1
|
Leung ECH, Jain P, Michealson MA, Choi H, Ellsworth-Kopkowski A, Valenzuela CF. Recent breakthroughs in understanding the cerebellum's role in fetal alcohol spectrum disorder: A systematic review. Alcohol 2024; 119:37-71. [PMID: 38097146 PMCID: PMC11166889 DOI: 10.1016/j.alcohol.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 06/14/2024]
Abstract
Exposure to alcohol during fetal development can lead to structural and functional abnormalities in the cerebellum, a brain region responsible for motor coordination, balance, and specific cognitive functions. In this systematic review, we comprehensively analyze a vast body of research conducted on vertebrate animals and humans over the past 13 years. We identified studies through PubMed and screened them following PRISMA guidelines. Data extraction and quality analysis were conducted using Covidence systematic review software. A total of 108 studies met our inclusion criteria, with the majority (79 studies) involving vertebrate animal models and 29 studies focusing on human subjects. Animal models included zebrafish, mice, rats, sheep, and non-human primates, investigating the impact of ethanol on cerebellar structure, gene/protein expression, physiology, and cerebellar-dependent behaviors. Additionally, some animal studies explored potential therapeutic interventions against ethanol-induced cerebellar damage. The human studies predominantly adopted cohort designs, exploring the effects of prenatal alcohol exposure on cerebellar structure and function. Certain human studies delved into innovative cerebellar-based diagnostic approaches for fetal alcohol spectrum disorder (FASD). The collective findings from these studies clearly indicate that the cerebellum is involved in various neurophysiological deficits associated with FASD, emphasizing the importance of evaluating both cerebellar structure and function in the diagnostic process for this condition. Moreover, this review sheds light into potential therapeutic strategies that can mitigate prenatal alcohol exposure-induced cerebellar damage.
Collapse
Affiliation(s)
- Eric C H Leung
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Priyanka Jain
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Marisa A Michealson
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Hyesun Choi
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Alexis Ellsworth-Kopkowski
- Health Sciences Library & Informatics Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States.
| |
Collapse
|
2
|
Gironda SC, Centanni SW, Weiner JL. Early life psychosocial stress increases binge-like ethanol consumption and CSF1R inhibition prevents stress-induced alterations in microglia and brain macrophage population density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.27.605403. [PMID: 39211115 PMCID: PMC11361020 DOI: 10.1101/2024.07.27.605403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Early life stress (ELS) has lasting consequences on microglia and brain macrophage function. During ELS, microglia and brain macrophages alter their engagement with synapses leading to changes in neuronal excitability. Further, ELS can induce innate immune memory formation in microglia and brain macrophages resulting in altered responsivity to future environmental stimuli. These alterations can result in lasting adaptations in circuit function and may mediate the relationship between ELS and the risk to develop alcohol use disorder (AUD). Whether microglia and brain macrophages truly mediate this relationship remains elusive. Here, we report: 1) an ELS model, psychosocial stress (PSS), increases binge-like ethanol consumption in early adulthood. 2) Repeated binge-like ethanol consumption increases microglia and brain macrophage population densities across the brain. 3) PSS may elicit innate immune memory formation in microglia and brain macrophages leading to altered population densities following repeated binge-like ethanol consumption. 4) Microglia and brain macrophage inhibition trended towards preventing PSS-evoked changes in binge-like ethanol consumption and normalized microglia and brain macrophage population densities. Therefore, our study suggests that acutely inhibiting microglia and brain macrophage function during periods of early life PSS may prevent innate immune memory formation and assist in reducing the risk to develop AUD. Highlights An early life psychosocial stress (PSS) exposure increases ethanol consumptionMicroglial inhibition during PSS trends towards reducing ethanol consumptionBinge ethanol consumption increases microglial count and alters cell proximityEarly life PSS alters microglial responsivity to binge ethanol consumptionMicroglial inhibition may prevent microglial innate immune memory formation.
Collapse
|
3
|
Mitoma H, Manto M, Shaikh AG. Alcohol Toxicity in the Developing Cerebellum. Diagnostics (Basel) 2024; 14:1415. [PMID: 39001305 PMCID: PMC11241390 DOI: 10.3390/diagnostics14131415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
The impact of ethanol on the fetus is a significant concern as an estimated 2-5% of live births may be affected by prenatal alcohol exposure. This exposure can lead to various functional and structural abnormalities in the cerebral cortex, basal ganglia, diencephalon, and cerebellum, resulting in region-specific symptoms. The deficits relate to the motor and cognitive domains, affecting, in particular, general intelligence, attention, executive functions, language, memory, visual perception, and social skills-collectively called the fetal alcohol spectrum disorder (FASD). Recent studies suggest that damage to the developing cerebellum (in form of alcohol exposure) can impair the cortical targets of the cerebello-thalamo-cortical tract. This malfunction in the cerebello-cerebral loop optimization may be due to disruptions in the formation of the foundational elements of the internal model within the developing cerebellum. Alcohol exposure targets multiple nodes in the reciprocal loops between the cerebellum and cerebral cortex. Here, we examine the possibility that prenatal alcohol exposure damages the developing cerebellum and disrupts the connectivity within the cerebello-cerebral neuronal circuits, exacerbating FASD-related cortical dysfunctions. We propose that malfunctions between cerebellar internal model (critically involved in predictions) and cerebral regions contribute to the deficits observed in FASD. Given the major role of the cerebellum in motor, cognitive, and affective functions, we suggest that therapies should target these malfunctions to mitigate the burden of FASD. We discuss the concept of therapies oriented towards malfunctioning cerebello-cerebral loops (TOMCCLs), emphasizing anti-inflammatory strategies and treatments aimed at modulating cerebellar myelination to restore optimal and predictive cerebello-cerebral functions.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, 6000 Charleroi, Belgium
- Service des Neurosciences, University of Mons, 7000 Mons, Belgium
| | - Aasef G Shaikh
- Louis Stokes Cleveland VA Medical Center, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Hedayati-Moghadam M, Razazpour F, Pourfridoni M, Mirzaee F, Baghcheghi Y. Ethanol's impact on the brain: a neurobiological perspective on the mechanisms of memory impairment. Mol Biol Rep 2024; 51:782. [PMID: 38918289 DOI: 10.1007/s11033-024-09748-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Alcohol consumption is known to have detrimental effects on memory function, with various studies implicating ethanol in the impairment of cognitive processes related to memory retention and retrieval. This review aims to elucidate the complex neurobiological mechanisms underlying ethanol-induced memory impairment. Through a thorough search of existing literature using electronic databases, relevant articles focusing on the neurobiological mechanisms of ethanol on memory were identified and critically evaluated. This review focuses on the molecular and neural pathways through which ethanol exerts its effects on memory formation, consolidation, and recall processes. Key findings from the included studies shed light on the impact of ethanol on neurotransmitter systems, synaptic plasticity, and neuroinflammation in relation to memory impairment. This review contributes to a better understanding of the intricate mechanisms by which alcohol impairs memory function, offering insights for future research directions and the development of targeted interventions to alleviate these cognitive impairments.
Collapse
Affiliation(s)
- Mahdiyeh Hedayati-Moghadam
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Fateme Razazpour
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Mohammad Pourfridoni
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Faezeh Mirzaee
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran
| | - Yousef Baghcheghi
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, 7861755765, Iran.
- Bio Environmental Health Hazards Research Center, Jiroft University of Medical Sciences, Jiroft, Iran.
| |
Collapse
|
5
|
Aşır F, Erdemci F, Çankırı Z, Korak T, Başaran SÖ, Kaplan Ö, Yükselmiş Ö, Dönmezdil N, Ayaz H, Kaplan Ş, Tunik S. Zonisamide Ameliorated the Apoptosis and Inflammation in Cerebellar Tissue of Induced Alcohol Addiction Animal Model. Life (Basel) 2024; 14:795. [PMID: 39063550 PMCID: PMC11278003 DOI: 10.3390/life14070795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated the effects of zonisamide treatment on cerebellar tissues in an experimental alcohol addiction (AA) model and its potential mechanisms of action, particularly regarding apoptotic protease activating factor-1 (APAF-1) and tumor necrosis factor-alpha (TNF-α) expression. Thirty rats were divided into three groups: sham, ethanol (EtOH), and EtOH + zonisamide. AA was induced by administering 6 cc of EtOH orally every 8 h for 4 days. Zonisamide (100 mg/kg) was given to rats once daily before EtOH administration. Motor defects were evaluated using an open field maze. Serum TNF-α levels were measured from blood samples. Cerebellar sections were processed for histological examination and immunostained for APAF-1 and TNF-α. Protein interaction networks were constructed using Cytoscape, and functional annotations were performed with ShinyGO (version 0.80) software. The traveled area in the EtOH group was significantly reduced compared to the sham group (p = 0.0005). Rats in the EtOH + zonisamide group covered a larger area, with zonisamide treatment significantly improving locomotor ability compared to the EtOH group (p = 0.0463). Serum TNF-α levels were significantly elevated in the EtOH group compared to the sham group (p < 0.0001) and were significantly decreased in the EtOH + zonisamide group compared to the EtOH group (p = 0.0309). Regular cerebellar histological layers were observed in the sham group, while EtOH induction caused loss of cerebellar tissue integrity, neuronal degeneration, vascular dilatation and congestion, reduced myelin density, and neuropils in the EtOH group. Zonisamide treatment improved these pathologies, enhancing myelination and neuropil formation. Negative APAF-1 and TNF-α expressions were observed across cerebellar layers in the sham group. Due to EtOH toxicity, APAF-1 and TNF-α expression were upregulated in the EtOH group compared to the sham group (p < 0.001 for both). Zonisamide treatment downregulated these protein expressions in the EtOH + zonisamide group compared to the EtOH group (p < 0.001 and p = 0.0087, respectively). APAF-1 was primarily associated with AA through antifolate resistance, endopeptidases, and the interleukin-1 pathway, while TNF-α was predominantly enriched in infections and choline-binding, indicating zonisamide's impact on immune and inflammatory pathways. In conclusion, zonisamide treatment significantly mitigated ethanol-induced cerebellar damage and inflammation in an AA model. Zonisamide improved locomotor function and reduced serum TNF-α levels, as well as APAF-1 and TNF-α expression in cerebellar tissues. These findings suggest that zonisamide exerts its protective effects by modulating immune and inflammatory pathways, thereby preserving cerebellar integrity and function.
Collapse
Affiliation(s)
- Fırat Aşır
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Fikri Erdemci
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Zuhal Çankırı
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Tuğcan Korak
- Department of Medical Biology, Medical Faculty, Kocaeli University, 41001 Kocaeli, Turkey
| | - Süreyya Özdemir Başaran
- Department of Andrology, Gazi Yasargil Education and Research Hospital, Health Sciences University, 21090 Diyarbakir, Turkey
| | - Özge Kaplan
- Department of Andrology, Gazi Yasargil Education and Research Hospital, Health Sciences University, 21090 Diyarbakir, Turkey
| | - Özkan Yükselmiş
- Division of Physical Medicine and Rehabilitation, Diyarbakır Dağ Kapı State Hospital, 21100 Diyarbakır, Turkey
| | - Nilüfer Dönmezdil
- Department of Audiology, Faculty of Health Sciences, Mardin Artuklu University, 47200 Mardin, Turkey
| | - Hayat Ayaz
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Şehmus Kaplan
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| | - Selçuk Tunik
- Department of Histology and Embryology, Medical Faculty, Dicle University, 21280 Diyarbakır, Turkey
| |
Collapse
|
6
|
Berríos-Cárcamo P, Núñez S, Castañeda J, Gallardo J, Bono MR, Ezquer F. Two-Month Voluntary Ethanol Consumption Promotes Mild Neuroinflammation in the Cerebellum but Not in the Prefrontal Cortex, Hippocampus, or Striatum of Mice. Int J Mol Sci 2024; 25:4173. [PMID: 38673763 PMCID: PMC11050159 DOI: 10.3390/ijms25084173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic ethanol exposure often triggers neuroinflammation in the brain's reward system, potentially promoting the drive for ethanol consumption. A main marker of neuroinflammation is the microglia-derived monocyte chemoattractant protein 1 (MCP1) in animal models of alcohol use disorder in which ethanol is forcefully given. However, there are conflicting findings on whether MCP1 is elevated when ethanol is taken voluntarily, which challenges its key role in promoting motivation for ethanol consumption. Here, we studied MCP1 mRNA levels in areas implicated in consumption motivation-specifically, the prefrontal cortex, hippocampus, and striatum-as well as in the cerebellum, a brain area highly sensitive to ethanol, of C57BL/6 mice subjected to intermittent and voluntary ethanol consumption for two months. We found a significant increase in MCP1 mRNA levels in the cerebellum of mice that consumed ethanol compared to controls, whereas no significant changes were observed in the prefrontal cortex, hippocampus, or striatum or in microglia isolated from the hippocampus and striatum. To further characterize cerebellar neuroinflammation, we measured the expression changes in other proinflammatory markers and chemokines, revealing a significant increase in the proinflammatory microRNA miR-155. Notably, other classical proinflammatory markers, such as TNFα, IL6, and IL-1β, remained unaltered, suggesting mild neuroinflammation. These results suggest that the onset of neuroinflammation in motivation-related areas is not required for high voluntary consumption in C57BL/6 mice. In addition, cerebellar susceptibility to neuroinflammation may be a trigger to the cerebellar degeneration that occurs after chronic ethanol consumption in humans.
Collapse
Affiliation(s)
- Pablo Berríos-Cárcamo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610615, Chile; (J.G.); (F.E.)
| | - Sarah Núñez
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones 7510602, Chile;
- Centro Ciencia & Vida, Santiago 8580702, Chile
| | - Justine Castañeda
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.C.); (M.R.B.)
| | - Javiera Gallardo
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610615, Chile; (J.G.); (F.E.)
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile; (J.C.); (M.R.B.)
| | - Fernando Ezquer
- Center for Regenerative Medicine, Faculty of Medicine, Clínica Alemana-Universidad del Desarrollo, Santiago 7610615, Chile; (J.G.); (F.E.)
- Research Center for the Development of Novel Therapeutics Alternatives for Alcohol Use Disorders, Santiago 7610658, Chile
| |
Collapse
|
7
|
de Oliveira IG, Queiroz LY, da Silva CCS, Cartágenes SC, Fernandes LMP, de Souza-Junior FJC, Bittencourt LO, Lima RR, Martins MD, Schmidt TR, Fontes-Junior EA, Maia CDSF. Ethanol binge drinking exposure during adolescence displays long-lasting motor dysfunction related to cerebellar neurostructural damage even after long-term withdrawal in female Wistar rats. Biomed Pharmacother 2024; 173:116316. [PMID: 38394853 DOI: 10.1016/j.biopha.2024.116316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Ethanol is one of the psychoactive substances most used by young individuals, usually in an intermittent and episodic manner, also called binge drinking. In the adolescent period, brain structures undergo neuromaturation, which increases the vulnerability to psychotropic substances. Our previous studies have revealed that ethanol binge drinking during adolescence elicits neurobehavioral alterations associated with brain damage. Thus, we explored the persistence of motor function impairment and cerebellum damage in the context of ethanol withdrawal periods (emerging adulthood and adult life) in adolescent female rats. Female Wistar rats (35 days old) received orally 4 cycles of ethanol (3.0 g/kg/day) or distilled water in 3 days on-4 days off paradigm (35th until 58th day of life). Motor behavioral tests (open field, grip strength, beam walking, and rotarod tests) and histological assays (Purkinje's cell density and NeuN-positive cells) were assessed on the 1-, 30-, and 60-days of binge alcohol exposure withdrawal. Our findings demonstrate that the adolescent binge drinking exposure paradigm induced cerebellar cell loss in all stages evaluated, measured through the reduction of Purkinje's cell density and granular layer neurons. The cerebellar tissue alterations were accompanied by behavioral impairments. In the early withdrawal, the reduction of spontaneous movement, incoordination, and unbalance was seen. However, the grip strength reduction was found at long-term withdrawal (60 days of abstinence). The cerebellum morphological changes and the motor alterations persisted until adulthood. These data suggest that binge drinking exposure during adolescence causes motor function impairment associated with cerebellum damage, even following a prolonged withdrawal, in adult life.
Collapse
Affiliation(s)
- Igor Gonçalves de Oliveira
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Letícia Yoshitome Queiroz
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Carla Cristiane Soares da Silva
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Sabrina Carvalho Cartágenes
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | | | - Fábio José Coelho de Souza-Junior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | | | - Tuany Rafaeli Schmidt
- Department of Oral Pathology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Enéas Andrade Fontes-Junior
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil
| | - Cristiane do Socorro Ferraz Maia
- Laboratory of Pharmacology of Inflammation and Behavior, Faculty of Pharmacy, Institute of Health Science, Federal University of Pará, Belém, Pará 66075-900, Brazil.
| |
Collapse
|
8
|
Arzua T, Yan Y, Liu X, Dash RK, Liu QS, Bai X. Synaptic and mitochondrial mechanisms behind alcohol-induced imbalance of excitatory/inhibitory synaptic activity and associated cognitive and behavioral abnormalities. Transl Psychiatry 2024; 14:51. [PMID: 38253552 PMCID: PMC10803756 DOI: 10.1038/s41398-024-02748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Alcohol consumption during pregnancy can significantly impact the brain development of the fetus, leading to long-term cognitive and behavioral problems. However, the underlying mechanisms are not well understood. In this study, we investigated the acute and chronic effects of binge-like alcohol exposure during the third trimester equivalent in postnatal day 7 (P7) mice on brain cell viability, synapse activity, cognitive and behavioral performance, and gene expression profiles at P60. Our results showed that alcohol exposure caused neuroapoptosis in P7 mouse brains immediately after a 6-hour exposure. In addition, P60 mice exposed to alcohol during P7 displayed impaired learning and memory abilities and anxiety-like behaviors. Electrophysiological analysis of hippocampal neurons revealed an excitatory/inhibitory imbalance in alcohol-treated P60 mice compared to controls, with decreased excitation and increased inhibition. Furthermore, our bioinformatic analysis of 376 dysregulated genes in P60 mouse brains following alcohol exposure identified 50 synapse-related and 23 mitochondria-related genes. These genes encoded proteins located in various parts of the synapse, synaptic cleft, extra-synaptic space, synaptic membranes, or mitochondria, and were associated with different biological processes and functions, including the regulation of synaptic transmission, transport, synaptic vesicle cycle, metabolism, synaptogenesis, mitochondrial activity, cognition, and behavior. The dysregulated synapse and mitochondrial genes were predicted to interact in overlapping networks. Our findings suggest that altered synaptic activities and signaling networks may contribute to alcohol-induced long-term cognitive and behavioral impairments in mice, providing new insights into the underlying synaptic and mitochondrial molecular mechanisms and potential neuroprotective strategies.
Collapse
Affiliation(s)
- Thiago Arzua
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yasheng Yan
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Xiaojie Liu
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Qing-Song Liu
- Department of Pharmacology, Medical College of Wisconsin, Milwaukee, 53226, WI, USA
| | - Xiaowen Bai
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| |
Collapse
|
9
|
Dekeyzer S, Vanden Bossche S, De Cocker L. Anything but Little: a Pictorial Review on Anatomy and Pathology of the Cerebellum. Clin Neuroradiol 2023; 33:907-929. [PMID: 37410171 DOI: 10.1007/s00062-023-01326-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023]
Abstract
Despite its small size the cerebellum is an anatomically complex and functionally important part of the brain. Traditionally the cerebellum is viewed as a motor control structure entirely devoted to motor control and learning, but recent functional magnetic resonance imaging (fMRI) studies demonstrated significant involvement of the cerebellum in higher order cognitive functions. The anatomical complexity of the cerebellum is reflected by the several nomenclature systems that exist for the description of cerebellar anatomy. The cerebellum can be affected by a variety of pathological processes, including congenital, infectious and inflammatory, neoplastic, vascular, degenerative and toxic metabolic diseases. The purpose of this pictorial review is to (1) provide a general overview of cerebellar anatomy and function, (2) demonstrate normal cerebellar anatomy on imaging studies, and (3) illustrate both common as well as rare pathological conditions affecting the cerebellum.
Collapse
Affiliation(s)
- Sven Dekeyzer
- Department of Radiology and Medical Imaging, Ghent University Hospital (UZG), Corneel Heymanslaan 10, 9000, Gent, Belgium.
- Department of Radiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium.
| | - Stephanie Vanden Bossche
- Department of Radiology, Antwerp University Hospital (UZA), Drie Eikenstraat 655, 2650, Edegem, Belgium
- Department of Radiology, AZ Sint Jan Bruges, Ruddershove 10, 8000, Bruges, Belgium
| | - Laurens De Cocker
- Department of Radiology, AZ Maria Middelares Gent, Buitenring-Sint-Denijs 30, 9000, Gent, Belgium
| |
Collapse
|
10
|
Gimunová M, Bozděch M, Novák J. Centre of pressure changes during stance but not during gait in young women after alcohol intoxication. PeerJ 2023; 11:e16511. [PMID: 38047022 PMCID: PMC10693231 DOI: 10.7717/peerj.16511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Background Women are underrepresented in research focused on alcohol (e.g., Brighton, Moxham & Traynor, 2016; DOI 10.1097/JAN.0000000000000136) despite the changing patterns of alcohol consumption, which has been increasing in women in recent decades. The purpose of this study was to analyse the relationship between habitual alcohol consumption and centre of pressure (CoP) parameters during stance and gait while intoxicated by alcohol. Methods Thirty women (24.39 ± 2.93 years) participated in this study. All participants were asked to answer the AUDIT questionnaire. Stance and gait analysis were repeated under two conditions on a Zebris platform (FDM GmbH; Munich, Germany): when the participants were sober (0.00% breath alcohol concentration, BrAC) and when they were in an intoxicated state (0.11% BrAC). Participants were divided by their AUDIT score into a low-risk alcohol consumption group (n = 15; AUDIT score: 3 to 6) and a hazardous alcohol consumption group (n = 15; AUDIT score: 7 to 13). Results No statistical difference was observed in stance and gait parameters when comparing the low-risk and hazardous groups under 0.00% BrAC and 0.11% BrAC conditions. A statistically significant difference was observed when comparing 0.00% BrAC and 0.11% BrAC conditions within each group. This significant difference was found in CoP path length and CoP average velocity during quiet stance. However, no statistically significant differences were observed in CoP parameters during gait. An alcohol intoxication of 0.11% BrAC was not sufficient to cause statistically significant impairments in butterfly parameters of gait.
Collapse
Affiliation(s)
- Marta Gimunová
- Department of Physical Activities and Health Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Michal Bozděch
- Department of Physical Education and Social Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| | - Jan Novák
- Department of Physical Education and Social Sciences, Faculty of Sports Studies, Masaryk University, Brno, Czech Republic
| |
Collapse
|
11
|
Khan MAS, Chang SL. Alcohol and the Brain-Gut Axis: The Involvement of Microglia and Enteric Glia in the Process of Neuro-Enteric Inflammation. Cells 2023; 12:2475. [PMID: 37887319 PMCID: PMC10605902 DOI: 10.3390/cells12202475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Binge or chronic alcohol consumption causes neuroinflammation and leads to alcohol use disorder (AUD). AUD not only affects the central nervous system (CNS) but also leads to pathologies in the peripheral and enteric nervous systems (ENS). Thus, understanding the mechanism of the immune signaling to target the effector molecules in the signaling pathway is necessary to alleviate AUD. Growing evidence shows that excessive alcohol consumption can activate neuroimmune cells, including microglia, and change the status of neurotransmitters, affecting the neuroimmune system. Microglia, like peripheral macrophages, are an integral part of the immune defense and represent the reticuloendothelial system in the CNS. Microglia constantly survey the CNS to scavenge the neuronal debris. These cells also protect parenchymal cells in the brain and spinal cord by repairing nerve circuits to keep the nervous system healthy against infectious and stress-derived agents. In an activated state, they become highly dynamic and mobile and can modulate the levels of neurotransmitters in the CNS. In several ways, microglia, enteric glial cells, and macrophages are similar in terms of causing inflammation. Microglia also express most of the receptors that are constitutively present in macrophages. Several receptors on microglia respond to the inflammatory signals that arise from danger-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), endotoxins (e.g., lipopolysaccharides), and stress-causing molecules (e.g., alcohol). Therefore, this review article presents the latest findings, describing the roles of microglia and enteric glial cells in the brain and gut, respectively, and their association with neurotransmitters, neurotrophic factors, and receptors under the influence of binge and chronic alcohol use, and AUD.
Collapse
Affiliation(s)
- Mohammed A. S. Khan
- Department of Neurosurgery, Brigham Hospital for Children, Harvard Medical School, Boston, MA 02115, USA;
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
12
|
Wolfe M, Menon A, Oto M, Fullerton NE, Leach JP. Alcohol and the central nervous system. Pract Neurol 2023:pn-2023-003817. [PMID: 37328277 DOI: 10.1136/pn-2023-003817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2023] [Indexed: 06/18/2023]
Abstract
Ethanol use is common to most cultures but with varying doses and to varying extents. While research has focused on the effects on the liver, alcohol exerts a range of actions on the function and structure of the nervous system. In the central nervous system (CNS) it can provoke or exacerbate neurological and psychiatric disease; its effects on the peripheral nervous system are not included in this review. Sustained alcohol intake can predispose to acute neurochemical changes which, with continued ingestion and incomplete treatment, can lead to chronic structural changes in the CNS: these include generalised cortical and cerebellar atrophy, amnesic syndromes such as Korsakoff's syndrome, and specific white matter disorders such as central pontine myelinolysis and Marchiafava-Bignami syndrome. Alcohol in pregnancy commonly and significantly affects fetal health, though this receives less medical and political attention than other causes of fetal harm. This review looks at the range of disorders that can follow acute or chronic alcohol use, and how these should be managed, and we provide a practical overview on how neurologists might diagnose and manage alcohol addiction.
Collapse
Affiliation(s)
- Maytal Wolfe
- University of Glasgow, Glasgow, UK
- Queen Elizabeth University Hospital, Glasgow, UK
| | - Arun Menon
- University of Glasgow, Glasgow, UK
- Gartnavel Royal Hospital, Glasgow, UK
| | - Maria Oto
- Queen Elizabeth University Hospital, Glasgow, UK
| | - Natasha E Fullerton
- University of Glasgow, Glasgow, UK
- Queen Elizabeth University Hospital, Glasgow, UK
| | | |
Collapse
|
13
|
Pullen RL, Hammond L, Harris S. Systemic effects of excessive alcohol consumption. Nursing 2023; 53:29-36. [PMID: 36946634 DOI: 10.1097/01.nurse.0000920452.23534.ea] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
ABSTRACT This article presents priority nursing assessments and interventions that address the multicellular assault of excessive alcohol consumption on bodily organs and the impact on the patient's quality of life.
Collapse
Affiliation(s)
- Richard L Pullen
- At the Texas Tech University Health Sciences Center School of Nursing, Richard Pullen is a professor, Lori Hammond is an associate professor, and Shonna Harris is an assistant professor. Richard Pullen is also a member of the Nursing2023 editorial board
| | | | | |
Collapse
|
14
|
Arts NJM, van Dorst MEG, Vos SH, Kessels RPC. Coordination and Cognition in Pure Nutritional Wernicke's Encephalopathy with Cerebellar Degeneration after COVID-19 Infection: A Unique Case Report. J Clin Med 2023; 12:2511. [PMID: 37048595 PMCID: PMC10094782 DOI: 10.3390/jcm12072511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Alcoholic cerebellar degeneration is a restricted form of cerebellar degeneration, clinically leading to an ataxia of stance and gait and occurring in the context of alcohol misuse in combination with malnutrition and thiamine depletion. However, a similar degeneration may also develop after non-alcoholic malnutrition, but evidence for a lasting ataxia of stance and gait and lasting abnormalities in the cerebellum is lacking in the few patients described with purely nutritional cerebellar degeneration (NCD). METHODS We present a case of a 46-year-old woman who developed NCD and Wernicke's encephalopathy (WE) due to COVID-19 and protracted vomiting, resulting in thiamine depletion. We present her clinical course over the first 6 months after the diagnosis of NCD and WE, with thorough neuropsychological and neurological examinations, standardized clinical observations, laboratory investigations, and repeated MRIs. RESULTS We found a persistent ataxia of stance and gait and evidence for an irreversible restricted cerebellar degeneration. However, the initial cognitive impairments resolved. CONCLUSIONS Our study shows that NCD without involvement of alcohol neurotoxicity and with a characteristic ataxia of stance and gait exists and may be irreversible. We did not find any evidence for lasting cognitive abnormalities or a cerebellar cognitive-affective syndrome (CCAS) in this patient.
Collapse
Affiliation(s)
- Nicolaas J. M. Arts
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, 5803 DN Venray, The Netherlands
- Winkler Neuropsychiatry Clinic and Korsakoff Centre, Pro Persona Institute for Psychiatry, 6874 BE Wolfheze, The Netherlands
| | - Maud E. G. van Dorst
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, 5803 DN Venray, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
| | - Sandra H. Vos
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, 5803 DN Venray, The Netherlands
| | - Roy P. C. Kessels
- Centre of Excellence for Korsakoff and Alcohol-Related Cognitive Disorders, Vincent van Gogh Institute for Psychiatry, 5803 DN Venray, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 GD Nijmegen, The Netherlands
- Tactus Addiction Care, 7400 AD Deventer, The Netherlands
| |
Collapse
|
15
|
Foster TC. Animal models for studies of alcohol effects on the trajectory of age-related cognitive decline. Alcohol 2023; 107:4-11. [PMID: 35504438 DOI: 10.1016/j.alcohol.2022.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023]
Abstract
There is growing interest in understanding how ethanol use interacts with advancing age to influence the brain and cognition. Animal models are employed to investigate the cellular and molecular mechanisms of brain aging and age-related neurodegenerative diseases that underlie cognitive decline. However, all too often research on problems and diseases of the elderly are conducted in healthy young animals, providing little clinical relevance. The validity of animal models is discussed, and confounds due to age-related differences in anxiety, sensory-motor function, and procedural learning are highlighted in order to enhance the successful translation of preclinical results into clinical settings. The mechanism of action of ethanol on brain aging will depend on the dose, acute or chronic treatment, or withdrawal from treatment and the age examined. Due to the fact that humans experience alcohol use throughout life, important questions concern the effects of the dose and duration of ethanol treatment on the trajectory of cognitive function. Central to this research will be questions of the specificity of alcohol effects on cognitive functions and related brain regions that decline with age, as well as the interaction of alcohol with mechanisms or biomarkers of brain aging. Alternatively, moderate alcohol use may provide a source of reserve and resilience against brain aging. Longitudinal studies have the advantage of being sensitive to detecting the effects of treatment on the emergence of cognitive impairment in middle age and can minimize effects of stress/anxiety associated with the novelty of alcohol exposure and behavioral testing, which disproportionately influence aged animals. Finally, the effect of alcohol on senescent neurophysiology and biomarkers of brain aging are discussed. In particular, the interaction of age and effects of alcohol on inflammation, oxidative stress, N-methyl-d-aspartate receptor function, and the balance of excitatory and inhibitory synaptic transmission are highlighted.
Collapse
Affiliation(s)
- Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
16
|
Lin CYR, Kuo SH. Ataxias: Hereditary, Acquired, and Reversible Etiologies. Semin Neurol 2023; 43:48-64. [PMID: 36828010 DOI: 10.1055/s-0043-1763511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
A variety of etiologies can cause cerebellar dysfunction, leading to ataxia symptoms. Therefore, the accurate diagnosis of the cause for cerebellar ataxia can be challenging. A step-wise investigation will reveal underlying causes, including nutritional, toxin, immune-mediated, genetic, and degenerative disorders. Recent advances in genetics have identified new genes for both autosomal dominant and autosomal recessive ataxias, and new therapies are on the horizon for targeting specific biological pathways. New diagnostic criteria for degenerative ataxias have been proposed, specifically for multiple system atrophy, which will have a broad impact on the future clinical research in ataxia. In this article, we aim to provide a review focus on symptoms, laboratory testing, neuroimaging, and genetic testing for the diagnosis of cerebellar ataxia causes, with a special emphasis on recent advances. Strategies for the management of cerebellar ataxia is also discussed.
Collapse
Affiliation(s)
- Chi-Ying R Lin
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, Texas.,Department of Neurology, Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, Texas
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York.,Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
17
|
Popova S, Charness ME, Burd L, Crawford A, Hoyme HE, Mukherjee RAS, Riley EP, Elliott EJ. Fetal alcohol spectrum disorders. Nat Rev Dis Primers 2023; 9:11. [PMID: 36823161 DOI: 10.1038/s41572-023-00420-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2023] [Indexed: 02/25/2023]
Abstract
Alcohol readily crosses the placenta and may disrupt fetal development. Harm from prenatal alcohol exposure (PAE) is determined by the dose, pattern, timing and duration of exposure, fetal and maternal genetics, maternal nutrition, concurrent substance use, and epigenetic responses. A safe dose of alcohol use during pregnancy has not been established. PAE can cause fetal alcohol spectrum disorders (FASD), which are characterized by neurodevelopmental impairment with or without facial dysmorphology, congenital anomalies and poor growth. FASD are a leading preventable cause of birth defects and developmental disability. The prevalence of FASD in 76 countries is >1% and is high in individuals living in out-of-home care or engaged in justice and mental health systems. The social and economic effects of FASD are profound, but the diagnosis is often missed or delayed and receives little public recognition. Future research should be informed by people living with FASD and be guided by cultural context, seek consensus on diagnostic criteria and evidence-based treatments, and describe the pathophysiology and lifelong effects of FASD. Imperatives include reducing stigma, equitable access to services, improved quality of life for people with FASD and FASD prevention in future generations.
Collapse
Affiliation(s)
- Svetlana Popova
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada.
| | - Michael E Charness
- VA Boston Healthcare System, West Roxbury, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.,Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Larry Burd
- North Dakota Fetal Alcohol Syndrome Center, Department of Pediatrics, University of North Dakota School of Medicine and Health Sciences, Pediatric Therapy Services, Altru Health System, Grand Forks, ND, USA
| | - Andi Crawford
- Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - H Eugene Hoyme
- Sanford Children's Genomic Medicine Consortium, Sanford Health, and University of South Dakota Sanford School of Medicine, Sioux Falls, SD, USA
| | - Raja A S Mukherjee
- National UK FASD Clinic, Surrey and Borders Partnership NHS Foundation Trust, Redhill, Surrey, UK
| | - Edward P Riley
- Center for Behavioral Teratology, San Diego State University, San Diego, CA, USA
| | - Elizabeth J Elliott
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,New South Wales FASD Assessment Service, CICADA Centre for Care and Intervention for Children and Adolescents affected by Drugs and Alcohol, Sydney Children's Hospitals Network, Westmead, Sydney, New South Wales, Australia
| |
Collapse
|
18
|
Mesenchymal Stem Cell Transplantation Ameliorates Ara-C-Induced Motor Deficits in a Mouse Model of Cerebellar Ataxia. J Clin Med 2023; 12:jcm12051756. [PMID: 36902541 PMCID: PMC10003478 DOI: 10.3390/jcm12051756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
This study investigated the therapeutic effects of transplanting human mesenchymal stem cells (hMSCs) into wild-type mice that were intraperitoneally administered cytosine arabinoside (Ara-C) to develop cerebellar ataxia (CA) during the first three postnatal days. hMSCs were intrathecally injected into 10-week-old mice once or thrice at 4-week intervals. Compared to the nontreated mice, the hMSC-treated mice showed improved motor and balance coordination, as measured using the rotarod, open-field, and ataxic scoring assessments, and increased protein levels in Purkinje and cerebellar granule cells, as measured using calbindin and NeuN protein markers. Multiple hMSC injections preserved Ara-C-induced cerebellar neuronal loss and improved cerebellar weight. Furthermore, the hMSC implantation significantly elevated the levels of neurotrophic factors, including brain-derived and glial cell line-derived neurotrophic factors, and suppressed TNF-α-, IL-1β-, and iNOS-mediated proinflammatory responses. Collectively, our results demonstrate that hMSCs exhibit therapeutic potential for Ara-C-induced CA by protecting neurons through the stimulation of neurotrophic factors and inhibition of cerebellar inflammatory responses, which can improve motor behavior and alleviate ataxia-related neuropathology. In summary, this study suggests that hMSC administration, particularly multiple treatments, can effectively treat ataxia-related symptoms with cerebellar toxicity.
Collapse
|
19
|
Hasegawa H, Kondo M. Astrocytic Responses to Binge Alcohol Intake in the Mouse Hindbrain. Biol Pharm Bull 2023; 46:1194-1202. [PMID: 37661398 DOI: 10.1248/bpb.b23-00140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Ethanol is the most commonly used toxic chemical in human cultures. Ethanol predominantly damages the brain causing various neurological disorders. Astrocytes are important cellular targets of ethanol in the brain and are involved in alcoholic symptoms. Recent studies have revealed the diversity of astrocyte populations in the brain. However, it is unclear how the different astrocyte populations respond to an excess of ethanol. Here we examined the effect of binge ethanol levels on astrocytes in the mouse brainstem and cerebellum. Ethanol administration for four consecutive days increased the glial fibrillary acidic protein (GFAP)-immunoreactive signals in the spinal tract of the trigeminal nerve (stTN) and reticular nucleus (RN). Another astrocyte marker, aquaporin 4 (AQP4), was also increased in the stTN with a pattern similar to that of GFAP. However, in the RN, the immunoreactive signals of AQP4 were different from that of GFAP and were not changed by ethanol administration. In the cerebellum, GFAP-positive signals were found in all four astrocytic populations, and those in the Bergmann glia were selectively eliminated by ethanol administration. We next examined the effect of estradiol on the ethanol-induced changes in astrocytic immunoreactive signals. The administration of estradiol alone increased the AQP4-immunoreactivity in the stTN with a pattern similar to that of ethanol, whereas the co-administration of estradiol and ethanol suppressed the intensity of the AQP4-positive signals. Thus, binge levels of ethanol intake selectively affect astrocyte populations in the brainstem and cerebellum. Sex hormones can affect the ethanol-induced neurotoxicity via modulation of astrocyte reactivity.
Collapse
Affiliation(s)
| | - Mari Kondo
- Laboratory of Hygienic Sciences, Kobe Pharmaceutical University
| |
Collapse
|
20
|
Gender differences in the effect of a 0.11% breath alcohol concentration on forward and backward gait. Sci Rep 2022; 12:18773. [PMID: 36335154 PMCID: PMC9637089 DOI: 10.1038/s41598-022-23621-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022] Open
Abstract
Alcohol contributes to a large number of diseases and health conditions related to injuries. The aim of our study was to evaluate gender differences in forward and backward gait when sober and at a breath alcohol concentration (BrAC) of 0.11%. Fifty females and fifty males participated in our study. The gait analysis was performed twice, when sober and after drinking a given amount of vodka mixed with orange juice. Under both conditions, participants were asked to walk forward and then backward on a Zebris platform. Multivariate analysis and the Mann-Whitney U test were used to compare the differences between genders when walking forward and backward. The Wilcoxon Signed Ranks test was used to compare the differences between 0.00% BrAC and 0.11% BrAC. Spearman's Rho was used to analyze the relationship between the AUDIT score, anthropometrical characteristics and the subjective score of drunkenness and gait parameters. The results show different strategies to improve stability during gait in women and men when intoxicated with alcohol. When intoxicated, males in forward gait increase their stability by increasing their foot rotation, while females increase their step width. A decrease in balance-related variables was observed in females when walking backward with a BrAC of 0.11%. Additionally, females tended to perform an increase in balance-related gait variables when subjectively feeling more drunk in both forward and backward gait. Different strategies to maintain stability during gait were observed in women and men. The results of our study show that alcohol intoxication has a greater impact on gait in females who tended to perform an increase in balance-related variables with an increase in their subjective score of drunkenness.
Collapse
|
21
|
Clinical Application of Microsurgery Using the Cerebellar Medulla Fissure Approach in Severe Ventricular Hemorrhage with Casting of the Fourth Ventricle and Its Influence on Neurological Recovery. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3699233. [PMID: 34733338 PMCID: PMC8560247 DOI: 10.1155/2021/3699233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
Objective To investigate the clinical application of microsurgery using the cerebellar medulla fissure approach in severe ventricular hemorrhage with casting of the fourth ventricle and its effect on neurological recovery. Methods A total of 80 patients with severe intraventricular hemorrhage accompanied by casting and dilation of the fourth ventricle who were admitted to the neurosurgery department between July 2019 and December 2020 were randomly divided into an observation group and a control group, with 40 patients in each group. The drainage tube extubation time and length of hospital stay of the two groups were compared. The 3-day hematoma clearance of the two groups was observed. Postoperative consciousness was evaluated by GCS, and the patients' recovery was evaluated by GOS at three months. The activities of daily living (ADL) scores of the two groups were compared to evaluate patients' postoperative self-care ability. The incidence of postoperative complications in the two groups was collected. Independent risk factors for poor prognosis were analyzed by logistics regression. Results The postoperative hospitalization time and the drainage tube extubation time in the observation group were significantly lower than those in the control group. The ratio of hematoma clearance ≥90% in the observation group was significantly higher than that of the control group. Postoperative GCS scores and GOS scores in the observation group were significantly higher than those of the control group. The rate of postoperative complications in the observation group was significantly lower than that of the control group. The rate of good ADL grading in the observation group was significantly higher than that in the control group. Age and surgical method were independent risk factors for poor prognosis. Conclusion Microsurgery using the cerebellar medulla fissure approach can effectively improve the condition of severe ventricular hemorrhage with casting of the fourth ventricle and promote the recovery of patients' neurological function.
Collapse
|