposure induced glucose metabolism disorder and perturbed the rhythmic mRNA expression of core clock genes and their target genes involved in hepatic glucose metabolism. Mechanistic investigations demonstrated that ambient PM exposure markedly altered the expression patterns of BMAL1, clock, and SIRT1 in vivo. Simultaneously, we demonstrated that RES (an activator of SIRT1) changed the expression pattern of SIRT1, thereby reversing the rhythm misalignment of BMAL1 and clock and hepatic glucose metabolism disorder induced by ambient PM exposure. In addition, PM2.5 exposure perturbed the rhythmic protein expression of BMAL1, clock, and SIRT1 in L-02 cells. Simultaneously, we demonstrated that RES restored the SIRT1 circadian rhythm, which reversed the rhythm misalignment of BMAL1 and clock in L-02 cells induced by PM2.5 exposure. Taken together, our results suggested that long-term ambient PM exposure perturbed the hepatic core circadian clock rhythm and caused glucose metabolism disorder, which could be reversed by RES supplementation. Our study offers a potential application of RES for combating circadian misalignment-related metabolic diseases.
Collapse
Affiliation(s)
- Jinjin Jiang
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Yaqin Gu
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| | - Shibin Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China.
| | - Guofu Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, People's Republic of China
| | - Jinfeng Ding
- Jiangsu Vocational College of Medicine, Yancheng, Jiangsu Province, People's Republic of China
| |
Collapse
|
5
|
Daiber A, Frenis K, Kuntic M, Li H, Wolf E, Kilgallen AB, Lecour S, Van Laake LW, Schulz R, Hahad O, Münzel T. Redox Regulatory Changes of Circadian Rhythm by the Environmental Risk Factors Traffic Noise and Air Pollution. Antioxid Redox Signal 2022; 37:679-703. [PMID: 35088601 PMCID: PMC9618394 DOI: 10.1089/ars.2021.0272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022]
Abstract
Significance: Risk factors in the environment such as air pollution and traffic noise contribute to the development of chronic noncommunicable diseases. Recent Advances: Epidemiological data suggest that air pollution and traffic noise are associated with a higher risk for cardiovascular, metabolic, and mental disease, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, neurodegeneration, depression, and anxiety disorders, mainly by activation of stress hormone signaling, inflammation, and oxidative stress. Critical Issues: We here provide an in-depth review on the impact of the environmental risk factors air pollution and traffic noise exposure (components of the external exposome) on cardiovascular health, with special emphasis on the role of environmentally triggered oxidative stress and dysregulation of the circadian clock. Also, a general introduction on the contribution of circadian rhythms to cardiovascular health and disease as well as a detailed mechanistic discussion of redox regulatory pathways of the circadian clock system is provided. Future Directions: Finally, we discuss the potential of preventive strategies or "chrono" therapy for cardioprotection. Antioxid. Redox Signal. 37, 679-703.
Collapse
Affiliation(s)
- Andreas Daiber
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Katie Frenis
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Marin Kuntic
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Aoife B. Kilgallen
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Linda W. Van Laake
- Division Heart and Lungs, Regenerative Medicine Centre, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Omar Hahad
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Münzel
- Molecular Cardiology, Department of Cardiology 1, Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
6
|
Crislip GR, Johnston JG, Douma LG, Costello HM, Juffre A, Boyd K, Li W, Maugans CC, Gutierrez-Monreal M, Esser KA, Bryant AJ, Liu AC, Gumz ML. Circadian Rhythm Effects on the Molecular Regulation of Physiological Systems. Compr Physiol 2021; 12:2769-2798. [PMID: 34964116 PMCID: PMC11514412 DOI: 10.1002/cphy.c210011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Nearly every system within the body contains an intrinsic cellular circadian clock. The circadian clock contributes to the regulation of a variety of homeostatic processes in mammals through the regulation of gene expression. Circadian disruption of physiological systems is associated with pathophysiological disorders. Here, we review the current understanding of the molecular mechanisms contributing to the known circadian rhythms in physiological function. This article focuses on what is known in humans, along with discoveries made with cell and rodent models. In particular, the impact of circadian clock components in metabolic, cardiovascular, endocrine, musculoskeletal, immune, and central nervous systems are discussed. © 2021 American Physiological Society. Compr Physiol 11:1-30, 2021.
Collapse
Affiliation(s)
- G. Ryan Crislip
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | - Jermaine G. Johnston
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Hannah M. Costello
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
| | | | - Kyla Boyd
- Department of Biochemistry and Molecular Biology
| | - Wendy Li
- Department of Biochemistry and Molecular Biology
| | | | | | - Karyn A. Esser
- Department of Physiology and Functional Genomics
- Myology Institute
| | | | - Andrew C. Liu
- Department of Physiology and Functional Genomics
- Myology Institute
| | - Michelle L. Gumz
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation
- Department of Biochemistry and Molecular Biology
- Department of Physiology and Functional Genomics
- Center for Integrative Cardiovascular and Metabolic Disease
| |
Collapse
|
7
|
Lett Z, Hall A, Skidmore S, Alves NJ. Environmental microplastic and nanoplastic: Exposure routes and effects on coagulation and the cardiovascular system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118190. [PMID: 34563850 PMCID: PMC11098554 DOI: 10.1016/j.envpol.2021.118190] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 05/27/2023]
Abstract
Plastic pollution has been a growing concern in recent decades due to the proliferation and ease of manufacturing of single use plastic products and inadequate waste and recycling management. Microplastic, and even smaller nanoplastic, particles are persistent pollutants in aquatic and terrestrial systems and are the subject of active and urgent research. This review will explore the current research on how exposure to plastic particles occurs and the risks associated from different exposure routes: ingestion, inhalation, and dermal exposure. The effects of microplastics on the cardiovascular system are of particular importance due to its sensitivity and ability to transport particles to other organ systems. The effects of microplastics and nanoplastics on the heart, platelet aggregation, and thrombus formation will all be explored with focus on how the particle characteristics modulate their effect. Plastic particle interactions are highly dependent on both their size and their surface chemistry and interesting research is being done with the interaction of particle characteristics and effect on thrombosis and the cardiovascular system. There is significant uncertainty surrounding some of the findings in this field as research in this area is still maturing. There are undoubtedly more physiological consequences than we are currently aware of resulting from environmental plastic exposure and more studies need to be conducted to reveal the full extent of pathologies caused by the various routes of microplastic exposure, with particular emphasis on longitudinal exposure effects. Further research will allow us to recognize the full extent of physiological impact and begin developing viable solutions to reduce plastic pollution and potentially design interventions to mitigate in-vivo plastic effects following significant or prolonged exposure.
Collapse
Affiliation(s)
- Zachary Lett
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Abigail Hall
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shelby Skidmore
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Nathan J Alves
- Emergency Medicine Department, Indiana University School of Medicine, Indianapolis, IN, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
8
|
Münzel T, Hahad O, Sørensen M, Lelieveld J, Duerr GD, Nieuwenhuijsen M, Daiber A. Environmental risk factors and cardiovascular diseases: a comprehensive review. Cardiovasc Res 2021; 118:2880-2902. [PMID: 34609502 PMCID: PMC9648835 DOI: 10.1093/cvr/cvab316] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Noncommunicable diseases (NCDs) are fatal for more than 38 million people each year and are thus the main contributors to the global burden of disease accounting for 70% of mortality. The majority of these deaths are caused by cardiovascular disease. The risk of NCDs is strongly associated with exposure to environmental stressors such as pollutants in the air, noise exposure, artificial light at night and climate change, including heat extremes, desert storms and wildfires. In addition to the traditional risk factors for cardiovascular disease such as diabetes, arterial hypertension, smoking, hypercholesterolemia and genetic predisposition, there is a growing body of evidence showing that physicochemical factors in the environment contribute significantly to the high NCD numbers. Furthermore, urbanization is associated with accumulation and intensification of these stressors. This comprehensive expert review will summarize the epidemiology and pathophysiology of environmental stressors with a focus on cardiovascular NCDs. We will also discuss solutions and mitigation measures to lower the impact of environmental risk factors with focus on cardiovascular disease.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jos Lelieveld
- Max Planck Institute for Chemistry, Atmospheric Chemistry Department, Mainz, Germany
| | - Georg Daniel Duerr
- Department of Cardiac Surgery, University Medical Center Mainz, Johannes Gutenberg University, Germany
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Germany
| |
Collapse
|
9
|
Hu R, Zhang W, Li R, Qin L, Chen R, Zhang L, Gu W, Sun Q, Liu C. Ambient fine particulate matter exposure disrupts circadian rhythm and oscillation of the HPA axis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112524. [PMID: 34274836 DOI: 10.1016/j.ecoenv.2021.112524] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/27/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Emerging evidence supports that exposure to ambient fine particulate matter (PM2.5) is associated with the metabolic syndrome. As the main neuroendocrine axis in mammals, the hypothalamic-pituitary-adrenal (HPA) axis's circadian rhythm (CR) plays an essential role in regulating metabolic homeostasis. Our previous studies found that ambient PM2.5 exposure caused CR disorder of the critical enzymes involved in lipid metabolism in mouse liver and adipose tissues. However, the impact of ambient PM2.5 exposure on the HPA axis is not fully illustrated yet. Male C57BL/6 mice were randomly exposed to ambient PM2.5 or filtered air for ten weeks via a whole-body exposure system. Rhythmic oscillations of clock genes in the hypothalamus and adrenal gland were characterized. The effects of ambient PM2.5 exposure on clock gene expression and rhythmic expression of molecules related to glucocorticoid synthesis were also examined. Firstly, a more robust CR of clock genes was demonstrated in the adrenal gland than that in the hypothalamus. Secondly, PM2.5 exposure significantly inhibited the expression of Clock at ZT8 in the hypothalamus. However, both circadian oscillation and expression levels of Bmal1, Cry1, Cry2, and Rorα were increased significantly by ambient PM2.5 exposure in the adrenal gland. Moreover, abnormal rhythmic oscillation patterns of corticotropin-releasing hormone and adrenocorticotropic hormone were observed after ambient PM2.5 exposure, with no change at the expression levels. Finally, the expression of Cyp11b1 was markedly decreased at ZT0 in the adrenal gland of PM2.5 exposed mice. Our findings provide new insights into the ambient PM2.5 exposure-induced metabolic syndrome from the perspective of CR disturbances.
Collapse
Affiliation(s)
- Renjie Hu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Wenhui Zhang
- Department of Environmental and Occupational health, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Ran Li
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Li Qin
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Rucheng Chen
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Lu Zhang
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Weijia Gu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qinghua Sun
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Cuiqing Liu
- School of Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
10
|
Münzel T, Sørensen M, Lelieveld J, Hahad O, Al-Kindi S, Nieuwenhuijsen M, Giles-Corti B, Daiber A, Rajagopalan S. Heart healthy cities: genetics loads the gun but the environment pulls the trigger. Eur Heart J 2021; 42:2422-2438. [PMID: 34005032 PMCID: PMC8248996 DOI: 10.1093/eurheartj/ehab235] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
The world's population is estimated to reach 10 billion by 2050 and 75% of this population will live in cities. Two-third of the European population already live in urban areas and this proportion continues to grow. Between 60% and 80% of the global energy use is consumed by urban areas, with 70% of the greenhouse gas emissions produced within urban areas. The World Health Organization states that city planning is now recognized as a critical part of a comprehensive solution to tackle adverse health outcomes. In the present review, we address non-communicable diseases with a focus on cardiovascular disease and the urbanization process in relation to environmental risk exposures including noise, air pollution, temperature, and outdoor light. The present review reports why heat islands develop in urban areas, and how greening of cities can improve public health, and address climate concerns, sustainability, and liveability. In addition, we discuss urban planning, transport interventions, and novel technologies to assess external environmental exposures, e.g. using digital technologies, to promote heart healthy cities in the future. Lastly, we highlight new paradigms of integrative thinking such as the exposome and planetary health, challenging the one-exposure-one-health-outcome association and expand our understanding of the totality of human environmental exposures.
Collapse
Affiliation(s)
- Thomas Münzel
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstrasse 1, Mainz 55131, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Mette Sørensen
- Diet, Genes and Environment, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100 Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Universitetsvej 1, P.O. Box 260, DK-4000 Roskilde, Denmark
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
| | - Omar Hahad
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstrasse 1, Mainz 55131, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sadeer Al-Kindi
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mark Nieuwenhuijsen
- Institute for Global Health (ISGlobal), Barcelona Biomedical Research Park (PRBB), Doctor Aiguader 88, 08003 Barcelona, Spain.,Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), PRBB building (Mar Campus) Doctor Aiguader 88, 08003 Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III C/ Monforte de Lemos 3-5. Pabellón 11. Planta 0 28029 Madrid, Spain
| | - Billie Giles-Corti
- Center for Urban Research, RMIT University, 124 La Trobe Street, Melbourne VIC 3000, Australia
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Johannes Gutenberg University, Langenbeckstrasse 1, Mainz 55131, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center and School of Medicine, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
11
|
Johnson NM, Hoffmann AR, Behlen JC, Lau C, Pendleton D, Harvey N, Shore R, Li Y, Chen J, Tian Y, Zhang R. Air pollution and children's health-a review of adverse effects associated with prenatal exposure from fine to ultrafine particulate matter. Environ Health Prev Med 2021; 26:72. [PMID: 34253165 PMCID: PMC8274666 DOI: 10.1186/s12199-021-00995-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Particulate matter (PM), a major component of ambient air pollution, accounts for a substantial burden of diseases and fatality worldwide. Maternal exposure to PM during pregnancy is particularly harmful to children's health since this is a phase of rapid human growth and development. METHOD In this review, we synthesize the scientific evidence on adverse health outcomes in children following prenatal exposure to the smallest toxic components, fine (PM2.5) and ultrafine (PM0.1) PM. We highlight the established and emerging findings from epidemiologic studies and experimental models. RESULTS Maternal exposure to fine and ultrafine PM directly and indirectly yields numerous adverse birth outcomes and impacts on children's respiratory systems, immune status, brain development, and cardiometabolic health. The biological mechanisms underlying adverse effects include direct placental translocation of ultrafine particles, placental and systemic maternal oxidative stress and inflammation elicited by both fine and ultrafine PM, epigenetic changes, and potential endocrine effects that influence long-term health. CONCLUSION Policies to reduce maternal exposure and health consequences in children should be a high priority. PM2.5 levels are regulated, yet it is recognized that minority and low socioeconomic status groups experience disproportionate exposures. Moreover, PM0.1 levels are not routinely measured or currently regulated. Consequently, preventive strategies that inform neighborhood/regional planning and clinical/nutritional recommendations are needed to mitigate maternal exposure and ultimately protect children's health.
Collapse
Affiliation(s)
- Natalie M Johnson
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Jonathan C Behlen
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Carmen Lau
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, 77843, USA
| | - Drew Pendleton
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Navada Harvey
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Ross Shore
- Department of Environmental and Occupational Health, Texas A&M University, College Station, TX, 77843, USA
| | - Yixin Li
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jingshu Chen
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Renyi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
12
|
Monti P, Iodice S, Tarantini L, Sacchi F, Ferrari L, Ruscica M, Buoli M, Vigna L, Pesatori AC, Bollati V. Effects of PM Exposure on the Methylation of Clock Genes in a Population of Subjects with Overweight or Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1122. [PMID: 33513987 PMCID: PMC7908270 DOI: 10.3390/ijerph18031122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
The expression of clock genes, regulating the synchronization of metabolic and behavioral processes with environmental light/dark cycles, is regulated by methylation and might be influenced by short-term exposure to airborne particulate matter (PM), especially in individuals that are hypersensitive to proinflammatory cues. The present study aimed to evaluate the effects of PM2.5 and PM10 on the methylation profile of the clock genes ARNTL, CLOCK, CRY1, CRY2, PER1, PER2, and PER3 in a population of 200 women with obesity. A significant association between PM10 exposure and the methylation of clock genes was found, namely, this was negative for PER2 gene and positive for the CLOCK, CRY1, CRY2, and PER3 genes. PM2.5 was negatively associated with methylation of PER2 gene and positively with methylation of CRY2 gene. Evidence was observed for effect modification from body mass index (BMI) regarding the PER1 gene: as PM2.5/10 increases, DNA methylation increases significantly for relatively low BMI values (BMI = 25), while it decreases in participants with severe obesity (BMI = 51). PM may therefore alter the epigenetic regulation of clock genes, possibly affecting circadian rhythms. Future studies are needed to clarify how alterations in clock gene methylation are predictive of disease development and how obesity can modulate the adverse health effects of PM.
Collapse
Affiliation(s)
- Paola Monti
- Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.M.); (L.V.); (A.C.P.)
| | - Simona Iodice
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Letizia Tarantini
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Francesca Sacchi
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Luca Ferrari
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Massimiliano Ruscica
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Massimiliano Buoli
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy;
- Department of Neurosciences and Mental Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luisella Vigna
- Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.M.); (L.V.); (A.C.P.)
- Center of Obesity and Work EASO Collaborating Centers for Obesity Management, 20122 Milan, Italy
| | - Angela Cecilia Pesatori
- Department of Preventive Medicine, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (P.M.); (L.V.); (A.C.P.)
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| | - Valentina Bollati
- EPIGET—Epidemiology, Epigenetics and Toxicology Lab, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (S.I.); (L.T.); (F.S.); (L.F.)
| |
Collapse
|
13
|
Wang X, Wang M, Chen S, Wei B, Gao Y, Huang L, Liu C, Huang T, Yu M, Zhao SH, Li X. Ammonia exposure causes lung injuries and disturbs pulmonary circadian clock gene network in a pig study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111050. [PMID: 32827960 DOI: 10.1016/j.ecoenv.2020.111050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Ammonia toxicity to respiratory system in pig faming is of particular concern, but the molecular mechanism remains still unclear. The present study was devoted to assess the impacts of the ammonia exposure on the lung tissues based on a pig study using 80 ppm ammonia exposing to piglets for different days. The histology analysis revealed ammonia exposure induced lung injury and inflammatory response, as indicated by epithelial-mesenchymal transition (EMT), significant thickening of alveolar septa, infiltration of inflammatory cells and excessive mucus production. The transcriptome analysis revealed many more up-regulated genes in exposure groups when compared with the control group, and these genes were significantly enriched in the GO term of extracellular exosome, proteolysis, and regulation of circadian rhythm. The study discovered the induction of seven genes (CRY2, CIART, CREM, NR1D1, NR1D2, PER1 and PER3) that encode repressors of circadian clock. One gene (ARNTL) that encodes activator of circadian clock was down-regulated after ammonia exposure. The results of this study suggest that ammonia exposure disturbed the pulmonary circadian clock gene expression, which may establish new evidence for further understanding the toxicity of ammonia to lungs.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengyao Wang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangzhao Chen
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Baoxin Wei
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Gao
- College of Engineering, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longhui Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Huang
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei Yu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shu-Hong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoping Li
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Valacchi G, Magnani N, Woodby B, Ferreira SM, Evelson P. Particulate Matter Induces Tissue OxInflammation: From Mechanism to Damage. Antioxid Redox Signal 2020; 33:308-326. [PMID: 32443938 DOI: 10.1089/ars.2019.8015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Oxidative stress and oxidative damage are central hypothetical mechanisms for the adverse effects of airborne particulate matter (PM). Activation of inflammatory cells capable of generating reactive oxygen and nitrogen species is another proposed damage pathway. Understanding the interplay between these responses can help us understand the adverse health effects attributed to breathing polluted air. Recent Advances: The consequences of PM exposure on different organs are oxidative damage, decreased function, and inflammation, which can lead to the development/exacerbation of proinflammatory disorders. Mitochondrial damage is also an important event in PM-induced cytotoxicity. Critical Issues: Reactive oxygen species (ROS) are generated during phagocytosis of the particles, leading to enhancement of oxidative stress and triggering the inflammatory response. The activation of inflammatory signaling pathways results in the release of cytokines and other mediators, which can further induce ROS production by activating endogenous enzymes, leading to a positive feedback loop, which can aggravate the effects triggered by PM exposure. Future Directions: Further research is required to elucidate the exact mechanisms by which PM exposure results in adverse health effects, in terms of the relationship between the redox responses triggered by the presence of the particles and the inflammation observed in the different organs, so the development/exacerbation of PM-associated health problems can be prevented.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA.,Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy.,Department of Food and Nutrition, Kyung Hee University, Seoul, South Korea
| | - Natalia Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Brittany Woodby
- Department of Animal Science, Plants for Human Health Institute, NC Research Campus, NC State University, Kannapolis, North Carolina, USA
| | - Sandra María Ferreira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Buenos Aires, Argentina.,CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
15
|
Wang Y, Li R, Chen R, Gu W, Zhang L, Gu J, Wang Z, Liu Y, Sun Q, Zhang K, Liu C. Ambient fine particulate matter exposure perturbed circadian rhythm and oscillations of lipid metabolism in adipose tissues. CHEMOSPHERE 2020; 251:126392. [PMID: 32146191 DOI: 10.1016/j.chemosphere.2020.126392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Emerging evidence indicated that disruption of circadian rhythm (CR) induced metabolic disorders, including dysregulation of energy homeostasis and lipid dysfunction, which was associated with ambient fine particulate matter (PM2.5) as well. However, the role and mechanism of CR in PM2.5-mediated metabolic disorder remain unknown. In the present study, we investigated circadian rhythmic characteristics and explored the effect of PM2.5 on oscillating clock of lipid function and metabolism in white adipose tissue (WAT) and brown adipose tissue (BAT). C57BL/6 mice were exposed to PM2.5 in a whole-body inhalational exposure system. After 10 weeks, the expression of clock-related genes exhibits more robust CR in BAT than WAT, with the acrophase of PER2 in both types of adipose tissue being significantly decreased at ZT12 and Bmal1 increased at ZT0/24 in WAT in response to PM2.5 exposure. In addition, both CR pattern and expression levels of Sirt1 got significantly inhibited by PM2.5 exposure in WAT, accompanied with adipose dysfunction evidenced by inhibited pattern and expression levels of adipokines at the same ZT time points. Finally, a similar phase right shift from ZT4 to ZT12 in both Sirt3 and Ucp1 in BAT was induced by PM2.5 exposure. These findings indicate that disruption of the CR in adipose tissues could be an important way by which PM2.5 exposure induces metabolic disorder and provide potential targets for further investigation.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ran Li
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Rucheng Chen
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Weijia Gu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Lu Zhang
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinge Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ziyao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience & Beijing Key Laboratory of Ambient Particles Health Effects and Prevention Techniques, National Center for Nanoscience and Technology of China and University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Qinghua Sun
- College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Cuiqing Liu
- School of Basic Medical Sciences and Public Health, Joint China-US Research Center for Environment and Pulmonary Diseases, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
16
|
Li H, Kilgallen AB, Münzel T, Wolf E, Lecour S, Schulz R, Daiber A, Van Laake LW. Influence of mental stress and environmental toxins on circadian clocks: Implications for redox regulation of the heart and cardioprotection. Br J Pharmacol 2020; 177:5393-5412. [PMID: 31833063 PMCID: PMC7680009 DOI: 10.1111/bph.14949] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Risk factors in the environment such as air pollution and mental stress contribute to the development of chronic non-communicable disease. Air pollution was identified as the leading health risk factor in the physical environment, followed by water pollution, soil pollution/heavy metals/chemicals and occupational exposures, however neglecting the non-chemical environmental health risk factors (e.g. mental stress and noise). Epidemiological data suggest that environmental risk factors are associated with higher risk for cardiovascular, metabolic and mental diseases, including hypertension, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, depression and anxiety disorders. We provide an overview on the impact of the external exposome comprising risk factors/exposures on cardiovascular health with a focus on dysregulation of stress hormones, mitochondrial function, redox balance and inflammation with special emphasis on the circadian clock. Finally, we assess the impact of circadian clock dysregulation on cardiovascular health and the potential of environment-specific preventive strategies or "chrono" therapy for cardioprotection. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.23/issuetoc.
Collapse
Affiliation(s)
- Huige Li
- Department of Pharmacology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Aoife B Kilgallen
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| | - Thomas Münzel
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Eva Wolf
- Structural Chronobiology, Institute of Molecular Physiology, Johannes Gutenberg University, Mainz, Germany.,Structural Chronobiology, Institute of Molecular Biology, Mainz, Germany
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Andreas Daiber
- Center of Cardiology 1, Molecular Cardiology, Medical Center of the Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Linda W Van Laake
- Division Heart and Lungs and Regenerative Medicine Centre, University Medical Centre Utrecht and Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Li Z, Li N, Guo C, Li X, Qian Y, Wu J, Yang Y, Wei Y. Genomic DNA methylation signatures in different tissues after ambient air particulate matter exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:175-181. [PMID: 31039460 DOI: 10.1016/j.ecoenv.2019.04.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
DNA methylation (5-mc) is one of the several epigenetic markers, and is generally associated with the inhibition of gene expression. Both hyper and hypo DNA methylation are associated with the diseases. Exposure to fine particles with a diameter of 2.5 μm or less (PM2.5) is a pervasive risk factor for cardiopulmonary mortality, metabolic disorders, cognition damage, and etc.. Recent reports pointed toward that these diseases were associated with the altered DNA methylation level of some specific-gene, potentially suggesting that the DNA methylation alteration was involved in the health hazard derived from the PM2.5 exposure. In this study, we systematically investigated the global DNA methylation level of most tissues, including lung, heart, testis, thymus, spleen, epididymal fat, hippocampus, kidney, live, after short and long term PM2.5 exposure. After acute PM2.5 exposure, the global hypo-methylation in DNA was observed in lung and heart. Notably, after chronic PM2.5 exposure, level of global DNA methylation decreased in most organs which included lung, testis, thymus, spleen, epididymal fat, hippocampus and blood. The present study systematically demonstrated the global DNA methylation changes by PM2.5 exposure, and put forward a possible orientation for further exploring the effects of ambient air particles exposure on the specific organs.
Collapse
Affiliation(s)
- Zhigang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Nannan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chen Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoqian Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Qian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jing Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yining Yang
- Class 5 of Grade 2 in Senior High School, Beijing No.171 High School, 100013, China
| | - Yongjie Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
18
|
SMOLENSKY MH, REINBERG AE, FISCHER FM. Working Time Society consensus statements: Circadian time structure impacts vulnerability to xenobiotics-relevance to industrial toxicology and nonstandard work schedules. INDUSTRIAL HEALTH 2019; 57:158-174. [PMID: 30700669 PMCID: PMC6449632 DOI: 10.2486/indhealth.sw-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/27/2018] [Indexed: 05/13/2023]
Abstract
The circadian time structure (CTS) has long been the subject of research in occupational medicine, but not to industrial toxicology, including methods of setting threshold limit values (TLVs) and employee biological monitoring. Numerous animal and human investigations document vulnerability to chemical, contagion, and other xenobiotics varies according to the circadian time of encounter. Permanent and rotating nightshift personnel are exposed to industrial contaminants in the same or higher concentration as dayshift personnel, and because of incomplete CTS adjustment to night work, contact with contaminants occurs during a different biological time than day workers. Thus, the amount of protection afforded by certain TLVs, especially for employees of high-risk settings who work night and other nonstandard shift schedules, might be inadequate. The CTS seems additionally germane to procedures of employee biological monitoring in that high-amplitude 24 h rhythms in biomarkers indicative of xenobiotic exposure may result in misjudgment of health risks when data are not gathered in sufficient frequency over time and properly interpreted. Biological reference values time-qualified for their rhythmic variation, currently of interest to laboratory medicine practice, are seemingly important to industrial medicine as circadian time and work-shift specific biological exposure indices to improve surveillance of personnel, particularly those working nonstandard shift schedules.
Collapse
Affiliation(s)
- Michael H. SMOLENSKY
- Department of Biomedical Engineering, Cockrell School of
Engineering, The University of Texas at Austin, USA
| | | | - Frida Marina FISCHER
- Department of Environmental Health, School of Public Health,
University of São Paulo, Brazil
| |
Collapse
|
19
|
Khan NA, Yogeswaran S, Wang Q, Muthumalage T, Sundar IK, Rahman I. Waterpipe smoke and e-cigarette vapor differentially affect circadian molecular clock gene expression in mouse lungs. PLoS One 2019; 14:e0211645. [PMID: 30811401 PMCID: PMC6392409 DOI: 10.1371/journal.pone.0211645] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/17/2019] [Indexed: 01/10/2023] Open
Abstract
The use of emerging tobacco products, such as waterpipe or hookah and electronic cigarettes (e-cigs), has gained significant popularity and are promoted as safer alternatives to conventional cigarettes. Circadian systems are internal biological oscillations that are considered important regulators of immune functions in mammals. Tobacco induced inflammatory lung diseases frequently exhibit time-of-day/night variation in lung function and symptom severity. We investigated the impact of inhaled e-cig vapor and waterpipe smoke (WPS) on pulmonary circadian molecular clock disruption by determining the changes in expression levels and abundance of core clock component genes (BMAL1, CLOCK) and clock-controlled output genes (Rev-erbα, Per2, Rev-erbβ, Cry2, Rorα) in mouse lungs. We showed that the expression levels of these pulmonary core clock genes and clock-controlled output genes were altered significantly following exposure to WPS (Bmal1, Clock, and Rev-erbα). We further showed a significant yet differential effect on expression levels of core clock and clock-controlled genes (Bmal1, Per2) in the lungs of mice exposed to e-cig vapor containing nicotine. Thus, acute exposure to WPS and e-cig vapor containing nicotine contributes to altered expression of circadian molecular clock genes in mouse lungs, which may have repercussions on lung cellular and biological functions.
Collapse
Affiliation(s)
- Naushad Ahmad Khan
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Shaiesh Yogeswaran
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Isaac K. Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| |
Collapse
|
20
|
Sun Q, Zhang G, Chen R, Li R, Wang H, Jiang A, Li Z, Kong L, Fonken LK, Rajagopalan S, Sun Q, Liu C. Central IKK2 Inhibition Ameliorates Air Pollution-Mediated Hepatic Glucose and Lipid Metabolism Dysfunction in Mice With Type II Diabetes. Toxicol Sci 2018; 164:240-249. [PMID: 29635361 PMCID: PMC6016715 DOI: 10.1093/toxsci/kfy079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Previous studies supported a role of hypothalamic inflammation in fine ambient particulate matter (PM2.5) exposure-mediated diabetes development. We therefore investigated the effects of PM2.5 exposure on insulin resistance and the disorders of hepatic glucose and lipid metabolism via hypothalamic inflammation. KKAy mice, a genetically susceptible model of type II diabetes mellitus, were administered intra-cerebroventricularly with IKK2 inhibitor (IMD-0354) and were exposed to either concentrated PM2.5 or filtered air (FA) for 4 weeks simultaneously via a versatile aerosol concentration exposure system. At the end of the exposure, fasting blood glucose and serum insulin were evaluated before epididymal adipose tissue and liver were collected, flow cytometry, quantitative PCR and Western blot were performed at euthanasia. We observed that intracerebroventricular administration of IMD-0354 attenuated insulin resistance, inhibited macrophage polarization to M1 phenotype in epididymal adipose tissue in response to PM2.5 exposure. Although the treatment did not affect hepatic inflammation or endoplasmic reticulum stress, it inhibited the expression of the enzymes for gluconeogenesis and lipogenesis in the liver. Therefore, our current finding indicates an important role of hypothalamic inflammation in PM2.5 exposure-mediated hepatic glucose and lipid metabolism disorder.
Collapse
Affiliation(s)
- Qing Sun
- College of Public Health, Dalian Medical University, Dalian 116044, China
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Guoqing Zhang
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Peoples’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Rucheng Chen
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ran Li
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huanhuan Wang
- Department of Basic Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Apei Jiang
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhenwei Li
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Liya Kong
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Laura K Fonken
- Psychology and Neuroscience, Unviersity of Colorado Boulder, Boulder, Colorado 80309
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio 44106
| | - Qinghua Sun
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Division of Environmental Health Sciences, The Ohio State University, Columbus, Ohio 43210
| | - Cuiqing Liu
- College of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Shanghai Key Laboratory of Meteorology and Health, Shanghai 200135, China
| |
Collapse
|
21
|
Comas M, Gordon CJ, Oliver BG, Stow NW, King G, Sharma P, Ammit AJ, Grunstein RR, Phillips CL. A circadian based inflammatory response – implications for respiratory disease and treatment. SLEEP SCIENCE AND PRACTICE 2017. [DOI: 10.1186/s41606-017-0019-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|