1
|
Nishimura H, Nawa N, Ogawa T, Fushimi K, Schwartz BS, Fujiwara T. Projections of future heat-related emergency hospitalizations for asthma under climate and demographic change scenarios: A Japanese nationwide time-series analysis. ENVIRONMENTAL RESEARCH 2025; 266:120498. [PMID: 39622351 DOI: 10.1016/j.envres.2024.120498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/08/2024]
Abstract
BACKGROUND There is growing concern about climate impacts on human health. However, empirical evidence is lacking regarding future projections of heat-related asthma hospitalizations. This study aimed to project excess emergency hospitalizations for heat-related asthma exacerbation in Japan. METHODS Using Japanese nationwide administrative data from 2011 to 2019, we conducted an ecological time-series quasi-Poisson regression analysis to estimate the heat-related relative risk of emergency hospitalization for asthma over a lag of 0-3 days during the warm season (June to September). Heat exposure was defined as the region-specific daily mean temperature exceeding the locally defined minimum morbidity temperature percentile (MMP). Heat-related excess hospitalizations for asthma were projected under future climate and demographic change scenarios based on Shared Socioeconomic Pathways (SSPs). RESULTS We identified 75,829 emergency hospitalizations for asthma. The heat-related relative risk of hospitalization was 1.22 (95% confidence interval (CI): 1.12-1.33) at the 99th percentile temperature relative to the MMP, with the highest estimates for cases aged 0-14 years. Heat-related excess hospitalizations were projected to increase by 6.78 (95%CI: 5.84-7.67) times in 2091-2099 versus 2011-2019 along SSP5-8.5 when constant population structure was assumed. The increasing trend persisted even when the future population decline was considered (4.19 (95%CI: 3.53-4.85) times in 2091-2099 versus 2011-2019 under SSP5-8.5). CONCLUSION Future heat-related impacts on asthma exacerbation are expected to increase in Japan toward the end of this century, even when the future demographic change is considered. Our projections will contribute to resilient health systems adapting to ongoing climate change.
Collapse
Affiliation(s)
- Hisaaki Nishimura
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan.
| | - Nobutoshi Nawa
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan
| | - Takahisa Ogawa
- Department of Orthopedics, Institute of Science Tokyo, Tokyo, Japan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Institute of Science Tokyo, Tokyo, Japan
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Takeo Fujiwara
- Department of Public Health, Institute of Science Tokyo, Tokyo, Japan; Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
An Y, Xing D, Chen S, Wang X, Zhou X, Zhang Y. Association between ambient temperatures and cardiovascular disease: A time series analysis using emergency ambulance dispatches in Chongqing, China, 2019-2021. Health Place 2025; 91:103403. [PMID: 39709856 DOI: 10.1016/j.healthplace.2024.103403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 12/07/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Cardiovascular disease (CVD) is one of the leading causes of death globally. Yet, further research is required into the relationship between CVD and extreme environmental temperatures. This study aims to explore the association between the incidence of CVD and extreme temperatures, and also to identify susceptible subgroups within the population. METHODS We collected cardiovascular emergency ambulance dispatch (CEAD) records from Chongqing Emergency Dispatch Center in the main urban areas of Chongqing from 2019 to 2021. Then, we used distributed lag nonlinear modeling (DLNM) with a quasi-Poisson distribution to evaluate the association between extreme temperatures and CEADs. Susceptibility subgroups were identified by stratified analysis according to gender, age and initial diagnosis. Finally, the attribution analysis was used to calculate the scores and counts of CEADs caused by low and high temperatures. RESULTS Compared with the optimal temperature (23 °C), the cumulative lagged risk of total CEADs was increased under extreme low-temperature conditions (CRR: 1.732, 95% CI: [1.157, 2.593]), with the lagged effect lasting for 8 days. Under extreme high-temperature conditions, it decreased (CRR: 0.752, 95% CI: [0.611, 0.926]) and a protective effect was observed. Compared to the group under 60, those over 60 were more sensitive to temperature changes, showing a higher risk of disease with cold exposure (RR: 1.087, 95% CI: [1.021, 1.157]). In addition, a reduction in risk of disease was observed just one day after heat exposure. There were also gender differences in the elderly group: males showed longer lagged effects after cold exposure, while females had higher dispatch risk in cold weather and less heat adaptation in hot weather than males. CONCLUSION Ambient temperature is significantly associated with the risk of CVD, with elderly patients, especially females, being a high-risk subgroup. Governments need to formulate localized health policies that address regional climate patterns and population vulnerabilities. As one of the famous "Furnace Cities", Chongqing's measures for coping with hot environments can serve as a reference. Nonetheless, improving our understanding and preparation for cold weather is also crucial. Public warning systems should be improved, and local heating strategies for vulnerable groups should be developed to minimize the negative risk of extreme cold temperatures to the public.
Collapse
Affiliation(s)
- Yunyi An
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| | - DianGuo Xing
- Chongqing Municipal Health Commission, No.6 Qilong Road, Yubei District, Chongqing, 401147, China.
| | - Saijuan Chen
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| | - Xinyue Wang
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| | - Xinyun Zhou
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| | - Yan Zhang
- School of Public Health, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Research Center for Public Health Security, Chongqing Medical University, No.61 Middle University Town Road, Shapingba District, Chongqing, 400016, China.
| |
Collapse
|
3
|
Alemayehu Ali E, Cox B, Van de Vel K, Verachtert E, Vaes B, Gabriel Beerten S, Duarte E, Scheerens C, Aerts R, Van Pottelbergh G. Associations of heat with diseases and specific symptoms in Flanders, Belgium: An 8-year retrospective study of general practitioner registration data. ENVIRONMENT INTERNATIONAL 2024; 193:109097. [PMID: 39467480 DOI: 10.1016/j.envint.2024.109097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Global temperature rise has become a major health concern. Most previous studies on the impact of heat on morbidity have used hospital data. OBJECTIVE This study aimed to quantify the association between ambient temperature and a variety of potentially heat-related medical conditions and symptoms using general practitioner (GP) data, in Flanders, Belgium. METHODS We used eight years (2012-2019) of aggregated data of daily GP visits during the Belgian summer period (May-September). A distributed lag nonlinear model (DLNM) with time-stratified conditional quasi-Poisson regression was used to account for the non-linear and delayed effect of temperature indicators (minimum, mean and maximum). We controlled for potential confounders such as particulate matter, humidity, and ozone. RESULTS The overall (lag0-14) association between heat and most of the outcomes was J-shaped, with an increased risk of disease observed at higher temperatures. The associations were more pronounced using the minimum temperatures indicator. Comparing the 99th (20 °C) to the minimum morbidity temperature (MMT) of the minimum temperature distribution during summer, the relative risk (RR) was significantly higher for heat-related general symptoms (RR = 1.30 [95 % CI: 1.07, 1.57]), otitis externa (RR = 4.87 [95 % CI:2.98, 7.98]), general heart problems (RR = 2.43 [95 % CI: 1.33, 4.42]), venous problems (RR = 2.48 [95 % CI:1.55, 3.96]), respiratory complaints (RR = 1.97 [95 % CI: 1.25, 3.09]), skin problems (RR = 3.26 [95 % CI: 2.51, 4.25]), and urinary infections (RR = 1.37 [95 % CI: 1.11, 1.69]). However, we did not find evidence for heat-related increases in gastrointestinal problems, cerebrovascular events, cardiovascular events, arrhythmia, mental health problems, upper respiratory problems and lower respiratory problems. An increased risk of allergy was observed when the minimum temperature reached 17.8 °C (RR = 1.50 [95 % CI: 1.23, 1.83]). Acute effects of heat were observed (largest effects at the first few lags). SUMMARY Our findings indicated that the occurrence of certain symptoms and illnesses during summer season is associated to high temperature or environmental exposures that are augmented by elevated temperatures. Overall, unlike hospitalization data, GP visits data provide broader population coverage, revealing a more accurate representation of heat-health association.
Collapse
Affiliation(s)
- Endale Alemayehu Ali
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium.
| | - Bianca Cox
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Karen Van de Vel
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Els Verachtert
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bert Vaes
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium
| | - Simon Gabriel Beerten
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium
| | - Elisa Duarte
- I-BioStat, Data Science Institute, Hasselt University, Campus Diepenbeek, Diepenbeek, Belgium
| | - Charlotte Scheerens
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium
| | - Raf Aerts
- Division Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium; Risk and Health Impact Assessment, Sciensano, Brussels, Belgium
| | - Gijs Van Pottelbergh
- Department of Public Health and Primary Care, KU Leuven, Kapucijnenvoer 33, Leuven, Flanders 3000, Belgium
| |
Collapse
|
4
|
Agache I, Canelo-Aybar C, Annesi-Maesano I, Cecchi L, Rigau D, Rodríguez-Tanta LY, Nieto-Gutierrez W, Song Y, Cantero-Fortiz Y, Roqué M, Vasquez JC, Sola I, Biagioni B, Chung F, D'Amato G, Damialis A, Del Giacco S, Vecillas LDL, Dominguez-Ortega J, Galàn C, Gilles S, Giovannini M, Holgate S, Jeebhay M, Nadeau K, Papadopoulos N, Quirce S, Sastre J, Traidl-Hoffmann C, Walusiak-Skorupa J, Sousa-Pinto B, Alonso-Coello P, Salazar J, Jutel M, Akdis CA. The impact of outdoor pollution and extreme temperatures on asthma-related outcomes: A systematic review for the EAACI guidelines on environmental science for allergic diseases and asthma. Allergy 2024; 79:1725-1760. [PMID: 38311978 DOI: 10.1111/all.16041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024]
Abstract
Air pollution is one of the biggest environmental threats for asthma. Its impact is augmented by climate change. To inform the recommendations of the EAACI Guidelines on the environmental science for allergic diseases and asthma, a systematic review (SR) evaluated the impact on asthma-related outcomes of short-term exposure to outdoor air pollutants (PM2.5, PM10, NO2, SO2, O3, and CO), heavy traffic, outdoor pesticides, and extreme temperatures. Additionally, the SR evaluated the impact of the efficacy of interventions reducing outdoor pollutants. The risk of bias was assessed using ROBINS-E tools and the certainty of the evidence by using GRADE. Short-term exposure to PM2.5, PM10, and NO2 probably increases the risk of asthma-related hospital admissions (HA) and emergency department (ED) visits (moderate certainty evidence). Exposure to heavy traffic may increase HA and deteriorate asthma control (low certainty evidence). Interventions reducing outdoor pollutants may reduce asthma exacerbations (low to very low certainty evidence). Exposure to fumigants may increase the risk of new-onset asthma in agricultural workers, while exposure to 1,3-dichloropropene may increase the risk of asthma-related ED visits (low certainty evidence). Heatwaves and cold spells may increase the risk of asthma-related ED visits and HA and asthma mortality (low certainty evidence).
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Carlos Canelo-Aybar
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
| | - David Rigau
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - L Yesenia Rodríguez-Tanta
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Wendy Nieto-Gutierrez
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Yang Song
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Yahveth Cantero-Fortiz
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Marta Roqué
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Juan Carlos Vasquez
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Ivan Sola
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit San Giovanni di Dio Hospital, Florence, Italy
| | | | - Gennaro D'Amato
- Medical School of Respiratory Diseases, University of Naples Federico II, Naples, Italy
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Leticia de Las Vecillas
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Javier Dominguez-Ortega
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Carmen Galàn
- Department of Botany, Ecology and Plant Physiology, International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Mattia Giovannini
- Allergy Unit, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Health Sciences, University of Florence, Florence, Italy
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Rondebosch, South Africa
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies; Chair, Department of Environmental Health, Interim Director, Center for Climate, Health, and The Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikolaos Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Joaquin Sastre
- Instituto Carlos III, Ministry of Science and Innovation, Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Madrid, Spain
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Bernardo Sousa-Pinto
- MEDCIDS-Department of Community Medicine, Information and Health Decision Sciences, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pablo Alonso-Coello
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Josefina Salazar
- Department of Clinical Epidemiology and Public Health, Iberoamerican Cochrane Centre, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Marek Jutel
- Department of Clinical Immunology, ALL-MED Medical Research Institute, Wrocław Medical University, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
5
|
Wu J, Wu Y, Wu Y, Yang R, Yu H, Wen B, Wu T, Shang S, Hu Y. The impact of heat waves and cold spells on pneumonia risk: A nationwide study. ENVIRONMENTAL RESEARCH 2024; 245:117958. [PMID: 38135100 DOI: 10.1016/j.envres.2023.117958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/02/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
Climate change affects human health and has been linked to several infectious diseases in recent year. However, there is limited assessment on the impact of heat waves and cold spells on pneumonia risk. This study aims to examine the association of heat waves and cold spells with daily pneumonia hospitalizations in 168 cities in China. Data on pneumonia hospitalizations between 2014 and 2017 were extracted from a national claim database of 280 million beneficiaries. We consider combining temperature intensity and duration to define heat waves and cold spells.This association was quantified using a quasi-Poisson generalized linear model combined with a distributed lag nonlinear model. Exposure-response curves and potential effect modifiers were also estimated. We found that the peak relative risk (RR) of cold spells on daily hospitalizations for pneumonia was observed in relatively mild cold spells with a threshold below the 3 days at the 2nd percentile (RR = 1.69, 95% CI: 1.46-1.92). The risk of heat waves increased with the thresholds, and the greatest risk was found for extremely heatwave period of 4 days at the 98th percentile (RR = 1.69, 95% CI: 1.46-1.92). Heat waves and cold spells are more likely to adversely affect women. In conclusion, our study provided novel and strong evidence that exposure to heat waves and cold spells was associate with increased hospital visits for pneumonia, especially in females. This is the first national study in China to comprehensively evaluate the influence of heat waves and cold spells on pneumonia risk, and the findings may offer valuable insights into the impact of climate change on public health.
Collapse
Affiliation(s)
- Junhui Wu
- School of Nursing, Peking University, 38 Xueyuan Road, Hai Dian District, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China.
| | - Yao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yiqun Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Ruotong Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Huan Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Bo Wen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China; Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China
| | - Shaomei Shang
- School of Nursing, Peking University, 38 Xueyuan Road, Hai Dian District, Beijing, China.
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, 100191, Beijing, China; Medical Informatics Center, Peking University, 100191, Beijing, China.
| |
Collapse
|
6
|
Karstila H, Ruuhela R, Rajala R, Roivainen P. Recognition of climate-related risks for prehospital emergency medical service and emergency department in Finland - A Delphi study. Int Emerg Nurs 2024; 73:101421. [PMID: 38382410 DOI: 10.1016/j.ienj.2024.101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/05/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Emergency departments (ED) and prehospital emergency medical services (EMS) will experience new or increasing challenges due to the changing climate. The aims of this study was to add knowledge about these challenges in Finland and to help EMS and ED operators to prepare for the effects of climate change. METHODS A two-round Delphi study was conducted. Ten participants expressed their views of climate change-related challenges currently and in the future, and how to prepare for challenges ahead. First-round questions based on the literature search about the climate-related impacts on EMS and ED. The stage one data was analysed by thematic analysis, which generated the second-round survey where the probability of the statements was estimated. RESULTS Various climate change-related challenges were recognized such as negative health impacts, the increased workload, difficulties with the EMS operations and problems with the functions of society. Preparation of action plans was considered important in case for incidents and emergencies. CONCLUSION The study indicated that climate change may cause various challenges for EMS and ED in Finland. To meet the future challenges, it is important to identify potential future risks and create plans to manage them. Further studies are needed to create climate resilient healthcare systems.
Collapse
Affiliation(s)
- Heini Karstila
- School of Health and Social Care, Oulu University of Applied Sciences, Kiviharjuntie 4, 90220 Oulu, Finland.
| | - Reija Ruuhela
- Weather and Climate Change Impact Research, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland.
| | - Raija Rajala
- School of Health and Social Care, Oulu University of Applied Sciences, Kiviharjuntie 4, 90220 Oulu, Finland.
| | - Petri Roivainen
- School of Health and Social Care, Oulu University of Applied Sciences, Kiviharjuntie 4, 90220 Oulu, Finland.
| |
Collapse
|
7
|
Lipponen AH, Mikkonen S, Kollanus V, Tiittanen P, Lanki T. Increase in summertime ambient temperature is associated with decreased sick leave risk in Helsinki, Finland. ENVIRONMENTAL RESEARCH 2024; 240:117396. [PMID: 37863162 DOI: 10.1016/j.envres.2023.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/06/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
OBJECTIVES Climate change has increased attention to the health effects of high ambient temperatures and heatwaves worldwide. Both cause-specific mortality and hospital admissions are studied widely, mainly concentrating on warmer climates, but studies focusing on more subtle health effects and cold climates lack. This study investigated the effect of summertime daily ambient temperatures and heatwaves on sick leaves in the employed population in Helsinki, Finland, a Nordic country with a relatively cold climate. METHODS We obtained from the City of Helsinki personnel register data on sick leaves for the summer months (June-August) of 2002-2017. We estimated the overall cumulative association of all and short (maximum 3-day) sick leaves with daily mean temperature over a 21-day lag period using a negative binomial regression model coupled with a penalized distributed lag non-linear model (penalized DLNM). The association of sick leaves with heatwaves (cut-off temperature 20.8 °C), and prolonged heatwaves, was estimated using a negative binomial regression model coupled with DLNM. We adjusted the time series model for potential confounders, such as air pollution, relative humidity, time trends, and holidays. RESULTS Increasing daily temperature tended to be associated with decreased overall cumulative risk of sick leaves and short sick leaves over a 21-day lag period. In addition, heatwaves and prolonged heatwaves were associated with decreased overall cumulative risk of sick leaves compared to all other summer days: RR 0.87 (95 % CI 0.78 to 0.97) and RR 0.83 (95 % CI 0.70 to 0.98), respectively. CONCLUSIONS This research suggests that summertime daily temperatures that are high for this northern location have protective effects on the health of the working population.
Collapse
Affiliation(s)
- Anne H Lipponen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland; Finnish Institute for Health and Welfare, Environmental Health Unit, Kuopio, Finland.
| | - Santtu Mikkonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, Kuopio, Finland; University of Eastern Finland, Department of Technical Physics, Kuopio, Finland
| | - Virpi Kollanus
- Finnish Institute for Health and Welfare, Environmental Health Unit, Kuopio, Finland
| | - Pekka Tiittanen
- Finnish Institute for Health and Welfare, Environmental Health Unit, Kuopio, Finland
| | - Timo Lanki
- Finnish Institute for Health and Welfare, Environmental Health Unit, Kuopio, Finland; University of Eastern Finland, Institute of Public Health and Clinical Nutrition, Kuopio, Finland
| |
Collapse
|
8
|
Çelebi Sözener Z, Treffeisen ER, Özdel Öztürk B, Schneider LC. Global warming and implications for epithelial barrier disruption and respiratory and dermatologic allergic diseases. J Allergy Clin Immunol 2023; 152:1033-1046. [PMID: 37689250 PMCID: PMC10864040 DOI: 10.1016/j.jaci.2023.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Global warming has direct and indirect effects, as well as short- and long-term impacts on the respiratory and skin barriers. Extreme temperature directly affects the airway epithelial barrier by disrupting the structural proteins and by triggering airway inflammation and hyperreactivity. It enhances tidal volume and respiratory rate by affecting the thermoregulatory system, causing specific airway resistance and reflex bronchoconstriction via activation of bronchopulmonary vagal C fibers and upregulation of transient receptor potential vanilloid (TRPV) 1 and TRPV4. Heat shock proteins are activated under heat stress and contribute to both epithelial barrier dysfunction and airway inflammation. Accordingly, the frequency and severity of allergic rhinitis and asthma have been increasing. Heat activates TRPV3 in keratinocytes, causing the secretion of inflammatory mediators and eventually pruritus. Exposure to air pollutants alters the expression of genes that control skin barrier integrity and triggers an immune response, increasing the incidence and prevalence of atopic dermatitis. There is evidence that extreme temperature, heavy rains and floods, air pollution, and wildfires increase atopic dermatitis flares. In this narrative review, focused on the last 3 years of literature, we explore the effects of global warming on respiratory and skin barrier and their clinical consequences.
Collapse
Affiliation(s)
- Zeynep Çelebi Sözener
- Division of Immunology and Allergic Diseases, Ankara Bilkent City Hospital, Ankara, Turkey.
| | - Elsa R Treffeisen
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| | - Betül Özdel Öztürk
- Division of Immunology and Allergic Diseases, Bolu Izzet Baysal Training and Research Hospital, Bolu, Turkey
| | - Lynda C Schneider
- Division of Immunology, Boston Children's Hospital, Boston, Mass; Department of Pediatrics, Harvard Medical School, Boston, Mass
| |
Collapse
|
9
|
Bansal A, Cherbuin N, Davis DL, Peek MJ, Wingett A, Christensen BK, Carlisle H, Broom M, Schoenaker DAJM, Dahlstrom JE, Phillips CB, Vardoulakis S, Nanan R, Nolan CJ. Heatwaves and wildfires suffocate our healthy start to life: time to assess impact and take action. Lancet Planet Health 2023; 7:e718-e725. [PMID: 37558352 DOI: 10.1016/s2542-5196(23)00134-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 08/11/2023]
Abstract
Adverse environmental exposures in utero and early childhood are known to programme long-term health. Climate change, by contributing to severe heatwaves, wildfires, and other natural disasters, is plausibly associated with adverse pregnancy outcomes and an increase in the future burden of chronic diseases in both mothers and their babies. In this Personal View, we highlight the limitations of existing evidence, specifically on the effects of severe heatwave and wildfire events, and compounding syndemic events such as the COVID-19 pandemic, on the short-term and long-term physical and mental health of pregnant women and their babies, taking into account the interactions with individual and community vulnerabilities. We highlight a need for an international, interdisciplinary collaborative effort to systematically study the effects of severe climate-related environmental crises on maternal and child health. This will enable informed changes to public health policy and clinical practice necessary to safeguard the health and wellbeing of current and future generations.
Collapse
Affiliation(s)
- Amita Bansal
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Nicolas Cherbuin
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Deborah L Davis
- Midwifery, University of Canberra, ACT, Australia; ACT Government, Health Directorate, ACT, Australia
| | - Michael J Peek
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; The Canberra Hospital, Canberra Health Services, ACT, Australia
| | - Amanda Wingett
- National Aboriginal Community Controlled Health Organisation, Canberra, ACT, Australia
| | - Bruce K Christensen
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Hazel Carlisle
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; The Canberra Hospital, Canberra Health Services, ACT, Australia
| | - Margaret Broom
- Midwifery, University of Canberra, ACT, Australia; The Canberra Hospital, Canberra Health Services, ACT, Australia
| | - Danielle A J M Schoenaker
- School of Primary Care, Population Sciences and Medical Education, Faculty of Medicine, University of Southampton, Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK; School of Medical, Indigenous and Health Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Jane E Dahlstrom
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; The Canberra Hospital, Canberra Health Services, ACT, Australia
| | - Christine B Phillips
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Companion House Refugee Medical Service, Canberra, ACT, Australia
| | - Sotiris Vardoulakis
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, ACT, Australia
| | - Ralph Nanan
- Sydney Medical School and Charles Perkins Center Nepean, University of Sydney, NSW, Australia
| | - Christopher J Nolan
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; John Curtin School of Medical Research, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; The Canberra Hospital, Canberra Health Services, ACT, Australia.
| |
Collapse
|
10
|
Xu R, Huang S, Shi C, Wang R, Liu T, Li Y, Zheng Y, Lv Z, Wei J, Sun H, Liu Y. Extreme Temperature Events, Fine Particulate Matter, and Myocardial Infarction Mortality. Circulation 2023; 148:312-323. [PMID: 37486993 DOI: 10.1161/circulationaha.122.063504] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/08/2023] [Indexed: 07/26/2023]
Abstract
BACKGROUND Extreme temperature events (ETEs), including heat wave and cold spell, have been linked to myocardial infarction (MI) morbidity; however, their effects on MI mortality are less clear. Although ambient fine particulate matter (PM2.5) is suggested to act synergistically with extreme temperatures on cardiovascular mortality, it remains unknown if and how ETEs and PM2.5 interact to trigger MI deaths. METHODS A time-stratified case-crossover study of 202 678 MI deaths in Jiangsu province, China, from 2015 to 2020, was conducted to investigate the association of exposure to ETEs and PM2.5 with MI mortality and evaluate their interactive effects. On the basis of ambient apparent temperature, multiple temperature thresholds and durations were used to build 12 ETE definitions. Daily ETEs and PM2.5 exposures were assessed by extracting values from validated grid datasets at each subject's geocoded residential address. Conditional logistic regression models were applied to perform exposure-response analyses and estimate relative excess odds due to interaction, proportion attributable to interaction, and synergy index. RESULTS Under different ETE definitions, the odds ratio of MI mortality associated with heat wave and cold spell ranged from 1.18 (95% CI, 1.14-1.21) to 1.74 (1.66-1.83), and 1.04 (1.02-1.06) to 1.12 (1.07-1.18), respectively. Lag 01-day exposure to PM2.5 was significantly associated with an increased odds of MI mortality, which attenuated at higher exposures. We observed a significant synergistic interaction of heat wave and PM2.5 on MI mortality (relative excess odds due to interaction >0, proportion attributable to interaction >0, and synergy index >1), which was higher, in general, for heat wave with greater intensities and longer durations. We estimated that up to 2.8% of the MI deaths were attributable to exposure to ETEs and PM2.5 at levels exceeding the interim target 3 value (37.5 μg/m3) of World Health Organization air quality guidelines. Women and older adults were more vulnerable to ETEs and PM2.5. The interactive effects of ETEs or PM2.5 on MI mortality did not vary across sex, age, or socioeconomic status. CONCLUSIONS This study provides consistent evidence that exposure to both ETEs and PM2.5 is significantly associated with an increased odds of MI mortality, especially for women and older adults, and that heat wave interacts synergistically with PM2.5 to trigger MI deaths but cold spell does not. Our findings suggest that mitigating both ETE and PM2.5 exposures may bring health cobenefits in preventing premature deaths from MI.
Collapse
Affiliation(s)
- Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China (R.X., T.L., Y. Li, Y.Z., Y. Liu)
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China (S.H.)
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing, China (C.S.)
| | - Rui Wang
- Luohu District Chronic Disease Hospital, Shenzhen, Guangdong, China (R.W.)
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China (R.X., T.L., Y. Li, Y.Z., Y. Liu)
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China (R.X., T.L., Y. Li, Y.Z., Y. Liu)
| | - Yi Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China (R.X., T.L., Y. Li, Y.Z., Y. Liu)
| | - Ziquan Lv
- Central Laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China (Z.L.)
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park (J.W.)
| | - Hong Sun
- Institute of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China (H.S.)
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China (R.X., T.L., Y. Li, Y.Z., Y. Liu)
| |
Collapse
|
11
|
Makrufardi F, Manullang A, Rusmawatiningtyas D, Chung KF, Lin SC, Chuang HC. Extreme weather and asthma: a systematic review and meta-analysis. Eur Respir Rev 2023; 32:32/168/230019. [PMID: 37286218 DOI: 10.1183/16000617.0019-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/03/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Climate change's influence on extreme weather events poses a significant threat to the morbidity and mortality of asthma patients. The aim of this study was to examine associations between extreme weather events and asthma-related outcomes. METHODS A systematic literature search for relevant studies was performed using the PubMed, EMBASE, Web of Science and ProQuest databases. Fixed-effects and random-effects models were applied to estimate the effects of extreme weather events on asthma-related outcomes. RESULTS We observed that extreme weather events were associated with increasing risks of general asthma outcomes with relative risks of 1.18-fold for asthma events (95% CI 1.13-1.24), 1.10-fold for asthma symptoms (95% CI 1.03-1.18) and 1.09-fold for asthma diagnoses (95% CI 1.00-1.19). Extreme weather events were associated with increased risks of acute asthma exacerbation with risk ratios of asthma emergency department visits of 1.25-fold (95% CI 1.14-1.37), of asthma hospital admissions of 1.10-fold (95% CI 1.04-1.17), of asthma outpatient visits of 1.19-fold (95% CI 1.06-1.34) and of asthma mortality of 2.10-fold (95% CI 1.35-3.27). Additionally, an increase in extreme weather events increased risk ratios of asthma events by 1.19-fold in children and 1.29-fold in females (95% CI 1.08-1.32 and 95% CI 0.98-1.69, respectively). Thunderstorms increased the risk ratio of asthma events by 1.24-fold (95% CI 1.13-1.36). CONCLUSIONS Our study showed that extreme weather events more prominently increased the risk of asthma morbidity and mortality in children and females. Climate change is a critical concern for asthma control.
Collapse
Affiliation(s)
- Firdian Makrufardi
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Amja Manullang
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Desy Rusmawatiningtyas
- Department of Child Health, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Kian Fan Chung
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Sheng-Chieh Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Allergy, Asthma, and Immunology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
12
|
Hahn MB, Kuiper G, Magzamen S. Association of Temperature Thresholds with Heat Illness- and Cardiorespiratory-Related Emergency Visits during Summer Months in Alaska. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:57009. [PMID: 37224069 DOI: 10.1289/ehp11363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Recent record-breaking hot temperatures in Alaska have raised concerns about the potential human health implications of heat exposure among this unacclimated population. OBJECTIVES We estimated cardiorespiratory morbidity associated with days above summer (June-August) heat index (HI, apparent temperature) thresholds in three major population centers (Anchorage, Fairbanks, and the Matanuska-Susitna Valley) for the years 2015-2019. METHODS We implemented time-stratified case-crossover analyses of emergency department (ED) visits for International Classification of Diseases, 10th Revision codes indicative of heat illness and major cardiorespiratory diagnostic codes using data from the Alaska Health Facilities Data Reporting Program. Using conditional logistic regression models, we tested maximum hourly HI temperature thresholds between 21.1°C (70°F) and 30°C (86°F) for a single day, 2 consecutive days, and the absolute number of previous consecutive days above the threshold, adjusting for the daily average concentration of particulate matter ≤2.5μg. RESULTS There were increased odds of ED visits for heat illness above a HI threshold as low as 21.1°C (70°F) [odds ratio (OR)=13.84; 95% confidence interval (CI): 4.05, 47.29], and this increased risk continued for up to 4 d (OR=2.43; 95% CI: 1.15, 5.10). Asthma and pneumonia were the only respiratory outcomes positively associated with the HI: ED visits for both were highest the day after a heat event (Asthma: HI>27°C(80°F) OR=1.18; 95% CI: 1.00, 1.39; Pneumonia: HI>28°C(82°F) OR=1.40; 95% CI: 1.06, 1.84). There was a decreased odds of bronchitis-related ED visits when the HI was above thresholds of 21.1-28°C (70-82°F) across all lag days. We found stronger effects for ischemia and myocardial infarction (MI) than for respiratory outcomes. Multiple days of warm weather were associated with an increased risk of health impacts. For each additional preceding day above a HI of 22°C (72°F), the odds of ED visits related to ischemia increased 6% (95% CI: 1%, 12%); for each additional preceding day above a HI of 21.1°C (70°F), the odds of ED visits related to MI increased 7% (95% CI: 1%, 14%). DISCUSSION This study demonstrates the importance of planning for extreme heat events and developing local guidance for heat warnings, even in areas with historically mild summertime climates. https://doi.org/10.1289/EHP11363.
Collapse
Affiliation(s)
- Micah B Hahn
- Institute for Circumpolar Health Studies, University of Alaska Anchorage, Anchorage, Alaska, USA
| | - Grace Kuiper
- Institute for Circumpolar Health Studies, University of Alaska Anchorage, Anchorage, Alaska, USA
- Department of Environmental and Radiological Health Science, Colorado State University, Fort Collins, Colorado, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Science, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
13
|
Kotecki P, Więckowska B, Stawińska-Witoszyńska B. The Impact of Meteorological Parameters and Seasonal Changes on Reporting Patients with Selected Cardiovascular Diseases to Hospital Emergency Departments: A Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4838. [PMID: 36981745 PMCID: PMC10049493 DOI: 10.3390/ijerph20064838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/26/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: So far, research results have confirmed the relationship between heat and cold stress, the fluctuations in atmospheric pressure and high relative humidity, and the vulnerability of patients with so-called "weather-dependent" diseases which could lead to death. This study aimed to determine the meteorological parameters, their interactions, and the seasonal changes of the most significant factors in predicting the number of patients reporting to the Emergency Departments (EDs) in Poznań (Poland) during 2019. (2) Methods: The analysis included the meteorological parameters and data of 3606 patients diagnosed with essential or complicated arterial hypertension, myocardial infarction, chronic ischemic heart disease, and ischemic or unspecified stroke by the International Classification of Diseases (ICD-10). The meteorological data (days per week and seasonal data) were used to build a linear regression model to assess the changes in the daily number of reporting patients. The input data for the final model were selected based on the principal component analysis (PCA), and built for each delay and acceleration (reporting up to 3 days before the change or up to 3 days after the change of the meteorological parameter). (3) Results: A significantly lower number of reports was observed during weekends compared to working days (standardised b = -0.254, p-value < 0.0001) and three days before the maximum daily air temperature in the spring and summer period (standardised b = -0.748, p-value < 0.0001), while two days after the increase in the daily amplitude of atmospheric pressure (standardised b = 0.116, p-value = 0.0267), and also on the day of occurrence of the unfavourable interdiurnal air temperature change, an increase in the number of patients was noted (standardised b = 0.115, p-value = 0.0186). The changes in the last two parameters were statistically insignificant. Based on the obtained results, the negative impact of the changes in the meteorological conditions on the number of reports to the EDs in Poznań was determined.
Collapse
Affiliation(s)
- Paweł Kotecki
- Department of Epidemiology and Hygiene, Chair of Social Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Barbara Więckowska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| | - Barbara Stawińska-Witoszyńska
- Department of Epidemiology and Hygiene, Chair of Social Medicine, Poznan University of Medical Sciences, 60-806 Poznań, Poland
| |
Collapse
|
14
|
Han A, Deng S, Yu J, Zhang Y, Jalaludin B, Huang C. Asthma triggered by extreme temperatures: From epidemiological evidence to biological plausibility. ENVIRONMENTAL RESEARCH 2023; 216:114489. [PMID: 36208788 DOI: 10.1016/j.envres.2022.114489] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND There is rapidly growing evidence indicating that extreme temperature is a crucial trigger and potential activator of asthma; however, the effects of extreme temperature on asthma are inconsistently reported and the its potential mechanisms remain undefined. OBJECTIVES This review aims to estimate the impacts of extreme heat, extreme cold, and temperature variations on asthma by systematically summarizing the existing studies from epidemiological evidence to biological plausibility. METHODS We conducted a systematic search in PubMed, Embase, and Web of Science from inception to June 30, 2022, and we retrieved articles of epidemiology and biological studies which assessed associations between extreme temperatures and asthma. This protocol was registered with PROSPERO (CRD42021273613). RESULTS From 12,435 identified records, 111 eligible studies were included in the qualitative synthesis, and 37 articles were included in the meta-analysis (20 for extreme heat, 16 for extreme cold, and 15 for temperature variations). For epidemiological evidence, we found that the synergistic effects of extreme temperatures, indoor/outdoor environments, and individual vulnerabilities are important triggers for asthma attacks, especially when there is extreme heat or cold. Meta-analysis further confirmed the associations, and the pooled relative risks for asthma attacks in extreme heat and extreme cold were 1.07 (95%CI: 1.03-1.12) and 1.20 (95%CI: 1.12-1.29), respectively. Additionally, this review discussed the potential inflammatory mechanisms behind the associations between extreme temperatures and asthma exacerbation, and highlighted the regulatory role of immunological pathways and transient receptor potential ion channels in asthma triggered by extreme temperatures. CONCLUSIONS We concluded that both extreme heat and cold could significantly increase the risk of asthma. Additionally, we proposed a potential mechanistic framework, which is important for understanding the disease pathogenesis that uncovers the complex mechanisms of asthma triggered by extreme temperatures and protects the sensitive individuals from impacts of extreme weather events and climate change.
Collapse
Affiliation(s)
- Azhu Han
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shizhou Deng
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiarui Yu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China, School of Arts and Sciences, Columbia University, New York City, NY, USA
| | - Yali Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bin Jalaludin
- School of Population Health, University of New South Wales, Sydney, Australia
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
15
|
Wolf ST, Vecellio DJ, Kenney WL. Adverse heat-health outcomes and critical environmental limits (Pennsylvania State University Human Environmental Age Thresholds project). Am J Hum Biol 2023; 35:e23801. [PMID: 36125292 PMCID: PMC9840654 DOI: 10.1002/ajhb.23801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The earth's climate is warming and the frequency, duration, and severity of heat waves are increasing. Meanwhile, the world's population is rapidly aging. Epidemiological data demonstrate exponentially greater increases in morbidity and mortality during heat waves in adults ≥65 years. Laboratory data substantiate the mechanistic underpinnings of age-associated differences in thermoregulatory function. However, the specific combinations of environmental conditions (i.e., ambient temperature and absolute/relative humidity) above which older adults are at increased risk of heat-related morbidity and mortality are less clear. METHODS This review was conducted to (1) examine the recent (past 3 years) literature regarding heat-related morbidity and mortality in the elderly and discuss projections of future heat-related morbidity and mortality based on climate model data, and (2) detail the background and unique methodology of our ongoing laboratory-based projects aimed toward identifying the specific environmental conditions that result in elevated risk of heat illness in older adults, and the implications of using the data toward the development of evidence-based safety interventions in a continually-warming climate (PSU HEAT; Human Environmental Age Thresholds). RESULTS The recent literature demonstrates that extreme heat continues to be increasingly detrimental to the health of the elderly and that this is apparent across the world, although the specific environmental conditions above which older adults are at increased risk of heat-related morbidity and mortality remain unclear. CONCLUSION Characterizing the environmental conditions above which risk of heat-related illnesses increase remains critical to enact policy decisions and mitigation efforts to protect vulnerable people during extreme heat events.
Collapse
Affiliation(s)
- S. Tony Wolf
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802
| | - Daniel J. Vecellio
- Center for Healthy Aging, The Pennsylvania State University, University Park, PA, 16802
| | - W. Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, 16802
- Center for Healthy Aging, The Pennsylvania State University, University Park, PA, 16802
- Graduate Program in Physiology, The Pennsylvania State University, University Park, PA, 16802
| |
Collapse
|
16
|
Arsad FS, Hod R, Ahmad N, Ismail R, Mohamed N, Baharom M, Osman Y, Radi MFM, Tangang F. The Impact of Heatwaves on Mortality and Morbidity and the Associated Vulnerability Factors: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16356. [PMID: 36498428 PMCID: PMC9738283 DOI: 10.3390/ijerph192316356] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/15/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND This study aims to investigate the current impacts of extreme temperature and heatwaves on human health in terms of both mortality and morbidity. This systematic review analyzed the impact of heatwaves on mortality, morbidity, and the associated vulnerability factors, focusing on the sensitivity component. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2020 flow checklist. Four databases (Scopus, Web of Science, EBSCOhost, PubMed) were searched for articles published from 2012 to 2022. Those eligible were evaluated using the Navigation Guide Systematic Review framework. RESULTS A total of 32 articles were included in the systematic review. Heatwave events increased mortality and morbidity incidence. Sociodemographic (elderly, children, male, female, low socioeconomic, low education), medical conditions (cardiopulmonary diseases, renal disease, diabetes, mental disease), and rural areas were crucial vulnerability factors. CONCLUSIONS While mortality and morbidity are critical aspects for measuring the impact of heatwaves on human health, the sensitivity in the context of sociodemographic, medical conditions, and locality posed a higher vulnerability to certain groups. Therefore, further research on climate change and health impacts on vulnerability may help stakeholders strategize effective plans to reduce the effect of heatwaves.
Collapse
Affiliation(s)
- Fadly Syah Arsad
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Rozita Hod
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Norfazilah Ahmad
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Rohaida Ismail
- Environmental Health Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Shah Alam 40170, Malaysia
| | - Norlen Mohamed
- Environmental Health Unit, Disease Control Division, Ministry of Health Malaysia, Putrajaya 62590, Malaysia
| | - Mazni Baharom
- Department of Community Health, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Yelmizaitun Osman
- Occupational and Environmental Health Unit, Kelantan State Health Department, Ministry of Health Malaysia, Kota Bharu 15590, Malaysia
| | - Mohd Firdaus Mohd Radi
- Surveillance Unit, Kedah State Health Department, Ministry of Health Malaysia, Alor Setar 05400, Malaysia
| | - Fredolin Tangang
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
17
|
Cicci KR, Maltby A, Clemens KK, Vicedo-Cabrera AM, Gunz AC, Lavigne É, Wilk P. High Temperatures and Cardiovascular-Related Morbidity: A Scoping Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11243. [PMID: 36141512 PMCID: PMC9517671 DOI: 10.3390/ijerph191811243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 05/27/2023]
Abstract
The primary objective of this review was to synthesize studies assessing the relationships between high temperatures and cardiovascular disease (CVD)-related hospital encounters (i.e., emergency department (ED) visits or hospitalizations) in urban Canada and other comparable populations, and to identify areas for future research. Ovid MEDLINE, EMBASE, CINAHL, Cochrane Database of Systematic Reviews, and Scopus were searched between 6 April and 11 April 2020, and on 21 March 2021, to identify articles examining the relationship between high temperatures and CVD-related hospital encounters. Studies involving patients with pre-existing CVD were also included. English language studies from North America and Europe were included. Twenty-two articles were included in the review. Studies reported an inconsistent association between high temperatures and ischemic heart disease (IHD), heart failure, dysrhythmia, and some cerebrovascular-related hospital encounters. There was consistent evidence that high temperatures may be associated with increased ED visits and hospitalizations related to total CVD, hyper/hypotension, acute myocardial infarction (AMI), and ischemic stroke. Age, sex, and gender appear to modify high temperature-CVD morbidity relationships. Two studies examined the influence of pre-existing CVD on the relationship between high temperatures and morbidity. Pre-existing heart failure, AMI, and total CVD did not appear to affect the relationship, while evidence was inconsistent for pre-existing hypertension. There is inconsistent evidence that high temperatures are associated with CVD-related hospital encounters. Continued research on this topic is needed, particularly in the Canadian context and with a focus on individuals with pre-existing CVD.
Collapse
Affiliation(s)
- Kendra R. Cicci
- Department of Epidemiology and Biostatistics, Western University, London, ON N6G 2M1, Canada
| | - Alana Maltby
- Department of Epidemiology and Biostatistics, Western University, London, ON N6G 2M1, Canada
| | - Kristin K. Clemens
- Department of Epidemiology and Biostatistics, Western University, London, ON N6G 2M1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
- Department of Medicine, Western University, London, ON N6A 5A5, Canada
- ICES, London, ON N6A 5W9, Canada
- St. Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - Ana Maria Vicedo-Cabrera
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Oeschger Center for Climate Change Research, University of Bern, 3012 Bern, Switzerland
| | - Anna C. Gunz
- Department of Paediatrics, Western University, London, ON N6A 5W9, Canada
- Child Health Research Institute, London, ON N6A 5W9, Canada
| | - Éric Lavigne
- Air Health Science Division, Health Canada, Ottawa, ON K1A 0K9, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON K1G 5Z3, Canada
| | - Piotr Wilk
- Department of Epidemiology and Biostatistics, Western University, London, ON N6G 2M1, Canada
- Lawson Health Research Institute, London, ON N6C 2R5, Canada
- ICES, London, ON N6A 5W9, Canada
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Department of Paediatrics, Western University, London, ON N6A 5W9, Canada
- Child Health Research Institute, London, ON N6A 5W9, Canada
| |
Collapse
|
18
|
Tao J, Hossain MZ, Xu Z, Ho HC, Khan MA, Huang C, Zheng H, Ni J, Fan Y, Bogale D, Su H, Cheng J. Protective effect of pneumococcal conjugate vaccination on the short-term association between low temperatures and childhood pneumonia hospitalizations: Interrupted time-series and case-crossover analyses in Matlab, Bangladesh. ENVIRONMENTAL RESEARCH 2022; 212:113156. [PMID: 35331698 DOI: 10.1016/j.envres.2022.113156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Studies have shown that ambient extreme temperatures (heat and cold) were associated with an increased risk of childhood pneumonia, but the evidence is very limited in low-middle-income countries. It also remains unknown whether pneumococcal conjugate vaccine (PCV) could prevent temperature-related childhood pneumonia. This study collected data on ambient temperature and hospitalizations for childhood pneumonia in Matlab, Bangladesh from 2012 to 2016. Interrupted time series (ITS) analysis was employed to assess the impact of PCV (10-valent) intervention on childhood pneumonia hospitalizations. A time-stratified case-crossover analysis with a conditional logistic regression was performed to examine the association of childhood pneumonia hospitalizations with extreme temperatures and heatwaves before and after PCV10 intervention. Subgroup analyses were conducted to explore the modification effects of seasons, age, gender, and socioeconomic levels on temperature-related childhood pneumonia hospitalizations. We found that after PCV10 intervention, there was a sharp decrease in hospitalizations for childhood pneumonia (relative risk (RR): 0.59, 95% confidence interval (CI): 0.43-0.83). During the study period, heat effects on childhood pneumonia appeared immediately on the current day (odds ratio (OR): 1.28; 95% CI: 1.02-1.60, lag 0), while cold effects appeared 4 weeks later (OR: 1.53, 95% CI: 1.06-2.22, lag 28). Importantly, cold effects decreased significantly after PCV10 (p-value<0.05), but heat and heatwave effects increased after PCV10 (p-value<0.05). Particularly, children from families with a middle or low socioeconomic level, boys, and infants were more susceptible to heat-related pneumonia. This study suggests that PCV10 intervention in Bangladesh may help decrease cold-related not heat-related childhood pneumonia.
Collapse
Affiliation(s)
- Junwen Tao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Mohammad Zahid Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zhiwei Xu
- School of Public Health, Faculty of Medicine, University of Queensland, 288 Herston Road, Herston, QLD, 4006, Australia
| | - Hung Chak Ho
- Department of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
| | - Md Alfazal Khan
- Matlab Health Research Centre, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Cunrui Huang
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Yinguan Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Daniel Bogale
- College of Health Sciences, Arsi University, Asela, Ethiopia
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China.
| |
Collapse
|
19
|
Rahman MM, Garcia E, Lim CC, Ghazipura M, Alam N, Palinkas LA, McConnell R, Thurston G. Temperature variability associations with cardiovascular and respiratory emergency department visits in Dhaka, Bangladesh. ENVIRONMENT INTERNATIONAL 2022; 164:107267. [PMID: 35533532 PMCID: PMC11213361 DOI: 10.1016/j.envint.2022.107267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 03/30/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Greenhouse gas emissions are changing the Earth's climate, most directly by modifying temperatures and temperature variability (TV). Residents of low- and middle-income countries (LMICs) are likely more adversely affected, due to lack of air conditioning to compensate. To date, there is no local epidemiological evidence documenting the cardio-respiratory health effects of TV in Dhaka, Bangladesh, one of the most climate change vulnerable cities in the world. OBJECTIVES We assessed short-term TV associations with daily cardiovascular disease (CVD) and respiratory emergency department (ED) visits, as well as effect modification by age and season. METHODS TV was calculated from the standard deviations of the daily minimum and maximum temperatures over exposure days. Time-series regression modeling was applied to daily ED visits for respiratory and CVD from January 2014 through December 2017. TV effect sizes were estimated after controlling for long-term trends and seasonality, day-of-week, holidays, and daily mean relative humidity and ambient temperature. RESULTS A 1 °C increase in TV was associated with a 1.00% (95 %CI: 0.05%, 1.96%) increase in CVD ED visits at lag 0-1 days (TV0-1) and a 2.77% (95 %CI: 0.24%, 5.20%) increase in respiratory ED visits at lag 0-7 days (TV0-7). TV-CVD associations were larger in the monsoon and cold seasons. Respiratory ED visit associations varied by age, with older adults more affected by the TV across all seasons. A 1 °C increase in TV at lag 0-7 days (TV0-7) was associated with a 7.45% (95 %CI: 2.33%, 12.57%) increase in respiratory ED visits among patients above 50 years of age. CONCLUSION This study provided novel and important evidence that cardio-pulmonary health in Dhaka is adversely affected year-round by day-to-day increases in TV, especially among older adults. TV is a key factor that should be considered in evaluating the potential human health impacts of climate change induced temperature changes.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Erika Garcia
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chris C Lim
- Department of Community, Environment, and Policy at the Mel & Enid Zuckerman College of Public Health, The University of Arizona, Tucson, AZ, USA
| | - Marya Ghazipura
- New York University Langone Health, Department of Population Health, New York, NY; ZS Associates, Global Health Economics and Outcomes Research, New York, NY
| | - Nur Alam
- Department of Cardiology, National Institute of Cardiovascular Diseases, Dhaka, Bangladesh
| | - Lawrence A Palinkas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Suzanne Dworak Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - George Thurston
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA; Department of Population Health, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
20
|
Olschewski P, Kaspar-Ott I, Koller S, Schenkirsch G, Trepel M, Hertig E. Associations between Weather, Air Quality and Moderate Extreme Cancer-Related Mortality Events in Augsburg, Southern Germany. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211737. [PMID: 34831496 PMCID: PMC8617977 DOI: 10.3390/ijerph182211737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 01/29/2023]
Abstract
While many authors have described the adverse health effects of poor air quality and meteorological extremes, there remain inconsistencies on a regional scale as well as uncertainty about the single and joint effects of atmospheric predictors. In this context, we investigated the short-term impacts of weather and air quality on moderate extreme cancer-related mortality events for the urban area of Augsburg, Southern Germany, during the period 2000–2017. First, single effects were uncovered by applying a case-crossover routine. The overall impact was assessed by performing a Mann–Whitney U testing scheme. We then compared the results of this procedure to extreme noncancer-related mortality events. In a second step, we found periods with contemporaneous significant predictors and carried out an in-depth analysis of these joint-effect periods. We were interested in the atmospheric processes leading to the emergence of significant conditions. Hence, we applied the Principal Component Analysis to large-scale synoptic conditions during these periods. The results demonstrate a strong linkage between high-mortality events in cancer patients and significantly above-average levels of nitrogen dioxide (NO2) and particulate matter (PM2.5) during the late winter through spring period. These were mainly linked to northerly to easterly weak airflow under stable, high-pressure conditions. Especially in winter and spring, this can result in low temperatures and a ground-level increase and the accumulation of air pollution from heating and traffic as well as eastern lateral advection of polluted air. Additionally, above-average temperatures were shown to occur on the days before mortality events from mid-summer through fall, which was also caused by high-pressure conditions with weak wind flow and intense solar radiation. Our approach can be used to analyse medical data with epidemiological as well as climatological methods while providing a more vivid representation of the underlying atmospheric processes.
Collapse
Affiliation(s)
- Patrick Olschewski
- Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany; (I.K.-O.); (S.K.); (M.T.); (E.H.)
- Correspondence:
| | - Irena Kaspar-Ott
- Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany; (I.K.-O.); (S.K.); (M.T.); (E.H.)
| | - Stephanie Koller
- Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany; (I.K.-O.); (S.K.); (M.T.); (E.H.)
| | - Gerhard Schenkirsch
- Comprehensive Cancer Center, Augsburg University Medical Center, 86156 Augsburg, Germany;
| | - Martin Trepel
- Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany; (I.K.-O.); (S.K.); (M.T.); (E.H.)
- Comprehensive Cancer Center, Augsburg University Medical Center, 86156 Augsburg, Germany;
- Department of Internal Medicine II, Augsburg University Medical Center, 86156 Augsburg, Germany
| | - Elke Hertig
- Faculty of Medicine, University of Augsburg, 86159 Augsburg, Germany; (I.K.-O.); (S.K.); (M.T.); (E.H.)
| |
Collapse
|