1
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
2
|
Terhzaz S, Kerrigan D, Almire F, Szemiel AM, Hughes J, Parvy JP, Palmarini M, Kohl A, Shi X, Pondeville E. NSm is a critical determinant for bunyavirus transmission between vertebrate and mosquito hosts. Nat Commun 2025; 16:1214. [PMID: 39890788 PMCID: PMC11785797 DOI: 10.1038/s41467-024-54809-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/21/2024] [Indexed: 02/03/2025] Open
Abstract
Bunyavirales is a very large order including viruses infecting a variety of taxonomic groups such as arthropods, vertebrates, plants, and protozoa. Some bunyaviruses are transmitted between vertebrate hosts by blood-sucking arthropods and cause major diseases in humans and animals. It is not understood why only some bunyaviruses have evolved the capacity to be transmitted by arthropod vectors. Here we show that only vector-borne bunyaviruses express a non-structural protein, NSm, whose function has so far remained largely elusive. Using as experimental system Bunyamwera virus (BUNV) and its invertebrate host, Aedes aegypti, we show that NSm is dispensable for viral replication in mosquito cells in vitro but is absolutely required for successful infection in the female mosquito following a blood meal. More specifically, NSm is required for cell-to-cell spread and egress from the mosquito midgut, a known barrier to viral infection. Notably, the requirement for NSm is specific to the midgut; bypassing this barrier by experimental intrathoracic infection of the mosquito eliminates the necessity of NSm for virus spread in other tissues, including the salivary glands. Overall, we unveiled a key evolutionary process that allows the transmission of vector-borne bunyaviruses between arthropod and vertebrate hosts.
Collapse
Affiliation(s)
- Selim Terhzaz
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - David Kerrigan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Floriane Almire
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Agnieszka M Szemiel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Joseph Hughes
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Jean-Philippe Parvy
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK
- Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Xiaohong Shi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| | - Emilie Pondeville
- MRC-University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
3
|
Abas AS, Simfukwe AJ, Masalu JP, Kahamba NF, Nambunga IH, Msaky DS, Limwagu AJ, Kipekepeke AR, Wergin C, Njalambaha RM, Kemibala EE, Seleman A, Mlacha YP, Finda M, Beisel U, Kimaro EG, Ngowo HS, Okumu FO. Risk of Aedes-borne diseases in and around the Tanzanian seaport of Tanga despite community members being more concerned about malaria. Parasit Vectors 2024; 17:512. [PMID: 39696481 DOI: 10.1186/s13071-024-06586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/17/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Increased global trade, while beneficial economically, can also increase the spread of vector-borne diseases, particularly those transmitted by Aedes mosquitoes spreading via trade routes. Given the heightened trade-induced activity at ports of entry, it is particularly crucial to assess the risk of mosquito-borne diseases in these settings. This study compared the risks of Aedes-borne disease in and around the eastern Tanzanian seaport of Tanga. METHODS A 200 m × 200 m grid-based system was used to sample mosquitoes within the port area, and in surrounding areas at 2 km, 2.5 km, and 5 km away, between June and December 2023. We characterized mosquito breeding habitats, collected mosquito larvae using standard dippers and tested susceptibility of raised adult Aedes aegypti populations to different insecticides. Adult mosquitoes were collected using BG sentinel traps (daytime) and Centers for Disease Control (CDC) light traps (night-time). Additionally, more than 200 port users and neighboring residents were surveyed to assess their experiences with and perceptions of mosquito biting and disease risks. RESULTS There were 2931 breeding sites, with (60.8%, n = 1782) positive for Aedes larvae. The percentage of water-holding containers infested with Aedes immatures, i.e., the container index (CI), was highest in the port area (66.2%), and lowest 5 km away (44.6%). The port area also had a greater proportion of temporary breeding sites (64.9%) than did the surrounding areas. The adult mosquito surveys revealed 20,449 mosquito species including: Culex quinquefasciatus (56.2%), Mansonia uniformis (38.6%), Ae. aegypti (5.1%), Anopheles gambiae (0.1%), and Anopheles funestus. Ae. aegypti were more abundant in the port area than in the surrounding areas (P < 0.001), whereas Culex sp., and Mansonia sp., were significantly outside (P < 0.001). Adult Anopheles sp., were found only in the port area, but Anopheles larvae were found both within and outside the port areas. Tests on Ae. aegypti sp., revealed susceptibility to bendiocarb and DDT, and resistance to permethrin. Awareness of mosquito-borne diseases among respondents was high for malaria (64.8%), but low for dengue (26.3%) and Chikungunya (1.7%). Most respondents reported being bothered by mosquitoes mostly at night (53.4%) or in the evening (40.7%). In addition to insecticidal bednets, which are used primarily against malaria, preventive measures for Aedes-borne diseases are limited. CONCLUSIONS This study identified significant potential risk of Aedes species, specifically Ae. aegypti sp., and associated diseases, but low perception of risk and inadequate personal protection measures in the study area. This low perception of risk highlights the need to improve public knowledge of the transmission and control of Aedes-borne diseases.
Collapse
Affiliation(s)
- Amri S Abas
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O.BOX 447, Arusha, Tanzania.
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania.
- Port Health Services Unit, Ministry of Health, Dodoma, United Republic of Tanzania.
- President's Office Regional Administration and Local Government, P.O.BOX 528, Mtwara, Tanzania.
| | - Alfred J Simfukwe
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - John P Masalu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - Najat F Kahamba
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Ismail H Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - Dickson S Msaky
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - Alex J Limwagu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - Abdallah R Kipekepeke
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - Carsten Wergin
- Heidelberg Centre for Transcultural Studies, Heidelberg University, Voßstraße 2, 69115, Heidelberg, Germany
| | - Rukiyah M Njalambaha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - Elison E Kemibala
- Muheza College of Health and Allied Sciences, P.O. BOX136, Muheza, Tanzania
| | - Amour Seleman
- Port Health Services Unit, Ministry of Health, Dodoma, United Republic of Tanzania
| | - Yeromin P Mlacha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - Marceline Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - Uli Beisel
- Department of Geography, Department of Geography, Free University Berlin, Malteserstr. 74-100, 12249, Berlin, Germany
| | - Esther G Kimaro
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O.BOX 447, Arusha, Tanzania
| | - Halfan S Ngowo
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O.BOX 447, Arusha, Tanzania
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania
| | - Fredros O Okumu
- School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O.BOX 447, Arusha, Tanzania.
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O.BOX 53, Ifakara, Tanzania.
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
4
|
Ouédraogo WM, Zanré N, Sombié A, Yameogo F, Gnémé A, Sanon A, Costantini C, Kanuka H, Viana M, Weetman D, McCall PJ, Badolo A. Blood-Feeding Patterns and Resting Behavior of Aedes aegypti from Three Health Districts of Ouagadougou City, Burkina Faso. Am J Trop Med Hyg 2024; 111:1295-1301. [PMID: 39406251 PMCID: PMC11619481 DOI: 10.4269/ajtmh.24-0240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/18/2024] [Indexed: 12/06/2024] Open
Abstract
Recent dengue outbreaks have occurred in Ouagadougou and Bobo-Dioulasso, the two major cities of Burkina Faso. Dengue is a viral disease transmitted primarily by Aedes aegypti, a highly anthropophilic mosquito that thrives in human-transformed environments and breeds predominantly in artificial containers. In 2018, we investigated the resting and blood-feeding habits of Ae. aegypti in urban settings of Ouagadougou. In a 3-month cross-sectional study starting in August 2018, indoors and outdoors resting adult mosquitoes were collected using Prokopack aspirators in three health districts (HD). All mosquitoes were morphologically identified, and DNA was extracted from blood-fed Ae. aegypti females. A multiplex polymerase chain reaction with specific primers was used to identify the origin of the blood meal. A total of 4,256 adult Ae. aegypti mosquitoes, including 1,908 females, were collected. A preference for exophily was recorded in Bogodogo and Nongremassom, although an unexpectedly higher proportion of blood-fed females were found indoors than outdoors. Respectively, 96.09%, 91.03%, and 95.54% of the blood meals successfully analyzed in Baskuy, Bogodogo, and Nongremassom were from a single human host, with the remainder from domestic mammals as single or multiple hosts. Modeling total Ae. aegypti and blood-fed female counts showed that among other predictors, human density, outdoor environment, and house type affect their total densities. Our study revealed an exophilic tendency as well as a pronounced anthropophilic preference of Ae. aegypti adults, critical findings to consider when planning accurate entomological surveillance and effective interventions against Ae. aegypti in urban settings.
Collapse
Affiliation(s)
- Wendegoudi M. Ouédraogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Programme National de Lutte contre les Maladies Tropicales Négligées (PNMTN), Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Nicolas Zanré
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Aboubacar Sombié
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Felix Yameogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Awa Gnémé
- Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Antoine Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Carlo Costantini
- UMR MIVEGEC, Université Montpellier, CNRS, IRD, Montpellier, France
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Mafalda Viana
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
5
|
Adjobi CN, Zahouli JZB, Guindo-Coulibaly N, Ouattara AF, Vavassori L, Adja MA. Assessing the ecological patterns of Aedes aegypti in areas with high arboviral risks in the large city of Abidjan, Côte d'Ivoire. PLoS Negl Trop Dis 2024; 18:e0012647. [PMID: 39556613 DOI: 10.1371/journal.pntd.0012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The city of Abidjan, Côte d'Ivoire has increasingly faced multiple outbreaks of Aedes mosquito-borne arboviral diseases (e.g., dengue (DEN) and yellow fever (YF)) during the recent years, 2017-2023. Thus, we assessed and compared Aedes aegypti larval and adult population dynamics and Stegomyia indices in four urbanized areas with differential arboviral incidences in Abidjan, Côte d'Ivoire. METHODS From August 2019 to July 2020, we sampled Aedes mosquito immatures (larvae and pupae), adults and breeding habitats in Anono and Gbagba with high arboviral incidences and Ayakro and Entente with low arboviral incidences in the Abidjan city, using standardized methods. Sampling was conducted in the peridomestic and domestic (indoors and outdoors) premises during short dry season (SDS), short rainy season (SRS), long dry season (LDS) and long rainy season (LRS). The abdomens and ovaries of Ae. aegypti females were examined to determine their blood-meal and parity statuses. Stegomyia indices (container index: CI, house index: HI and Breteau index: BI), blood-meal status and parity rates were compared by study sites and seasons and with the World Health Organization (WHO)-established epidemic thresholds. RESULTS Overall, Aedes and arboviral risk indices were high and similar between the four study areas. In total, 86,796 mosquitoes were identified and dominated by Ae. aegypti species (97.14%, 84,317/86,796). The most productive larval breeding habitats were tires, discarded containers and water storage containers. CI, HI, and BI in Anono (22.4%, 33.5% and 89.5), Ayakro (23.1%, 43.8% and 91.0), Entente (15.9%, 24.8% and 48.5) and Gbagba (23.3%, 43.0% and 102.0) were high in the respective study sites. Stegomyia indices were higher than the WHO-established epidemic thresholds during any seasons for DEN, and LRS and SRS for YF. The numbers of Ae. aegypti-positive breeding sites were higher in the domestic premises (68.0%, 900/1,324) than in the peridomestic premises (32.0%, 424/1,324). In the domestic premises, Ae. aegypti-positive breeding sites (94.6%, 851/4,360) and adult individuals (93.4%, 856/916) were mostly found outdoors of houses. Aedes aegypti adult females were mostly unfed (51.3%, 203/396), followed by blood-fed (22.2%, 88/396), gravid (13.9%, 55/396) and half-gravid (12.6%, 50/396), and had parity rate of 49.7% (197/396) that was comparable between the study sites. CONCLUSIONS The city of Abidjan, Côte d'Ivoire is highly infested with Ae. aegypti which showed comparable ecological patterns across study sites and seasons. Thus, the local communities are exposed to high and permanent risks of transmission of DEN and YF viruses that were above the WHO-established epidemic thresholds throughout. The results provide a baseline for future vector studies needed to further characterize the observed patterns of local Ae. aegypti abundances and behaviors, and risks of transmission of these arboviruses. Community-based larval source management of identified productive containers might reduce Ae. aegypti numbers and risks of transmission of Aedes-borne arboviruses in Abidjan, and other sub-Saharan African cities.
Collapse
Affiliation(s)
- Claver N Adjobi
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Julien Z B Zahouli
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Négnorogo Guindo-Coulibaly
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Allassane F Ouattara
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Unité de Formation et de Recherche Sciences de la Nature, Université Nangui-Abrogoua, Abidjan, Côte d'Ivoire
| | - Laura Vavassori
- Swiss Tropical and Public Health Institute, Allschwill, Switzerland
- University of Basel, Basel, Switzerland
| | - Maurice A Adja
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| |
Collapse
|
6
|
Tariq A, Khan A, Mutuku F, Ndenga B, Bisanzio D, Grossi-Soyster EN, Jembe Z, Maina P, Chebii P, Ronga C, Okuta V, LaBeaud AD. Understanding the factors contributing to dengue virus and chikungunya virus seropositivity and seroconversion among children in Kenya. PLoS Negl Trop Dis 2024; 18:e0012616. [PMID: 39565798 PMCID: PMC11578454 DOI: 10.1371/journal.pntd.0012616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 10/08/2024] [Indexed: 11/22/2024] Open
Abstract
Dengue virus (DENV) and chikungunya virus (CHIKV) are causes of endemic febrile disease among Kenyan children. The exposure risk to these infections is highly multifactorial and linked to environmental factors and human behavior. We investigated relationships between household, socio-economic, demographic, and behavioral risk factors for DENV and CHIKV seropositivity and seroconversion in four settlements in Kenya. We prospectively followed a pediatric cohort of 3,445 children between 2014-2018. We utilized the Kaplan-Meier curves to describe the temporal patterns of seroconversion among tested participants. We employed logistic regression built using generalized linear mixed models, to identify potential exposure risk factors for DENV and CHIKV seroconversion and seropositivity. Overall, 5.2% children were seropositive for DENV, of which 59% seroconverted during the study period. The seroprevalence for CHIKV was 9.2%, of which 54% seroconverted. The fraction of seroconversions per year in the study cohort was <2% for both viruses. Multivariable analysis indicated that older age and the presence of water containers ((OR: 1.15 [95% CI: 1.10, 1.21]), (OR: 1.50 [95% CI: 1.07, 2.10])) increased the odds of DENV seropositivity, whereas higher wealth (OR: 0.83 [95% CI: 0.73, 0.96]) decreased the odds of DENV seropositivity. Multivariable analysis for CHIKV seropositivity showed older age and the presence of trash in the housing compound to be associated with increased odds of CHIKV seropositivity ((OR: 1.11[95% CI: 1.07, 1.15]), (OR: 1.34 [95% CI: 1.04, 1.73])), while higher wealth decreased the odds of CHIKV seropositivity (OR: 0.74[95% CI: 0.66, 0.83]). A higher wealth index (OR: 0.82 [95% CI: 0.69, 0.97]) decreased the odds of DENV seroconversion, whereas a higher age (OR: 1.08 [95% CI: 1.02, 1.15]) and the presence of water containers in the household (OR: 1.91[95% CI: 1.24, 2.95]) were significantly associated with increased odds of DENV seroconversion. Higher wealth was associated with decreased odds for CHIKV seroconversion (OR: 0.75 [95% CI: 0.66, 0.89]), whereas presence of water containers in the house (OR: 1.57 [95% CI: 1.11, 2.21]) was a risk factor for CHIKV seroconversion. Our study links ongoing CHIKV and DENV exposure to decreased wealth and clean water access, underscoring the need to combat inequity and poverty and further enhance ongoing surveillance for arboviruses in Kenya to decrease disease transmission. The study emphasizes the co-circulation of DENV and CHIKV and calls for strengthening the targeted control strategies of mosquito borne diseases in Kenya including vector control, environmental management, public education, community engagement and personal protection.
Collapse
Affiliation(s)
- Amna Tariq
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| | - Aslam Khan
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya, Medical Research Institute, Kisumu, Kenya
| | - Donal Bisanzio
- RTI International, Washington, D.C, United States of America
| | - Elysse N. Grossi-Soyster
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| | - Zainab Jembe
- Vector borne Disease control Unit, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Priscilla Maina
- Vector borne Disease control Unit, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Philip Chebii
- Vector borne Disease control Unit, Msambweni County Referral Hospital, Msambweni, Kenya
| | - Charles Ronga
- Centre for Global Health Research, Kenya, Medical Research Institute, Kisumu, Kenya
| | - Victoria Okuta
- Centre for Global Health Research, Kenya, Medical Research Institute, Kisumu, Kenya
| | - Angelle Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University, Palo Alto, California, United States of America
| |
Collapse
|
7
|
Hasan T, Afrin S, Sultana A, Islam A. Asymmetrical reproductive interference between Aedes aegypti and Aedes albopictus : Implications for coexistence. J Vector Borne Dis 2024; 61:547-554. [PMID: 38965875 DOI: 10.4103/jvbd.jvbd_40_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/10/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND OBJECTIVES Aedes aegypti and Ae. albopictus are two sympatric mosquito species that compete with each other for resources when their breeding habitats overlap. This study examines what happens when sympatric Ae. aegypti and Ae. albopictus mosquitoes' mate with each other and other species by looking at insemination rates, fecundity, and hatchability rate. METHODS We performed controlled mating experiments in laboratory settings, assessing both conspecific and interspecific crosses. We measured insemination rates, egg numbers, and hatching success to examine the reproductive interference dynamics between these two distinct mosquito species. RESULTS In the context of conspecific mating, it was observed that both female Ae. aegypti and Ae. albopictus exhibited high insemination rates, with percentages 98% and 94%, respectively. However, interspecific mating exhibited interesting asymmetries as Ae. albopictus males achieved a notable insemination success rate of 28% when mating with Ae. aegypti females, while Ae. aegypti males achieved only an 8% insemination success with Ae. albopictus females. Additionally, females that mated with interspecific males had reduced production of viable eggs compared to conspecific mating. Most notably, interspecific mating resulted in the production of infertile eggs, while conspecific mating led to successful hatching. INTERPRETATION CONCLUSION The study reveals that Ae. aegypti and Ae. albopictus can asymmetrically interfere with each other's reproduction, causing a 'satyr' effect. This understanding of interspecific competition and reproductive interference in these mosquito species could impact their coexistence in shared breeding habitats.
Collapse
Affiliation(s)
- Tanvir Hasan
- Department of Zoology, Jagannath University, Dhaka, Bangladesh
| | - Sadia Afrin
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Afroza Sultana
- Department of Zoology, Jagannath University, Dhaka, Bangladesh
| | - Ashekul Islam
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| |
Collapse
|
8
|
Ablorde A, Kroidl I, Wieser A, Kudom AA. Impact of the exposure of sublethal dose of mosquito coil on the development of insecticide resistance in Aedes aegypti (L.) (Diptera: Culicidae). MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:341-348. [PMID: 38739009 DOI: 10.1111/mve.12721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
Mosquito coil is commonly used in many African households for protection against mosquito bites. The coil usually has semi-volatile pyrethroids as an active ingredient, which usually diffuse across open space, and the cloud either kills mosquitoes that are exposed, or mosquitoes can be exposed to sublethal doses of the insecticides. This study was conducted to assess the impact of sublethal doses of mosquito coil on the development of insecticide resistance in Aedes aegypti, a major vector for dengue fever and several other arboviral diseases. A laboratory colony of Ae. aegypti was exposed to sublethal doses of a meperfluthrin-based mosquito coil in a Peet-Grady chamber once per generation for 16 generations. The susceptibility of the exposed colony to a diagnostic dose of the mosquito coil as well as to three other insecticides was determined. Three different kdr mutations and five enzyme activities were evaluated in both the exposed and control colonies. After 16 generations of sublethal exposure to mosquito coils, the full diagnostic dose of the coil caused 68% mortality to the exposed colony compared to 100% mortality in the control colony. Mortality caused by deltamethrin (0.05%) was also significantly lower in the exposed colony. The frequency of 1016I kdr mutation as well as MFO and alpha esterase activities were higher in the exposed colony compared to the control colony. This study provides evidence of the development of pyrethroid resistance in an Ae. aegypti population due to sublethal exposure to mosquito coil for 16 generations. Given the large-scale use of mosquito coils in many African households, its role as a pyrethroid resistance selection source should be taken into consideration when designing resistance management strategies.
Collapse
Affiliation(s)
- Aikins Ablorde
- Vector Biology and Control Group, Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast, Ghana
- CIHLMU Center for International Health, University Hospital, LMU Munich, Munich, Germany
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research, Munich, Germany
| | - Andreas A Kudom
- Vector Biology and Control Group, Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
9
|
Davarpanah MA, Kouhi P. A New Health Threat for Iran: Dengue Fever. IRANIAN JOURNAL OF MEDICAL SCIENCES 2024; 49:470-471. [PMID: 39205817 PMCID: PMC11347595 DOI: 10.30476/ijms.2024.103325.3654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/22/2024] [Accepted: 06/27/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Mohammad Ali Davarpanah
- HIV/AIDS Research Center, Institute of Health, Shiraz University of Medical Science, Shiraz, Iran
| | - Pariya Kouhi
- Department of Internal Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Owusu-Akyaw M, Owusu-Asenso CM, Abdulai A, Mohammed AR, Sraku IK, Boadu EN, Aduhene E, Attah SK, Afrane YA. Risk of arboviral transmission and insecticide resistance status of Aedes mosquitoes during a yellow fever outbreak in Ghana. BMC Infect Dis 2024; 24:731. [PMID: 39054464 PMCID: PMC11270840 DOI: 10.1186/s12879-024-09643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND In late 2021, Ghana was hit by a Yellow Fever outbreak that started in two districts in the Savannah region and spread to several other Districts in three regions. Yellow fever is endemic in Ghana. However, there is currently no structured vector control programme for Aedes the arboviral vector in Ghana. Knowledge of Aedes bionomics and insecticide susceptibility status is important to control the vectors. This study therefore sought to determine Aedes vector bionomics and their insecticide resistance status during a yellow fever outbreak. METHODS The study was performed in two yellow fever outbreak sites (Wenchi, Larabanga) and two non-outbreak sites (Kpalsogu, Pagaza) in Ghana. Immature Aedes mosquitoes were sampled from water-holding containers in and around human habitations. The risk of disease transmission was determined in each site using stegomyia indices. Adult Aedes mosquitoes were sampled using Biogents Sentinel (BG) traps, Human Landing Catch (HLC), and Prokopack (PPK) aspirators. Phenotypic resistance to permethrin, deltamethrin and pirimiphos-methyl was determined with WHO susceptibility tests using Aedes mosquitoes collected as larvae and reared into adults. Knockdown resistance (kdr) mutations were detected using allele-specific multiplex PCR. RESULTS Among the 2,664 immature Aedes sampled, more than 60% were found in car tyres. Larabanga, an outbreak site, was classified as a high-risk zone for the Yellow Fever outbreak (BI: 84%, CI: 26.4%). Out of 1,507 adult Aedes mosquitoes collected, Aedes aegypti was the predominant vector species (92%). A significantly high abundance of Aedes mosquitoes was observed during the dry season (61.2%) and outdoors (60.6%) (P < 0.001). Moderate to high resistance to deltamethrin was observed in all sites (33.75% to 70%). Moderate resistance to pirimiphos-methyl (65%) was observed in Kpalsogu. Aedes mosquitoes from Larabanga were susceptible (98%) to permethrin. The F1534C kdr, V1016I kdr and V410 kdr alleles were present in all the sites with frequencies between (0.05-0.92). The outbreak sites had significantly higher allele frequencies of F1534C and V1016I respectively compared to non-outbreak sites (P < 0.001). CONCLUSION This study indicates that Aedes mosquitoes in Ghana pose a significant risk to public health. Hence there is a need to continue monitoring these vectors to develop an effective control strategy.
Collapse
Affiliation(s)
- Margaret Owusu-Akyaw
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Christopher Mfum Owusu-Asenso
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Anisa Abdulai
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Abdul Rahim Mohammed
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Isaac Kwame Sraku
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Emmanuel Nana Boadu
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Evans Aduhene
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Simon Kwaku Attah
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana
| | - Yaw Asare Afrane
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, Medical School, University of Ghana, Accra, Ghana.
| |
Collapse
|
11
|
Ramphal Y, Tegally H, San JE, Reichmuth ML, Hofstra M, Wilkinson E, Baxter C, de Oliveira T, Moir M. Understanding the Transmission Dynamics of the Chikungunya Virus in Africa. Pathogens 2024; 13:605. [PMID: 39057831 PMCID: PMC11279734 DOI: 10.3390/pathogens13070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The Chikungunya virus (CHIKV) poses a significant global public health concern, especially in Africa. Since its first isolation in Tanzania in 1953, CHIKV has caused recurrent outbreaks, challenging healthcare systems in low-resource settings. Recent outbreaks in Africa highlight the dynamic nature of CHIKV transmission and the challenges of underreporting and underdiagnosis. Here, we review the literature and analyse publicly available cases, outbreaks, and genomic data, providing insights into the epidemiology, genetic diversity, and transmission dynamics of CHIKV in Africa. Our analyses reveal the circulation of geographically distinct CHIKV genotypes, with certain regions experiencing a disproportionate burden of disease. Phylogenetic analysis of sporadic outbreaks in West Africa suggests repeated emergence of the virus through enzootic spillover, which is markedly different from inferred transmission dynamics in East Africa, where the virus is often introduced from Asian outbreaks, including the recent reintroduction of the Indian Ocean lineage from the Indian subcontinent to East Africa. Furthermore, there is limited evidence of viral movement between these two regions. Understanding the history and transmission dynamics of outbreaks is crucial for effective public health planning. Despite advances in surveillance and research, diagnostic and surveillance challenges persist. This review and secondary analysis highlight the importance of ongoing surveillance, research, and collaboration to mitigate the burden of CHIKV in Africa and improve public health outcomes.
Collapse
Affiliation(s)
- Yajna Ramphal
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Houriiyah Tegally
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | | | - Marije Hofstra
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Eduan Wilkinson
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | - Cheryl Baxter
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| | | | - Tulio de Oliveira
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal, Durban 4001, South Africa
| | - Monika Moir
- Centre for Epidemic Response Innovation (CERI), School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa; (Y.R.); (H.T.); (M.H.); (E.W.); (C.B.)
| |
Collapse
|
12
|
Mbigha Donfack KC, De Coninck L, Ghogomu SM, Matthijnssens J. Aedes Mosquito Virome in Southwestern Cameroon: Lack of Core Virome, But a Very Rich and Diverse Virome in Ae. africanus Compared to Other Aedes Species. Viruses 2024; 16:1172. [PMID: 39066334 PMCID: PMC11281338 DOI: 10.3390/v16071172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In Cameroon, Aedes mosquitoes transmit various arboviruses, posing significant health risks. We aimed to characterize the Aedes virome in southwestern Cameroon and identify potential core viruses which might be associated with vector competence. A total of 398 Aedes mosquitoes were collected from four locations (Bafoussam, Buea, Edea, and Yaounde). Aedes albopictus dominated all sites except for Bafoussam, where Aedes africanus prevailed. Metagenomic analyses of the mosquitoes grouped per species into 54 pools revealed notable differences in the eukaryotic viromes between Ae. africanus and Ae. albopictus, with the former exhibiting greater richness and diversity. Thirty-seven eukaryotic virus species from 16 families were identified, including six novel viruses with near complete genome sequences. Seven viruses were further quantified in individual mosquitoes via qRT-PCR. Although none of them could be identified as core viruses, Guangzhou sobemo-like virus and Bafoussam mosquito solemovirus, were highly prevalent regionally in Ae. albopictus and Ae. africanus, respectively. This study highlights the diverse eukaryotic virome of Aedes species in southwestern Cameroon. Despite their shared genus, Aedes species exhibit limited viral sharing, with varying viral abundance and prevalence across locations. Ae. africanus, an understudied vector, harbors a rich and diverse virome, suggesting potential implications for arbovirus vector competence.
Collapse
Affiliation(s)
- Karelle Celes Mbigha Donfack
- Laboratory of Viral Metagenomics, Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, Buea P.O. Box 63, Cameroon
| | - Lander De Coninck
- Laboratory of Viral Metagenomics, Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Stephen Mbigha Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, Department of Biochemistry and Molecular Biology, University of Buea, Buea P.O. Box 63, Cameroon
| | - Jelle Matthijnssens
- Laboratory of Viral Metagenomics, Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
13
|
Yamashita S, Uruma K, Yang C, Higa Y, Minakawa N, Cuamba N, Futami K. The origin and insecticide resistance of Aedes albopictus mosquitoes established in southern Mozambique. Parasit Vectors 2024; 17:292. [PMID: 38978086 PMCID: PMC11229193 DOI: 10.1186/s13071-024-06375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The Aedes albopictus mosquito is of medical concern due to its ability to transmit viral diseases, such as dengue and chikungunya. Aedes albopictus originated in Asia and is now present on all continents, with the exception of Antarctica. In Mozambique, Ae. albopictus was first reported in 2015 within the capital city of Maputo, and by 2019, it had become established in the surrounding area. It was suspected that the mosquito population originated in Madagascar or islands of the Western Indian Ocean (IWIO). The aim of this study was to determine its origin. Given the risk of spreading insecticide resistance, we also examined relevant mutations in the voltage-sensitive sodium channel (VSSC). METHODS Eggs of Ae. albopictus were collected in Matola-Rio, a municipality adjacent to Maputo, and reared to adults in the laboratory. Cytochrome c oxidase subunit I (COI) sequences and microsatellite loci were analyzed to estimate origins. The presence of knockdown resistance (kdr) mutations within domain II and III of the VSSC were examined using Sanger sequencing. RESULTS The COI network analysis denied the hypothesis that the Ae. albopictus population originated in Madagascar or IWIO; rather both the COI network and microsatellites analyses showed that the population was genetically similar to those in continental Southeast Asia and Hangzhou, China. Sanger sequencing determined the presence of the F1534C knockdown mutation, which is widely distributed among Asian populations, with a high allele frequency (46%). CONCLUSIONS These results do not support the hypothesis that the Mozambique Ae. albopictus population originated in Madagascar or IWIO. Instead, they suggest that the origin is continental Southeast Asia or a coastal town in China.
Collapse
Affiliation(s)
- Sarina Yamashita
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kawane Uruma
- School of Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Chao Yang
- Department of Medical Entomology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinkuku-Ku, Tokyo, 162-8640, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinkuku-Ku, Tokyo, 162-8640, Japan
| | - Noboru Minakawa
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Nelson Cuamba
- Instituto Nacional de Saúde, Ministério da Saúde, C.P. 264, Maputo, Mozambique
| | - Kyoko Futami
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
14
|
Aliaga-Samanez A, Romero D, Murray K, Segura M, Real R, Olivero J. Potential climate change effects on the distribution of urban and sylvatic dengue and yellow fever vectors. Pathog Glob Health 2024; 118:397-407. [PMID: 38972071 PMCID: PMC11338215 DOI: 10.1080/20477724.2024.2369377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Climate change may increase the risk of dengue and yellow fever transmission by urban and sylvatic mosquito vectors. Previous research primarily focused on Aedes aegypti and Aedes albopictus. However, dengue and yellow fever have a complex transmission cycle involving sylvatic vectors. Our aim was to analyze how the distribution of areas favorable to both urban and sylvatic vectors could be modified as a consequence of climate change. We projected, to future scenarios, baseline distribution models already published for these vectors based on the favorability function, and mapped the areas where mosquitoes' favorability could increase, decrease or remain stable in the near (2041-2060) and distant (2061-2080) future. Favorable areas for the presence of dengue and yellow fever vectors show little differences in the future compared to the baseline models, with changes being perceptible only at regional scales. The model projections predict dengue vectors expanding in West and Central Africa and in South-East Asia, reaching Borneo. Yellow fever vectors could spread in West and Central Africa and in the Amazon. In some locations of Europe, the models suggest a reestablishment of Ae. aegypti, while Ae. albopictus will continue to find new favorable areas. The results underline the need to focus more on vectors Ae. vittatus, Ae. luteocephalus and Ae. africanus in West and Central sub-Saharan Africa, especially Cameroon, Central Africa Republic, and northern Democratic Republic of Congo; and underscore the importance of enhancing entomological monitoring in areas where populations of often overlooked vectors may thrive as a result of climate changes.
Collapse
Affiliation(s)
- Alisa Aliaga-Samanez
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Universidad de Málaga, Facultad de Ciencias, Malaga, Spain
| | - David Romero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Universidad de Málaga, Facultad de Ciencias, Malaga, Spain
| | - Kris Murray
- Medical Research Council Unit the Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Marina Segura
- Servicio de Sanidad Exterior, Centro de Vacunación Internacional, Ministerio de Sanidad, Consumo y Bienestar Social, Estación Marítima, Malaga, Spain
| | - Raimundo Real
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Universidad de Málaga, Facultad de Ciencias, Malaga, Spain
- Instituto IBYDA, Centro de Experimentación Grice-Hutchinson, Malaga, Spain
| | - Jesús Olivero
- Grupo de Biogeografía, Diversidad y Conservación, Departamento de Biología Animal, Universidad de Málaga, Facultad de Ciencias, Malaga, Spain
| |
Collapse
|
15
|
Jobe NB, Franz NM, Johnston MA, Malone AB, Ruberto I, Townsend J, Will JB, Yule KM, Paaijmans KP. The Mosquito Fauna of Arizona: Species Composition and Public Health Implications. INSECTS 2024; 15:432. [PMID: 38921147 PMCID: PMC11203593 DOI: 10.3390/insects15060432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
Arizona is home to many mosquito species, some of which are known vectors of infectious diseases that harm both humans and animals. Here, we provide an overview of the 56 mosquito species that have been identified in the State to date, but also discuss their known feeding preference and the diseases they can (potentially) transmit to humans and animals. This list is unlikely to be complete for several reasons: (i) Arizona's mosquitoes are not systematically surveyed in many areas, (ii) surveillance efforts often target specific species of interest, and (iii) doubts have been raised by one or more scientists about the accuracy of some collection records, which has been noted in this article. There needs to be an integrated and multifaceted surveillance approach that involves entomologists and epidemiologists, but also social scientists, wildlife ecologists, ornithologists, representatives from the agricultural department, and irrigation and drainage districts. This will allow public health officials to (i) monitor changes in current mosquito species diversity and abundance, (ii) monitor the introduction of new or invasive species, (iii) identify locations or specific populations that are more at risk for mosquito-borne diseases, and (iv) effectively guide vector control.
Collapse
Affiliation(s)
- Ndey Bassin Jobe
- The Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA; (N.B.J.); (A.B.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Nico M. Franz
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
| | - Murray A. Johnston
- Department of Entomology, Purdue University, West Lafayette, IN 47907, USA;
| | - Adele B. Malone
- The Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA; (N.B.J.); (A.B.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ 85009, USA; (J.T.); (J.B.W.)
| | - Irene Ruberto
- Arizona Department of Health Services, Phoenix, AZ 85007, USA;
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ 85009, USA; (J.T.); (J.B.W.)
| | - James B. Will
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, AZ 85009, USA; (J.T.); (J.B.W.)
| | - Kelsey M. Yule
- Biodiversity Knowledge Integration Center, Arizona State University, Tempe, AZ 85281, USA;
| | - Krijn P. Paaijmans
- The Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA; (N.B.J.); (A.B.M.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA;
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
16
|
Machange JJ, Maasayi MS, Mundi J, Moore J, Muganga JB, Odufuwa OG, Moore SJ, Tenywa FC. Comparison of the Trapping Efficacy of Locally Modified Gravid Aedes Trap and Autocidal Gravid Ovitrap for the Monitoring and Surveillance of Aedes aegypti Mosquitoes in Tanzania. INSECTS 2024; 15:401. [PMID: 38921116 PMCID: PMC11204168 DOI: 10.3390/insects15060401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
The study assessed the trapping efficacy of locally modified (1) Gravid Aedes Trap (GAT) lined with insecticide-treated net (ITN) as a killing agent and (2) Autocidal Gravid Ovitrap (AGO) with sticky board in the semi-field system (SFS) and field setting. Fully balanced Latin square experiments were conducted to compare GAT lined with ITN vs. AGO, both with either yeast or grass infusion. Biogent-Sentinel (BGS) with BG-Lure and no CO2 was used as a standard trap for Aedes mosquitoes. In the SFS, GAT outperformed AGO in collecting both nulliparous (65% vs. 49%, OR = 2.22, [95% CI: 1.89-2.60], p < 0.001) and gravid mosquitoes (73% vs. 64%, OR = 1.67, [95% CI: 1.41-1.97], p < 0.001). Similar differences were observed in the field. Yeast and grass infusion did not significantly differ in trapping gravid mosquitoes (OR = 0.91, [95% CI: 0.77-1.07], p = 0.250). The use of ITN improved mosquito recapture from 11% to 70% in the SFS. The same trend was observed in the field. Yeast was chosen for further evaluation in the optimized GAT due to its convenience and bifenthrin net for its resistance management properties. Mosquito density was collected when using 4× GATs relative to BGS-captured gravid mosquitoes 64 vs. 58 (IRR = 0.82, [95% CI: 0.35-1.95], p = 0.658) and showed no density dependence. Deployment of multiple yeast-baited GAT lined with bifenthrin net is cost-effective (single GAT < $8) compared to other traps such as BGS ($160).
Collapse
Affiliation(s)
- Jane Johnson Machange
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania; (M.S.M.); (S.J.M.)
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - Masudi Suleiman Maasayi
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania; (M.S.M.); (S.J.M.)
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - John Mundi
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - Jason Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Joseph Barnabas Muganga
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
| | - Olukayode G. Odufuwa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Sarah J. Moore
- School of Life Sciences and Bio-Engineering, The Nelson Mandela African Institution of Science and Technology (NM-AIST), Tengeru P.O. Box 447, Tanzania; (M.S.M.); (S.J.M.)
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Frank Chelestino Tenywa
- Vector Control Product Testing Unit, Environmental Health and Ecological Science Department, Ifakara Health Institute, Bagamoyo P.O. Box 74, Tanzania; (J.M.); (J.M.); (J.B.M.); (O.G.O.); (F.C.T.)
- Vector Biology Unit, Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123 Allschwil, Switzerland
- Faculty of Science, University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
17
|
Ateutchia-Ngouanet S, Nanfack-Minkeu F, Mavridis K, Wanji S, Demanou M, Vontas J, Djouaka R. Monitoring Aedes populations for arboviruses, Wolbachia, insecticide resistance and its mechanisms in various agroecosystems in Benin. Acta Trop 2024; 253:107178. [PMID: 38461924 DOI: 10.1016/j.actatropica.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Aedes mosquitoes are the main vectors of arboviruses in Benin. Cases of dengue have been reported in Benin with all four serotypes of the virus actively circulating in this region. Some agricultural settings are known to harbor Aedes vectors responsible for the transmission of arboviruses. The massive use of certain insecticides in agricultural settings has probably contributed to insecticide resistance in these vectors. In Benin, the susceptibility of arbovirus vectors to insecticides is poorly studied. In addition, the distribution of Wolbachia spp., which is used against some arboviruses is unknown. Moreover, there is limited information regarding the vectors responsible for the transmission of arboviruses in Benin. This present study monitored the species composition, arboviruses, and Wolbachia symbiont status, as well as the phenotypic and molecular insecticide resistance profile of Aedes populations from three agroecosystems in Benin. Aedes species identification was performed morphologically and confirmed using qPCR. (RT)-qPCR assay was applied for monitoring the presence of DENV, CHIKV, ZIKV, and WNV pathogens as well as for naturally occurring Wolbachia symbionts. Insecticide resistance was assessed phenotypically, by permethrin (0.75%) exposure of Adults (F0) using World Health Organization (WHO) bioassay protocols, and at the molecular level, using TaqMan (RT)-qPCR assays for assessing knock-down resistance (kdr) mutations (F1534C, V1016G/I, and S989P) and the expression levels of eight detoxification genes (P450s from the CYP9 and CYP6 families, carboxylesterases and glutathione-S-transferases). Aedes aegypti (Ae. aegypti) mosquitoes were the most abundant (93.9%) in the three agroecosystems studied, followed by Aedes albopictus (Ae. albopictus) mosquitoes (6.1%). No arboviruses were detected in the study's mosquito populations. Naturally occurring Wolbachia symbionts were present in 7 pools out of 15 pools tested. This could influence the effectiveness of vector control strategies based on exogenously introduced Wolbachia, all present in the three agroecosystems. Full susceptibility to permethrin was observed in all tested populations of Ae. albopictus. On the contrary, Ae. aegypti were found to be resistant in all three agroecosystem sites except for banana plantation sites, where full susceptibility was observed. Molecular analysis revealed that individual target site resistance kdr mutations F1534C and V1016G/I were detected in most Ae. aegypti populations. Additionally, double mutant (F1534C + V1016G/I) mosquitoes were found in some populations, and in one case, triple mutant (F1534C + V1016G/I + S989P) mosquitoes were detected. Metabolic resistance, as reflected by overexpression of three P450 genes (CYP6BB2, CYP9J26, and CYP9J32), was also detected in Ae. aegypti mosquitoes. Our study provides information that could be used to strategize future vector control strategies and highlights the importance of continuing vector surveillance. Future studies should assess the effect of piperonyl butoxide (PBO) on metabolic resistance and identify the different strains of Wolbachia spp., to choose the best vector control strategies in Benin.
Collapse
Affiliation(s)
- S Ateutchia-Ngouanet
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon.
| | - F Nanfack-Minkeu
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department of Biology, The College of Wooster, OH, USA
| | - K Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - S Wanji
- Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon
| | - M Demanou
- Regional Yellow Fever Laboratory Coordinator World Health Organization, Inter-Country Support Team West Africa, 03 PO BOX 7019 Ouagadougou 03, Burkina Faso
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece; Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens 11855, Greece
| | - R Djouaka
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin
| |
Collapse
|
18
|
Abdulai A, Owusu-Asenso CM, Haizel C, Mensah SKE, Sraku IK, Halou D, Doe RT, Mohammed AR, Akuamoah-Boateng Y, Forson AO, Afrane YA. The role of car tyres in the ecology of Aedes aegypti mosquitoes in Ghana. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100176. [PMID: 38746755 PMCID: PMC11091510 DOI: 10.1016/j.crpvbd.2024.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/28/2024]
Abstract
Aedes aegypti is an important vector of arboviral diseases including dengue and yellow fever. Despite the wide distribution of this mosquito species, there are limited data on the ecology of Ae. aegypti in Ghana. In this study, we report on the oviposition preference and the larval life tables of Ae. aegypti mosquitoes in Accra, Ghana. The oviposition preference of the mosquitoes to three habitat types (car tyres, drums and bowls) was measured by setting up ovitraps. We recorded the presence and abundance of larvae every 3 days. Two-hour-old Ae. aegypti larvae were introduced and raised in three habitat types to undertake larval life tables. The number of surviving larvae at each developmental stage was recorded daily until they emerged as adults. Car tyres showed a higher abundance of Ae. aegypti larvae (52.3%) than drums (32.5%) and bowls (15.1%) (ANOVA, F(2,159) = 18.79, P < 0.001). The mean development time of Ae. aegypti larvae was significantly lower in car tyres (7 ± 1 days) compared to that of bowls (9 ± 0.0 days) and drums (12.6 ± 1.5 days) (P = 0.024). The differences in pupation rates and emergence rates were not significant across the habitat types; however, the highest pupation rate was observed in bowls (0.92 ± 0.17) and the emergence rate was highest in tyres (0.84 ± 0.10). The proportion of first-instar larvae that survived to emergence was significantly higher in car tyres (0.84 ± 0.10) compared to that of bowls (0.72 ± 0.20) and drums (0.62 ± 0.20) (P = 0.009). No mortalities were observed after 9 days in car tyres, 10 days in bowls and 15 days in drums. The results confirm that discarded car tyres were the preferred habitat choice for the oviposition of gravid female Ae. aegypti mosquitoes and provide the best habitat conditions for larval development and survival. These findings are necessary for understanding the ecology of Ae. aegypti to develop appropriate strategies for their control in Ghana.
Collapse
Affiliation(s)
- Anisa Abdulai
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Christopher Mfum Owusu-Asenso
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Christodea Haizel
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Sebastian Kow Egyin Mensah
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Isaac Kwame Sraku
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Daniel Halou
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Richard Tettey Doe
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Abdul Rahim Mohammed
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Yaw Akuamoah-Boateng
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| | - Akua Obeng Forson
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Yaw Asare Afrane
- Centre for Vector-Borne Disease Research, Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Legon, Ghana
| |
Collapse
|
19
|
Naveenkumar S, Kamaraj C, Prem P, Raja RK, Priyadharsan A, Alrefaei AF, Govindarajan RK, Thamarai R, Subramaniyan V. Eco-friendly synthesis of palladium nanoparticles using Zaleya decandra: Assessing mosquito larvicidal activity, zebrafish embryo developmental toxicity, and impacts on freshwater sludge worm Tubifex tubifex. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2024; 12:111912. [DOI: 10.1016/j.jece.2024.111912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
|
20
|
Ojianwuna CC, Enwemiwe VN, Egwunyenga AO, Agboro A, Owobu E. Sampling efficiency and screening of Aedes albopictus for yellow fever virus in Niger Delta region of Nigeria. Pan Afr Med J 2024; 47:120. [PMID: 38828420 PMCID: PMC11143074 DOI: 10.11604/pamj.2024.47.120.39462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Aedes albopictus, like Aedes aegypti, is a virulent vector of arboviruses especially the well-documented spread of yellow fever around the world. Although yellow fever is prevalent in Nigeria, there is a paucity of information in the Niger Delta region on the distribution of Aedes mosquito vectors and molecular detection of the virus in infected mosquitoes. This study sampled Aedes mosquitoes around houses associated with farms from four communities (Otolokpo, Ute-Okpu, Umunede, and Ute Alohen) in Ika North-East Local Government Area of Delta State, Nigeria. Methods various sampling methods were used in Aedes mosquito collection to test their efficacy in the survey. Mosquitoes in holding cages were killed by freezing and morphologically identified. A pool of 15 mosquitoes per Eppendorf tube was preserved in RNAi later for yellow fever virus screening. Two samples were molecularly screened for each location. Results seven hundred and twenty-five (725) mosquitoes were obtained from the various traps. The mean abundance of the mosquitoes was highest in m-HLC (42.9) compared to the mosquitoes sampled using other techniques (p<0.0001). The mean abundance of mosquitoes was lowest in Center for Disease Control (CDC) light traps without attractant (0.29). No yellow fever virus strain was detected in all the mosquitoes sampled at the four locations. Conclusion this study suggests that Aedes albopictus are the mosquitoes commonly biting around houses associated with farms. More so, yellow fever virus was not detected in the mosquitoes probably due to the mass vaccination exercise that was carried out the previous year in the study area. More studies are required using the m-HLC to determine the infection rate in this endemic area.
Collapse
Affiliation(s)
- Chioma Cynthia Ojianwuna
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Victor Ngozi Enwemiwe
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Andy Ogochukwu Egwunyenga
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Akwilla Agboro
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| | - Emmanuel Owobu
- Department of Animal and Environmental Biology, Faculty of Science, Delta State University, Abraka, Nigeria
| |
Collapse
|
21
|
Mancini MV, Murdochy SM, Bilgo E, Ant TH, Gingell D, Gnambani EJ, Failloux AB, Diabate A, Sinkins SP. Wolbachia strain wAlbB shows favourable characteristics for dengue control use in Aedes aegypti from Burkina Faso. Environ Microbiol 2024; 26:e16588. [PMID: 38450576 DOI: 10.1111/1462-2920.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
Dengue represents an increasing public health burden worldwide. In Africa, underreporting and misdiagnosis often mask its true epidemiology, and dengue is likely to be both more widespread than reported data suggest and increasing in incidence and distribution. Wolbachia-based dengue control is underway in Asia and the Americas but has not to date been deployed in Africa. Due to the genetic heterogeneity of African Aedes aegypti populations and the complexity of the host-symbiont interactions, characterization of key parameters of Wolbachia-carrying mosquitoes is paramount for determining the potential of the system as a control tool for dengue in Africa. The wAlbB Wolbachia strain was stably introduced into an African Ae. aegypti population by introgression, and showed high intracellular density in whole bodies and different mosquito tissues; high intracellular density was also maintained following larval rearing at high temperatures. No effect on the adult lifespan induced by Wolbachia presence was detected. Moreover, the ability of this strain to strongly inhibit DENV-2 dissemination and transmission in the host was also demonstrated in the African background. Our findings suggest the potential of harnessing Wolbachia for dengue control for African populations of Ae. aegypti.
Collapse
Affiliation(s)
- Maria Vittoria Mancini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Etienne Bilgo
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Dioulasso, Burkina Faso
- Institut National de Santé Publique/Centre Muraz, Dioulasso, Burkina Faso
| | - Thomas H Ant
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Daniel Gingell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Edounou Jacques Gnambani
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Dioulasso, Burkina Faso
- Institut National de Santé Publique/Centre Muraz, Dioulasso, Burkina Faso
| | - Anna-Bella Failloux
- Institut Pasteur, Université Paris Cité, Arboviruses and Insect Vectors Unit, Paris, France
| | - Abdoulaye Diabate
- Institut de Recherche en Sciences de la Santé, Direction Régionale de l'Ouest, Dioulasso, Burkina Faso
- Institut National de Santé Publique/Centre Muraz, Dioulasso, Burkina Faso
| | - Steven P Sinkins
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
22
|
Dabo S, Henrion-Lacritick A, Lecuyer A, Jiolle D, Paupy C, Ayala D, da Veiga Leal S, Badolo A, Vega-Rúa A, Sylla M, Akorli J, Otoo S, Lutomiah J, Sang R, Mutebi JP, Saleh MC, Rose NH, McBride CS, Lambrechts L. Extensive variation and strain-specificity in dengue virus susceptibility among African Aedes aegypti populations. PLoS Negl Trop Dis 2024; 18:e0011862. [PMID: 38527081 PMCID: PMC10994562 DOI: 10.1371/journal.pntd.0011862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/04/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a survey of DENV susceptibility using a panel of seven field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | | | - Alicia Lecuyer
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Davy Jiolle
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Silvânia da Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, Cabo Verde
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Anubis Vega-Rúa
- Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Morne Jolivière, Guadeloupe, France
| | - Massamba Sylla
- Department of Livestock Sciences and Techniques, University Sine Saloum El Hadji Ibrahima NIASS, Kaffrine, Senegal
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rosemary Sang
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John-Paul Mutebi
- Department of Solid Waste Management, Mosquito Control Division, Miami, Florida, United States of America
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, Paris, France
| | - Noah H. Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Carolyn S. McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
23
|
Zhang R, Liu W, Zhang Z. miR-306-5p is involved in chitin metabolism in Aedes albopictus pupae via linc8338-miR-306-5p-XM_019678125.2 axis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105811. [PMID: 38582583 DOI: 10.1016/j.pestbp.2024.105811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/08/2024]
Abstract
Aedes albopictus can transmit several lethal arboviruses. This mosquito has become a sever public health threat due to its rapidly changing global distribution. Chitin, which is the major component of the cuticle and peritrophic membrane (PM), is crucial for the growth and development of insect. microRNAs (miRNAs) play important roles in the posttranscriptional level regulation of gene expression, thereby influencing many biological processes in insects. In this study, an attempt was made to evaluate the role of miR-306-5p in regulating chitin metabolism in Ae. albopictus pupae. Overexpression of miR-306-5p resulted in a significantly reduced survival rate in pupae and an increased malformation rate in adults. Both in vivo and in vitro evidence confirmed the presence of the competing endogenous RNA (ceRNA) regulatory axis (linc8338-miR-306-5p-XM_019678125.2). RNAi of linc8338 and XM_019678125.2 had effects on pupae similar to those of miR-306-5p. The highest expression level of miR-306-5p was found in the midgut, and alteration in the expression of miR-306-5p, XM_019678125.2 and linc8338 induced increased transcript levels of chitin synthase 2 (AaCHS2) and decreased chitinase 10 (AaCht10); as well as increased thickness of the midgut and enlarged midgut epithelial cells. The results of this study highlight the potential of miR-306-5p as a prospective target in mosquito control and confirm that the ceRNA mechanism is involved in chitin metabolism. These findings will provide a basis for further studies to uncover the molecular mechanisms through which ncRNAs regulate chitin metabolism.
Collapse
Affiliation(s)
- Ruiling Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China; School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China.
| | - Wenjuan Liu
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China
| | - Zhong Zhang
- School of Clinical and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan 250117, China.
| |
Collapse
|
24
|
Abuelmaali SA, Mashlawi AM, Ishak IH, Wajidi MFF, Jaal Z, Avicor SW, Kassim NFA. Population genetic structure of Aedes aegypti subspecies in selected geographical locations in Sudan. Sci Rep 2024; 14:2978. [PMID: 38316804 PMCID: PMC10844603 DOI: 10.1038/s41598-024-52591-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/20/2024] [Indexed: 02/07/2024] Open
Abstract
Although knowledge of the composition and genetic diversity of disease vectors is important for their management, this is limiting in many instances. In this study, the population structure and phylogenetic relationship of the two Aedes aegypti subspecies namely Aedes aegypti aegypti (Aaa) and Aedes aegypti formosus (Aaf) in eight geographical areas in Sudan were analyzed using seven microsatellite markers. Hardy-Weinberg Equilibrium (HWE) for the two subspecies revealed that Aaa deviated from HWE among the seven microsatellite loci, while Aaf exhibited departure in five loci and no departure in two loci (A10 and M201). The Factorial Correspondence Analysis (FCA) plots revealed that the Aaa populations from Port Sudan, Tokar, and Kassala clustered together (which is consistent with the unrooted phylogenetic tree), Aaf from Fasher and Nyala populations clustered together, and Gezira, Kadugli, and Junaynah populations also clustered together. The Bayesian cluster analysis structured the populations into two groups suggesting two genetically distinct groups (subspecies). Isolation by distance test revealed a moderate to strong significant correlation between geographical distance and genetic variations (p = 0.003, r = 0.391). The migration network created using divMigrate demonstrated that migration and gene exchange between subspecies populations appear to occur based on their geographical proximity. The genetic structure of the Ae. aegypti subspecies population and the gene flow among them, which may be interpreted as the mosquito vector's capacity for dispersal, were revealed in this study. These findings will help in the improvement of dengue epidemiology research including information on the identity of the target vector/subspecies and the arboviruses vector surveillance program.
Collapse
Affiliation(s)
- Sara A Abuelmaali
- 129 Medical Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
- National Public Health Laboratory, Federal Ministry of Health, Khartoum, 11115, Sudan
| | - Abadi M Mashlawi
- Department of Biology, College of Science, Jazan University, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Intan Haslina Ishak
- 129 Medical Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
- Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | | | - Zairi Jaal
- Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Silas Wintuma Avicor
- Molecular Entomology Research Group, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Entomology Division, Cocoa Research Institute of Ghana, New Tafo-Akim, Ghana
| | - Nur Faeza Abu Kassim
- 129 Medical Entomology Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
25
|
Mashlawi AM, Alqahtani H, Abuelmaali SA, Gloria‐Soria A, Saingamsook J, Kaddumukasa M, Ghzwani AH, Abdulhaq AA, Al‐Mekhlafi HM, Walton C. Microsatellite-based analysis reveals Aedes aegypti populations in the Kingdom of Saudi Arabia result from colonization by both the ancestral African and the global domestic forms. Evol Appl 2024; 17:e13661. [PMID: 38405337 PMCID: PMC10883788 DOI: 10.1111/eva.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
The Aedes aegypti (Linnaeus, 1762) mosquito is the main vector of dengue, chikungunya and Zika and is well established today all over the world. The species comprises two forms: the ancestral form found throughout Africa and a global domestic form that spread to the rest of the tropics and subtropics. In Saudi Arabia, A. aegypti has been known in the southwest since 1956, and previous genetic studies clustered A. aegypti from Saudi Arabia with the global domestic form. The purpose of this study was to assess the genetic structure of A. aegypti in Saudi Arabia and determine their geographic origin. Genetic data for 17 microsatellites were collected for A. aegypti ranging from the southwestern highlands of Saudi Arabia on the border of Yemen to the north-west in Madinah region as well as from Thailand and Uganda populations (as representatives of the ancestral African and global domestic forms, respectively). The low but significant level of genetic structuring in Saudi Arabia was consistent with long-distance dispersal capability possibly through road connectivity and human activities, that is, passive dispersal. There are two main genetic groupings in Saudi Arabia, one of which clusters with the Ugandan population and the other with the Thailand population with many Saudi Arabian individuals having mixed ancestry. The hypothesis of genetic admixture of the ancestral African and global domestic forms in Saudi Arabia was supported by approximate Bayesian computational analyses. The extent of admixture varied across Saudi Arabia. African ancestry was highest in the highland area of the Jazan region followed by the lowland Jazan and Sahil regions. Conversely, the western (Makkah, Jeddah and Madinah) and Najran populations corresponded to the global domesticated form. Given potential differences between the forms in transmission capability, ecology and behaviour, the findings here should be taken into account in vector control efforts in Saudi Arabia.
Collapse
Affiliation(s)
- Abadi M. Mashlawi
- Department of Biology, College of ScienceJazan UniversityJazanKingdom of Saudi Arabia
| | - Hussain Alqahtani
- Department of Biology, Faculty of ScienceUniversity of TabukTabukKingdom of Saudi Arabia
| | - Sara A. Abuelmaali
- National Public Health LaboratoryFederal Ministry of HealthKhartoumSudan
| | - Andrea Gloria‐Soria
- Department of Entomology, Center for Vector Biology & Zoonotic DiseasesThe Connecticut Agricultural Experiment StationNew HavenConnecticutUSA
| | - Jassada Saingamsook
- Center of Insect Vector Study, Department of Parasitology, Faculty of MedicineChiang Mai UniversityChiang MaiThailand
| | - Martha Kaddumukasa
- Department of Biological Sciences, Faculty of ScienceKyambogo UniversityKampalaUganda
| | | | - Ahmed A. Abdulhaq
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesJazan UniversityJazanKingdom of Saudi Arabia
| | - Hesham M. Al‐Mekhlafi
- Department of Parasitology, Faculty of MedicineUniversiti MalayaKuala LumpurMalaysia
- Department of Parasitology, Faculty of Medicine and Health SciencesSana'a UniversitySana'aYemen
| | - Catherine Walton
- Department of Earth and Environmental Sciences, Faculty of Science and EngineeringUniversity of ManchesterManchesterUK
| |
Collapse
|
26
|
Ouédraogo WM, Zanré N, Rose NH, Zahouli JZB, Djogbenou LS, Viana M, Kanuka H, Weetman D, McCall PJ, Badolo A. Dengue vector habitats in Ouagadougou, Burkina Faso, 2020: an unintended consequence of the installation of public handwashing stations for COVID-19 prevention. Lancet Glob Health 2024; 12:e199-e200. [PMID: 38245111 DOI: 10.1016/s2214-109x(23)00565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Affiliation(s)
- Wendegoudi M Ouédraogo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou, Burkina Faso; Programme National de Lutte contre les Maladies Tropicales Négligées, Ministère de la Santé, Burkina Faso
| | - Nicolas Zanré
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou, Burkina Faso
| | - Noah H Rose
- Department of Ecology, Behavior, and Evolution, School of Biological Sciences, University of California, San Diego, CA, USA
| | - Julien Z B Zahouli
- Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d'Ivoire; Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire; Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Luc S Djogbenou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, Cotonou, Benin
| | - Mafalda Viana
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, 03 BP 7021 Ouagadougou, Burkina Faso.
| |
Collapse
|
27
|
Vulu F, Futami K, Sunahara T, Mampuya P, Bobanga TL, Mumba Ngoyi D, Minakawa N. Geographic expansion of the introduced Aedes albopictus and other native Aedes species in the Democratic Republic of the Congo. Parasit Vectors 2024; 17:35. [PMID: 38279140 PMCID: PMC10811949 DOI: 10.1186/s13071-024-06137-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Aedes albopictus has been reported in several Central African countries, including the Democratic Republic of the Congo (DRC). The establishment of this mosquito species poses a serious threat as a vector of various infectious diseases. Although Ae. albopictus has been reported in the western region of the DRC, information about its distribution is still scarce in the country. The aim of this study was to investigate the current nationwide distribution of the invasive Ae. albopictus, as well as other native Aedes mosquitoes, in the DRC and to identify suitable areas for its future expansion. METHODS Two entomological surveys were conducted in 2017-2019 and 2022. Based on the occurrence sites of Ae. albopictus, important environmental variables were identified. Then, geographical areas suitable for Ae. albopictus establishment were determined using the maximum entropy model. The distribution and abundance of Ae. albopictus were also compared with those of the major native Aedes species. RESULTS Aedes albopictus was found in the western, northern, central, and eastern regions of the DRC, but it was not found in the southeastern region. The maximum entropy model predicted that most parts of the DRC are suitable for the establishment of this mosquito. The unsuitable areas encompassed the eastern highlands, known for their low temperatures, and the southeastern highlands, which experience both low temperatures and a long dry season. The native Aedes species found were Aedes aegypti, Aedes simpsoni, Aedes africanus, and Aedes vittatus. Aedes albopictus dominated in the western and northern regions, while Ae. aegypti was more prevalent in other regions. CONCLUSIONS Aedes albopictus has been well established in the western and northern regions of the DRC. This mosquito is expanding its distribution while replacing the native Aedes species. Most of the country is suitable for the establishment of this mosquito species, except the highlands of the eastern and the southeastern regions.
Collapse
Affiliation(s)
- Fabien Vulu
- Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.
| | - Kyoko Futami
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Toshihiko Sunahara
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Pitshou Mampuya
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Thierry L Bobanga
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Dieudonne Mumba Ngoyi
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Noboru Minakawa
- Department of Vector Ecology & Environment, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
28
|
Jeon J, Lee DY, Jo Y, Ryu J, Kim E, Choi KS. Wing geometric morphometrics and COI barcoding of Culex pipiens subgroup in the Republic of Korea. Sci Rep 2024; 14:878. [PMID: 38195670 PMCID: PMC10776869 DOI: 10.1038/s41598-024-51159-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/01/2024] [Indexed: 01/11/2024] Open
Abstract
Two members of the Culex pipiens subgroup, Culex pallens and Culex pipiens f. molestus, are known to occur in the Republic of Korea (ROK). These species exhibit morphologically similar features and are challenging to distinguish below the species level. Therefore, this study utilized wing geometric morphometrics (GM) on the right wing of the Culex pipiens subgroup, alongside sequencing of the cytochrome c oxidase subunit I (COI) region. Mosquitoes were collected from 11 locations between June and October (2020-2022) to minimize regional and seasonal variations. Additionally, Culex pipiens f. pipiens, which is not native to the ROK, was included in the analysis. Culex tritaeniorhynchus, Aedes albopictus, and Anopheles sinensis, the primary vectors in the ROK, were used as outgroups for comparison. All three taxa in the Culex pipiens subgroup could be identified with an 82.4%-97.0% accuracy using GM. However, a comparison of the COI regions of the Culex pipiens subgroup revealed no clear differences between the taxa. These data can be used for accurate identification, contributing to effective mosquito control, in addition to providing a foundation for evolutionary and ecological studies on wing shape differences.
Collapse
Affiliation(s)
- Jiseung Jeon
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Dong Yeol Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Yewon Jo
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jihun Ryu
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eunjeong Kim
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kwang Shik Choi
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Research Institute for Phylogenomics and Evolution, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
29
|
Kuno G. Mechanisms of Yellow Fever Transmission: Gleaning the Overlooked Records of Importance and Identifying Problems, Puzzles, Serious Issues, Surprises and Research Questions. Viruses 2024; 16:84. [PMID: 38257784 PMCID: PMC10820296 DOI: 10.3390/v16010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
In viral disease research, few diseases can compete with yellow fever for the volume of literature, historical significance, richness of the topics and the amount of strong interest among both scientists and laypersons. While the major foci of viral disease research shifted to other more pressing new diseases in recent decades, many critically important basic tasks still remain unfinished for yellow fever. Some of the examples include the mechanisms of transmission, the process leading to outbreak occurrence, environmental factors, dispersal, and viral persistence in nature. In this review, these subjects are analyzed in depth, based on information not only in old but in modern literatures, to fill in blanks and to update the current understanding on these topics. As a result, many valuable facts, ideas, and other types of information that complement the present knowledge were discovered. Very serious questions about the validity of the arbovirus concept and some research practices were also identified. The characteristics of YFV and its pattern of transmission that make this virus unique among viruses transmitted by Ae. aegypti were also explored. Another emphasis was identification of research questions. The discovery of a few historical surprises was an unexpected benefit.
Collapse
Affiliation(s)
- Goro Kuno
- Formerly at the Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA
| |
Collapse
|
30
|
Yared S, Gebressilasie A, Worku A, Mohammed A, Gunarathna I, Rajamanickam D, Waymire E, Balkew M, Carter TE. Breeding habitats, bionomics and phylogenetic analysis of Aedes aegypti and first detection of Culiseta longiareolata, and Ae. hirsutus in Somali Region, eastern Ethiopia. PLoS One 2024; 19:e0296406. [PMID: 38165914 PMCID: PMC10760653 DOI: 10.1371/journal.pone.0296406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
INTRODUCTION Arboviral diseases, such as dengue, chikungunya, yellow fever, and Zika, are caused by viruses that are transmitted to humans through mosquito bites. However, the status of arbovirus vectors in eastern Ethiopia is unknown. The aim of this study was to investigate distribution, breeding habitat, bionomics and phylogenetic relationship of Aedes aegypti mosquito species in Somali Regional State, Eastern Ethiopia. METHODS Entomological surveys were conducted in four sites including Jigjiga, Degehabur, Kebridehar and Godey in 2018 (October to December) to study the distribution of Ae. aegypti and with a follow-up collection in 2020 (July-December). In addition, an investigation into the seasonality and bionomics of Ae. aegypti was conducted in 2021 (January-April) in Kebridehar town. Adult mosquitoes were collected from indoor and outdoor locations using CDC light traps (LTs), pyrethrum spray collection (PSCs), and aspirators. Larvae and pupae were also collected from a total of 169 water-holding containers using a dipper between October and November 2020 (rainy season) in Kebridehar town. The species identification of wild caught and reared adults was conducted using a taxonomic key. In addition, species identification using mitochondrial and nuclear genes maximum likelihood-based phylogenetic analysis was performed. RESULTS In the 2018 collection, Ae. aegypti was found in all study sites (Jigjiga, Degahabour, Kebridehar and Godey). In the 2020-2021 collection, a total of 470 (Female = 341, Male = 129) wild caught adult Ae. aegypti mosquitoes were collected, mostly during the rainy season with the highest frequency in November (n = 177) while the lowest abundance was in the dry season (n = 14) for both February and March. The majority of Ae. aegypt were caught using PSC (n = 365) followed by CDC LT (n = 102) and least were collected by aspirator from an animal shelter (n = 3). Aedes aegypti larval density was highest in tires (0.97 larvae per dip) followed by cemented cisterns (0.73 larvae per dip) and the Relative Breeding Index (RBI) was 0.87 and Container Index (CI) was 0.56. Genetic analysis of ITS2 and COI revealed one and 18 haplotypes, respectively and phylogenetic analysis confirmed species identification. The 2022 collection revealed no Ae. aegpti, but two previously uncharacterized species to that region. Phylogenetic analysis of these two species revealed their identities as Ae. hirsutus and Culiseta longiareolata. CONCLUSION Data from our study indicate that, Ae. aegypti is present both during the wet and dry seasons due to the availability of breeding habitats, including water containers like cemented cisterns, tires, barrels, and plastic containers. This study emphasizes the necessity of establishing a national entomological surveillance program for Aedes in Somali region.
Collapse
Affiliation(s)
- Solomon Yared
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | - Araya Gebressilasie
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Amha Worku
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | - Abas Mohammed
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | - Isuru Gunarathna
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, United States of America
| | - Dhivya Rajamanickam
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, United States of America
| | - Elizabeth Waymire
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, United States of America
| | - Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Tamar E. Carter
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, United States of America
| |
Collapse
|
31
|
Dabo S, Henrion-Lacritick A, Lecuyer A, Jiolle D, Paupy C, Ayala D, da Veiga Leal S, Badolo A, Vega-Rúa A, Sylla M, Akorli J, Otoo S, Lutomiah J, Sang R, Mutebi JP, Saleh MC, Rose NH, McBride CS, Lambrechts L. Extensive variation and strain-specificity in dengue virus susceptibility among African Aedes aegypti populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571617. [PMID: 38168387 PMCID: PMC10760182 DOI: 10.1101/2023.12.14.571617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
African populations of the mosquito Aedes aegypti are usually considered less susceptible to infection by human-pathogenic flaviviruses than globally invasive populations found outside Africa. Although this contrast has been well documented for Zika virus (ZIKV), it is unclear to what extent it is true for dengue virus (DENV), the most prevalent flavivirus of humans. Addressing this question is complicated by substantial genetic diversity among DENV strains, most notably in the form of four genetic types (DENV1 to DENV4), that can lead to genetically specific interactions with mosquito populations. Here, we carried out a continent-wide survey of DENV susceptibility using a panel of field-derived Ae. aegypti colonies from across the African range of the species and a colony from Guadeloupe, French West Indies as non-African reference. We found considerable variation in the ability of African Ae. aegypti populations to acquire and replicate a panel of six DENV strains spanning the four DENV types. Although African Ae. aegypti populations were generally less susceptible than the reference non-African population from Guadeloupe, in several instances some African populations were equally or more susceptible than the Guadeloupe population. Moreover, the relative level of susceptibility between African mosquito populations depended on the DENV strain, indicating genetically specific interactions. We conclude that unlike ZIKV susceptibility, there is no clear-cut dichotomy in DENV susceptibility between African and non-African Ae. aegypti. DENV susceptibility of African Ae. aegypti populations is highly heterogeneous and largely governed by the specific pairing of mosquito population and DENV strain.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | | | - Alicia Lecuyer
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Davy Jiolle
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Christophe Paupy
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Diego Ayala
- MIVEGEC, Montpellier University, IRD, CNRS, Montpellier, France
- Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Silvânia da Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Praia, Cabo Verde
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Anubis Vega-Rúa
- Institut Pasteur of Guadeloupe, Laboratory of Vector Control Research, Transmission Reservoir and Pathogens Diversity Unit, Morne Jolivière, Guadeloupe, France
| | - Massamba Sylla
- Department of Livestock Sciences and Techniques, University Sine Saloum El Hadji Ibrahima NIASS, Kaffrine, Senegal
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joel Lutomiah
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Rosemary Sang
- Arbovirus/Viral Hemorrhagic Fevers Laboratory, Center for Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - John-Paul Mutebi
- Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Maria-Carla Saleh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, Paris, France
| | - Noah H. Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- Current address: Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, United States of America
| | - Carolyn S. McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| |
Collapse
|
32
|
Akyea-Bobi NE, Akorli J, Opoku M, Akporh SS, Amlalo GK, Osei JHN, Frempong KK, Pi-Bansa S, Boakye HA, Abudu M, Akorli EA, Acquah-Baidoo D, Pwalia R, Bonney JHK, Quansah R, Dadzie SK. Entomological risk assessment for transmission of arboviral diseases by Aedes mosquitoes in a domestic and forest site in Accra, Ghana. PLoS One 2023; 18:e0295390. [PMID: 38060554 PMCID: PMC10703219 DOI: 10.1371/journal.pone.0295390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Dengue, Zika and chikungunya are Aedes-borne viral diseases that have become great global health concerns in the past years. Several countries in Africa have reported outbreaks of these diseases and despite Ghana sharing borders with some of these countries, such outbreaks are yet to be detected. Viral RNA and antibodies against dengue serotype-2 have recently been reported among individuals in some localities in the regional capital of Ghana. This is an indication of a possible silent transmission ongoing in the population. This study, therefore, investigated the entomological transmission risk of dengue, Zika and chikungunya viruses in a forest and domestic population in the Greater Accra Region, Ghana. All stages of the Aedes mosquito (egg, larvae, pupae and adults) were collected around homes and in the forest area for estimation of risk indices. All eggs were hatched and reared to larvae or adults for morphological identification together with larvae and adults collected from the field. The forest population had higher species richness with 7 Aedes species. The predominant species of Aedes mosquitoes identified from both sites was Aedes aegypti (98%). Aedes albopictus, an important arbovirus vector, was identified only in the peri-domestic population at a prevalence of 1.5%, significantly higher than previously reported. All risk indices were above the WHO threshold except the House Index for the domestic site which was moderate (19.8). The forest population recorded higher Positive Ovitrap (34.2% vs 26.6%) and Container (67.9% vs 36.8%) Indices than the peri-domestic population. Although none of the mosquito pools showed the presence of dengue, chikungunya or Zika viruses, all entomological risk indicators showed that both sites had a high potential arboviral disease transmission risk should any of these viruses be introduced. Continuous surveillance is recommended in these and other sites in the Metropolis to properly map transmission risk areas to inform outbreak preparedness strategies.
Collapse
Affiliation(s)
- Nukunu Etornam Akyea-Bobi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Samuel Sowah Akporh
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Godwin Kwame Amlalo
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Kwadwo Kyereme Frempong
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Sellase Pi-Bansa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Helena Anokyewaa Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Mufeez Abudu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Esinam Abla Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Dominic Acquah-Baidoo
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Rebecca Pwalia
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | | | - Reginald Quansah
- Department of Biological, Environmental and Occupational Health, School of Public Health, University of Ghana, Legon, Accra
| | - Samuel Kweku Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| |
Collapse
|
33
|
Zadra N, Tatti A, Silverj A, Piccinno R, Devilliers J, Lewis C, Arnoldi D, Montarsi F, Escuer P, Fusco G, De Sanctis V, Feuda R, Sánchez-Gracia A, Rizzoli A, Rota-Stabelli O. Shallow Whole-Genome Sequencing of Aedes japonicus and Aedes koreicus from Italy and an Updated Picture of Their Evolution Based on Mitogenomics and Barcoding. INSECTS 2023; 14:904. [PMID: 38132578 PMCID: PMC10743467 DOI: 10.3390/insects14120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
Aedes japonicus and Aedes koreicus are two invasive mosquitoes native to East Asia that are quickly establishing in temperate regions of Europe. Both species are vectors of arboviruses, but we currently lack a clear understanding of their evolution. Here, we present new short-read, shallow genome sequencing of A. japonicus and A. koreicus individuals from northern Italy, which we used for downstream phylogenetic and barcode analyses. We explored associated microbial DNA and found high occurrences of Delftia bacteria in both samples, but neither Asaia nor Wolbachia. We then assembled complete mitogenomes and used these data to infer divergence times estimating the split of A. japonicus from A. koreicus in the Oligocene, which was more recent than that previously reported using mitochondrial markers. We recover a younger age for most other nodes within Aedini and other Culicidae. COI barcoding and phylogenetic analyses indicate that A. japonicus yaeyamensis, A. japonicus amamiensis, and the two A. koreicus sampled from Europe should be considered as separate species within a monophyletic species complex. Our studies further clarify the evolution of A. japonicus and A. koreicus, and indicate the need to obtain whole-genome data from putative species in order to disentangle their complex patterns of evolution.
Collapse
Affiliation(s)
- Nicola Zadra
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Alessia Tatti
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology, University of Padova, 35121 Padova, Italy;
- University School for Advanced Studies IUSS Pavia, 27100 Pavia, Italy
| | - Andrea Silverj
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Riccardo Piccinno
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Julien Devilliers
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Clifton Lewis
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Daniele Arnoldi
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Fabrizio Montarsi
- Istituto Zooprofilattico Sperimentale Delle Venezie, 35020 Legnaro, Italy;
| | - Paula Escuer
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Giuseppe Fusco
- Department of Biology, University of Padova, 35121 Padova, Italy;
| | | | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; (J.D.); (C.L.); (R.F.)
| | - Alejandro Sánchez-Gracia
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Spain; (P.E.); (A.S.-G.)
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, 08007 Barcelona, Spain
| | - Annapaola Rizzoli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| | - Omar Rota-Stabelli
- Center Agriculture Food Environment (C3A), University of Trento, 38010 San Michele all’Adige, Italy; (N.Z.); (A.T.); (A.S.); (R.P.)
- CIBIO Department, University of Trento, 38123 Trento, Italy;
- Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige, Italy; (D.A.); (A.R.)
| |
Collapse
|
34
|
Bikangui R, Boussougou-Sambe ST, Saidou M, Ngossanga B, Doumba Ndalembouly AG, Djida Y, Ayong More, Beh Mba R, Abe H, Ushijima Y, Borrmann S, Lell B, Yasuda J, Adegnika AA. Distribution of Aedes mosquito species along the rural-urban gradient in Lambaréné and its surrounding. Parasit Vectors 2023; 16:360. [PMID: 37828572 PMCID: PMC10571480 DOI: 10.1186/s13071-023-05901-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/27/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Aedes albopictus and Aedes aegypti are known for their potential as vectors of dengue (DENV) and chikungunya (CHIKV) viruses. However, entomological surveys are mostly carried out during epidemics. In Gabon where outbreaks of both viruses have occurred, there is no vector control program targeting these arboviruses. Therefore, we assessed the presence of Aedes species along a rural-urban gradient in Lambaréné (Gabon) and its surroundings and determined ecological factors associated to their presence. METHODS An entomological survey was conducted in Lambaréné and its surrounding rural areas. Mosquitoes were collected with aspirators around human dwellings, and ecological and environmental data were collected from each study area. Morphological identification keys were used to identify Aedes species. RNA was extracted from pools of female mosquitoes and amplified by RT-qPCR to detect the presence of DENV and CHIKV. RESULTS Overall, the most common vector collected was Aedes albopictus (97%, 4236/4367 specimens), followed by Aedes aegypti (3%, 131/4367). Albopictus vectors was more abundant in the rural area (Wilcoxon signed-rank test, Z = 627, P = 0.043) than in the urban area. In the urban area, a higher number of mosquitoes (45%) were recorded in the economic zone (zone 3) than in the historical and administrative zones (zone 1 and 2). In the rural area, the proportions of species numbers were significantly higher along the south rural transect (92%) compared to the north rural transect (Wilcoxon signed-rank test, Z = 43, P ˂ 0.016). We also noted a high abundance of vectors in environments characterized by monocultures of Hevea brasiliensis (Hevea) and Manihot esculenta (cassava) (Kruskal-Wallis H-test, H = 25.7, df = 2, P < 0.001). Finally, no mosquito pools were positive for either DENV or CHIKV. CONCLUSION Aedes albopictus was the dominant vector across the study sites due to its high invasiveness capacity. This presence re-affirms the potential for local transmission of both DENV and CHIKV, as indicated previously by serological surveys conducted in our study area, even though no transmission was detected during the current study. These findings underscore the need for regular arbovirus surveillance in the study region, with the aim of supporting vector control efforts in the event of outbreaks.
Collapse
Affiliation(s)
- Rodrigue Bikangui
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon.
- École Doctorale Régionale d'Afrique Centrale de Franceville en Infectiologie Tropicale, Franceville, Gabon.
| | - Stravensky Terence Boussougou-Sambe
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon
- Institut Für Tropenmedizin, German Center for Infection Research (DZIF), Universität Tübingen, Tübingen, Germany
| | - Mahmoudou Saidou
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon
| | - Barclaye Ngossanga
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon
| | | | - Ynous Djida
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon
| | - Ayong More
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon
| | - Romuald Beh Mba
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon
| | - Haruka Abe
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yuri Ushijima
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Steffen Borrmann
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon
- Institut Für Tropenmedizin, German Center for Infection Research (DZIF), Universität Tübingen, Tübingen, Germany
| | - Bertrand Lell
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine 1, Medical University of Vienna, Vienna, Austria
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Nagasaki, Japan
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Ayola Akim Adegnika
- Centre de Recherches Médicales de Lambaréné (CERMEL), BP 242, Lambaréné, Gabon
- École Doctorale Régionale d'Afrique Centrale de Franceville en Infectiologie Tropicale, Franceville, Gabon
- Institut Für Tropenmedizin, German Center for Infection Research (DZIF), Universität Tübingen, Tübingen, Germany
- Department of Parasitology, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
- Fondation Pour La Recherche Scientifique (FORS), BP 045, Cotonou, Benin
| |
Collapse
|
35
|
Gyasi P, Bright Yakass M, Quaye O. Analysis of dengue fever disease in West Africa. Exp Biol Med (Maywood) 2023; 248:1850-1863. [PMID: 37452719 PMCID: PMC10792414 DOI: 10.1177/15353702231181356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Dengue fever disease (DFD) which is caused by four antigenically distinct dengue viruses (DENV) presents a global health threat, with tropical and subtropical regions at a greater risk. The paucity of epidemiological data on dengue in West African subregion endangers efforts geared toward disease control and prevention. A systematic search of DFD prevalence, incidence, and DENV-infected Aedes in West Africa was conducted in PubMed, Scopus, African Index Medicus, and Google Scholar in line with the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines. A total of 58 human prevalence studies involving 35,748 people from 8 countries were identified. Two incidence and six DENV-infected studies were also reviewed. Nigeria and Burkina Faso contributed the majority of the prevalence studies which spanned between 1968 and 2018, with a considerable variation in coverage among the countries reviewed in this study. An average prevalence of 20.97% was observed across both general prevalence and acute DENV infection study categories, ranging between 0.02% and 93%. The majority of these studies were conducted in acute febrile patients with a prevalence range of 0.02-93% while 19% (n = 11) of all studies were general population-based studies and reported a prevalence range of 17.2-75.8%. DENV-infected Aedes aegypti were reported in four out of the five countries with published reports; with DENV-2 found circulating in Cape Verde, Senegal, and Burkina Faso while DENV-3 and DENV-4 were also reported in Senegal and Cape Verde, respectively. High prevalence of DFD in human populations and the occurrence of DENV-infected A. aegypti have been reported in West Africa, even though weaknesses in study design were identified. Epidemiological data from most countries and population in the subregion were scarce or non-existent. This study highlights the epidemic risk of DFD in West Africa, and the need for research and surveillance to be prioritized to fill the data gap required to enact effective control measures.
Collapse
Affiliation(s)
- Prince Gyasi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| | - Michael Bright Yakass
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Accra 00233, Ghana
| |
Collapse
|
36
|
Kadjo YMAE, Adja AM, Guindo-Coulibaly N, Zoh DD, Traoré DF, Assouho KF, Sadia-Kacou MAC, Kpan MDS, Yapi A, Chandre F. Insecticide Resistance and Metabolic Mechanisms in Aedes aegypti from Two Agrosystems (Vegetable and Cotton Crops) in Côte d'Ivoire. Vector Borne Zoonotic Dis 2023; 23:475-485. [PMID: 37615509 DOI: 10.1089/vbz.2022.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Background: The emergence of insecticide resistance in Aedes vectors mosquitoes poses a real challenge for arboviral-borne disease control. In Côte d'Ivoire, data are available on phenotypic resistance and the presence of kdr mutations in Aedes aegypti. Therefore, information on metabolic resistance in Aedes populations is very scarce. Here, we assessed the insecticide resistance status of Ae. aegypti in periurban and rural areas of Côte d'Ivoire, and we investigated the role of detoxification enzymes as possible resistance mechanisms. Materials and Methods: Aedes mosquito eggs were collected between June 2019 to April 2021 in two agricultural sites. Adults of Ae. aegypti were tested using World Health Organization tube assays, with seven insecticides belonging to pyrethroids, organochlorines, carbamates, and organophosphates classes. We determined the knockdown times (KdT50, KdT95) and resistance ratios of pyrethroids in natural populations. The synergist piperonyl butoxide (PBO) was used to investigate the role of enzymes in resistance. Biochemical assays were performed to detect potential increased activities in mixed-function oxidase levels, nonspecific esterases (NSEs), and glutathione S-transferases. Results: The results showed that Ae. aegypti populations were resistant to five insecticides with mortality of 46% and 89% for 0.75% permethrin, 68% and 92% for 0.05% deltamethrin, 57% and 89% for lambda-cyhalothrin, 41% and 47% for dichlorodiphenyltrichloroethane (DDT), 82% and 91% for chlorpyrifos-methyl in Songon-Agban and Kaforo, respectively. Susceptibility to carbamates was observed in our study sites. After exposure to PBO, the susceptibility of Ae. aegypti to pyrethroids and DDT was partially restored in Songon-Agban. Whereas in Kaforo, none increase of the mortality rates of Ae. aegypti for these four insecticides was observed after exposure to PBO. Increased activity of NSE (α-esterases) was found in Songon-Agban compared with the reference susceptible strain. Conclusion: These findings provide valuable information to support decisions for vector control strategies in Cote d'Ivoire. Also, we highlight the need for the monitoring of insecticide resistance management in Aedes vectors.
Collapse
Affiliation(s)
- Yapo Marie-Ange Edwige Kadjo
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | - Akré M Adja
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | - Négnorogo Guindo-Coulibaly
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Dounin Danielle Zoh
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
- Institut Pierre Richet, Institut National de la Santé Publique, Bouaké, Côte d'Ivoire
| | | | - Konan Fabrice Assouho
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | | | | | - Ahoua Yapi
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Fabrice Chandre
- MIVEGEC, UMR IRD-CNRS-Université de Montpellier, Montpellier, France
- Institut de Recherche pour le Développement, Montpellier, France
| |
Collapse
|
37
|
Jobe NB, Huijben S, Paaijmans KP. Non-target effects of chemical malaria vector control on other biological and mechanical infectious disease vectors. Lancet Planet Health 2023; 7:e706-e717. [PMID: 37558351 DOI: 10.1016/s2542-5196(23)00136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 08/11/2023]
Abstract
Public health insecticides play a crucial role in malaria control and elimination programmes. Many other arthropods, including mechanical and biological vectors of infectious diseases, have similar indoor feeding or resting behaviours, or both, as malaria mosquitoes, and could be exposed to the same insecticides. In this Personal View, we show that little is known about the insecticide susceptibility status and the extent of exposure to malaria interventions of other arthropod species. We highlight that there is an urgent need to better understand the selection pressure for insecticide resistance in those vectors, to ensure current and future active ingredients remain effective in targeting a broad range of arthropod species, allowing us to prevent and control future outbreaks of infectious diseases other than malaria.
Collapse
Affiliation(s)
- Ndey Bassin Jobe
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Simon A Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Simon A Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA; The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA; ISGlobal, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.
| |
Collapse
|
38
|
Lu HZ, Sui Y, Lobo NF, Fouque F, Gao C, Lu S, Lv S, Deng SQ, Wang DQ. Challenge and opportunity for vector control strategies on key mosquito-borne diseases during the COVID-19 pandemic. Front Public Health 2023; 11:1207293. [PMID: 37554733 PMCID: PMC10405932 DOI: 10.3389/fpubh.2023.1207293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/29/2023] [Indexed: 08/10/2023] Open
Abstract
Mosquito-borne diseases are major global health problems that threaten nearly half of the world's population. Conflicting resources and infrastructure required by the coronavirus disease 2019 (COVID-19) global pandemic have resulted in the vector control process being more demanding than ever. Although novel vector control paradigms may have been more applicable and efficacious in these challenging settings, there were virtually no reports of novel strategies being developed or implemented during COVID-19 pandemic. Evidence shows that the COVID-19 pandemic has dramatically impacted the implementation of conventional mosquito vector measures. Varying degrees of disruptions in malaria control and insecticide-treated nets (ITNs) and indoor residual spray (IRS) distributions worldwide from 2020 to 2021 were reported. Control measures such as mosquito net distribution and community education were significantly reduced in sub-Saharan countries. The COVID-19 pandemic has provided an opportunity for innovative vector control technologies currently being developed. Releasing sterile or lethal gene-carrying male mosquitoes and novel biopesticides may have advantages that are not matched by traditional vector measures in the current context. Here, we review the effects of COVID-19 pandemic on current vector control measures from 2020 to 2021 and discuss the future direction of vector control, taking into account probable evolving conditions of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hong-Zheng Lu
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuan Sui
- Brown School, Washington University, St. Louis, MO, United States
| | - Neil F. Lobo
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA, United States
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Florence Fouque
- Research for Implementation Unit, The Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Chen Gao
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shenning Lu
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
| | - Shan Lv
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Duo-Quan Wang
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, China
- Chinese Center for Tropical Diseases Research, Shanghai, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Sanei-Dehkordi A, Ghasemian A, Zarenezhad E, Qasemi H, Nasiri M, Osanloo M. Nanoliposomes containing three essential oils from the Artemisia genus as effective larvicides against Aedes aegypti and Anopheles stephensi. Sci Rep 2023; 13:11002. [PMID: 37420038 PMCID: PMC10328918 DOI: 10.1038/s41598-023-38284-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023] Open
Abstract
Aedes aegypti and Anopheles stephensi have challenged human health by transmitting several infectious disease agents, such as malaria, dengue fever, and yellow fever. Larvicides, especially in endemic regions, is an effective approach to the control of mosquito-borne diseases. In this study, the composition of three essential oil from the Artemisia L. family was analyzed by Gas Chromatography-Mass Spectrometry. Afterward, nanoliposomes containing essential oils of A. annua, A. dracunculus, and A. sieberi with particle sizes of 137 ± 5, 151 ± 6, and 92 ± 5 nm were prepared. Besides, their zeta potential values were obtained at 32 ± 0.5, 32 ± 0.6, and 43 ± 1.7 mV. ATR-FTIR analysis (Attenuated Total Reflection-Fourier Transform InfraRed) confirmed the successful loading of the essential oils. Moreover, The LC50 values of nanoliposomes against Ae. aegypti larvae were 34, 151, and 197 µg/mL. These values for An.stephensi were obtained as 23 and 90, and 140 µg/mL, respectively. The results revealed that nanoliposomes containing A. dracunculus exerted the highest potential larvicidal effect against Ae. aegypti and An. stephensi, which can be considered against other mosquitoes.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hajar Qasemi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
40
|
Lim H, Lee SY, Ho LY, Sit NW. Mosquito Larvicidal Activity and Cytotoxicity of the Extracts of Aromatic Plants from Malaysia. INSECTS 2023; 14:512. [PMID: 37367328 DOI: 10.3390/insects14060512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Despite ongoing control efforts, the mosquito population and diseases vectored by them continue to thrive worldwide, causing major health concerns. There has been growing interest in the use of botanicals as alternatives to insecticides due to their widespread insecticidal properties, biodegradability, and adaptability to ecological conditions. In this study, we investigated the larvicidal activity and cytotoxicity effects of solvent extracts from three aromatic plants-Curcuma longa (turmeric), Ocimum americanum (hoary basil), and Petroselinum crispum (parsley)-against Aedes albopictus. Subsequently, we examined the phytochemical composition of the extracts through gas chromatography-mass spectrometry (GC-MS) analysis. Results revealed that the hexane extracts of O. americanum and P. crispum exhibited the greatest larvicidal activity with the lowest median lethal concentration (LC50) values (<30 µg/mL) at 24 h post-treatment, with the former found to be significantly less toxic towards African monkey kidney (Vero) cells. The GC-MS analysis of the said extract indicated the presence of different classes of metabolites, including phenylpropanoids, very long-chain alkanes, fatty acids and their derivatives, and terpenes, with the most abundant component being methyl eugenol (55.28%), most of which, have been documented for their larvicidal activities. These findings provide valuable insights into the potential use and development of bioinsecticides, particularly from O. americanum.
Collapse
Affiliation(s)
- Huimei Lim
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Sook Yee Lee
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Lai Yee Ho
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| | - Nam Weng Sit
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Malaysia
| |
Collapse
|
41
|
Ayettey J, Ablorde A, Amlalo GK, Mensah BA, Kudom AA. Entomological surveillance on Aedes aegypti during covid 19 period in Cape Coast, Ghana: Risk of arboviral outbreaks, multiple insecticide resistance and distribution of F1534C, V410L and V1016I kdr mutations. PLoS Negl Trop Dis 2023; 17:e0011397. [PMID: 37256856 DOI: 10.1371/journal.pntd.0011397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The study assessed the risk of transmission of Aedes-borne arboviruses in a community at Cape Coast during the Covid-19 restriction period in 2020 based on entomological indices. The spatial distribution of insecticide resistance was also assessed in Ae. aegypti population from Cape Coast. METHODS Three larval indices were calculated from a household larval survey in 100 randomly selected houses. WHO susceptibility bioassay was performed on female adult Ae. aegypti that were reared from the larvae collected from household containers and other receptacles located outside houses against four insecticides. The mosquitoes were also screened for F1534C, V1016I, and V410L kdr mutations. RESULTS The estimated larval indices in the study community were House index- 34%, Container index- 22.35%, and Breteau index- 2.02. The mosquito population was resistant to Deltamethrin (0.05%), DDT (4%), Fenitrothion (1%), and Bendiocarb (0.1%). A triple kdr mutation, F1534C, V410L and V1016I were detected in the mosquito population. CONCLUSION The study found the risk of an outbreak of Aedes-borne diseases lower in the covid-19 lockdown period than before the pandemic period. The low risk was related to frequent clean-up exercises in the community during the Covid-19 restriction period. Multiple insecticide resistance couple with three kdr mutations detected in the study population could affect the effectiveness of control measures, especially in emergency situations. The study supports sanitation improvement as a tool to control Ae. aegypti and could complement insecticide-based tools in controlling this vector.
Collapse
Affiliation(s)
- Joana Ayettey
- Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast-Ghana
| | - Aikins Ablorde
- Center for International Health, Ludwig Maximilian University of Munich, Germany
| | - Godwin K Amlalo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra Ghana
| | - Ben A Mensah
- Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast-Ghana
| | - Andreas A Kudom
- Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast-Ghana
| |
Collapse
|
42
|
Sombié A, Ouédraogo WM, Oté M, Saiki E, Sakurai T, Yaméogo F, Sanon A, McCall PJ, Kanuka H, Weetman D, Badolo A. Association of 410L, 1016I and 1534C kdr mutations with pyrethroid resistance in Aedes aegypti from Ouagadougou, Burkina Faso, and development of a one-step multiplex PCR method for the simultaneous detection of 1534C and 1016I kdr mutations. Parasit Vectors 2023; 16:137. [PMID: 37076920 PMCID: PMC10116651 DOI: 10.1186/s13071-023-05743-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Since 2000, Burkina Faso has experienced regular dengue cases and outbreaks, making dengue an increasingly important health concern for the country. Previous studies in Burkina Faso reported that resistance of Aedes aegypti to pyrethroid insecticides was associated with the F1534C and V1016I kdr mutations. The current study reports high resistance of Ae. aegypti populations to pyrethroid insecticides, likely supported by mutations in the voltage-gated sodium channel, here evidenced by genotyping the kdr SNPs V410L, V1016I and F1534C. We also describe a new multiplex PCR-based diagnostic of F1534C and V1016I kdr SNPs. METHODS Larvae of Ae. aegypti were collected from three health districts of Ouagadougou in 2018. The resistance status of Ae. aegypti to permethrin (15 μg/ml) and deltamethrin (10 μg/ml) was tested using bottles and to malathion (5%) using WHO tube tests. All bioassays used 1-h exposure and mortality recorded 24 h post-exposure. Bioassay results were interpreted according to WHO thresholds for resistance diagnosis. The kdr mutations were screened using AS-PCR and TaqMan methods in exposed and non-exposed Aedes mosquitoes. RESULTS Females from all health districts were resistant to permethrin and deltamethrin (< 20% mortality) but were fully susceptible to 5% malathion. The F1534C and V1016I kdr mutations were successfully detected using a newly developed multiplex PCR in perfect agreement with TaqMan method. The 1534C/1016I/410L haplotype was correlated with permethrin resistance but not with deltamethrin resistance; however, the test power was limited by a low frequency of dead individuals in deltamethrin exposure. CONCLUSIONS Resistance to pyrethroid insecticides is associated with kdr mutant haplotypes, while the absence of substantial resistance to malathion suggests that it remains a viable option for dengue vector control in Ouagadougou.
Collapse
Affiliation(s)
- Aboubacar Sombié
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Wendegoudi Mathias Ouédraogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Programme National de Lutte Contre Les Maladies Tropicales Négligées, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Manabu Oté
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Erisha Saiki
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuya Sakurai
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Félix Yaméogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Antoine Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hirotaka Kanuka
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
43
|
Abdulai A, Owusu-Asenso CM, Akosah-Brempong G, Mohammed AR, Sraku IK, Attah SK, Forson AO, Weetman D, Afrane YA. Insecticide resistance status of Aedes aegypti in southern and northern Ghana. Parasit Vectors 2023; 16:135. [PMID: 37072865 PMCID: PMC10111668 DOI: 10.1186/s13071-023-05752-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/21/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Outbreaks of Aedes-borne arboviral diseases are becoming rampant in Africa. In Ghana, there is no organized arboviral control programme with interventions restricted to mitigate outbreaks. Insecticide application is a crucial part of outbreak responses and future preventative control measures. Thus, knowledge of the resistance status and underlying mechanisms of Aedes populations is required to ensure optimal insecticide choices. The present study assessed the insecticide resistance status of Aedes aegypti populations from southern Ghana (Accra, Tema and Ada Foah) and northern Ghana (Navrongo) respectively. METHODS Phenotypic resistance was determined with WHO susceptibility tests using Ae. aegypti collected as larvae and reared into adults. Knockdown resistance (kdr) mutations were detected using allele-specific PCR. Synergist assays were performed with piperonyl butoxide (PBO) to investigate the possible involvement of metabolic mechanisms in resistance phenotypes. RESULTS Resistance to DDT was moderate to high across sites (11.3 to 75.8%) and, for the pyrethroids deltamethrin and permethrin, moderate resistance was detected (62.5 to 88.8%). The 1534C kdr and 1016I kdr alleles were common in all sites (0.65 to 1) and may be on a trajectory toward fixation. In addition, a third kdr mutant, V410L, was detected at lower frequencies (0.03 to 0.31). Pre-exposure to PBO significantly increased the susceptibility of Ae. aegypti to deltamethrin and permethrin (P < 0.001). This indicates that in addition to kdr mutants, metabolic enzymes (monooxygenases) may be involved in the resistance phenotypes observed in the Ae. aegypti populations in these sites. CONCLUSION Insecticide resistance underpinned by multiple mechanisms in Ae. aegypti indicates the need for surveillance to assist in developing appropriate vector control strategies for arboviral disease control in Ghana.
Collapse
Affiliation(s)
- Anisa Abdulai
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Christopher Mfum Owusu-Asenso
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Gabriel Akosah-Brempong
- African Regional Postgraduate Program in Insect Science, University of Ghana, Legon, Accra, Ghana
| | - Abdul Rahim Mohammed
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Isaac Kwame Sraku
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Simon Kwaku Attah
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Akua Obeng Forson
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yaw Asare Afrane
- Department of Medical Microbiology, Centre for Vector-Borne Disease Research, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
44
|
Manzambi EZ, Mbuka GB, Ilombe G, Takasongo RM, Tezzo FW, Del Carmen Marquetti M, Metelo E, Vanlerberghe V, Bortel WV. Behavior of Adult Aedes aegypti and Aedes albopictus in Kinshasa, DRC, and the Implications for Control. Trop Med Infect Dis 2023; 8:tropicalmed8040207. [PMID: 37104333 PMCID: PMC10143671 DOI: 10.3390/tropicalmed8040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/28/2023] Open
Abstract
Yellow fever and chikungunya outbreaks-and a few dengue cases-have been reported in the Democratic Republic of the Congo (DRC) in recent years. However, little is known about the ecology and behavior of the adult disease vector species, Aedes aegypti and Aedes albopictus, in DRC. Preliminary studies showed important differences in Aedes behavior in DRC and Latin-American sites. Therefore, this study aimed to assess the host-seeking and resting behaviors of female Ae. aegypti and Ae. albopictus, and their densities in four communes of Kinshasa (Kalamu, Lingwala, Mont Ngafula and Ndjili). Two cross-sectional surveys were carried out, one in the dry season (July 2019) and one in the rainy season (February 2020). We used three different adult vector collection methods: BG-Sentinel 2, BG-GAT, and prokopack. Both Aedes species were clearly exophagic, exophilic, and sought breeding sites outdoors. The adult house index for Ae. aegypti exceeded 55% in all communes except Lingwala, where it was only 27%. The Adult Breteau Index (ABI) for Ae. aegypti was 190.77 mosquitoes per 100 houses inspected in the rainy season and 6.03 in the dry season. For Ae. albopictus, the ABI was 11.79 and 3.52 in the rainy and dry seasons, respectively. Aedes aegypti showed unimodal host-seeking activity between 6 h and 21 h. The exophagic and exophilic behaviors of both species point to the need to target adult mosquitoes outdoors when implementing vector control.
Collapse
Affiliation(s)
- Emile Zola Manzambi
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Guillaume Binene Mbuka
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Gillon Ilombe
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
- Global Health Institute, Faculty of Medicine, University of Antwerp, 2000 Antwerp, Belgium
| | - Richard Mundeke Takasongo
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Francis Wat'senga Tezzo
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | | | - Emery Metelo
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, Kinshasa, Democratic Republic of the Congo
| | - Veerle Vanlerberghe
- Tropical Infectious Disease Group, Public Health Department, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Wim Van Bortel
- Outbreak Research Team, Institute of Tropical Medicine, 2000 Antwerp, Belgium
- Unit of Entomology, Biomedical Science Department, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| |
Collapse
|
45
|
Khan A, Bisanzio D, Mutuku F, Ndenga B, Grossi-Soyster EN, Jembe Z, Maina PW, Chebii PK, Ronga CO, Okuta V, LaBeaud AD. Spatiotemporal overlapping of dengue, chikungunya, and malaria infections in children in Kenya. BMC Infect Dis 2023; 23:183. [PMID: 36991340 PMCID: PMC10053720 DOI: 10.1186/s12879-023-08157-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Malaria, chikungunya virus (CHIKV), and dengue virus (DENV) are endemic causes of fever among children in Kenya. The risks of infection are multifactorial and may be influenced by built and social environments. The high resolution overlapping of these diseases and factors affecting their spatial heterogeneity has not been investigated in Kenya. From 2014-2018, we prospectively followed a cohort of children from four communities in both coastal and western Kenya. Overall, 9.8% were CHIKV seropositive, 5.5% were DENV seropositive, and 39.1% were malaria positive (3521 children tested). The spatial analysis identified hot-spots for all three diseases in each site and in multiple years. The results of the model showed that the risk of exposure was linked to demographics with common factors for the three diseases including the presence of litter, crowded households, and higher wealth in these communities. These insights are of high importance to improve surveillance and targeted control of mosquito-borne diseases in Kenya.
Collapse
Affiliation(s)
- Aslam Khan
- Stanford University School of Medicine, Stanford, CA, USA.
- Center for Academic Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | | | | | | | | | - Zainab Jembe
- Msambweni County Referral hospital, Msambweni, Kenya
| | | | | | | | | | | |
Collapse
|
46
|
Canelas T, Thomsen E, Kamgang B, Kelly‐Hope LA. Demographic and environmental factors associated with the distribution of Aedes albopictus in Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:143-151. [PMID: 36264191 PMCID: PMC10092813 DOI: 10.1111/mve.12619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Aedes-transmitted arboviruses have spread globally due to the spread of Aedes aegypti and Aedes albopictus. Its distribution is associated with human and physical geography. However, these factors have not been quantified in Cameroon. Therefore, the aim was to develop an Ae. albopictus geo-referenced database to examine the risk factors associated with the vector distribution in Cameroon. Data on the Ae. albopictus presence and absence were collated and mapped from studies in published scientific literature between 2000 and 2020. Publicly available earth observation data were used to assess human geography, land use and climate risk factors related to the vector distribution. A logistic binomial regression was conducted to identify the significant risk factors associated with Ae. albopictus distribution. In total, 111 data points were collated (presence = 87; absence = 24). Different data collection methods and sites hindered the spatiotemporal analysis. An increase of one wet month in a year increased the odds of Ae. albopictus presence by 5.6 times. One unit of peri-urban area increased the odds by 1.3 times. Using publicly available demographic and environmental data to better understand the key determinants of mosquito distributions may facilitate appropriately targeted public health messages and vector control strategies.
Collapse
Affiliation(s)
- Tiago Canelas
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
- Medical Research Council Epidemiology UnitUniversity of CambridgeCambridgeUK
| | - Edward Thomsen
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Basile Kamgang
- Department of Medical EntomologyCentre for Research in Infectious DiseasesYaoundéCameroon
| | - Louise A. Kelly‐Hope
- Department of Livestock and One HealthInstitute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUK
| |
Collapse
|
47
|
Facchinelli L, Badolo A, McCall PJ. Biology and Behaviour of Aedes aegypti in the Human Environment: Opportunities for Vector Control of Arbovirus Transmission. Viruses 2023; 15:636. [PMID: 36992346 PMCID: PMC10053764 DOI: 10.3390/v15030636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Aedes aegypti is a ubiquitous vector of arboviruses mostly in urbanised areas throughout the tropics and subtropics and a growing threat beyond. Control of Ae. aegypti is difficult and costly, and no vaccines are available for most of the viruses it transmits. With practical control solutions our goal, ideally suitable for delivery by householders in affected communities, we reviewed the literature on adult Ae. aegypti biology and behaviour, within and close to the human home, the arena where such interventions must impact. We found that knowledge was vague or important details were missing for multiple events or activities in the mosquito life cycle, such as the duration or location of the many periods when females rest between blood feeding and oviposition. The existing body of literature, though substantial, is not wholly reliable, and evidence for commonly held "facts" range from untraceable to extensive. Source references of some basic information are poor or date back more than 60 years, while other information that today is accepted widely as "fact" is not supported by evidence in the literature. Many topics, e.g., sugar feeding, resting preferences (location and duration), and blood feeding, merit being revisited in new geographical regions and ecological contexts to identify vulnerabilities for exploitation in control.
Collapse
Affiliation(s)
- Luca Facchinelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph KI-ZERBO, Ouagadougou 03 BP 7021, Burkina Faso
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| |
Collapse
|
48
|
Zahouli JZB, Dibo JD, Diakaridia F, Yao LVA, Souza SD, Horstmann S, Koudou BG. Semi-field evaluation of the space spray efficacy of Fludora Co-Max EW against wild insecticide-resistant Aedes aegypti and Culex quinquefasciatus mosquito populations from Abidjan, Côte d'Ivoire. Parasit Vectors 2023; 16:47. [PMID: 36732832 PMCID: PMC9893543 DOI: 10.1186/s13071-022-05572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/02/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Space spraying of insecticides is still an important means of controlling Aedes and Culex mosquitoes and arboviral diseases. This study evaluated the space spray efficacy of Fludora Co-Max EW, (water-based insecticide space spray combining flupyradifurone and transfluthrin with film forming aqueous spray technology (FFAST)), against wild insecticide-resistant Aedes aegypti and Culex quinquefasciatus mosquitoes from Abidjan, Côte d'Ivoire, compared with K-Othrine EC (deltamethrin-only product), in small-scale field trials. METHODS Wild Ae. aegypti and Cx. quinquefasciatus mosquito larvae were collected in Abidjan, Côte d'Ivoire from August to December 2020. Mosquito larvae were reared in the laboratory until the adult stage. Fludora Co-Max EW and K-Othrine EC were tested against emerged adult females (F0 generation) using ultra-low volume cold fogging (ULV) and thermal fogging (TF) delivery technology, both outdoors and indoors in Agboville, Côte d'Ivoire. Specifically, cages containing 20 mosquitoes each were placed at distances of 10, 25, 50, 75 and 100 m from the spraying line for outdoor spraying, and at ceiling, mid-height and floor levels for indoor house spraying. Knockdown and mortality were recorded at each checkpoint and compared by treatments. RESULTS Overall, Fludora Co-Max EW induced significantly higher knockdown and mortality effects in the wild insecticide-resistant Ae. aegypti and Cx. quinquefasciatus compared with K-Othrine EC. In both species, mortality rates with Fludora Co-Max EW were > 80% (up to 100%) with the ULV spray outdoors at each distance checkpoint (i.e. 10-100 m), and 100% with the ULV and TF sprays indoors at all checkpoints (i.e. ceiling, mid-height and floor). K-Othrine EC induced high mortality indoors (97.9-100%), whereas mortality outdoors rapidly declined in Ae. aegypti from 96.7% (10 m) to 36.7% (100 m) with the ULV spray, and from 85.0% (10 m) to 38.3% (100 m) with the TF spray. Fludora Co-Max EW spray applied as ULV spray outdoors had higher knockdown and higher killing effects on Ae. aegypti and Cx. quinquefasciatus than when applied as TF spray. Fludora Co-Max EW performed better against Cx. quinquefasciatus than against Ae. aegypti. CONCLUSIONS Fludora Co-Max EW induced high mortality and knockdown effects against wild insecticide-resistant Ae. aegypti and Cx. quinquefasciatus Abidjan strains and performed better than K-Othrine EC. The presence of flupyradifurone and transfluthrin (with new and independent modes of action) and FFAST technology in the current Fludora Co-Max EW formulation appears to have broadened its killing capacity. Fludora Co-Max EW is thus an effective adulticide and may be a useful tool for Aedes and Culex mosquito and arbovirus control in endemic areas.
Collapse
Affiliation(s)
- Julien Z. B. Zahouli
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.449926.40000 0001 0118 0881Centre d’Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d’Ivoire
| | - Jean-Denis Dibo
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.452889.a0000 0004 0450 4820Unité de Formation et de Recherche Sciences de la Nature, Université Nangui-Abrogoua, Abidjan, Côte d’Ivoire
| | - Fofana Diakaridia
- grid.512166.70000 0004 0382 3934Institut National d’Hygiène Publique, Ministère de la Santé et de l’Hygiène Publique, Abidjan, Côte d’Ivoire
| | - Laurence V. A. Yao
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
| | - Sarah D. Souza
- Envu, 2022 Environmental Science FR S.A.S., France, Lyon, France
| | | | - Benjamin G. Koudou
- grid.462846.a0000 0001 0697 1172Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire ,grid.452889.a0000 0004 0450 4820Unité de Formation et de Recherche Sciences de la Nature, Université Nangui-Abrogoua, Abidjan, Côte d’Ivoire
| |
Collapse
|
49
|
Predicting the Impact of Climate Change on the Distribution of a Neglected Arboviruses Vector (Armigeres subalbatus) in China. Trop Med Infect Dis 2022; 7:tropicalmed7120431. [PMID: 36548686 PMCID: PMC9788555 DOI: 10.3390/tropicalmed7120431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
The geographic boundaries of arboviruses continue to expand, posing a major health threat to millions of people around the world. This expansion is related to the availability of effective vectors and suitable habitats. Armigeres subalbatus (Coquillett, 1898), a common and neglected species, is of increasing interest given its potential vector capacity for Zika virus. However, potential distribution patterns and the underlying driving factors of Ar. subalbatus remain unknown. In the current study, detailed maps of their potential distributions were developed under both the current as well as future climate change scenarios (SSP126 and SSP585) based on CMIP6 data, employing the MaxEnt model. The results showed that the distribution of the Ar. subalbatus was mainly affected by temperature. Mean diurnal range was the strongest predictor in shaping the distribution of Ar. subalbatus, with an 85.2% contribution rate. By the 2050s and 2070s, Ar. subalbatus will have a broader potential distribution across China. There are two suitable expansion types under climate change in the 2050s and 2070s. The first type is continuous distribution expansion, and the second type is sporadic distribution expansion. Our comprehensive analysis of Ar. subalbatus’s suitable distribution areas shifts under climate change and provides useful and insightful information for developing management strategies for future arboviruses.
Collapse
|
50
|
Liu S, Zhou J, Kong L, Cai Y, Liu H, Xie Z, Xiao X, James AA, Chen XG. Clock genes regulate mating activity rhythms in the vector mosquitoes, Aedes albopictus and Culex quinquefasciatus. PLoS Negl Trop Dis 2022; 16:e0010965. [PMID: 36455055 DOI: 10.1371/journal.pntd.0010965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/13/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Endogenous circadian rhythms result from genetically-encoded molecular clocks, whose components and downstream output factors cooperate to generate cyclic changes in activity. Mating is an important activity of mosquitoes, however, the key aspects of mating rhythm patterns and their regulatory mechanisms in two vector mosquito species, Aedes albopictus and Culex quinquefasciatus, remain unclear. METHODOLOGY/PRINCIPAL FINDINGS We determined and compared the diel mating activity rhythms of these two mosquito species and discovered that Ae. albopictus had mating peaks in the light/dark transition periods (ZT0-3 and ZT9-12), while Cx. quinquefasciatus only had a mating peak at ZT12-15. Knockouts of the clock (clk) orthologous genes (Aalclk and Cxqclk) resulted in phase delay or phase reversal of the mating peaks in Ae. albopictus and Cx. quinquefasciatus, respectively. In addition, the temporal expression pattern of the desaturase orthologous genes, desat1, in both mosquito species was also different in respective wild-type strains and showed phase changes similar to the mating rhythms in clk mutant strains. Inhibition of desat1 expression resulted in decreased mating activity in male mosquitoes of both species but not females. In addition, desat1 regulated cuticular hydrocarbons' synthesis in both species. Silencing desat1 in male Ae. albopictus resulted in decreases of nonadecane and tricosane, which promoted mating, with concomitant increases of heptacosane, which inhibited mating. Silencing desat1 in male Cx. quinquefasciatus also resulted in decreases of tricosane, which promoted mating. CONCLUSIONS/SIGNIFICANCE These results suggest that Aalclk and Cxqclk have significant roles in the mating activity rhythms in both Ae. albopictus and Cx. quinquefasciatus by regulating the temporal expression of the desat1 gene under LD cycles, which affects sex pheromone synthesis and mating. This work provides insights into the molecular regulatory mechanism of distinct mating rhythm of Ae. albopictus and Cx. quinquefasciatus and may provide a basis for the control of these two important vector mosquitoes.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiayong Zhou
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ling Kong
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yiquan Cai
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Hongkai Liu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhensheng Xie
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaolin Xiao
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine California, United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine California, United States of America
| | - Xiao-Guang Chen
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|