1
|
Woldeyohannis NN, Desta AF. Metagenome-based microbial community analysis of urine-derived fertilizer. BMC Microbiol 2024; 24:418. [PMID: 39425038 PMCID: PMC11490151 DOI: 10.1186/s12866-024-03578-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Phosphorus is essential for food production and its supply is limited. Urine is an excellent source of phosphorus and one way to produce fertilizer is through conversion of urine to struvite (MgNH3PO4.6H2O). The present study aimed to understand the bacterial portion of the microbial community composition and dynamics of plasmid-mediated antimicrobial resistant genes during the optimized process of struvite production from composite human urine. Samples for DNA extraction was collected from fresh urine, stored urine and struvite during the process of struvite production. Shotgun metagenomic analysis was employed to understand the bacterial community. The most dominant phyla in the fresh and stored urine samples were Pseudomonadata, which comprised of 60% and 43% respectively, followed by Bacillota, comprised of 25% and 39% respectively. The struvite sample was dominated by the phylum Bacilliota (61%), Pseudomonadota (18%) and bacteroidota (12%). Members of the above phyla persisted in dominating each sample accordingly. Member of the family Morganellaceae was dominant in the fresh sample while the stored urine and struvite samples were dominated by the family Clostridiaceae. A decrease of members of the class Gammaproteobacteria was observed from the fresh to the struvite sample though not statistically significant. The genus Pseudomonas remained to be the most dominant member of Gammaproteobacteria in the fresh and stored urine sample with OTU count of 12,116 and 6,155 with a marked decrease by half in the stored sample. On the other hand, members of the genera Clostridium, Enterococcus, Bacteroides in the stored samples and Clostridium, Alkaliphilus and Pseudomonas in the struvite samples were dominant. 96% of the identified genera were shared in all the samples and the antimicrobial resistance genes (ARGs) identified in the fresh urine were shared by the struvite but not by the stored urine (e.g. sul, cat, aph and aac members). The presence of high abundance of ARGs in struvite needs attention in the persistence and transmissibility of the ARGs before application for agriculture.
Collapse
Affiliation(s)
- Nebiyat N Woldeyohannis
- Microbial cellular and molecular Biology Department, Addis Ababa University, P.O.BOX 1176, Addis Ababa, Ethiopia
| | - Adey F Desta
- Microbial cellular and molecular Biology Department, Addis Ababa University, P.O.BOX 1176, Addis Ababa, Ethiopia.
| |
Collapse
|
2
|
Rizwan HM, Naveed M, Sajid MS, Nazish N, Younus M, Raza M, Maqbool M, Khalil MH, Fouad D, Ataya FS. Enhancing agricultural sustainability through optimization of the slaughterhouse sludge compost for elimination of parasites and coliforms. Sci Rep 2024; 14:23953. [PMID: 39397149 PMCID: PMC11471828 DOI: 10.1038/s41598-024-75606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
For a sustainable ecology, slaughterhouse sludge must be managed effectively in preview of the parasitic or coliforms' spill over to the community. In order to determine the effectiveness of a customized biological decomposer solution in lowering the parasitic eggs and coliform bacteria, three composting units (Unit 1, Unit 2, and Unit 3) were treated with its different amounts. Over a period of 60 days, pH, temperature, humidity, number of the parasitic eggs per gram (EPG) of faecal material, viability of eggs, and coliform counts were evaluated. By the fifth day of the composting process, pH had significantly (P < 0.05) increased across all the treatments and then decreased gradually. Also on the 5th day, all three units entered the thermophilic range (> 45 °C), which persisted for 20 days for Unit 3 and 15 days for Units 1 and 2. Humidity levels initially increased significantly (P < 0.05) in all three units (Unit 3 = 71%, Unit 2 = 64%, and Unit 1 = 55%) but then gradually decreased. On day 5, no decrease in EPG in Unit 1 was detected; however, a non-significant (P > 0.05) 12.5% decline in EPG in Unit 2 and Unit 3 was recorded. After that, a significant (P < 0.05) reduction in EPG was observed in all the three treatments until day 25. By day 5, decreased egg viability was significantly (P < 0.05) recorded in Unit 3 (21.43%); in Unit 1 and Unit 2, the decrease was 6.25% and 14.29%, respectively. Additionally, all units showed a significant (P < 0.05) decrease in total coliforms, meeting minimum allowable limit in Unit 2 and 3 on day 10 and on day 15 in Unit 1. The most substantial reduction in faecal coliforms was observed in Unit 3 (from 2.6 log₁₀ to 1.3 log₁₀), followed by Unit 2 (from 2.6 log₁₀ to 1.5 log₁₀), and then Unit 1 (from 2.6 log₁₀ to 1.6 log₁₀). The results of this study support recommendation of advanced composting techniques to eradicate or reduce the abundance of pathogens (parasites and coliforms). Hence, we endorse the value of careful composting procedures in environment-friendly abattoir waste management and agricultural practices through creating pathogen-free, eco-friendly fertilizers to promote both agricultural and environmental sustainability.
Collapse
Affiliation(s)
- Hafiz Muhammad Rizwan
- Section of Parasitology, Department of Pathobiology, KBCMA College of Veterinary and Animal Science, Narowal, Sub campus UVAS, Lahore, Pakistan.
| | - Muhammad Naveed
- Institute of Soil & Environmental Sciences, University of Agriculture,, Faisalabad, Pakistan
| | - Muhammad Sohail Sajid
- Department of Parasitology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan.
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot, Pakistan
| | - Muhammad Younus
- Section of Pathology, Department of Pathobiology, KBCMA College of Veterinary and Animal Science, Narowal, Sub campus UVAS, Lahore, Pakistan
| | - Mohsin Raza
- Section of Physiology, Department of Basic Sciences, KBCMA College of Veterinary and Animal Science, Narowal, Sub campus UVAS, Lahore, Pakistan
| | - Mahvish Maqbool
- Eastwood Lab, Department of Entomology, Virginia Tech University, Blacksburg, USA
| | - Muhammad Hamza Khalil
- Institute of Soil & Environmental Sciences, University of Agriculture,, Faisalabad, Pakistan
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud University, PO Box 22452, Riyadh, 11495, Saudi Arabia
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
3
|
Tan BJW, Chan LL, Tan EK. Factors Affecting the Association between Dietary Live Microbes and Constipation. J Nutr 2024; 154:3157-3158. [PMID: 39419574 DOI: 10.1016/j.tjnut.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 10/19/2024] Open
Affiliation(s)
- Brendan Jen-Wei Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore
| | - Ling-Ling Chan
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore
| | - Eng-King Tan
- Department of Neurology, Singapore General Hospital Campus, National Neuroscience Institute, Singapore; Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore.
| |
Collapse
|
4
|
Ong HL, Martins Dell' Agnese B, Jiang Y, Guo Y, Zhou J, Zhang J, Luo J, Tao R, Zhang M, Dover LG, Smith D, Thummavichai K, Mishra YK, Wu Q, Fu YQ. Controlling bacterial growth and inactivation using thin film-based surface acoustic waves. LAB ON A CHIP 2024; 24:4344-4356. [PMID: 39143844 DOI: 10.1039/d4lc00285g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Formation of bacterial films on structural surfaces often leads to severe contamination of medical devices, hospital equipment, implant materials, etc., and antimicrobial resistance of microorganisms has indeed become a global health issue. Therefore, effective therapies for controlling infectious and pathogenic bacteria are urgently needed. Being a promising active method for this purpose, surface acoustic waves (SAWs) have merits such as nanoscale earthquake-like vibration/agitation/radiation, acoustic streaming induced circulations, and localised acoustic heating effect in liquids. However, only a few studies have explored controlling bacterial growth and inactivation behaviour using SAWs. In this study, we proposed utilising piezoelectric thin film-based SAW devices on a silicon substrate for controlling bacterial growth and inactivation with and without using ZnO micro/nanostructures. Effects of SAW powers on bacterial growth for two types of bacteria, i.e., E. coli and S. aureus, were evaluated. Varied concentrations of ZnO tetrapods were also added into the bacterial culture to study their effects and the combined antimicrobial effects along with SAW agitation. Our results showed that when the SAW power was below a threshold (e.g., about 2.55 W in this study), the bacterial growth was apparently enhanced, whereas the further increase of SAW power to a high power caused inactivation of bacteria. Combination of thin film SAWs with ZnO tetrapods led to significantly decreased growth or inactivation for both E. coli and S. aureus, revealing their effectiveness for antimicrobial treatment. Mechanisms and effects of SAW interactions with bacterial solutions and ZnO tetrapods have been systematically discussed.
Collapse
Affiliation(s)
- Hui Ling Ong
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Bruna Martins Dell' Agnese
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Yunhong Jiang
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Yihao Guo
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jian Zhou
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jikai Zhang
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jingting Luo
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ran Tao
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Meng Zhang
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Lynn G Dover
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Darren Smith
- Hub of Biotechnology in the Building Environment, Department of Applied Science, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Kunyapat Thummavichai
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark Alison 2, DK-6400, Sønderborg, Denmark
| | - Qiang Wu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Yong-Qing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
5
|
Mo Q, Nawaz S, Kulyar MF, Li K, Li Y, Zhang Z, Rahim MF, Ahmed AE, Ijaz F, Li J. Exploring the intricacies of Pasteurella multocida dynamics in high-altitude livestock and its consequences for bovine health: A personal exploration of the yak paradox. Microb Pathog 2024; 194:106799. [PMID: 39025382 DOI: 10.1016/j.micpath.2024.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Pasturella multocida (P. multocida), a gram-negative bacterium, has long been a focus of interest in animal health because of its capacity to cause different infections, including hemorrhagic septicemia. Yaks, primarily found in high-altitude environments, are among the several livestock animals affected by these bacteria. Yaks are essential to the socioeconomic life of the people who depend on them since they are adapted to the cold and hypoxic conditions of highland environments. Nevertheless, these terrains exhibit a greater incidence of P. multocida despite the severe environmental complications. This predominance has been linked to the possible attenuation of the yak's immunological responses in such circumstances and the evolution of some bacterial strains to favor survival in the respiratory passages of the animals. Moreover, these particular strains threaten other cattle populations that interact with yaks, which might result in unanticipated outbreaks in areas previously thought to be low risk. Considering these findings, designing and executing preventative and control strategies suited explicitly for these distinct biological environments is imperative. Through such strategies, yaks' health will be guaranteed, and a larger bovine population will be safeguarded against unanticipated epidemics. The current review provides thorough insights that were previously dispersed among several investigations. Its distinct method of connecting the ecology of yaks with the dynamics of infection offers substantial background information for further studies and livestock management plans.
Collapse
Affiliation(s)
- Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Md F Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Kewei Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zhao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Farhan Rahim
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ahmed Ezzat Ahmed
- Department of Biology, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Farah Ijaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
6
|
Al-Dossary SK. Environmental and Occupational Triggers of Dry Eye Symptoms in the Ahsa Region of Saudi Arabia: A Cross-Sectional Study. Clin Ophthalmol 2024; 18:2427-2438. [PMID: 39224176 PMCID: PMC11368111 DOI: 10.2147/opth.s474832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Objective This cross-sectional study aimed to investigate the associations between environmental and occupational factors and the prevalence of dry eye symptoms among participants from the Ahsa region of Saudi Arabia. Methods Participants from urban, rural, and suburban areas seeking medical care at primary health centers were recruited through systematic random sampling. Data on demographics, exposures, and ocular health were captured using a structured questionnaire. Dry eye symptoms were evaluated using the Ocular Surface Disease Index (OSDI), Impact of Dry Eye on Everyday Life (IDEEL), and Symptom Assessment in Dry Eye (SANDE) questionnaires. Logistic regression analysis examined the relationships between environmental/occupational factors and the prevalence of dry eye symptoms. Results Key exposures included particulate matter (PM) (60%), low humidity (55%), wind/dust (50%), prolonged computer use (65%), and chemical irritants (45%). These factors were significantly associated with an increased prevalence of dry eye symptoms, with the following odds ratios (ORs): PM (1.85, 95% CI: 1.35-2.52), low humidity (1.45, 95% CI: 1.05-2.00), wind and dust (1.60, 95% CI: 1.20-2.14), prolonged computer use (2.10, 95% CI: 1.55-2.85), and chemical irritants (1.75, 95% CI: 1.30-2.35). All associations were statistically significant (p < 0.05). The use of protective equipment was associated with reduced odds of dry eye symptoms (OR 0.60, 95% CI: 0.42-0.85, p = 0.03). Conclusion This study identifies significant associations between specific environmental and occupational exposures and the prevalence of dry eye symptoms. Reducing modifiable exposures through policy, workplace enhancements, and clinical preventative strategies is essential to mitigate the burden of dry eye symptoms related to modern lifestyles and technology.
Collapse
|
7
|
Dixit S, Varshney S, Gupta D, Sharma S. Factors affecting biofilm formation by bacteria on fabrics. Int Microbiol 2024; 27:1111-1123. [PMID: 38057457 DOI: 10.1007/s10123-023-00460-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/08/2023]
Abstract
Fabrics act as fomites for microorganisms, thereby playing a significant role in infection transmission, especially in the healthcare and hospitality sectors. This study aimed to examine the biofilm formation ability of four nosocomial infection-causing bacteria (Acinetobacter calcoaceticus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) on cotton, polyester, polyester-cotton blend, silk, wool, viscose, and nylon, used frequently in the healthcare sector, by qualitative and quantitative methods. The impact of temperature, pH, and relative humidity (RH) on biofilm formation was also assessed. P. aeruginosa and S. aureus were strong biofilm producers, while E. coli produced weak biofilm. Wool (maximum roughness) showed the highest bacterial load, while silk (lowest roughness) showed the least. P. aeruginosa exhibited a higher load on all fabrics, than other test bacteria. Extracellular polymeric substances were characterized by infrared spectroscopy. Roughness of biofilms was assessed by atomic force microscopy. For biofilm formation, optimum temperature, pH, and RH were 30 °C, 7.0, and 62%, respectively. MgCl2 and CaCl2 were the most effective in removing bacterial biofilm. In conclusion, biofilm formation was observed to be influenced by the type of fabric, bacteria, and environmental conditions. Implementing recommended guidelines for the effective disinfection of fabrics is crucial to curb the risk of nosocomial infections. In addition, designing modified healthcare fabrics that inhibit pathogen load could be an effective method to mitigate the transmission of infections.
Collapse
Affiliation(s)
- Shweta Dixit
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Swati Varshney
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Present address: Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Deepti Gupta
- Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Shilpi Sharma
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
8
|
Ma Y, Liu T, Yuan Z, Guo J. Single cell protein production from methane in a gas-delivery membrane bioreactor. WATER RESEARCH 2024; 259:121820. [PMID: 38815339 DOI: 10.1016/j.watres.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Single cell protein (SCP, or microbial protein) is one of the emerging alternative protein sources to address the global challenge of food insecurity. Recently, the SCP produced from methane has attracted substantial attention since methane is a renewable resource attainable from anaerobic digestion. However, the supply of methane, an insoluble gas in water, is one of the major challenges in producing methane-based SCP. This work developed a novel bioreactor configuration, in which hollow fiber membrane was used for efficient methane supply while microorganisms were growing in the suspended form favourable for the biomass harvest. Over a 312-day operation, the impacts of three critical parameters on the SCP production were investigated, including the ratio of methane loading to ammonium loading, the ratio of methane loading to oxygen loading, and the sludge retention time (SRT). Under the condition of 4 g CH4/g NH4+, 4 g O2/g CH4, and SRT of 4 days, the highest SCP production yield was observed and determined to be 1.36 g SCP/g CH4 and 5.05 g SCP/g N, respectively. The protein content was up to 67 %, which is higher than the majority of reported values to date. Moreover, the methane and ammonium utilization efficiencies were both close to 100 %, suggesting the highly efficient utilization of substrates in this new bioreactor configuration. A high relative abundance of essential amino acids (EAA) above 42 % was achieved, representing the highest EAA content reported. These findings provide valuable insights into SCP production using methane as a feedstock.
Collapse
Affiliation(s)
- Yicheng Ma
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tao Liu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Zhiguo Yuan
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
9
|
Christian N, Burden D, Emam A, Brenk A, Sperber S, Kalu M, Cuadra G, Palazzolo D. Effects of E-Liquids and Their Aerosols on Biofilm Formation and Growth of Oral Commensal Streptococcal Communities: Effect of Cinnamon and Menthol Flavors. Dent J (Basel) 2024; 12:232. [PMID: 39195076 DOI: 10.3390/dj12080232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024] Open
Abstract
(1) Background: The rise in electronic cigarette (E-cigarette) popularity, especially among adolescents, has prompted research to investigate potential effects on health. Although much research has been carried out on the effect on lung health, the first site exposed to vaping-the oral cavity-has received relatively little attention. The aims of this study were twofold: to examine the effects of E-liquids on the viability and hydrophobicity of oral commensal streptococci, and the effects of E-cigarette-generated aerosols on the biomass and viability of oral commensal streptococci. (2) Methods: Quantitative and confocal biofilm analysis, live-dead staining, and hydrophobicity assays were used to determine the effect on oral commensal streptococci after exposure to E-liquids and/or E-cigarette-generated aerosols. (3) Results: E-liquids and flavors have a bactericidal effect on multispecies oral commensal biofilms and increase the hydrophobicity of oral commensal streptococci. Flavorless and some flavored E-liquid aerosols have a bactericidal effect on oral commensal biofilms while having no effect on overall biomass. (4) Conclusions: These results indicate that E-liquids/E-cigarette-generated aerosols alter the chemical interactions and viability of oral commensal streptococci. Consequently, the use of E-cigarettes has the potential to alter the status of disease and health in the oral cavity and, by extension, affect systemic health.
Collapse
Affiliation(s)
- Nicole Christian
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
- School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Burden
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
- School of Dental Medicine, University of Colorado, Aurora, CO 80045, USA
| | - Alexander Emam
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Alvin Brenk
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
- Yale New Haven Hospital, New Haven, CT 06510, USA
| | - Sarah Sperber
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Michael Kalu
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| | - Giancarlo Cuadra
- Biology Department, Muhlenberg College, Allentown, PA 18104, USA
| | - Dominic Palazzolo
- Debusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| |
Collapse
|
10
|
Yuan Z, Teh BM, Liu X, Liu Z, Huang J, Hu Y, Guo C, Shen Y. Fabrication and Evaluation of Hyaluronidase-Responsive Scaffolds by Electrospinning with Antibacterial Properties for Tympanic Membrane Repair. ACS Biomater Sci Eng 2024; 10:4400-4410. [PMID: 38917429 DOI: 10.1021/acsbiomaterials.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Tympanic membrane perforation (TMP) is prevalent in clinical settings. Patients with TMPs often suffer from infections caused by Staphylococcus aureus and Pseudomonas aeruginosa, leading to middle ear and external ear canal infections, which hinder eardrum healing. The objective of this study is to fabricate an enzyme-responsive antibacterial electrospun scaffold using poly(lactic-co-glycolic acid) and hyaluronic acid for the treatment of infected TMPs. The properties of the scaffold were characterized, including morphology, wettability, mechanical properties, degradation properties, antimicrobial properties, and biocompatibility. The results indicated that the fabricated scaffold had a core-shell structure and exhibited excellent mechanical properties, hydrophobicity, degradability, and cytocompatibility. Furthermore, in vitro bacterial tests and ex vivo investigations on eardrum infections suggested that this scaffold possesses hyaluronidase-responsive antibacterial properties. It may rapidly release antibiotics when exposed to the enzyme released by S. aureus and P. aeruginosa. These findings suggest that the scaffold has great potential for repairing TMPs with infections.
Collapse
Affiliation(s)
- Zhechen Yuan
- Department of Otolaryngology Head and Neck Surgery, Ningbo No.2 Hospital, Ningbo 315010, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Bing Mei Teh
- Department of Otolaryngology Head and Neck Surgery, Monash Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Xiaoling Liu
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ziqian Liu
- Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham Ningbo China, Ningbo 315100, China
| | - Juntao Huang
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Yi Hu
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310030, China
| | - Yi Shen
- Department of Otolaryngology Head and Neck Surgery, Ningbo Medical Center Lihuili Hospital, The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315040, China
| |
Collapse
|
11
|
Ma J, Dai J, Cao C, Su L, Cao M, He Y, Li M, Zhang Z, Chen J, Cui S, Yang B. Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13407. [PMID: 39030802 DOI: 10.1111/1541-4337.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024]
Abstract
This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180-0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202-0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181-0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000-1.0000) and amoxicillin (39.92%, 95% CI: 0.0589-0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736-0.9692) and parC mutation (66.67%, 95% CI: 0.3213-0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.
Collapse
Affiliation(s)
- Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
12
|
Malaluang P, Niazi A, Guo Y, Nagel C, Guimaraes T, Rocha A, Aurich C, Morrell JM. Bacterial diversity in semen from stallions in three European countries evaluated by 16S sequencing. Vet Res Commun 2024; 48:1409-1421. [PMID: 38305959 PMCID: PMC11147884 DOI: 10.1007/s11259-024-10321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/30/2024] [Indexed: 02/03/2024]
Abstract
The microbiome plays a significant role in shaping the health and functioning of the systems it inhabits. The seminal microbiome of stallions has implications for the health of the reproductive tract, sperm quality during preservation and antibiotic use in semen extenders. Diverse bacteria are present on the external genital tract and a mix of commensal microorganisms populates various parts of the reproductive tract, influencing the seminal bacterial content. Other sources of bacteria include the environment, semen collection equipment, and personnel. The bacterial load can adversely affect sperm quality and fertility, particularly in artificial insemination, where semen is extended and stored before use. Antibiotics are frequently used to inhibit bacterial growth, but their effectiveness varies depending on the bacterial strains present. The aim of this study was to assess the bacterial diversity in semen from 37 healthy stallions across three European nations (Germany, Portugal, and Sweden) using 16S sequencing. Semen samples were collected from individual stallions at three AI centers; DNA extraction, sequencing, and bioinformatic analysis were performed. Differences in bacterial diversity among the stallions were seen; although bacterial phyla were shared across the regions, differences were observed at the genus level. Climate, husbandry practices, and individual variability likely contribute to these differences. These findings underscore the importance of tailoring antibiotic strategies for semen preservation based on regional bacterial profiles. The study presents a comprehensive approach to understanding the intricacies of the stallion seminal microbiome and its potential implications for reproductive technologies and animal health.
Collapse
Affiliation(s)
- Pongpreecha Malaluang
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
- Faculty of Veterinary Sciences, Mahasarakham University, Maha Sarakham, 40000, Thailand
| | - Adnan Niazi
- SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences (SLU), Uppsala, SE-750 07, Sweden
- Science for Life Laboratory, National Bioinformatics Infrastructure Sweden (NBIS), Uppsala University, Uppsala, SE-752 36, Sweden
| | - Yongzhi Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden
| | - Christina Nagel
- Graf Lehndorff Institute for Equine Science, University of Veterinary Medicine, Vienna, Austria
| | - Tiago Guimaraes
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
- Center for the Study of Animal Sciences (CECA), ICETA, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Antonio Rocha
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto (UP), Porto, Portugal
- Center for the Study of Animal Sciences (CECA), ICETA, University of Porto, Campus Agrário de Vairão, Vairão, Portugal
| | - Christine Aurich
- Artificial Insemination and Embryo Transfer, Department for Small Animals and Horses, University of Veterinary Medicine, Vienna, Austria
| | - Jane M Morrell
- Department of Clinical Sciences, Swedish University of Agricultural Sciences (SLU), Uppsala, 75007, Sweden.
| |
Collapse
|
13
|
Xiao H, Zhou S. Synergistic antibacterial effect and mechanism between Cu 2O nanoparticles and quaternary ammonium salt in moisture-curable acrylic coatings. Colloids Surf B Biointerfaces 2024; 238:113914. [PMID: 38663310 DOI: 10.1016/j.colsurfb.2024.113914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Combining with various antibacterial mechanisms is the preferred strategy to fabricate coatings with effective antibacterial performance. Herein, Cu2O nanoparticles and dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride, a kind of quaternary ammonium salt (QAS), were simultaneously incorporated into a moisture-curable acrylic resin in order to achieve both contact-killing and release-killing abilities for antibacterial coatings. The surface morphology, surface composition and basic properties of the coatings were thoroughly characterized. The antibacterial performance of the coatings was determined by in-vitro bacteriostatic test. Under the constant total mass fraction of antibacterial agents, both Cu2O and QAS content possessed the highest value on the coating surface at Cu2O/QAS mass ratio of 1:1, and correspondingly, the coatings reached sterilizing rate above 99 % against both E. coli and S. loihica, indicating the existence of synergistic effect between Cu2O and QAS. The synergistic antibacterial mechanism of the coatings involved two aspects. Firstly, the combination of contact-killing and release-killing biocides resulted in high bactericidal and antibiofilm activity against different bacteria. Further, the grafting of QAS molecules on the surface of Cu2O particles brought about the spontaneous migration of nanoparticles to the coating surface. The interaction between Cu2O and QAS also inhibited the phase separation of QAS and prolonged the release of Cu2+ at the same time. The coatings, therefore, exhibited stable antibacterial performance at varied service conditions.
Collapse
Affiliation(s)
- Haofeng Xiao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China
| | - Shuxue Zhou
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Advanced Coatings Research Center of Ministry of Education of China, Fudan University, Shanghai 200433, China.
| |
Collapse
|
14
|
Bozzola E, Agostiniani R, Pacifici Noja L, Park J, Lauriola P, Nicoletti T, Taruscio D, Taruscio G, Mantovani A. The impact of indoor air pollution on children's health and well-being: the experts' consensus. Ital J Pediatr 2024; 50:69. [PMID: 38616250 PMCID: PMC11017701 DOI: 10.1186/s13052-024-01631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Pollution of the indoor environment represents a concern for human health, mainly in case of prolonged exposure such as in the case of women, children, the elderly, and the chronically ill, who spend most of their time in closed environments. MAIN BODY The aim of the study is to organize a group of experts in order to evaluate the evidence and discuss the main risk factors concerning indoor air and the impact on human health as well as challenging factors regarding preventive strategies to reduce pollution. The experts highlighted the main risk factors concerning indoor air, including poor ventilation, climatic conditions, chemical substances, and socio-economic status. They discussed the impact on human health in terms of mortality and morbidity, as well as challenging factors regarding preventive strategies to reduce pollution. CONCLUSION The experts identified strategies that can be reinforced to reduce indoor pollution and prevent negative consequences on human health at national and local levels.
Collapse
Affiliation(s)
- Elena Bozzola
- Pediatric Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | | | | | - Jibin Park
- Saint Camillus International University of Health Sciences, Rome, Italy
| | - Paolo Lauriola
- Rete Italiana Medici Sentinella per l'Ambiente (RIMSA), ISDE/FNOMCeO, Rome, Italy
| | - Tiziana Nicoletti
- Association of the chronically ill and rare patients, Cittadinazattiva APS, Rome, Italy
| | | | | | | |
Collapse
|
15
|
Duan Y, Siegenthaler A, Skidmore AK, Chariton AA, Laros I, Rousseau M, De Groot GA. Forest top canopy bacterial communities are influenced by elevation and host tree traits. ENVIRONMENTAL MICROBIOME 2024; 19:21. [PMID: 38581032 PMCID: PMC10998314 DOI: 10.1186/s40793-024-00565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND The phyllosphere microbiome is crucial for plant health and ecosystem functioning. While host species play a determining role in shaping the phyllosphere microbiome, host trees of the same species that are subjected to different environmental conditions can still exhibit large degrees of variation in their microbiome diversity and composition. Whether these intra-specific variations in phyllosphere microbiome diversity and composition can be observed over the broader expanse of forest landscapes remains unclear. In this study, we aim to assess the variation in the top canopy phyllosphere bacterial communities between and within host tree species in the temperate European forests, focusing on Fagus sylvatica (European beech) and Picea abies (Norway spruce). RESULTS We profiled the bacterial diversity, composition, driving factors, and discriminant taxa in the top canopy phyllosphere of 211 trees in two temperate forests, Veluwe National Parks, the Netherlands and Bavarian Forest National Park, Germany. We found the bacterial communities were primarily shaped by host species, and large variation existed within beech and spruce. While we showed that there was a core microbiome in all tree species examined, community composition varied with elevation, tree diameter at breast height, and leaf-specific traits (e.g., chlorophyll and P content). These driving factors of bacterial community composition also correlated with the relative abundance of specific bacterial families. CONCLUSIONS While our results underscored the importance of host species, we demonstrated a substantial range of variation in phyllosphere bacterial diversity and composition within a host species. Drivers of these variations have implications at both the individual host tree level, where the bacterial communities differed based on tree traits, and at the broader forest landscape level, where drivers like certain highly plastic leaf traits can potentially link forest canopy bacterial community variations to forest ecosystem processes. We eventually showed close associations between forest canopy phyllosphere bacterial communities and host trees exist, and the consistent patterns emerging from these associations are critical for host plant functioning.
Collapse
Affiliation(s)
- Yiwei Duan
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands.
| | - Andjin Siegenthaler
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Andrew K Skidmore
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - Anthony A Chariton
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ivo Laros
- Wageningen Environmental Research, Wageningen UR, P.O. Box 46, 6700 AA, Wageningen, The Netherlands
| | - Mélody Rousseau
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Drienerlolaan 5, PO Box 217, 7500 AE, Enschede, The Netherlands
| | - G Arjen De Groot
- Wageningen Environmental Research, Wageningen UR, P.O. Box 46, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
16
|
Rabi Prasad B, Polaki S, Padhi RK. Isolation of delignifying bacteria and optimization of microbial pretreatment of biomass for bioenergy. Biotechnol Lett 2024; 46:183-199. [PMID: 38252364 DOI: 10.1007/s10529-023-03463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024]
Abstract
Microbial pretreatment of lignocellulosic biomass holds significant promise for environmentally friendly biofuel production, offering an alternative to fossil fuels. This study focused on the isolation and characterization of two novel delignifying bacteria, GIET1 and GIET2, to enhance cellulose accessibility by lignin degradation. Molecular characterization confirmed their genetic identities, providing valuable microbial resources for biofuel production. Our results revealed distinct preferences for temperature, pH, and incubation period for the two bacteria. Bacillus haynesii exhibited optimal performance under moderate conditions and shorter incubation period, making it suitable for rice straw and sugarcane bagasse pretreatment. In contrast, Paenibacillus alvei thrived at higher temperatures and slightly alkaline pH, requiring a longer incubation period ideal for corn stalk pretreatment. These strain-specific requirements highlight the importance of tailoring pretreatment conditions to specific feedstocks. Structural, chemical, and morphological analyses demonstrated that microbial pretreatment reduced the amorphous lignin, increasing cellulose crystallinity and accessibility. These findings underscore the potential of microbial pretreatment to enhance biofuel production by modifying the lignocellulosic biomass. Such environmentally friendly bioconversion processes offer sustainable and cleaner energy solutions. Further research to optimize these methods for scalability and broader application is necessary in the pursuit for more efficient and greener biofuel production.
Collapse
Affiliation(s)
- B Rabi Prasad
- Department of Biotechnology, SoET, GIET University, Gunupur, Odisha, 765022, India.
| | - Suman Polaki
- Department of Biotechnology, SoET, GIET University, Gunupur, Odisha, 765022, India
| | - Radha Krushna Padhi
- Department of Chemical Engineering, SoET, GIET University, Gunupur, Odisha, 765022, India
| |
Collapse
|
17
|
Rzymski P, Gwenzi W, Poniedziałek B, Mangul S, Fal A. Climate warming, environmental degradation and pollution as drivers of antibiotic resistance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123649. [PMID: 38402936 DOI: 10.1016/j.envpol.2024.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Antibiotic resistance is a major challenge to public health, but human-caused environmental changes have not been widely recognized as its drivers. Here, we provide a comprehensive overview of the relationships between environmental degradation and antibiotic resistance, demonstrating that the former can potentially fuel the latter with significant public health outcomes. We describe that (i) global warming favors horizontal gene transfer, bacterial infections, the spread of drug-resistant pathogens due to water scarcity, and the release of resistance genes with wastewater; (ii) pesticide and metal pollution act as co-selectors of antibiotic resistance mechanisms; (iii) microplastics create conditions promoting and spreading antibiotic resistance and resistant bacteria; (iv) changes in land use, deforestation, and environmental pollution reduce microbial diversity, a natural barrier to antibiotic resistance spread. We argue that management of antibiotic resistance must integrate environmental goals, including mitigation of further increases in the Earth's surface temperature, better qualitative and quantitative protection of water resources, strengthening of sewage infrastructure and improving wastewater treatment, counteracting the microbial diversity loss, reduction of pesticide and metal emissions, and plastic use, and improving waste recycling. These actions should be accompanied by restricting antibiotic use only to clinically justified situations, developing novel treatments, and promoting prophylaxis. It is pivotal for health authorities and the medical community to adopt the protection of environmental quality as a part of public health measures, also in the context of antibiotic resistance management.
Collapse
Affiliation(s)
- Piotr Rzymski
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland.
| | - Willis Gwenzi
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe; Alexander von Humboldt Fellow and Guest Professor, Grassland Science and Renewable Plant Resources, Faculty of Organic Agricultural Sciences, Universität Kassel, Witzenhausen, Germany; Alexander von Humboldt Fellow and Guest Professor, Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany
| | - Barbara Poniedziałek
- Department of Environmental Medicine, Poznan University of Medical Sciences, Poznań, Poland
| | - Serghei Mangul
- Titus Family Department of Clinical Pharmacy, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, USA
| | - Andrzej Fal
- Department of Allergy, Lung Diseases and Internal Medicine Central Clinical Hospital, Ministry of Interior, Warsaw, Poland; Collegium Medicum, Warsaw Faculty of Medicine, Cardinal Stefan Wyszyński University, Warsaw, Poland
| |
Collapse
|
18
|
Lee S, Ryu SH, Sul WJ, Kim S, Kim D, Seo S. Association of exposure to indoor molds and dampness with allergic diseases at water-damaged dwellings in Korea. Sci Rep 2024; 14:135. [PMID: 38167981 PMCID: PMC10762174 DOI: 10.1038/s41598-023-50226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/17/2023] [Indexed: 01/05/2024] Open
Abstract
This study aims to characterize levels of molds, bacteria, and environmental pollutants, identify the associations between indoor mold and dampness exposures and childhood allergic diseases, including asthma, allergic rhinitis, atopic dermatitis, using three different exposure assessment tools. A total of 50 children with their parents who registered in Seoul and Gyeonggi-do in Korea participated in this study. We collated the information on demographic and housing characteristics, environmental conditions, and lifestyle factors using the Korean version of the International Study of Asthma and Allergies in Childhood questionnaire. We also collected environmental monitoring samples of airborne molds and bacteria, total volatile organic compounds, formaldehyde, and particulate matter less than 10 µm. We evaluated and determined water damage, hidden dampness, and mold growth in dwellings using an infrared (IR) thermal camera and field inspection. Univariate and multivariate regression analyses were performed to evaluate the associations between prevalent allergic diseases and exposure to indoor mold and dampness. Indoor mold and bacterial levels were related to the presence of water damage in dwellings, and the mean levels of indoor molds (93.4 ± 73.5 CFU/m3) and bacteria (221.5 ± 124.2 CFU/m3) in water-damaged homes were significantly higher than those for molds (82.0 ± 58.7 CFU/m3) and for bacteria (152.7 ± 82.1 CFU/m3) in non-damaged dwellings (p < 0.05). The crude odds ratios (ORs) of atopic dermatitis were associated with < 6th floor (OR = 3.80), and higher indoor mold (OR = 6.42) and bacterial levels (OR = 6.00). The crude ORs of allergic diseases, defined as a group of cases who ever suffered from two out of three allergic diseases, e.g., asthma and allergic rhinitis, and allergic rhinitis were also increased by 3.8 and 9.3 times as large, respectively, with water damage (+) determined by IR camera (p < 0.05). The adjusted OR of allergic rhinitis was significantly elevated by 10.4 times in the water-damaged dwellings after adjusting age, sex, and secondhand smoke. Therefore, a longitudinal study is needed to characterize dominant mold species using DNA/RNA-based sequencing techniques and identify a causal relationship between mold exposure and allergic diseases in the future.
Collapse
Affiliation(s)
- Seokwon Lee
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Seung-Hun Ryu
- Environmental Health Research Department, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea
| | - Seunghyun Kim
- Allergy Immunology Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Dohyeong Kim
- School of Economic, Political and Policy Sciences, University of Texas at Dallas, Richardson, TX, 75080-3021, USA
| | - SungChul Seo
- Department of Nano, Chemical and Biological Engineering, College of Engineering, Seokyeong University, Seoul, 02173, Republic of Korea.
| |
Collapse
|
19
|
Adnan F, Khursheed N, Khan MA, Parveen N. Safeguarding Accuracy: The Impact of Interventions on Reducing Blood Culture Contamination. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2024; 17:2632010X241265857. [PMID: 39070949 PMCID: PMC11282538 DOI: 10.1177/2632010x241265857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/11/2024] [Indexed: 07/30/2024]
Abstract
Introduction Blood culture is the gold standard for diagnosing bacteremia and direct the physicians to select appropriate antimicrobials. In hospitals, blood culture contamination (BCC) is a common problem that has a detrimental effect on patient outcomes. Hence, we implemented strategies in our tertiary care setup, for training phlebotomists and nurses in proper blood sampling techniques, and assessed their effectiveness in reducing BCC rates. Methods This interventional study was conducted at the Indus Hospital, Karachi, Pakistan from 1st January 2021 to 30th June 2023. All blood cultures received from different departments of the hospital were included. The 2.5-year study period was divided into pre-intervention and intervention periods, with monthly monitoring of BCC. The BCC data between 1st January 2021 and 31st December 2021 was taken as the baseline pre-intervention period and the next 1.5 years comprised the intervention period (1st January 2022-30th June 2023). To improve compliance, various strategies were implemented, such as regular training sessions, didactic sessions, and re-competencies. Results A total of 86 774 Blood cultures were received from all departments of the hospital, out of which n = 30 672 were received in the pre-intervention period whereas, n = 56 102 were received in the intervention period. Mean BCC rate in the pre-intervention period was found to be 4.6%. However, after the implementation of different measures to reduce BCC, the contamination rate decreased to a mean of 3.1% by the end of the intervention period. Emergency department accounted for the highest proportion of BCC in the pre-intervention and intervention periods. Conclusion We decreased BCC in our tertiary care setup by implementing a simple and inexpensive collaborative intervention, and came to the conclusion that the higher incidence of BCC was probably caused by factors unique to the emergency department and provided measures to successfully address them.
Collapse
Affiliation(s)
- Fareeha Adnan
- Consultant, Microbiology Department, Indus Hospital & Health Network, Karachi, Pakistan
| | - Nazia Khursheed
- Consultant, Microbiology Department, Indus Hospital & Health Network, Karachi, Pakistan
| | - Moiz Ahmed Khan
- Consultant, Microbiology Department, Indus Hospital & Health Network, Karachi, Pakistan
| | - Nazia Parveen
- Senior Technologist, Microbiology Department, Indus Hospital & Health Network, Karachi, Pakistan
| |
Collapse
|
20
|
Sharma C, Singh D, Srivastava R, Narain Sharma S. Symbiotic Antimicrobial Effects of Cellulose-Based Bio-Nanocomposite for Disease Management of Agricultural Crops. Chem Biodivers 2023; 20:e202300714. [PMID: 37650658 DOI: 10.1002/cbdv.202300714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
In the present work, a bionanocomposite for plant crop protection was prepared by non-toxic biocompatible & biodegradable nanomaterials (Cellulose & TiO2 ) to utilize its synergistic effects against antimicrobial pathogens. The commercially available microcrystalline cellulose has been reduced to a nanometric scale regime using acid hydrolysis, while the standard TiO2 nano-powder of particle size ~20 nm has been used to prepare their nanocomposite (NC). The antibacterial studies via agar well diffusion method demonstrated that after 72 h of incubation, parent nanomaterials Ncell and TiO2 were not showing any activity against phytopathogens X. campestris pv. campestris, and Clavibacter while the nanocomposite's NC's were still effective depicting both bacteriostatic and bactericidal actions. However, the bacterial growth of biocontrol P. fluorescence was not affected by Ncell, TiO2 NPs and NC after 72 h of incubation. The antifungal testing results via poison food agar assay method suggest that the nanocomposite, along with Ncell and TiO2 NPs, exhibited strong inhibition of fungal growth of Phytophthora Spp at 0.125 mg/ml concentration while for F. graminearum, similar effect was observed at 0.25 mg/ml concentration. The nanocomposite has proved its potential by exhibiting longer & stronger synergistic effects against plant pathogens as a good antimicrobial agent for protection of agricultural crops.
Collapse
Affiliation(s)
- Chhavi Sharma
- CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ritu Srivastava
- CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shailesh Narain Sharma
- CSIR-National Physical Laboratory, New Delhi, 110012, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
21
|
Opuni KF, Kretchy JP, Agyabeng K, Boadu JA, Adanu T, Ankamah S, Appiah A, Amoah GB, Baidoo M, Kretchy IA. Contamination of herbal medicinal products in low-and-middle-income countries: A systematic review. Heliyon 2023; 9:e19370. [PMID: 37674839 PMCID: PMC10477504 DOI: 10.1016/j.heliyon.2023.e19370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 08/15/2023] [Accepted: 08/21/2023] [Indexed: 09/08/2023] Open
Abstract
The use of herbal medicinal products (HMPs) has grown significantly across low-and-middle-income countries (LMICs). Consequently, the safety of these products due to contamination is a significant public health concern. This systematic review aimed to determine the prevalence, types, and levels of contaminants in HMPs from LMICs. A search was performed in seven online databases, i.e., Africa journal online (AJOL), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Directory of Open Access Journals (DOAJ), Health Inter-Network Access to Research Initiative (HINARI), World Health Organization Global Index Medicus (WHO GIM), Scopus, and PubMed using appropriate search queries and reported as per the "Preferred Reporting Items for Systematic Reviews and Meta-Analyses" (PRISMA) guidelines. Ninety-one peer-reviewed articles published from 1982 to 2021 from 28 different countries across four continents were included in the study. Although metals, microbial, mycotoxins, pesticides, and residual solvents were the reported contaminants in the 91 articles, metals (56.0%, 51/91), microbial (27.5%, 25/91), and mycotoxins (18.7%, 17/91) were the most predominant. About 16.4% (1236/7518) of the samples had their contaminant levels above the regulatory limits. Samples tested for microbial contaminants had the highest proportion (46.4%, 482/1039) of contaminants exceeding the regulatory limit, followed by mycotoxins (25.8%, 109/423) and metals (14.3%, 591/4128). The proportion of samples that had their average non-essential metal contaminant levels above the regulatory limit was (57.6%, 377/655), 18.3% (88/480), 10.7% (24/225), and 11.3% (29/257) for Pb, Cd, Hg, and As, respectively. The commonest bacteria species found were Escherichia coli (52.3%, 10/19) and Salmonella species (42.1%, 8/19). This review reported that almost 90% of Candida albicans and more than 80% of moulds exceeded the required regulatory limits. HMP consumption poses profound health implications to consumers and patients. Therefore, designing and/or implementing policies that effectively regulate HMPs to minimize the health hazards related to their consumption while improving the quality of life of persons living in LMICs are urgently needed.
Collapse
Affiliation(s)
- Kwabena F.M. Opuni
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - James-Paul Kretchy
- Department of Public Health, School of Medicine and Health Sciences, Central University, P. O. Box 2305, Miotso, Accra, Ghana
| | - Kofi Agyabeng
- Department of Biostatistics, School of Public Health, University of Ghana, P. O. Box LG13, Legon, Accra, Ghana
| | - Joseph A. Boadu
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Theodosia Adanu
- Balme Library, University of Ghana, P.O. Box LG24, Legon, Accra, Ghana
| | - Samuel Ankamah
- Balme Library, University of Ghana, P.O. Box LG24, Legon, Accra, Ghana
| | - Alexander Appiah
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Geralda B. Amoah
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Mariam Baidoo
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| | - Irene A. Kretchy
- Department of Pharmacy Practice and Clinical Pharmacy, School of Pharmacy, University of Ghana, P.O. Box LG43, Legon, Accra, Ghana
| |
Collapse
|
22
|
Chaves MA, Dacanal GC, Pinho SC. High-shear wet agglomeration process for enriching cornstarch with curcumin and vitamin D 3 co-loaded lyophilized liposomes. Food Res Int 2023; 169:112809. [PMID: 37254385 DOI: 10.1016/j.foodres.2023.112809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Curcumin and vitamin D3 are bioactive molecules of great importance for the food industry. However, their low stability in several processing conditions hampers their proper incorporation into powdered food formulations. This study proposes the enrichment of a common raw material (cornstarch) with curcumin and vitamin D3 by using high-shear wet agglomeration. The bioactives were initially encapsulated into liposome dispersions and then subjected to lyophilization. The resulting dried vesicles were later incorporated into cornstarch by wet agglomeration using maltodextrin as the binder solution. The phospholipid content and the amount of added liposomes were evaluated to characterize the enriched cornstarch samples. The lyophilized vesicles showed a high retention rate of 99 % for curcumin and vitamin D3, while the enriched cornstarch samples retained above 96 % (curcumin) and 98 % (vitamin D3) after 30 days of controlled storage. All in all, the presence of dried liposomes improved the flowability and delayed retrogradation phenomenon in agglomerated cornstarch. Therefore, this study introduced a novel and reliable method of incorporating hydrophobic and thermosensitive molecules into powdered food formulations by using readily available materials and a straightforward high-shear wet agglomeration process.
Collapse
Affiliation(s)
- Matheus A Chaves
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP, Brazil
| | - Gustavo C Dacanal
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP, Brazil
| | - Samantha C Pinho
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte 225, Pirassununga, SP, Brazil.
| |
Collapse
|
23
|
Morawska-Kochman M, Malecha ZM, Zub K, Kielar J, Dudek K, Nelke K, Zatonski T. Physical Conditions Prevailing in the Nasal and Maxillary Sinus Cavities Based on Numerical Simulation. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1094. [PMID: 37374298 DOI: 10.3390/medicina59061094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: This paper presents a unique study that links the physical conditions in the nasal passage with conditions that favour the development of bacterial strains and the colonization of the mucous membranes of the nose and paranasal sinuses. The physical parameters considered were air flow, pressure, humidity, and temperature. Materials and Methods: Numerical models of the human nose and maxillary sinus were retrospectively reconstructed from CT images of generally healthy young subjects. The state-of-the-art numerical methods and tools were then used to determine the temperature, humidity, airflow velocity, and pressure at specific anatomical locations. Results: The results were compared with optimal conditions for bacterial growth in the nose and sinuses. Conclusions: Temperature, humidity, air velocity, and pressure were shown to play critical roles in the selection and distribution of microorganisms. Furthermore, certain combinations of physical parameters can favour mucosal colonisation by various strains of bacteria.
Collapse
Affiliation(s)
- Monika Morawska-Kochman
- Department of Otolaryngology, Head and Neck Surgery, Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Ziemowit Miłosz Malecha
- Department of Cryogenics and Aerospace Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Krzysztof Zub
- Department of Otolaryngology, Head and Neck Surgery, Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Jakub Kielar
- Department of Cryogenics and Aerospace Engineering, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Krzysztof Dudek
- Statistical Analysis Centre, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Kamil Nelke
- Maxillofacial Surgery Ward, EMC Hospital, Pilczycka 144, 54-144 Wroclaw, Poland
- Health Department, Academy of Applied Sciences, Academy of Silesius, Zamkowa 4, 58-300 Walbrzych, Poland
| | - Tomasz Zatonski
- Department of Otolaryngology, Head and Neck Surgery, Medical University, Borowska 213, 50-556 Wroclaw, Poland
| |
Collapse
|
24
|
Wibawa BSS, Maharani AT, Andhikaputra G, Putri MSA, Iswara AP, Sapkota A, Sharma A, Syafei AD, Wang YC. Effects of Ambient Temperature, Relative Humidity, and Precipitation on Diarrhea Incidence in Surabaya. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20032313. [PMID: 36767679 PMCID: PMC9916310 DOI: 10.3390/ijerph20032313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Diarrhea remains a common infectious disease caused by various risk factors in developing countries. This study investigated the incidence rate and temporal associations between diarrhea and meteorological determinants in five regions of Surabaya, Indonesia. METHOD Monthly diarrhea records from local governmental health facilities in Surabaya and monthly means of weather variables, including average temperature, precipitation, and relative humidity from Meteorology, Climatology, and Geophysical Agency were collected from January 2018 to September 2020. The generalized additive model was employed to quantify the time lag association between diarrhea risk and extremely low (5th percentile) and high (95th percentile) monthly weather variations in the north, central, west, south, and east regions of Surabaya (lag of 0-2 months). RESULT The average incidence rate for diarrhea was 11.4 per 100,000 during the study period, with a higher incidence during rainy season (November to March) and in East Surabaya. This study showed that the weather condition with the lowest diarrhea risks varied with the region. The diarrhea risks were associated with extremely low and high temperatures, with the highest RR of 5.39 (95% CI 4.61, 6.17) in the east region, with 1 month of lag time following the extreme temperatures. Extremely low relative humidity increased the diarrhea risks in some regions of Surabaya, with the highest risk in the west region at lag 0 (RR = 2.13 (95% CI 1.79, 2.47)). Extremely high precipitation significantly affects the risk of diarrhea in the central region, at 0 months of lag time, with an RR of 3.05 (95% CI 2.09, 4.01). CONCLUSION This study identified a high incidence of diarrhea in the rainy season and in the deficient developed regions of Surabaya, providing evidence that weather magnifies the adverse effects of inadequate environmental sanitation. This study suggests the local environmental and health sectors codevelop a weather-based early warning system and improve local sanitation practices as prevention measures in response to increasing risks of infectious diseases.
Collapse
Affiliation(s)
- Bima Sakti Satria Wibawa
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, Taoyuan City 320314, Taiwan
| | | | - Gerry Andhikaputra
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, Taoyuan City 320314, Taiwan
| | - Marsha Savira Agatha Putri
- Department of Environmental Health, Faculty of Health Science, Universitas Islam Lamongan, Lamongan 62211, Indonesia
| | - Aditya Prana Iswara
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, Taoyuan City 320314, Taiwan
- Department of Civil Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, Taoyuan City 320314, Taiwan
| | - Amir Sapkota
- Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, Maryland, MD 20742, USA
| | - Ayushi Sharma
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, Taoyuan City 320314, Taiwan
- Department of Civil Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, Taoyuan City 320314, Taiwan
| | - Arie Dipareza Syafei
- Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Yu-Chun Wang
- Department of Environmental Engineering, College of Engineering, Chung Yuan Christian University, 200 Chung-Pei Road, Zhongli, Taoyuan City 320314, Taiwan
- Research Center for Environmental Changes, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
- Correspondence:
| |
Collapse
|