1
|
Effects of Exercise Training on the Autonomic Nervous System with a Focus on Anti-Inflammatory and Antioxidants Effects. Antioxidants (Basel) 2022; 11:antiox11020350. [PMID: 35204231 PMCID: PMC8868289 DOI: 10.3390/antiox11020350] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
Studies show that the autonomic nervous system (ANS) has an important impact on health in general. In response to environmental demands, homeostatic processes are often compromised, therefore determining an increase in the sympathetic nervous system (SNS)’s functions and a decrease in the parasympathetic nervous system (PNS)’s functions. In modern societies, chronic stress associated with an unhealthy lifestyle contributes to ANS dysfunction. In this review, we provide a brief introduction to the ANS network, its connections to the HPA axis and its stress responses and give an overview of the critical implications of ANS in health and disease—focused specifically on the immune system, cardiovascular, oxidative stress and metabolic dysregulation. The hypothalamic–pituitary–adrenal axis (HPA), the SNS and more recently the PNS have been identified as regulating the immune system. The HPA axis and PNS have anti-inflammatory effects and the SNS has been shown to have both pro- and anti-inflammatory effects. The positive impact of physical exercise (PE) is well known and has been studied by many researchers, but its negative impact has been less studied. Depending on the type, duration and individual characteristics of the person doing the exercise (age, gender, disease status, etc.), PE can be considered a physiological stressor. The negative impact of PE seems to be connected with the oxidative stress induced by effort.
Collapse
|
2
|
Varamenti E, Tod D, Pullinger SA. Redox Homeostasis and Inflammation Responses to Training in Adolescent Athletes: a Systematic Review and Meta-analysis. SPORTS MEDICINE-OPEN 2020; 6:34. [PMID: 32748060 PMCID: PMC7399016 DOI: 10.1186/s40798-020-00262-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023]
Abstract
Background Several studies have highlighted the substantial role of the athlete’s redox and inflammation status during the training process. However, many factors such as differences in testing protocols, assays, sample sizes, and fitness levels of the population are affecting findings and the understanding regarding how exercise affects related biomarkers in adolescent athletes. Objectives To search redox homeostasis variables’ and inflammatory mediators’ responses in juvenile athletes following short- or long-term training periods and examine the effect size of those variations to training paradigms. Methods A PRISMA-compliant systematic review and meta-analysis were conducted. The entire content of PubMed (MEDLINE), Scopus, and Science Direct were systematically searched until December 2019. Studies with outcomes including (1) a group of adolescent athletes from any individual or team sport, (2) the assessment of redox and/or inflammatory markers after a short- (training session or performance testing) or longer training period, and (3) variables measured in blood were retained. The literature search initially identified 346 potentially relevant records, of which 36 studies met the inclusion criteria for the qualitative synthesis. From those articles, 27 were included in the quantitative analysis (meta-analysis) as their results could be converted into common units. Results Following a short training session or performance test, an extremely large increase in protein carbonyls (PC) (ES 4.164; 95% CI 1.716 to 6.613; Z = 3.333, p = 0.001), a large increase in thiobarbituric acid reactive substances (TBARS) (ES 1.317; 95% CI 0.522 to 2.112; Z = 3.247, p = 0.001), a large decrease in glutathione (GSH) (ES − 1.701; 95% CI − 2.698 to − 0.705; Z = − 3.347, p = 0.001), and a moderate increase of total antioxidant capacity (TAC) level (ES 1.057; 95% CI − 0.044 to 2.158; Z = 1.882, p = 0.060) were observed. Following more extended training periods, GSH showed moderate increases (ES 1.131; 95% CI 0.350 to 1.913; Z = 2.839, p = 0.005) while TBARS displayed a small decrease (ES 0.568; 95% CI − 0.062 to 1.197; Z = 1.768, p = 0.077). Regarding cytokines, a very large and large increase were observed in IL-6 (ES 2.291; 95% CI 1.082 to 3.501; Z = 3.713, p = 0.000) and IL-1 receptor antagonist (ra) (ES 1.599; 95% CI 0.347 to 2.851; Z = 2.503, p = 0.012), respectively, following short-duration training modalities in juvenile athletes. Conclusions The results showed significant alterations in oxidative stress and cytokine levels after acute exercise, ranging from moderate to extremely large. In contrast, the variations after chronic exercise ranged from trivial to moderate. However, the observed publication bias and high heterogeneity in specific meta-analysis advocate the need for further exploration and consistency when we deal with the assessed variables to ascertain the implications of structured training regimes on measured variables in order to develop guidelines for training, nutritional advice, and wellbeing in young athletes. Trial Registration PROSPERO CRD42020152105
Collapse
Affiliation(s)
- Evdokia Varamenti
- Aspire Academy for Sports Excellence, Sports Science Departement, PO Box: 22287, Doha, Qatar.
| | - David Tod
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Samuel A Pullinger
- Aspire Academy for Sports Excellence, Sports Science Departement, PO Box: 22287, Doha, Qatar
| |
Collapse
|
3
|
Chaki B, Pal S, Chattopadhyay S, Bandyopadhyay A. High-intensity exercise-induced oxidative stress in sedentary pre-pubertal & post-pubertal boys: A comparative study. Indian J Med Res 2020; 150:167-174. [PMID: 31670272 PMCID: PMC6829783 DOI: 10.4103/ijmr.ijmr_2094_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background & objectives High-intensity exercise results in oxidative stress in adult population. Impact of pubertal attainment on high-intensity exercise-induced oxidative stress in sedentary paediatric population has not been investigated in detail. The present study was conducted to investigate the extent of high-intensity exercise-induced oxidative stress in sedentary pre- and post-pubertal boys through estimation of serum thiobarbituric acid reactive substances (TBARS), total thiol content and activities of superoxide dismutase (SOD) and catalase (CAT). Methods Sixty four sedentary pre-pubertal (n=32, age = 10.21±0.67 yr) and post-pubertal (n=32, age = 15.58±0.47 yr) boys performed incremental treadmill running exercise at 80 per cent of the age predicted maximum heart rate till volitional exhaustion. Blood sample (5 ml) was drawn from each individual before and after the exercise for estimation of oxidative stress markers. Results Pre-exercise SOD activity and total thiol level showed significant positive relationship with age and were significantly higher in post-pubertal boys. Serum TBARS level, SOD and CAT activities increased while total thiol content decreased in both the groups following exercise. Post-exercise percentage change in TBARS, SOD activity and total thiol level was significantly higher in post-pubertal boys, and these variables had significant positive relationship with age. No significant intergroup variations were noted in CAT activity before or after exercise. Interpretation & conclusions Extent of post-exercise oxidative stress increased significantly with attainment of puberty. However, baseline and post-exercise antioxidation status also increased significantly as a function of age with pubertal maturation allowing the post-pubertal boys to counter relatively higher oxidative stress more efficiently than their pre-pubertal counterparts. Post-exercise upregulation in CAT activity might not be influenced by age or pubertal maturation in this age group.
Collapse
Affiliation(s)
- Biswajit Chaki
- Sports & Exercise Physiology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Sciences & Technology, Kolkata, India
| | - Sangita Pal
- Sports & Exercise Physiology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Sciences & Technology, Kolkata, India
| | - Sreya Chattopadhyay
- Sports & Exercise Physiology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Sciences & Technology, Kolkata, India
| | - Amit Bandyopadhyay
- Sports & Exercise Physiology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Sciences & Technology, Kolkata, India
| |
Collapse
|
4
|
Liver-Metabolizing Genes and Their Relationship to the Performance of Elite Spanish Male Endurance Athletes; a Prospective Transversal Study. SPORTS MEDICINE-OPEN 2019; 5:50. [PMID: 31820125 PMCID: PMC6901632 DOI: 10.1186/s40798-019-0227-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022]
Abstract
Background The genetic profile that is needed to define an endurance athlete has been studied during recent years. The main objective of this work is to approach for the first time the study of genetic variants in liver-metabolizing genes and their role in endurance performance by comparing the allelic and genotypic frequencies in elite endurance athletes to the non-athlete population. Methods Genotypic and allelic frequencies were determined in 123 elite endurance athletes (75 professional road cyclists and 48 endurance elite runners) and 122 male non-athlete subjects (sedentary). Genotyping of cytochrome P450 family 2 subfamily D member 6 (CYP2D6 rs3892097), glutathione-S transferase mu isoform 1 (GSTM1), glutathione S-transferase pi (GSTP rs1695) and glutathione S-transferase theta (GSTT) genes was performed by polymerase chain reaction (PCR). The combination of the polymorphisms for the “optimal” polygenic profile has been quantified using the genotype score (GS). Results Statistical differences were found in the genetic distributions between elite endurance athletes and non-athletes in CYP2D6 (p < 0.001) and GSTT (p = 0.014) genes. The binary logistic regression model showed a favourable OR (odds ratio) of being an elite endurance runner against a professional road cyclist (OR: 2.403, 95% CI: 1.213–4.760 (p = 0.002)) in the polymorphisms studied. Conclusions Genotypic distribution of liver-metabolizing genes in elite endurance athletes is different to non-athlete subjects, with a favourable gene profile in elite endurance athletes in terms of detoxification capacity.
Collapse
|
5
|
Avloniti A, Chatzinikolaou A, Deli CK, Vlachopoulos D, Gracia-Marco L, Leontsini D, Draganidis D, Jamurtas AZ, Mastorakos G, Fatouros IG. Exercise-Induced Oxidative Stress Responses in the Pediatric Population. Antioxidants (Basel) 2017; 6:antiox6010006. [PMID: 28106721 PMCID: PMC5384170 DOI: 10.3390/antiox6010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/02/2017] [Accepted: 01/13/2017] [Indexed: 12/15/2022] Open
Abstract
Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty.
Collapse
Affiliation(s)
- Alexandra Avloniti
- School of Physical Education and Sport Sciences, Democritus University of Thrace, Komotini 69100, Greece.
| | - Athanasios Chatzinikolaou
- School of Physical Education and Sport Sciences, Democritus University of Thrace, Komotini 69100, Greece.
| | - Chariklia K Deli
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala 42100, Greece.
| | - Dimitris Vlachopoulos
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK.
| | - Luis Gracia-Marco
- Children's Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter EX1 2LU, UK.
- Growth, Exercise, Nutrition and Development Research Group, University of Zaragoza, Zaragoza 50009, Spain.
| | - Diamanda Leontsini
- School of Physical Education and Sport Sciences, Democritus University of Thrace, Komotini 69100, Greece.
| | - Dimitrios Draganidis
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala 42100, Greece.
| | - Athanasios Z Jamurtas
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala 42100, Greece.
| | - George Mastorakos
- Faculty of Medicine, Endocrine Unit, "Aretaieion" Hospital, National and Kapodistrian University of Athens, Athens 11528, Greece.
| | - Ioannis G Fatouros
- School of Physical Education and Sport Sciences, University of Thessaly, Karies, Trikala 42100, Greece.
| |
Collapse
|
6
|
Wiecek M, Maciejczyk M, Szymura J, Kantorowicz M, Szygula Z. Impact of single anaerobic exercise on delayed activation of endothelial xanthine oxidase in men and women. Redox Rep 2016; 22:367-376. [PMID: 27715604 DOI: 10.1080/13510002.2016.1238991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The aim of the study was to evaluate the activity of xanthine oxidase (XO) in the blood of men and women during the first hour following a single anaerobic exercise (AN-EX), and after 24 hours of recovery, and to determine whether the changes in XO activity in the blood after AN-EX are dependent on anaerobic performance. METHODS Ten men and ten women performed a single AN-EX. Blood was collected before and five times after completion of the AN-EX. The activity of XO was determined. RESULTS In both groups, a significant (P < 0.05) increase in blood XO activity was found only 24 hours after the AN-EX. The increased activity of XO in men was significantly lower than in women (P < 0.05). Negative correlations were found between the increase in XO activity in the blood plasma 24 hours after the AN-EX and anaerobic power, the total work performed during the AN-EX and the power decrease. DISCUSSION In the first hour after the single AN-EX, XO activity in the blood of women and men did not change, but after 24 hours of recovery, it was significantly higher compared to baseline levels in both sexes. Single AN-EX causes a smaller increase in XO activity in people with higher anaerobic performance.
Collapse
Affiliation(s)
- Magdalena Wiecek
- a Department of Physiology and Biochemistry , Faculty of Physical Education and Sport, University of Physical Education in Krakow , Krakow , Poland
| | - Marcin Maciejczyk
- a Department of Physiology and Biochemistry , Faculty of Physical Education and Sport, University of Physical Education in Krakow , Krakow , Poland
| | - Jadwiga Szymura
- b Department of Clinical Rehabilitation , Faculty of Motor Rehabilitation, University of Physical Education in Krakow , Krakow , Poland
| | - Malgorzata Kantorowicz
- c Faculty of Physical Education and Sport , University of Physical Education in Krakow , Krakow , Poland
| | - Zbigniew Szygula
- d Department of Sports Medicine and Human Nutrition , Faculty of Physical Education and Sport, University of Physical Education in Krakow , Krakow , Poland
| |
Collapse
|
7
|
Eizadi M, Sohaily S, Khorshidi D, Samarikhalaj H. Effect of Aerobic Training Program on Serum C-reactive Protein Levels. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2016. [DOI: 10.17795/ajmb-33294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
8
|
Effects of 12-Week Endurance Training at Natural Low Altitude on the Blood Redox Homeostasis of Professional Adolescent Athletes: A Quasi-Experimental Field Trial. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4848015. [PMID: 26783415 PMCID: PMC4691516 DOI: 10.1155/2016/4848015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/27/2015] [Accepted: 08/31/2015] [Indexed: 12/31/2022]
Abstract
This field study investigated the influences of exposure to natural low altitude on endurance training-induced alterations of redox homeostasis in professional adolescent runners undergoing 12-week off-season conditioning program at an altitude of 1700 m (Alt), by comparison with that of their counterparts completing the program at sea-level (SL). For age-, gender-, and Tanner-stage-matched comparison, 26 runners (n = 13 in each group) were selected and studied. Following the conditioning program, unaltered serum levels of thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (T-AOC), and superoxide dismutase accompanied with an increase in oxidized glutathione (GSSG) and decreases of xanthine oxidase, reduced glutathione (GSH), and GSH/GSSG ratio were observed in both Alt and SL groups. Serum glutathione peroxidase and catalase did not change in SL, whereas these enzymes, respectively, decreased and increased in Alt. Uric acid (UA) decreased in SL and increased in Alt. Moreover, the decreases in GSH and GSH/GSSG ratio in Alt were relatively lower compared to those in SL. Further, significant interindividual correlations were found between changes in catalase and TBARS, as well as between UA and T-AOC. These findings suggest that long-term training at natural low altitude is unlikely to cause retained oxidative stress in professional adolescent runners.
Collapse
|
9
|
Age-related responses in circulating markers of redox status in healthy adolescents and adults during the course of a training macrocycle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:283921. [PMID: 25945150 PMCID: PMC4402481 DOI: 10.1155/2015/283921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/24/2015] [Accepted: 03/03/2015] [Indexed: 12/19/2022]
Abstract
Redox status changes during an annual training cycle in young and adult track and field athletes and possible differences between the two age groups were assessed. Forty-six individuals (24 children and 22 adults) were assigned to four groups: trained adolescents, (TAD, N = 13), untrained adolescents (UAD, N = 11), trained adults (TA, N = 12), and untrained adults (UA, N = 10). Aerobic capacity and redox status related variables [total antioxidant capacity (TAC), glutathione (GSH), catalase activity, TBARS, protein carbonyls (PC), uric acid, and bilirubin] were assessed at rest and in response to a time-trial bout before training, at mid- and posttraining. TAC, catalase activity, TBARS, PC, uric acid, and bilirubin increased and GSH declined in all groups in response to acute exercise independent of training status and age. Training improved aerobic capacity, TAC, and GSH at rest and in response to exercise. Age affected basal and exercise-induced responses since adults demonstrated a greater TAC and GSH levels at rest and a greater rise of TBARS, protein carbonyls, and TAC and decline of GSH in response to exercise. Catalase activity, uric acid, and bilirubin responses were comparable among groups. These results suggest that acute exercise, age, and training modulate the antioxidant reserves of the body.
Collapse
|
10
|
Rhizoma Dioscoreae Nipponicae polysaccharides protect HUVECs from H2O2-induced injury by regulating PPARγ factor and the NADPH oxidase/ROS–NF-κB signal pathway. Toxicol Lett 2015; 232:149-58. [DOI: 10.1016/j.toxlet.2014.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/02/2014] [Accepted: 10/04/2014] [Indexed: 12/23/2022]
|