1
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2024:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
2
|
Mannala GK, Rupp M, Walter N, Youf R, Bärtl S, Riool M, Alt V. Repetitive combined doses of bacteriophages and gentamicin protect against Staphylococcus aureus implant-related infections in Galleria mellonella. Bone Joint Res 2024; 13:383-391. [PMID: 39089687 PMCID: PMC11293943 DOI: 10.1302/2046-3758.138.bjr-2023-0340.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Aims Bacteriophages infect, replicate inside bacteria, and are released from the host through lysis. Here, we evaluate the effects of repetitive doses of the Staphylococcus aureus phage 191219 and gentamicin against haematogenous and early-stage biofilm implant-related infections in Galleria mellonella. Methods For the haematogenous infection, G. mellonella larvae were implanted with a Kirschner wire (K-wire), infected with S. aureus, and subsequently phages and/or gentamicin were administered. For the early-stage biofilm implant infection, the K-wires were pre-incubated with S. aureus suspension before implantation. After 24 hours, the larvae received phages and/or gentamicin. In both models, the larvae also received daily doses of phages and/or gentamicin for up to five days. The effect was determined by survival analysis for five days and quantitative culture of bacteria after two days of repetitive doses. Results In the haematogenous infection, a single combined dose of phages and gentamicin, and repetitive injections with gentamicin or in combination with phages, resulted in significantly improved survival rates. In the early-stage biofilm infection, only repetitive combined administration of phages and gentamicin led to a significantly increased survival. Additionally, a significant reduction in number of bacteria was observed in the larvae after receiving repetitive doses of phages and/or gentamicin in both infection models. Conclusion Based on our results, a single dose of the combination of phages and gentamicin is sufficient to prevent a haematogenous S. aureus implant-related infection, whereas gentamicin needs to be administered daily for the same effect. To treat early-stage S. aureus implant-related infection, repetitive doses of the combination of phages and gentamicin are required.
Collapse
Affiliation(s)
- Gopala K. Mannala
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
- Department for Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Raphaelle Youf
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Susanne Bärtl
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martijn Riool
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Petráková M, Gorejová R, Shepa J, Macko J, Kupková M, Mičušík M, Baláž M, Hajdučková V, Hudecová P, Kožár M, Šišková B, Sáha P, Oriňaková R. Effect of Gentamicin Sulfate and Polymeric Polyethylene Glycol Coating on the Degradation and Cytotoxicity of Iron-Based Biomaterials. ACS OMEGA 2024; 9:27113-27126. [PMID: 38947814 PMCID: PMC11209885 DOI: 10.1021/acsomega.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024]
Abstract
The work is focused on the degradation, cytotoxicity, and antibacterial properties, of iron-based biomaterials with a bioactive coating layer. The foam and the compact iron samples were coated with a polyethylene glycol (PEG) polymer layer without and with gentamicin sulfate (PEG + Ge). The corrosion properties of coated and uncoated samples were studied using the degradation testing in Hanks' solution at 37 °C. The electrochemical and static immersion corrosion tests revealed that the PEG-coated samples corroded faster than samples with the bioactive PEG + Ge coating and uncoated samples. The foam samples corroded faster compared with the compact samples. To determine the cytotoxicity, cell viability was monitored in the presence of porous foam and compact iron samples. The antibacterial activity of the samples with PEG and PEG + Ge against Escherichia coli CCM 3954 and Staphylococcus aureus CCM 4223 strains was also tested. Tested PEG + Ge samples showed significant antibacterial activity against both bacterial strains. Therefore, the biodegradable iron-based materials with a bioactive coating could be a suitable successor to the metal materials studied thus far as well as the materials used in the field of medicine.
Collapse
Affiliation(s)
- Martina Petráková
- Department
of Physical Chemistry, P. J. Šafárik
University in Košice, Moyzesova 11, 041
01 Košice, Slovakia
| | - Radka Gorejová
- Department
of Physical Chemistry, P. J. Šafárik
University in Košice, Moyzesova 11, 041
01 Košice, Slovakia
| | - Jana Shepa
- Department
of Physical Chemistry, P. J. Šafárik
University in Košice, Moyzesova 11, 041
01 Košice, Slovakia
| | - Ján Macko
- Department
of Physical Chemistry, P. J. Šafárik
University in Košice, Moyzesova 11, 041
01 Košice, Slovakia
| | - Miriam Kupková
- Institute
of Materials Research, Slovak Academy of
Sciences, Watsonova 47, 040 01 Košice, Slovakia
| | - Matej Mičušík
- Institute
of Polymers, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Matej Baláž
- Institute
of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia
| | - Vanda Hajdučková
- Department
of Microbiology and Immunology, University
of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Patrícia Hudecová
- Department
of Microbiology and Immunology, University
of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia
| | - Martin Kožár
- Small Animal
Clinic, The University of Veterinary Medicine
and Pharmacy in Košice, 040 01 Košice, Slovakia
| | - Barbora Šišková
- Small Animal
Clinic, The University of Veterinary Medicine
and Pharmacy in Košice, 040 01 Košice, Slovakia
| | - Petr Sáha
- Centre
of Polymer Systems, University Institute,
Tomáš Bat’a University in Zlín, Třida Tomáše
Bati 5678, 76001 Zlín, Czech Republic
| | - Renáta Oriňaková
- Department
of Physical Chemistry, P. J. Šafárik
University in Košice, Moyzesova 11, 041
01 Košice, Slovakia
- Centre
of Polymer Systems, University Institute,
Tomáš Bat’a University in Zlín, Třida Tomáše
Bati 5678, 76001 Zlín, Czech Republic
| |
Collapse
|
4
|
Mikziński P, Kraus K, Widelski J, Paluch E. Modern Microbiological Methods to Detect Biofilm Formation in Orthopedy and Suggestions for Antibiotic Therapy, with Particular Emphasis on Prosthetic Joint Infection (PJI). Microorganisms 2024; 12:1198. [PMID: 38930580 PMCID: PMC11205407 DOI: 10.3390/microorganisms12061198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Biofilm formation is a serious problem that relatively often causes complications in orthopedic surgery. Biofilm-forming pathogens invade implanted foreign bodies and surrounding tissues. Such a condition, if not limited at the appropriate time, often requires reoperation. This can be partially prevented by selecting an appropriate prosthesis material that prevents the development of biofilm. There are many modern techniques available to detect the formed biofilm. By applying them we can identify and visualize biofilm-forming microorganisms. The most common etiological factors associated with biofilms in orthopedics are: Staphylococcus aureus, coagulase-negative Staphylococci (CoNS), and Enterococcus spp., whereas Gram-negative bacilli and Candida spp. also deserve attention. It seems crucial, for therapeutic success, to eradicate the microorganisms able to form biofilm after the implantation of endoprostheses. Planning the effective targeted antimicrobial treatment of postoperative infections requires accurate identification of the microorganism responsible for the complications of the procedure. The modern microbiological testing techniques described in this article show the diagnostic options that can be followed to enable the implementation of effective treatment.
Collapse
Affiliation(s)
- Paweł Mikziński
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Karolina Kraus
- Faculty of Medicine, Wroclaw Medical University, Wyb. Pasteura 1, 50-376 Wroclaw, Poland; (P.M.); (K.K.)
| | - Jarosław Widelski
- Department of Pharmacognosy with Medicinal Plants Garden, Lublin Medical University, 20-093 Lublin, Poland;
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Tytusa Chalubinskiego 4, 50-376 Wroclaw, Poland
| |
Collapse
|
5
|
Huang Z, Zhou H, Yuan F, Wu J, Yuan S, Cai K, Tao X, Zhang X, Tang C, Chen J. Investigation on the Osteogenic and Antibacterial Properties of Silicon Nitride-Coated Titanium Dental Implants. ACS Biomater Sci Eng 2024; 10:4059-4072. [PMID: 38748565 DOI: 10.1021/acsbiomaterials.4c00427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The silicon nitride (Si3N4) coating exhibits promising potential in oral applications due to its excellent osteogenic and antibacterial properties. However, a comprehensive investigation of Si3N4 coatings in the context of dental implants is still lacking, especially regarding their corrosion resistance and in vivo performance. In this study, Si3N4 coatings were prepared on a titanium surface using the nonequilibrium magnetron sputtering method. A systematic comparison among the titanium group (Ti), Si3N4 coating group (Si3N4-Ti), and sandblasted and acid-etched-treated titanium group (SLA-Ti) has been conducted in vitro and in vivo. The results showed that the Si3N4-Ti group had the best corrosion resistance and antibacterial properties, which were mainly attributed to the dense structure and chemical activity of Si-O and Si-N bonds on the surface. Furthermore, the Si3N4-Ti group exhibited superior cellular responses in vitro and new bone regeneration and osseointegration in vivo, respectively. In this sense, silicon nitride coating shows promising prospects in the field of dental implantology.
Collapse
Affiliation(s)
- Zhiquan Huang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Heyang Zhou
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Fang Yuan
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jin Wu
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Shanshan Yuan
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Kunzhan Cai
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Xiao Tao
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Xiyu Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| | - Chunbo Tang
- Department of Dental Implantology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing 210029, China
| | - Jian Chen
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Liang W, Zhou C, Zhang H, Bai J, Long H, Jiang B, Liu L, Xia L, Jiang C, Zhang H, Zhao J. Pioneering nanomedicine in orthopedic treatment care: a review of current research and practices. Front Bioeng Biotechnol 2024; 12:1389071. [PMID: 38860139 PMCID: PMC11163052 DOI: 10.3389/fbioe.2024.1389071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
A developing use of nanotechnology in medicine involves using nanoparticles to administer drugs, genes, biologicals, or other materials to targeted cell types, such as cancer cells. In healthcare, nanotechnology has brought about revolutionary changes in the treatment of various medical and surgical conditions, including in orthopedic. Its clinical applications in surgery range from developing surgical instruments and suture materials to enhancing imaging techniques, targeted drug delivery, visualization methods, and wound healing procedures. Notably, nanotechnology plays a significant role in preventing, diagnosing, and treating orthopedic disorders, which is crucial for patients' functional rehabilitation. The integration of nanotechnology improves standards of patient care, fuels research endeavors, facilitates clinical trials, and eventually improves the patient's quality of life. Looking ahead, nanotechnology holds promise for achieving sustained success in numerous surgical disciplines, including orthopedic surgery, in the years to come. This review aims to focus on the application of nanotechnology in orthopedic surgery, highlighting the recent development and future perspective to bridge the bridge for clinical translation.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, Zhejiang, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Lu Liu
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
7
|
Mofazali P, Atapour M, Nakamura M, Galati M, Saboori A. Evaluation of layer-by-layer assembly systems for drug delivery and antimicrobial properties in orthopaedic application. Int J Pharm 2024; 657:124148. [PMID: 38657718 DOI: 10.1016/j.ijpharm.2024.124148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
Layer-by-layer self-assembly systems were developed using monolayer and multilayer carriers to prevent infections and improve bone regeneration of porous Ti-6Al-4V scaffolds. These polymeric carriers incorporated (Gel/Alg-IGF-1 + Chi-Cef) and (4Gel/Alg-IGF-1 + Chi-Cef) on the surface of porous implants produced via electron beam melting (EBM). The results showed that the drug release from multilayer carriers was higher than that of monolayers after 14 days. However, the carrier containing Gel/Alg-IGF-1 + Chi-Cef exhibited more sustained behavior. Cell morphology was characterized, revealing that multilayer carriers had higher cell adhesion than monolayers. Additionally, cell differentiation was significantly greater for (Gel/Alg-IGF-1) + Chi-Cef, and (4Gel/Alg-IGF-1) + Chi-Cef multilayer carriers than for the monolayer groups after 7 days. Notably, the drug dosage was effective and did not interfere, and the cell viability assay showed safe results. Antibacterial evaluations demonstrated that both multilayer carriers had a greater effect on Staphylococcus aureus during treatment. The carriers containing lower alginate had notably less effect than the other studied carriers. This study aimed to test systems for controlling drug release, which will be applied to improve MG63 cell behavior and prevent bacterial accumulation during orthopaedic applications.
Collapse
Affiliation(s)
- Parinaz Mofazali
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Masoud Atapour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Miho Nakamura
- Medicity Research Laboratory, Faculty of Medicine, University of Turku Tykistökatu 6, 20520 Turku, Finland
| | - Manuela Galati
- Integrated Additive Manufacturing Center (IAM), Department of Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Abdollah Saboori
- Integrated Additive Manufacturing Center (IAM), Department of Management and Production Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
8
|
Ali S, Alam BF, Alaithan AA, Alnemer MA, Aljishi M, Al-Jandan B. A Bibliometric analysis of scientific publication on Peri-Implantitis from 1990 to 2020. J Clin Exp Dent 2024; 16:e570-e579. [PMID: 38988748 PMCID: PMC11231884 DOI: 10.4317/jced.61551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 07/12/2024] Open
Abstract
Background Peri-implantitis can involve about 13% of implants and 20% of patients, it has been reported that its incidence increases from about 0.4 to 43.9% in 3-5 years. The purpose was to analyze, using bibliometric indicators, the scientific efficiency of different organization, countries, and researchers that published articles on Peri-implantitis in various dental journals during the period from 1990 to 2020. Material and Methods The search was carried out using Scopus database on publications related to Peri-implantitis from 1990 to 2020 using VOSviewer 1.6.15. The selected search encompassed title of article, citation count, year of publication, authors, institution, country and keywords. Data maps were obtained from VOS viewer based on number of papers, citation count, sources, countries and authors. A density visualization analysis was performed to interpret the data. Bibliometric analysis with reference to citation and documents, authors, journals and keywords was also evaluated. Results An upsurge in number of cumulative papers published on Peri-implantitis from 1990 to 2020 was observed. The top three countries that published most research papers on Peri-implantitis included United States, Sweden and Switzerland respectively. The most productive organization in the field was Blekinge Institute of Technology, Karlskrona, Sweden. The maximum numbers of papers were published in "Clinical Oral Implants Research", while the most published and cited author was Niklaus P. Lang, with 50 papers, 5391 citations with 107.82 average citations per paper. Conclusions There is a tremendous increase in number of publications on peri-implantitis through collaboration of authors, nations and institutes. Among the leading countries from where evidence is originating includes, USA, Sweden and Switzerland. The leading institutes whose work received most citations included, Kristiansand University (Sweden), Blekinge Institute of Technology (Sweden), Trinity college (Dublin) and University Of Bern (Switzerland). A positive trend of highly collaborative work was observed among the institutes and authors on peri-implantitis. Key words:Bibliometric analysis, Peri-Implantitis, Scopus, Dental implants.
Collapse
Affiliation(s)
- Saqib Ali
- Lecturer; Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O Box, 1982, Dammam 31441, Saudi Arabia
| | - Beenish-Fatima Alam
- Associate Professor; Department of Oral Biology, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Ali-Ahmad Alaithan
- Dental Student; College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O Box, 1982, Dammam 31441, Saudi Arabia
| | - Mohammed-Ali Alnemer
- Dental Student; College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O Box, 1982, Dammam 31441, Saudi Arabia
| | - Morooj Aljishi
- Demonstrator; Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O Box, 1982, Dammam 31441, Saudi Arabia
| | - Badr Al-Jandan
- Professor; Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O Box, 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
9
|
Hammami I, Graça MPF, Gavinho SR, Jakka SK, Borges JP, Silva JC, Costa LC. Exploring the Impact of Copper Oxide Substitution on Structure, Morphology, Bioactivity, and Electrical Properties of 45S5 Bioglass ®. Biomimetics (Basel) 2024; 9:213. [PMID: 38667224 PMCID: PMC11048336 DOI: 10.3390/biomimetics9040213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
In recent decades, the requirements for implantable medical devices have increased, but the risks of implant rejection still exist. These issues are primarily associated with poor osseointegration, leading to biofilm formation on the implant surface. This study focuses on addressing these issues by developing a biomaterial for implant coatings. 45S5 bioglass® has been widely used in tissue engineering due to its ability to form a hydroxyapatite layer, ensuring a strong bond between the hard tissue and the bioglass. In this context, 45S5 bioglasses®, modified by the incorporation of different amounts of copper oxide, from 0 to 8 mol%, were synthesized by the melt-quenching technique. The incorporation of Cu ions did not show a significant change in the glass structure. Since the bioglass exhibited the capacity for being polarized, thereby promoting the osseointegration effectiveness, the electrical properties of the prepared samples were studied using the impedance spectroscopy method, in the frequency range of 102-106 Hz and temperature range of 200-400 K. The effects of CuO on charge transport mobility were investigated. Additionally, the bioactivity of the modified bioglasses was evaluated through immersion tests in simulated body fluid. The results revealed the initiation of a Ca-P-rich layer formation on the surface within 24 h, indicating the potential of the bioglasses to enhance the bone regeneration process.
Collapse
Affiliation(s)
- Imen Hammami
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Manuel Pedro Fernandes Graça
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Sílvia Rodrigues Gavinho
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - Suresh Kumar Jakka
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| | - João Paulo Borges
- CENIMAT-I3N and Materials Science Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Jorge Carvalho Silva
- CENIMAT-I3N and Physics Department, NOVA School of Science and Technology, Campus de Caparica, 2829-516 Caparica, Portugal;
| | - Luís Cadillon Costa
- I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (I.H.); (M.P.F.G.); (S.R.G.); (S.K.J.)
| |
Collapse
|
10
|
Onorato F, Masoni V, Gagliardi L, Comba LC, Rivera F. What to Know about Antimicrobial Coatings in Arthroplasty: A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:574. [PMID: 38674220 PMCID: PMC11052078 DOI: 10.3390/medicina60040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Periprosthetic joint infections (PJIs) are one of the most worrying complications orthopedic surgeons could face; thus, methods to prevent them are evolving. Apart from systemic antibiotics, targeted strategies such as local antimicrobial coatings applied to prosthetics have been introduced. This narrative review aims to provide an overview of the main antimicrobial coatings available in arthroplasty orthopedic surgery practice. The search was performed on the PubMed, Web of Science, SCOPUS, and EMBASE databases, focusing on antimicrobial-coated devices used in clinical practice in the arthroplasty world. While silver technology has been widely adopted in the prosthetic oncological field with favorable outcomes, recently, silver associated with hydroxyapatite for cementless fixation, antibiotic-loaded hydrogel coatings, and iodine coatings have all been employed with promising protective results against PJIs. However, challenges persist, with each material having strengths and weaknesses under investigation. Therefore, this narrative review emphasizes that further clinical studies are needed to understand whether antimicrobial coatings can truly revolutionize the field of PJIs.
Collapse
Affiliation(s)
- Francesco Onorato
- Department of Orthopedics and Traumatology, University of Turin, Via Zuretti, 29, 10126 Turin, Italy; (F.O.); (V.M.); (L.G.)
| | - Virginia Masoni
- Department of Orthopedics and Traumatology, University of Turin, Via Zuretti, 29, 10126 Turin, Italy; (F.O.); (V.M.); (L.G.)
| | - Luca Gagliardi
- Department of Orthopedics and Traumatology, University of Turin, Via Zuretti, 29, 10126 Turin, Italy; (F.O.); (V.M.); (L.G.)
- Department of Orthopedics and Traumatology, Ospedale SS Annunziata, ASL CN1, Via Ospedali, 9, 12038 Savigliano, Italy;
| | - Luca Costanzo Comba
- Department of Orthopedics and Traumatology, Ospedale SS Annunziata, ASL CN1, Via Ospedali, 9, 12038 Savigliano, Italy;
| | - Fabrizio Rivera
- Department of Orthopedics and Traumatology, Ospedale SS Annunziata, ASL CN1, Via Ospedali, 9, 12038 Savigliano, Italy;
| |
Collapse
|
11
|
Staehlke S, Barth T, Muench M, Schroeter J, Wendlandt R, Oldorf P, Peters R, Nebe B, Schulz AP. The Impact of Ultrashort Pulse Laser Structuring of Metals on In-Vitro Cell Adhesion of Keratinocytes. J Funct Biomater 2024; 15:34. [PMID: 38391887 PMCID: PMC10889705 DOI: 10.3390/jfb15020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Besides the need for biomaterial surface modification to improve cellular attachment, laser-structuring is favorable for designing a new surface topography for external bone fixator pins or implants. The principle of this study was to observe how bioinspired (deer antler) laser-induced nano-microstructures influenced the adhesion and growth of skin cells. The goal was to create pins that allow the skin to attach to the biomaterial surface in a bacteria-proof manner. Therefore, typical fixator metals, steel, and titanium alloy were structured using ultrashort laser pulses, which resulted in periodical nano- and microstructures. Surface characteristics were investigated using a laser scanning microscope and static water contact angle measurements. In vitro studies with human HaCaT keratinocytes focused on cell adhesion, morphology, actin formation, and growth within 7 days. The study showed that surface functionalization influenced cell attachment, spreading, and proliferation. Micro-dimple clusters on polished bulk metals (DC20) will not hinder viability. Still, they will not promote the initial adhesion and spreading of HaCaTs. In contrast, additional nanostructuring with laser-induced periodic surface structures (LIPSS) promotes cell behavior. DC20 + LIPSS induced enhanced cell attachment with well-spread cell morphology. Thus, the bioinspired structures exhibited a benefit in initial cell adhesion. Laser surface functionalization opens up new possibilities for structuring, and is relevant to developing bioactive implants in regenerative medicine.
Collapse
Affiliation(s)
- Susanne Staehlke
- Institute for Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Tobias Barth
- Laboratory for Biomechanics, BG Hospital Hamburg, 21033 Hamburg, Germany
| | - Matthias Muench
- Laboratory for Biomechanics, BG Hospital Hamburg, 21033 Hamburg, Germany
| | - Joerg Schroeter
- Clinic for Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Robert Wendlandt
- Clinic for Orthopedics and Trauma Surgery, University Hospital Schleswig-Holstein, Campus Lübeck, 23538 Lübeck, Germany
| | - Paul Oldorf
- SLV Mecklenburg-Vorpommern GmbH, 18069 Rostock, Germany
| | - Rigo Peters
- SLV Mecklenburg-Vorpommern GmbH, 18069 Rostock, Germany
| | - Barbara Nebe
- Institute for Cell Biology, University Medical Center Rostock, 18057 Rostock, Germany
| | - Arndt-Peter Schulz
- Laboratory for Biomechanics, BG Hospital Hamburg, 21033 Hamburg, Germany
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, 23562 Lübeck, Germany
| |
Collapse
|
12
|
Cichomski M, Wrońska N, Dudek M, Jędrzejczak A, Lisowska K. Tribological and Antimicrobial Properties of Two-Component Self-Assembled Monolayers Deposited on Ti-Incorporated Carbon Coatings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:422. [PMID: 38255590 PMCID: PMC10817511 DOI: 10.3390/ma17020422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
In this work, Ti-incorporated carbon coatings were used as substrates for modification with one- and two-component self-assembled monolayers of organosilane compounds using a polydimethylsiloxane (PDMS) stamp. This enabled the selective functionalization of surfaces with micrometric dimensions. The topography of the modified surfaces was defined using an atomic force microscope (AFM). The effectiveness of the modification was confirmed by measurements of the water contact angle and surface free energy using the Oss and Good method. Using a T-23 microtribometer with counterparts in the shape of balls that were made of steel, silicon nitride (Si3N4), and zirconium dioxide (ZrO2), the tribological properties of the obtained coatings were tested. These investigations showed that modification by using a PDMS stamp makes it possible to produce two-component ultrathin silane layers on Ti-containing carbon substrates. Two-component organosilane layers had higher hydrophobicity, a lower friction coefficient, and a smaller width of wear tracks than the one-component analogs. It was also found that the work of adhesion of the created surfaces had a significant influence on the value of the friction coefficient and the percentage value of the growth inhibition of bacteria.
Collapse
Affiliation(s)
- Michał Cichomski
- Department of Materials Technology and Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Lodz, Poland
| | - Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (N.W.); (K.L.)
| | - Mariusz Dudek
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland; (M.D.); (A.J.)
| | - Anna Jędrzejczak
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland; (M.D.); (A.J.)
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (N.W.); (K.L.)
| |
Collapse
|
13
|
Khaledi M, Zandi B, Mohsenipour Z. The Effect of Mesenchymal Stem Cells on the Wound Infection. Curr Stem Cell Res Ther 2024; 19:1084-1092. [PMID: 37815189 DOI: 10.2174/011574888x252482230926104342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 10/11/2023]
Abstract
Wound infection often requires a long period of care and an onerous treatment process. Also, the rich environment makes the wound an ideal niche for microbial growth. Stable structures, like biofilm, and drug-resistant strains cause a delay in the healing process, which has become one of the important challenges in wound treatment. Many studies have focused on alternative methods to deal the wound infections. One of the novel and highly potential ways is mesenchymal stromal cells (MSCs). MSCs are mesoderm-derived pluripotent adult stem cells with the capacity for self-renewal, multidirectional differentiation, and immunological control. Also, MSCs have anti-inflammatory and antiapoptotic effects. MScs, as pluripotent stromal cells, differentiate into many mature cells. Also, MSCs produce antimicrobial compounds, such as antimicrobial peptides (AMP), as well as secrete immune modulators, which are two basic features considered in wound healing. Despite the advantages, preserving the structure and activity of MSCs is considered one of the most important points in the treatment. MSCs' antimicrobial effects on microorganisms involved in wound infection have been confirmed in various studies. In this review, we aimed to discuss the antimicrobial and therapeutic applications of MSCs in the infected wound healing processes.
Collapse
Affiliation(s)
- Mansoor Khaledi
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Bita Zandi
- Department of Microbiology, Faculty of advanced science and technology, Tehran medical science, Islamic Azad University, Tehran, Iran
| | - Zeinab Mohsenipour
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Wang M, Zheng Y, Yin C, Dai S, Fan X, Jiang Y, Liu X, Fang J, Yi B, Zhou Q, Wang T. Recent Progress in antibacterial hydrogel coatings for targeting biofilm to prevent orthopedic implant-associated infections. Front Microbiol 2023; 14:1343202. [PMID: 38188584 PMCID: PMC10768665 DOI: 10.3389/fmicb.2023.1343202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
The application of orthopedic implants for bone tissue reconstruction and functional restoration is crucial for patients with severe bone fractures and defects. However, the abiotic nature of orthopedic implants allows bacterial adhesion and colonization, leading to the formation of bacterial biofilms on the implant surface. This can result in implant failure and severe complications such as osteomyelitis and septic arthritis. The emergence of antibiotic-resistant bacteria and the limited efficacy of drugs against biofilms have increased the risk of orthopedic implant-associated infections (OIAI), necessitating the development of alternative therapeutics. In this regard, antibacterial hydrogels based on bacteria repelling, contact killing, drug delivery, or external assistance strategies have been extensively investigated for coating orthopedic implants through surface modification, offering a promising approach to target biofilm formation and prevent OIAI. This review provides an overview of recent advancements in the application of antibacterial hydrogel coatings for preventing OIAI by targeting biofilm formation. The topics covered include: (1) the mechanisms underlying OIAI occurrence and the role of biofilms in exacerbating OIAI development; (2) current strategies to impart anti-biofilm properties to hydrogel coatings and the mechanisms involved in treating OIAI. This article aims to summarize the progress in antibacterial hydrogel coatings for OIAI prevention, providing valuable insights and facilitating the development of prognostic markers for the design of effective antibacterial orthopedic implants.
Collapse
Affiliation(s)
- Mengxuan Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yawen Zheng
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuqiang Yin
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiyou Dai
- Department of Bone Joint and Sports Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Xiao Fan
- Department of Bone Joint and Sports Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Ying Jiang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuequan Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junqiang Fang
- Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Bingcheng Yi
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing and Finishing, Wuhan Textile University, Wuhan, China
| | - Ting Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Ramage G, Borghi E, Rodrigues CF, Kean R, Williams C, Lopez-Ribot J. Our current clinical understanding of Candida biofilms: where are we two decades on? APMIS 2023; 131:636-653. [PMID: 36932821 DOI: 10.1111/apm.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
Clinically we have been aware of the concept of Candida biofilms for many decades, though perhaps without the formal designation. Just over 20 years ago the subject emerged on the back of progress made from the bacterial biofilms, and academic progress pace has continued to mirror the bacterial biofilm community, albeit at a decreased volume. It is apparent that Candida species have a considerable capacity to colonize surfaces and interfaces and form tenacious biofilm structures, either alone or in mixed species communities. From the oral cavity, to the respiratory and genitourinary tracts, wounds, or in and around a plethora of biomedical devices, the scope of these infections is vast. These are highly tolerant to antifungal therapies that has a measurable impact on clinical management. This review aims to provide a comprehensive overight of our current clinical understanding of where these biofilms cause infections, and we discuss existing and emerging antifungal therapies and strategies.
Collapse
Affiliation(s)
- Gordon Ramage
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
| | - Elisa Borghi
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Health Sciences, San Paolo Medical School, Università Degli Studi di Milano, Milan, Italy
| | - Célia Fortuna Rodrigues
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, Gandra, Portugal
| | - Ryan Kean
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Department of Biological Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Craig Williams
- Study Group for Biofilms (ESGB), European Society for Clinical Microbiology and Infectious Disease, Basel, Switzerland
- Microbiology Department, Morecambe Bay NHS Trust, Lancaster, UK
| | - Jose Lopez-Ribot
- Department of Biology and the South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
16
|
Burger L, Conzelmann A, Ulrich S, Mozaffari-Jovein H. Process Development of a Generative Method for Partial and Controlled Integration of Active Substances into Open-Porous Matrix Structures. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6985. [PMID: 37959583 PMCID: PMC10647568 DOI: 10.3390/ma16216985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023]
Abstract
A special generative manufacturing (AM) process was developed for the partial integration of active ingredients into open-porous matrix structures. A mixture of a silver-containing solution as an antibacterial material with an alginate hydrogel as a carrier system was produced as the active ingredient. The AM process developed was used to introduce the active ingredient solution into an open-porous niobium containing a β-titanium matrix structure, thus creating a reproducible active ingredient delivery system. The matrix structure had already been produced in a separate AM process by means of selective laser melting (SLM). The main advantage of this process is the ability to control porosity with high precision. To determine optimal surface conditions for the integration of active ingredients into the matrix structure, different surface conditions of the titanium substrate were tested for their impact on wetting behaviour of a silver-containing hydrogel solution. The solution-substrate contact angle was measured and evaluated to determine the most favourable surface condition. To develop the generative manufacturing process, an FDM printer underwent modifications that permitted partial application of the drug solution to the structure in accordance with the bioprinting principle. The modified process enabled flexible control and programming of both the position and volume of the applied drug. Furthermore, the process was able to fill up to 95% of the titanium matrix body pore volume used. The customised application of drug carriers onto implants as a drug delivery system can be achieved via the developed process, providing an alternative to established methods like dip coating that lack this capability.
Collapse
Affiliation(s)
- Lena Burger
- Institute of Materials Science and Engineering Tuttlingen (IWAT), Campus Tuttlingen, Furtwangen University, 78532 Tuttlingen, Germany
- Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Achim Conzelmann
- Institute of Materials Science and Engineering Tuttlingen (IWAT), Campus Tuttlingen, Furtwangen University, 78532 Tuttlingen, Germany
- Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Sven Ulrich
- Institute of Materials Science and Engineering Tuttlingen (IWAT), Campus Tuttlingen, Furtwangen University, 78532 Tuttlingen, Germany
- Institute for Applied Materials-Applied Materials Physics (IAM-AWP), Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Hadi Mozaffari-Jovein
- Institute of Materials Science and Engineering Tuttlingen (IWAT), Campus Tuttlingen, Furtwangen University, 78532 Tuttlingen, Germany
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
17
|
van Hengel IAJ, van Dijk B, Modaresifar K, Hooning van Duyvenbode JFF, Nurmohamed FRHA, Leeflang MA, Fluit AC, Fratila-Apachitei LE, Apachitei I, Weinans H, Zadpoor AA. In Vivo Prevention of Implant-Associated Infections Caused by Antibiotic-Resistant Bacteria through Biofunctionalization of Additively Manufactured Porous Titanium. J Funct Biomater 2023; 14:520. [PMID: 37888185 PMCID: PMC10607138 DOI: 10.3390/jfb14100520] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
Additively manufactured (AM) porous titanium implants may have an increased risk of implant-associated infection (IAI) due to their huge internal surfaces. However, the same surface, when biofunctionalized, can be used to prevent IAI. Here, we used a rat implant infection model to evaluate the biocompatibility and infection prevention performance of AM porous titanium against bioluminescent methicillin-resistant Staphylococcus aureus (MRSA). The specimens were biofunctionalized with Ag nanoparticles (NPs) using plasma electrolytic oxidation (PEO). Infection was initiated using either intramedullary injection in vivo or with in vitro inoculation of the implant prior to implantation. Nontreated (NT) implants were compared with PEO-treated implants with Ag NPs (PT-Ag), without Ag NPs (PT) and infection without an implant. After 7 days, the bacterial load and bone morphological changes were evaluated. When infection was initiated through in vivo injection, the presence of the implant did not enhance the infection, indicating that this technique may not assess the prevention but rather the treatment of IAIs. Following in vitro inoculation, the bacterial load on the implant and in the peri-implant bony tissue was reduced by over 90% for the PT-Ag implants compared to the PT and NT implants. All infected groups had enhanced osteomyelitis scores compared to the noninfected controls.
Collapse
Affiliation(s)
- Ingmar Aeneas Jan van Hengel
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Bruce van Dijk
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Khashayar Modaresifar
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | | | | | - Marius Alexander Leeflang
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Adriaan Camille Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Lidy Elena Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Iulian Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| | - Harrie Weinans
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Amir Abbas Zadpoor
- Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands (I.A.); (H.W.); (A.A.Z.)
| |
Collapse
|
18
|
Zhang Z, Shao J, Gao Y, Li Y, Liu T, Yang M. Research progress and future prospects of antimicrobial modified polyetheretherketone (PEEK) for the treatment of bone infections. Front Bioeng Biotechnol 2023; 11:1244184. [PMID: 37600311 PMCID: PMC10436002 DOI: 10.3389/fbioe.2023.1244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Infection of the bone is a difficult problem in orthopedic diseases. The key and basis of the treatment of bone infection is the effective control of local infection, as well as the elimination of infection focus and dead cavities. The most commonly used approach utilized for the prevention and management of bone infection is the application of antibiotic bone cement. However, the incorporation of antibiotics into the cement matrix has been found to considerably compromise the mechanical characteristics of bone cement. Moreover, some investigations have indicated that the antibiotic release rate of antibiotic bone cement is relatively low. Polyetheretherketone (PEEK) and its composites have been considered to perfectly address the challenges above, according to its favorable biomechanical characteristics and diverse surface functionalizations. This article provides a comprehensive overview of the recent advancements in the antimicrobial modification of PEEK composites in the field of antibacterial therapy of bone infection. Furthermore, the potential application of PEEK-modified materials in clinical treatment was discussed and predicted.
Collapse
Affiliation(s)
- Ziyi Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Junxing Shao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Gao
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuhuan Li
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Te Liu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Modi Yang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Xiang E, Moran CS, Ivanovski S, Abdal-Hay A. Nanosurface Texturing for Enhancing the Antibacterial Effect of Biodegradable Metal Zinc: Surface Modifications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2022. [PMID: 37446538 DOI: 10.3390/nano13132022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Zinc (Zn) as a biodegradable metal has attracted research interest for bone reconstruction, with the aim of eliminating the need for a second removal surgery and minimizing the implant-to-bone transfer of stress-shielding to maintain bone regeneration. In addition, Zn has been shown to have antibacterial properties, particularly against Gram-negative bacteria, and is often used as a surface coating to inhibit bacterial growth and biofilm formation. However, the antibacterial property of Zn is still suboptimal in part due to low Zn ion release during degradation that has to be further improved in order to meet clinical requirements. This work aims to perform an innovative one-step surface modification using a nitric acid treatment to accelerate Zn ion release by increasing surface roughness, thereby endowing an effective antimicrobial property and biofilm formation inhibition. The antibacterial performance against Staphylococci aureus was evaluated by assessing biofilm formation and adhesion using quantitative assays. The surface roughness of acid-treated Zn (Ra ~ 30 nm) was significantly higher than polished Zn (Ra ~ 3 nm) and corresponded with the marked inhibition of bacterial biofilm, and this is likely due to the increased surface contact area and Zn ion accumulation. Overall, surface modification due to nitric acid etching appears to be an effective technique that can produce unique morphological surface structures and enhance the antibacterial properties of biodegradable Zn-based materials, thus increasing the translation potential toward multiple biomedical applications.
Collapse
Affiliation(s)
- Enmao Xiang
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Corey S Moran
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Sašo Ivanovski
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane 4006, Australia
| | - Abdalla Abdal-Hay
- School of Dentistry, The University of Queensland, Brisbane 4006, Australia
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, Brisbane 4006, Australia
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 85325, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, Fifth Settlement, Cairo 11835, Egypt
| |
Collapse
|
20
|
Ghribi N, Guay-Bégin AA, Bilem I, Chevallier P, Auger FA, Ruel J, Laroche G. Peptide grafting on intraosseous transcutaneous amputation prostheses to promote sealing with skin cells: Potential to limit infections. J Biomed Mater Res A 2023; 111:688-700. [PMID: 36680491 DOI: 10.1002/jbm.a.37505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
The long-term success of intraosseous transcutaneous amputation prostheses (ITAPs) mainly relies on dermal attachment of skin cells to the implant. Otherwise, bacteria can easily penetrate through the interface between the implant and the skin. Therefore, infection at this implant/skin interface remains a significant complication in orthopedic surgeries in which these prostheses are required. Two main strategies were investigated to prevent these potential infection problems which consist in either establishing a strong sealing at the skin/implant interface or on eradicating infections by killing bacteria. In this work, two adhesion peptides, either KRGDS or KYIGSR and one antimicrobial peptide, Magainin 2 (Mag 2), were covalently grafted via phosphonate anchor arms to the surface of the Ti6Al4V ELI (extra low interstitials) material, commonly used to manufacture ITAPs. X-ray photoelectron spectroscopy, contact angle, and confocal microscopy analyses enabled to validate the covalent and stable grafting of these three peptides. Dermal fibroblasts cultures on bare Ti6Al4V ELI surfaces and functionalized ones displayed a good cell adhesion and proliferation on all samples. However, cell spreading and viability appeared to be improved on grafted surfaces, especially for those conjugated with KRGDS and Mag 2. Moreover, the dermal sheet attachment, was significantly higher on surfaces functionalized with Mag 2 as compared to the other surfaces. Therefore, the surface functionalization with the antimicrobial peptide Mag 2 seems to be the best approach for the targeted application, as it could play a dual role, inducing a strong skin adhesion while limiting infections on Ti6Al4V ELI materials.
Collapse
Affiliation(s)
- Nawel Ghribi
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| | - Andrée-Anne Guay-Bégin
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| | - Ibrahim Bilem
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| | - Pascale Chevallier
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| | - François A Auger
- Centre de Recherche du CHU de Québec-Université Laval, LOEX, Québec, Québec, Canada
| | - Jean Ruel
- Département de Génie mécanique, Université Laval, Québec, Québec, Canada
| | - Gaétan Laroche
- Laboratoire d'ingénierie de surface (LIS), Centre de Recherche du CHU de Québec-Université Laval, Hôpital Saint-François d'Assise, Québec, Québec, Canada
- Département de génie des mines, de la métallurgie et des matériaux, Centre de recherche sur les Matériaux Avancés, Université Laval, Québec, Québec, Canada
| |
Collapse
|
21
|
Kalia VC, Patel SKS, Lee JK. Exploiting Polyhydroxyalkanoates for Biomedical Applications. Polymers (Basel) 2023; 15:polym15081937. [PMID: 37112084 PMCID: PMC10144186 DOI: 10.3390/polym15081937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, PHAs have unique features that make them ideal for medical devices, such as easy sterilization without damaging the material itself and easy dissolution following use. PHAs can replace traditional plastic materials used in the biomedical sector. PHAs can be used in a variety of biomedical applications, including medical devices, implants, drug delivery devices, wound dressings, artificial ligaments and tendons, and bone grafts. Unlike plastics, PHAs are not manufactured from petroleum products or fossil fuels and are, therefore, environment-friendly. In this review, a recent overview of applications of PHAs with special emphasis on biomedical sectors, including drug delivery, wound healing, tissue engineering, and biocontrols, are discussed.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
22
|
Chen X, Zhou J, Qian Y, Zhao L. Antibacterial coatings on orthopedic implants. Mater Today Bio 2023; 19:100586. [PMID: 36896412 PMCID: PMC9988588 DOI: 10.1016/j.mtbio.2023.100586] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
With the aging of population and the rapid improvement of public health and medical level in recent years, people have had an increasing demand for orthopedic implants. However, premature implant failure and postoperative complications frequently occur due to implant-related infections, which not only increase the social and economic burden, but also greatly affect the patient's quality of life, finally restraining the clinical use of orthopedic implants. Antibacterial coatings, as an effective strategy to solve the above problems, have been extensively studied and motivated the development of novel strategies to optimize the implant. In this paper, a variety of antibacterial coatings recently developed for orthopedic implants were briefly reviewed, with the focus on the synergistic multi-mechanism antibacterial coatings, multi-functional antibacterial coatings, and smart antibacterial coatings that are more potential for clinical use, thereby providing theoretical references for further fabrication of novel and high-performance coatings satisfying the complex clinical needs.
Collapse
Affiliation(s)
- Xionggang Chen
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Jianhong Zhou
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - Yu Qian
- Institute of Physics & Optoelectronics Technology, Baoji Advanced Titanium Alloys and Functional Coatings Cooperative Innovation Center, Baoji University of Arts and Sciences, Baoji, 721016, PR China
| | - LingZhou Zhao
- Department of Stomatology, Air Force Medical Center, The Fourth Military Medical University, Beijing, 100142, PR China
| |
Collapse
|
23
|
Querebillo CJ. A Review on Nano Ti-Based Oxides for Dark and Photocatalysis: From Photoinduced Processes to Bioimplant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:982. [PMID: 36985872 PMCID: PMC10058723 DOI: 10.3390/nano13060982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in the advancement of many different fields, such as clean energy technologies, catalysis, disinfection, and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in the last decades in terms of the understanding of its underlying principles and improvement of its efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here, an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light. It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This is followed by improvements in their photocatalytic efficiency due to their nanomorphology and states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2 nanomaterials and their interesting properties and physics is also included. Progress in residual catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of disinfection and bioimplant application are given.
Collapse
Affiliation(s)
- Christine Joy Querebillo
- Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069 Dresden, Germany
| |
Collapse
|
24
|
Toirac B, Aguilera-Correa JJ, Mediero A, Esteban J, Jiménez-Morales A. The Antimicrobial Activity of Micron-Thin Sol-Gel Films Loaded with Linezolid and Cefoxitin for Local Prevention of Orthopedic Prosthesis-Related Infections. Gels 2023; 9:gels9030176. [PMID: 36975625 PMCID: PMC10048042 DOI: 10.3390/gels9030176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Orthopedic prosthesis-related infections (OPRI) are an essential health concern. OPRI prevention is a priority and a preferred option over dealing with poor prognosis and high-cost treatments. Micron-thin sol-gel films have been noted for a continuous and effective local delivery system. This study aimed to perform a comprehensive in vitro evaluation of a novel hybrid organic-inorganic sol-gel coating developed from a mixture of organopolysiloxanes and organophosphite and loaded with different concentrations of linezolid and/or cefoxitin. The kinetics of degradation and antibiotics release from the coatings were measured. The inhibition of biofilm formation of the coatings against Staphylococcus aureus, S. epidermidis, and Escherichia coli strains was studied, as well as the cell viability and proliferation of MC3T3-E1 osteoblasts. The microbiological assays demonstrated that sol-gel coatings inhibited the biofilm formation of the evaluated Staphylococcus species; however, no inhibition of the E. coli strain was achieved. A synergistic effect of the coating loaded with both antibiotics was observed against S. aureus. The cell studies showed that the sol-gels did not compromise cell viability and proliferation. In conclusion, these coatings represent an innovative therapeutic strategy with potential clinical use to prevent staphylococcal OPRI.
Collapse
Affiliation(s)
- Beatriz Toirac
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Aranzazu Mediero
- Bone and Joint Unit, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Díaz, UAM, 28040 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Antonia Jiménez-Morales
- Materials Science and Engineering and Chemical Engineering Department, Carlos III University of Madrid, 28911 Madrid, Spain
- CIBERINFEC-Consorcio Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas, 28029 Madrid, Spain
- Alvaro Alonso Barba Technological Institute of Chemistry and Materials, Carlos III University of Madrid, 28911 Madrid, Spain
| |
Collapse
|
25
|
The Potential of Surface-Immobilized Antimicrobial Peptides for the Enhancement of Orthopaedic Medical Devices: A Review. Antibiotics (Basel) 2023; 12:antibiotics12020211. [PMID: 36830122 PMCID: PMC9952162 DOI: 10.3390/antibiotics12020211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Due to the well-known phenomenon of antibiotic resistance, there is a constant need for antibiotics with novel mechanisms and different targets respect to those currently in use. In this regard, the antimicrobial peptides (AMPs) seem very promising by virtue of their bactericidal action, based on membrane permeabilization of susceptible microbes. Thanks to this feature, AMPs have a broad activity spectrum, including antibiotic-resistant strains, and microbial biofilms. Additionally, several AMPs display properties that can help tissue regeneration. A possible interesting field of application for AMPs is the development of antimicrobial coatings for implantable medical devices (e.g., orthopaedic prostheses) to prevent device-related infection. In this review, we will take note of the state of the art of AMP-based coatings for orthopaedic prostheses. We will review the most recent studies by focusing on covalently linked AMPs to titanium, their antimicrobial efficacy and plausible mode of action, and cytocompatibility. We will try to extrapolate some general rules for structure-activity (orientation, density) relationships, in order to identify the most suitable physical and chemical features of peptide candidates, and to optimize the coupling strategies to obtain antimicrobial surfaces with improved biological performance.
Collapse
|
26
|
Surface Design Strategies of Polymeric Biomedical Implants for Antibacterial Properties. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023. [DOI: 10.1016/j.cobme.2023.100448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
27
|
A silver iodide nanoparticle containing plant extract-based gelatinous composite for antibacterial coating applications. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Bioengineering Approaches to Fight against Orthopedic Biomaterials Related-Infections. Int J Mol Sci 2022; 23:ijms231911658. [PMID: 36232956 PMCID: PMC9569980 DOI: 10.3390/ijms231911658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
One of the most serious complications following the implantation of orthopedic biomaterials is the development of infection. Orthopedic implant-related infections do not only entail clinical problems and patient suffering, but also cause a burden on healthcare care systems. Additionally, the ageing of the world population, in particular in developed countries, has led to an increase in the population above 60 years. This is a significantly vulnerable population segment insofar as biomaterials use is concerned. Implanted materials are highly susceptible to bacterial and fungal colonization and the consequent infection. These microorganisms are often opportunistic, taking advantage of the weakening of the body defenses at the implant surface–tissue interface to attach to tissues or implant surfaces, instigating biofilm formation and subsequent development of infection. The establishment of biofilm leads to tissue destruction, systemic dissemination of the pathogen, and dysfunction of the implant/bone joint, leading to implant failure. Moreover, the contaminated implant can be a reservoir for infection of the surrounding tissue where microorganisms are protected. Therefore, the biofilm increases the pathogenesis of infection since that structure offers protection against host defenses and antimicrobial therapies. Additionally, the rapid emergence of bacterial strains resistant to antibiotics prompted the development of new alternative approaches to prevent and control implant-related infections. Several concepts and approaches have been developed to obtain biomaterials endowed with anti-infective properties. In this review, several anti-infective strategies based on biomaterial engineering are described and discussed in terms of design and fabrication, mechanisms of action, benefits, and drawbacks for preventing and treating orthopaedic biomaterials-related infections.
Collapse
|
29
|
Morco SR, Williams DL, Jensen BD, Bowden AE. Structural biofilm resistance of carbon-infiltrated carbon nanotube coatings. J Orthop Res 2022; 40:1953-1960. [PMID: 34727381 DOI: 10.1002/jor.25206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 02/04/2023]
Abstract
Periprosthetic joint infection (PJI) is a devastating complication of orthopedic implant surgeries, such as total knee and hip arthroplasties. Treatment requires additional surgeries because antibiotics have limited efficacy due to biofilm formation and resistant bacterial strains such as methicillin-resistant Staphylococcus aureus (MRSA). A non-pharmaceutical approach is needed, and examples of this are found in nature; dragonfly and cicada wings are antibacterial because of their nanopillar surface structure rather than their chemistry. Carbon-infiltrated carbon nanotube (CICNT) surfaces exhibit a similar nanopillar structure, and have been shown to facilitate osseointegration, and it is postulated that they might provide a structurally-derived resistance to bacterial proliferation and biofilm formation. The objective of this study was to test the biofilm resistance of CICNT coatings. Two types of CICNT were produced: a vertically aligned CNT forest on a silicon substrate using a layer of iron as the catalyst (CICNT-Si) and a random-oriented CNT forest on stainless steel (SS) substrate using the substrate as the catalyst (CICNT-SS). These were tested against SS and carbon controls. After 48 h in an MRSA biofilm reactor, samples demonstrated that both types of CICNT coatings significantly (p < 0.0001) reduced MRSA biofilm formation by 60%-80%. Morphologically, biofilm presence on both types of CICNT was also significantly reduced. Clinical Significance: Results suggest that a CICNT surface modification could be suitable and advantageous for medical devices susceptible to MRSA cell attachment and biofilm proliferation, particularly orthopedic implants.
Collapse
Affiliation(s)
- Stephanie R Morco
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA
| | - Dustin L Williams
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Brian D Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA
| | - Anton E Bowden
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA
| |
Collapse
|
30
|
Coraça-Huber DC, Steixner SJM, Najman S, Stojanovic S, Finze R, Rimashevskiy D, Saginova D, Barbeck M, Schnettler R. Lyophilized Human Bone Allograft as an Antibiotic Carrier: An In Vitro and In Vivo Study. Antibiotics (Basel) 2022; 11:antibiotics11070969. [PMID: 35884224 PMCID: PMC9312243 DOI: 10.3390/antibiotics11070969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Antibiotics delivered from implanted bone substitute materials (BSM) can potentially be used to prevent acute infections and biofilm formation, providing high concentrations of antibiotics at the surgical site without systemic toxicity. In addition, BSM should allow osteoconductivity supporting bone healing without further surgery. Promising results have been achieved using lyophilized bone allografts mixed with antibiotics. Methods: In this study specially prepared human bone allografts were evaluated as an antibiotic carrier in vitro and in vivo. The efficacy of different antibiotic-impregnated bone allografts was measured by drug release tests in vitro and in vivo and bacterial susceptibility tests using four bacterial species usually responsible for implant-associated infections. Results: The loading procedures of allograft bone substitutes with antibiotics were successful. Some of the antibiotic concentrations exceeded the MIC90 for up to 7 days in vitro and for up to 72 h in vivo. The susceptibility tests showed that S. epidermidis ATCC 12228 was the most susceptible bacterial species in comparison to the other strains tested for all antibiotic substances. Vancomycin and rifampicin showed the best results against standard and patient-isolated strains in vitro. In vivo, new bone formation was comparable in all study groups including the control group without antibiotic loading. Conclusions: Human bone allografts showed the capacity to act as customized loaded antibiotic carriers to prevent acute infections and should be considered in the management of bone infections in combination with systemic antimicrobial therapy.
Collapse
Affiliation(s)
- Débora C. Coraça-Huber
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, Room 204, 6020 Innsbruck, Austria;
- Correspondence: ; Tel.: +43-512-9003-71697; Fax: +43-512-9003-73691
| | - Stephan J. M. Steixner
- Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), Experimental Orthopaedics, University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Peter-Mayr-Strasse 4b, Room 204, 6020 Innsbruck, Austria;
| | - Stevo Najman
- Department of Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica, 18108 Niš, Serbia; (S.N.); (S.S.)
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica, 18108 Niš, Serbia
| | - Sanja Stojanovic
- Department of Cell and Tissue Engineering, Scientific Research Center for Biomedicine, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica, 18108 Niš, Serbia; (S.N.); (S.S.)
- Department of Biology and Human Genetics, Faculty of Medicine, University of Niš, Blvd. Dr Zorana Djindjica, 18108 Niš, Serbia
| | - Ronja Finze
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany; (R.F.); (R.S.)
| | - Denis Rimashevskiy
- Department of Traumatology and Orthopedics, Peoples Friendship University of Russia, Miklukho-Maklaya Street 6, 117198 Moscow, Russia;
| | - Dina Saginova
- National Scientific Center of Traumatology and Orthopedics Named after Academician N. D. Batpenov, 15a Abylay khan Ave., Nur-Sultan 01000, Kazakhstan;
| | - Mike Barbeck
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, 18057 Rostock, Germany;
- BerlinAnalytix GmbH, 12109 Berlin, Germany
| | - Reinhard Schnettler
- University Medical Centre, Justus Liebig University of Giessen, 35390 Giessen, Germany; (R.F.); (R.S.)
| |
Collapse
|
31
|
Du X, Lee SS, Blugan G, Ferguson SJ. Silicon Nitride as a Biomedical Material: An Overview. Int J Mol Sci 2022; 23:ijms23126551. [PMID: 35742996 PMCID: PMC9224221 DOI: 10.3390/ijms23126551] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023] Open
Abstract
Silicon nitride possesses a variety of excellent properties that can be specifically designed and manufactured for different medical applications. On the one hand, silicon nitride is known to have good mechanical properties, such as high strength and fracture toughness. On the other hand, the uniqueness of the osteogenic/antibacterial dualism of silicon nitride makes it a favorable bioceramic for implants. The surface of silicon nitride can simultaneously inhibit the proliferation of bacteria while supporting the physiological activities of eukaryotic cells and promoting the healing of bone tissue. There are hardly any biomaterials that possess all these properties concurrently. Although silicon nitride has been intensively studied as a biomedical material for years, there is a paucity of comprehensive data on its properties and medical applications. To provide a comprehensive understanding of this potential cornerstone material of the medical field, this review presents scientific and technical data on silicon nitride, including its mechanical properties, osteogenic behavior, and antibacterial capabilities. In addition, this paper highlights the current and potential medical use of silicon nitride and explains the bottlenecks that need to be addressed, as well as possible solutions.
Collapse
Affiliation(s)
- Xiaoyu Du
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.S.L.); (S.J.F.)
- Correspondence:
| | - Seunghun S. Lee
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.S.L.); (S.J.F.)
| | - Gurdial Blugan
- Laboratory for High Performance Ceramics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
| | - Stephen J. Ferguson
- Institute for Biomechanics, ETH Zurich, 8093 Zurich, Switzerland; (S.S.L.); (S.J.F.)
| |
Collapse
|
32
|
Szczęsny G, Kopec M, Politis DJ, Kowalewski ZL, Łazarski A, Szolc T. A Review on Biomaterials for Orthopaedic Surgery and Traumatology: From Past to Present. MATERIALS 2022; 15:ma15103622. [PMID: 35629649 PMCID: PMC9145924 DOI: 10.3390/ma15103622] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023]
Abstract
The principal features essential for the success of an orthopaedic implant are its shape, dimensional accuracy, and adequate mechanical properties. Unlike other manufactured products, chemical stability and toxicity are of increased importance due to the need for biocompatibility over an implants life which could span several years. Thus, the combination of mechanical and biological properties determines the clinical usefulness of biomaterials in orthopaedic and musculoskeletal trauma surgery. Materials commonly used for these applications include stainless steel, cobalt-chromium and titanium alloys, ceramics, polyethylene, and poly(methyl methacrylate) (PMMA) bone cement. This study reviews the properties of commonly used materials and the advantages and disadvantages of each, with special emphasis on the sensitivity, toxicity, irritancy, and possible mutagenic and teratogenic capabilities. In addition, the production and final finishing processes of implants are discussed. Finally, potential directions for future implant development are discussed, with an emphasis on developing advanced personalised implants, according to a patient’s stature and physical requirements.
Collapse
Affiliation(s)
- Grzegorz Szczęsny
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Mateusz Kopec
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
- Correspondence:
| | - Denis J. Politis
- Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 20537, Cyprus;
| | - Zbigniew L. Kowalewski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| | - Adam Łazarski
- Department of Orthopaedic Surgery and Traumatology, Medical University, 4 Lindleya Str., 02-005 Warsaw, Poland; (G.S.); (A.Ł.)
| | - Tomasz Szolc
- Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego Str., 02-106 Warsaw, Poland; (Z.L.K.); (T.S.)
| |
Collapse
|
33
|
Sacchetti F, Kilian R, Muratori F, Cherix S, Foschi L, Morganti R, Campanacci DA, Capanna R. The Performances of Conventional Titanium and Silver-Coated Megaprostheses in Non-oncological and Post-oncological Patients: An Analysis of Infection Failures in 142 Patients. THE ARCHIVES OF BONE AND JOINT SURGERY 2022; 10:439-446. [PMID: 35755787 PMCID: PMC9194708 DOI: 10.22038/abjs.2021.58351.2889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/11/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Megaprostheses are one of the preferred choices of reconstruction after tumor resection. Periprosthetic joint infections are one of the most serious complications of joint prostheses surgeries. In this study, our aim was to analyze the efficacy of silver-coated megaprostheses in reducing the risk of prosthesis-related infection. METHODS One hundred forty-two patients who had undergone implantation of a mega-endoprosthesis for non-neoplastic or post-neoplastic conditions were included in this retrospective study. The end-point of the survival analysis was the prosthesis failure due to infection. RESULTS Thirty-eight patients had undergone implantation of a silver-coated megaprosthesis and 104 patients a megaprosthesis without silver coating. The survival analysis showed an overall infection-free survival rate of 82.3% at five years and 61.9% at 10 years. Silver-coated prostheses had an HR of 0.72 (95% CI: 0.26-2.05; P=0.54). CONCLUSION Implantation of a silver-coated mega-prosthesis in non-oncological patients did not significantly reduce the risk of prosthesis-related infection.
Collapse
Affiliation(s)
| | - Raphael Kilian
- Department of Ophtalmology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Francesco Muratori
- Department of Oncology and Surgery at Robotic Address of the Hospital Careggi University of Florence, Firenze FI, Italy
| | - Stephane Cherix
- Department of Orthopaedic and Trauma Surgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lorenzo Foschi
- Department of Oncology and Surgery at Robotic Address of the Hospital Careggi University of Florence, Firenze FI, Italy
| | - Riccardo Morganti
- Department of Orthopaedic and Trauma Surgery, University of Pisa, Italy
| | - Domenico Andrea Campanacci
- Department of Oncology and Surgery at Robotic Address of the Hospital Careggi University of Florence, Firenze FI, Italy
| | - Rodolfo Capanna
- Department of Orthopaedic and Trauma Surgery, University of Pisa, Italy
| |
Collapse
|
34
|
Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery. Medicina (B Aires) 2022; 58:medicina58040519. [PMID: 35454358 PMCID: PMC9029955 DOI: 10.3390/medicina58040519] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
The prevention of surgical site infections is directly related to the minimization of surgical invasiveness, and is in line with the concept of minimally invasive spine therapy (MIST). In recent years, the incidence of postoperative infections has been increasing due to the increased use of spinal implant surgery in patients at high risk of infection, including the elderly and easily infected hosts, the limitations of poor bone marrow transfer of antibiotics, and the potential for contamination of surgical gloves and instruments. Thus, the development of antimicrobial implants in orthopedic and spinal surgery is becoming more and more popular, and implants with proven antimicrobial, safety, and osteoconductive properties (i.e., silver, iodine, antibiotics) in vitro, in vivo, and in clinical trials have become available for clinical use. We have developed silver-containing hydroxyapatite (Ag-HA)-coated implants to prevent post-operative infection, and increase bone fusion capacity, and have successfully commercialized antibacterial implants for hip prostheses and spinal interbody cages. This narrative review overviews the present status of available surface coating technologies and materials; describes how the antimicrobial, safety, and biocompatibility (osteoconductivity) of Ag-HA-coated implants have been demonstrated for commercialization; and reviews the clinical use of antimicrobial implants in orthopedic and spinal surgery, including Ag-HA-coated implants that we have developed.
Collapse
|
35
|
Lex JR, Koucheki R, Stavropoulos NA, Michele JD, Toor JS, Tsoi K, Ferguson PC, Turcotte RE, Papagelopoulos PJ. Megaprosthesis anti-bacterial coatings: A comprehensive translational review. Acta Biomater 2022; 140:136-148. [PMID: 34879295 DOI: 10.1016/j.actbio.2021.11.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022]
Abstract
Periprosthetic joint infections (PJI) are catastrophic complications for patients with implanted megaprostheses and pose significant challenges in the management of orthopaedic oncology patients. Despite various preventative strategies, with the increasing rate of implanted orthopaedic prostheses, the number of PJIs may be increasing. PJIs are associated with a high rate of amputation. Therefore, novel strategies to combat bacterial colonization and biofilm formation are required. A promising strategy is the utilization of anti-bacterial coatings on megaprosthetic implants. In this translational review, a brief overview of the mechanism of bacterial colonization of implants and biofilm formation will be provided, followed by a discussion and classification of major anti-bacterial coatings currently in use and development. In addition, current in vitro outcomes, clinical significance, economic importance, evolutionary perspectives, and future directions of anti-bacterial coatings will also be discussed. Megaprosthetic anti-bacterial coating strategies will help reduce infection rates following the implantation of megaprostheses and would positively impact sarcoma care. STATEMENT OF SIGNIFICANCE: This review highlights the clinical challenges and a multitude of potential solutions to combating peri-prosthetic join infections in megaprotheses using anti-bacterial coatings. Reducing infection rates following the implantation of megaprostheses would have a major impact on sarcoma care and major trauma surgeries that require reconstruction of large skeletal defects.
Collapse
Affiliation(s)
- Johnathan R Lex
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Robert Koucheki
- Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | | | - Joseph Di Michele
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Jay S Toor
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | - Kim Tsoi
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada; University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Peter C Ferguson
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada; University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, Canada
| | - Robert E Turcotte
- Division of Orthopedic Surgery, McGill University Health Centre, Montreal, Canada
| | - Panayiotis J Papagelopoulos
- 1st Department of Orthopaedic Surgery, School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
36
|
Popa M, Cursaru A, Popa V, Munteanu A, Șerban B, Crețu B, Iordache S, Smarandache C, Orban C, Cîrstoiu C. Understanding orthopedic infections through a different perspective: Microcalorimetry growth curves. Exp Ther Med 2022; 23:263. [DOI: 10.3892/etm.2022.11189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/05/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Mihnea Popa
- Department of Orthopedics and Traumatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Adrian Cursaru
- Department of Orthopedics and Traumatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vlad Popa
- ‘Ilie Murgulescu’ Institute of Physical Chemistry, 060021 Bucharest, Romania
| | - Alexandru Munteanu
- Department of Medical Microbiology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Șerban
- Department of Orthopedics and Traumatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Bogdan Crețu
- Department of Orthopedics and Traumatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sergiu Iordache
- Department of Orthopedics and Traumatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Catalin Smarandache
- Department of General Surgery, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Carmen Orban
- Department of Anaesthesia and Intensive Care, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cătălin Cîrstoiu
- Department of Orthopedics and Traumatology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| |
Collapse
|
37
|
Abstract
The opportunity of decreasing the development of biofilm on the implant surface is one of the biggest research problems. It is connected with the existing prevention of microorganism hyperplasia. The application of numerous modifications is concerned with surface treatments leading to minimizing bacterial colonization. In the case of non-use antibacterial therapy, this leads to tissue infection. It can lead to a decreased opportunity to fight infection using antibiotherapy. One way is to decrease the increasing biofilm application which requires a method of modification. These techniques ensure properties like homogeneity or repeatability. The structure and chemical composition are changed with methods like CVD (Chemical Vapor Deposition), PVD (Physical Vapor Deposition), sol–gel, or ALD (Atomic Layer Deposition). Antibacterial properties of metals are connected with their impact on proteins and the nuclear proliferation of fibroblasts, causing improvement in biocompatibility and also growth corrosion resistance, and the decline of biofilm adhesion. The prevention of biofilm with medicines and antibiotics is a crowded-out treatment. Traditional methods of preventing biofilm are based on compounds that kill or inhibit the growth of the microbes but at the same time lead to frequent development of resistance to antibiotics. This review summarizes the current knowledge of reducing and preventing the creation of biofilm.
Collapse
|
38
|
Du C, Wang C, Zhang T, Zheng L. Antibacterial Performance of Zr-BMG, Stainless Steel, and Titanium Alloy with Laser-Induced Periodic Surface Structures. ACS APPLIED BIO MATERIALS 2022; 5:272-284. [PMID: 35014808 DOI: 10.1021/acsabm.1c01075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A laser-induced periodic surface structure (LIPSS) was shown to have antibacterial adhesion properties in previous research. In this study, the antibacterial performance of LIPSS on traditional biometals (stainless steel and titanium alloy) and a potential biometal (zirconium-based bulk metallic glass, Zr-BMG) was investigated. A femtosecond laser was used to fabricate LIPSS on the specimens. Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) were used to examine the antibacterial behavior of the LIPSS samples. The bacterial adhesion force on each specimen was evaluated by an atomic force microscopy (AFM) cell probe. The results showed that the LIPSS on all three metal surfaces significantly lowered antibacterial adhesion compared to polished metal specimens. E. coli demonstrated a higher adhesion force but a lower surface adhesion rate compared to S. aureus. The Zr-BMG specimen with LIPSS has multiple antimicrobial mechanisms (physical antiadhesion and chemical elimination), while the traditional biometals (316L and TC4) mainly offer physical antiadhesion. Finally, an in vitro/vivo study showed that specimens with LIPSS surfaces did not significantly affect the biocompatibility of the specimens. This study reveals that the Zr-BMG specimen with femtosecond laser-processed LIPSS is an ideal choice for achieving an antibacterial surface.
Collapse
Affiliation(s)
- Cezhi Du
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Zhang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lijuan Zheng
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
39
|
Graphene for Antimicrobial and Coating Application. Int J Mol Sci 2022; 23:ijms23010499. [PMID: 35008923 PMCID: PMC8745297 DOI: 10.3390/ijms23010499] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022] Open
Abstract
Graphene is a versatile compound with several outstanding properties, providing a combination of impressive surface area, high strength, thermal and electrical properties, with a wide array of functionalization possibilities. This review aims to present an introduction of graphene and presents a comprehensive up-to-date review of graphene as an antimicrobial and coating application in medicine and dentistry. Available articles on graphene for biomedical applications were reviewed from January 1957 to August 2020) using MEDLINE/PubMed, Web of Science, and ScienceDirect. The selected articles were included in this study. Extensive research on graphene in several fields exists. However, the available literature on graphene-based coatings in dentistry and medical implant technology is limited. Graphene exhibits high biocompatibility, corrosion prevention, antimicrobial properties to prevent the colonization of bacteria. Graphene coatings enhance adhesion of cells, osteogenic differentiation, and promote antibacterial activity to parts of titanium unaffected by the thermal treatment. Furthermore, the graphene layer can improve the surface properties of implants which can be used for biomedical applications. Hence, graphene and its derivatives may hold the key for the next revolution in dental and medical technology.
Collapse
|
40
|
Kaliaraj GS, Siva T, Ramadoss A. Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance - a review. J Mater Chem B 2021; 9:9433-9460. [PMID: 34755756 DOI: 10.1039/d1tb01301g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In modern days, the usage of trauma fixation devices has significantly increased due to sports injury, age-related issues, accidents, and revision surgery purposes. Numerous materials such as stainless steel, titanium, Co-Cr alloy, polymers, and ceramics have been used to replace the missing or defective parts of the human body. After implantation, body fluids (Na+, K+, and Cl-), protein, and blood cells interact with the surface of metallic implants, which favours the release of ions from the metallic surface to surrounding body tissues, leading to a hypersensitive reaction. Body pH, temperature, and interaction of immune cells also cause metal ion leaching and lose host cell interaction and effective mineralization for better durability. Moreover, microbial invasion is another important crisis, which produces extracellular compounds onto the biomaterial surface through which it escapes from the antimicrobial agents. To enhance the performance of materials by improving mechanical, corrosion resistance, antimicrobial, and biocompatibility properties, surface modification is a prerequisite method in which chemical vapour deposition (CVD), physical vapour deposition (PVD), sol-gel method, and electrochemical deposition are generally involved. The properties of bioceramics such as chemical inertness, bioactivity, biocompatibility, and corrosion protection make them most suitable for the surface functionalization of metallic implants. To the best of our knowledge, very limited literature is available to discuss the interaction of body proteins, pH, and temperature onto bioceramic coatings. Hence, the present review focuses on the corrosion behaviour of different ceramic composite coating materials with different conditions. This review initially briefs the properties and surface chemistry of metal implants and the need for surface modifications by different deposition techniques. Further, mechanical, cytotoxicity, antimicrobial property, and electrochemical behaviour of ceramics and metal nitride coatings are discussed. Finally, future perspectives of coatings are outlined for biomedical applications.
Collapse
Affiliation(s)
- Gobi Saravanan Kaliaraj
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| | - T Siva
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| |
Collapse
|
41
|
Visan AI, Ristoscu C, Popescu-Pelin G, Sopronyi M, Matei CE, Socol G, Chifiriuc MC, Bleotu C, Grossin D, Brouillet F, Grill SL, Bertrand G, Zgura I, Cristescu R, Mihailescu IN. Composite Drug Delivery System Based on Amorphous Calcium Phosphate-Chitosan: An Efficient Antimicrobial Platform for Extended Release of Tetracycline. Pharmaceutics 2021; 13:pharmaceutics13101659. [PMID: 34683952 PMCID: PMC8537227 DOI: 10.3390/pharmaceutics13101659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
One major warning emerging during the first worldwide combat against healthcare-associated infections concerns the key role of the surface in the storage and transfer of the virus. Our study is based on the laser coating of surfaces with an inorganic/organic composite mixture of amorphous calcium phosphate–chitosan–tetracycline that is able to fight against infectious agents, but also capable of preserving its activity for a prolonged time, up to several days. The extended release in simulated fluids of the composite mixture containing the drug (tetracycline) was demonstrated by mass loss and UV–VIS investigations. The drug release profile from our composite coatings proceeds via two stages: an initial burst release (during the first hours), followed by a slower evolution active for the next 72 h, and probably more. Optimized coatings strongly inhibit the growth of tested bacteria (Enterococcus faecalis and Escherichia coli), while the drug incorporation has no impact on the in vitro composite’s cytotoxicity, the coatings proving an excellent biocompatibility sustaining the normal development of MG63 bone-like cells. One may, therefore, consider that the proposed coatings’ composition can open the prospective of a new generation of antimicrobial coatings for implants, but also for nosocomial and other large area contamination prevention.
Collapse
Affiliation(s)
- Anita Ioana Visan
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (C.R.); (G.P.-P.); (M.S.); (C.E.M.); (G.S.); (R.C.)
- Correspondence: (A.I.V.); (I.N.M.); Tel.: +40-21-457-44-91 (I.N.M.)
| | - Carmen Ristoscu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (C.R.); (G.P.-P.); (M.S.); (C.E.M.); (G.S.); (R.C.)
| | - Gianina Popescu-Pelin
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (C.R.); (G.P.-P.); (M.S.); (C.E.M.); (G.S.); (R.C.)
| | - Mihai Sopronyi
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (C.R.); (G.P.-P.); (M.S.); (C.E.M.); (G.S.); (R.C.)
| | - Consuela Elena Matei
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (C.R.); (G.P.-P.); (M.S.); (C.E.M.); (G.S.); (R.C.)
| | - Gabriel Socol
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (C.R.); (G.P.-P.); (M.S.); (C.E.M.); (G.S.); (R.C.)
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
- Earth, Environmental and Life Sciences Division, Research Institute of the University of Bucharest, 050567 Bucharest, Romania;
| | - Coralia Bleotu
- Earth, Environmental and Life Sciences Division, Research Institute of the University of Bucharest, 050567 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave, Sect. 3, PO 77, P.O. Box 201, Bucharest 030304, Romania
| | - David Grossin
- CIRIMAT, CNRS, INP-ENSIACET, Université de Toulouse, 4 allée Emile Monso, 31030 Toulouse, France; (D.G.); (G.B.)
| | - Fabien Brouillet
- CIRIMAT, CNRS, Université Toulouse 3-Paul Sabatier, 35 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (F.B.); (S.L.G.)
| | - Sylvain Le Grill
- CIRIMAT, CNRS, Université Toulouse 3-Paul Sabatier, 35 Chemin des Maraîchers, CEDEX 9, 31062 Toulouse, France; (F.B.); (S.L.G.)
| | - Ghislaine Bertrand
- CIRIMAT, CNRS, INP-ENSIACET, Université de Toulouse, 4 allée Emile Monso, 31030 Toulouse, France; (D.G.); (G.B.)
| | - Irina Zgura
- National Institute of Materials Physics, 077125 Magurele, Romania;
| | - Rodica Cristescu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (C.R.); (G.P.-P.); (M.S.); (C.E.M.); (G.S.); (R.C.)
| | - Ion N. Mihailescu
- National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania; (C.R.); (G.P.-P.); (M.S.); (C.E.M.); (G.S.); (R.C.)
- Correspondence: (A.I.V.); (I.N.M.); Tel.: +40-21-457-44-91 (I.N.M.)
| |
Collapse
|
42
|
Recent Strategies to Combat Infections from Biofilm-Forming Bacteria on Orthopaedic Implants. Int J Mol Sci 2021; 22:ijms221910243. [PMID: 34638591 PMCID: PMC8549706 DOI: 10.3390/ijms221910243] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
Biofilm-related implant infections (BRII) are a disastrous complication of both elective and trauma orthopaedic surgery and occur when an implant becomes colonised by bacteria. The definitive treatment to eradicate the infections once a biofilm has established is surgical excision of the implant and thorough local debridement, but this carries a significant socioeconomic cost, the outcomes for the patient are often poor, and there is a significant risk of recurrence. Due to the large volumes of surgical procedures performed annually involving medical device implantation, both in orthopaedic surgery and healthcare in general, and with the incidence of implant-related infection being as high as 5%, interventions to prevent and treat BRII are a major focus of research. As such, innovation is progressing at a very fast pace; the aim of this study is to review the latest interventions for the prevention and treatment of BRII, with a particular focus on implant-related approaches.
Collapse
|
43
|
Zhang Y, Wu H, Yuan B, Zhu X, Zhang K, Zhang X. Enhanced osteogenic activity and antibacterial performance in vitro of polyetheretherketone by plasma-induced graft polymerization of acrylic acid and incorporation of zinc ions. J Mater Chem B 2021; 9:7506-7515. [PMID: 34551053 DOI: 10.1039/d1tb01349a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Polyetheretherketone (PEEK) has been widely used in the fields of orthopedics and trauma, but weak osteointegration and bacterial infection affect its long-term stability and repair effects. Surface modification is an effective way to improve the osteogenic and antibacterial activity of PEEK implants. In the present study, a layer of acrylic acid (AA) polymer coating loaded with zinc ions (Zn2+) was constructed on the surface of PEEK (PEEK-AA-Zn) using a strategy of combining plasma-induced graft polymerization with a chemical immersion technique. Successful construction of the AA coating remarkably enhanced the hydrophilicity of PEEK, and effectively loaded and released Zn2+. In vitro cell culture using MC3T3-E1 preosteoblasts showed that the Zn2+ released from PEEK-AA-Zn promoted cell proliferation and elevated gene expression levels of alkaline phosphatase (ALP), osteocalcin (OCN) and bone sialoprotein (BSP). Antibacterial tests revealed that PEEK-AA-Zn efficiently inhibited the proliferation of Staphylococcus aureus (S. aureus). These results suggest that the combined method of graft polymerization and ion incorporation endows PEEK with excellent osteogenic and antibacterial activity, which provides a wide range of possibilities for developing PEEK implants with multifunctional properties for bone tissue repair.
Collapse
Affiliation(s)
- Yuxiang Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Hongfeng Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Bo Yuan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Kai Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
44
|
Construction and Characterizations of Antibacterial Surfaces Based on Self-Assembled Monolayer of Antimicrobial Peptides (Pac-525) Derivatives on Gold. COATINGS 2021. [DOI: 10.3390/coatings11091014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Infection that is related to implanted biomaterials is a serious issue in the clinic. Antimicrobial peptides (AMPs) have been considered as an ideal alternative to traditional antibiotic drugs, for the treatment of infections, while some problems, such as aggregation and protein hydrolysis, are still the dominant concerns that compromise their antimicrobial efficiency in vivo. Methods: In this study, antimicrobial peptides underwent self-assembly on gold substrates, forming good antibacterial surfaces, with stable antibacterial behavior. The antimicrobial ability of AMPs grafted on the surfaces, with or without glycine spaces or a primer layer, was evaluated. Results: Specifically, three Pac-525 derivatives, namely, Ac-CGn-KWRRWVRWI-NH2 (n = 0, 2, or 6) were covalently grafted onto gold substrates via the self-assembling process for inhibiting the growth of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Furthermore, the alkanethiols HS(CH)10SH were firstly self-assembled into monolayers, as a primer layer (SAM-SH) for the secondary self-assembly of Pac-525 derivatives, to effectively enhance the bactericidal performance of the grafted AMPs. The -(CH)10-S-S-G6Pac derivative was highly effective against S. aureus and E. coli, and reduced the viable amount of E. coli and S. aureus to 0.4% and 33.2%, respectively, after 24 h of contact. In addition, the immobilized AMPs showed good biocompatibility, promoting bone marrow stem cell proliferation. Conclusion: the self-assembled monolayers of the Pac-525 derivatives have great potential as a novel therapeutic method for the treatment of implanted biomaterial infections.
Collapse
|
45
|
Review on Surface Treatment for Implant Infection via Gentamicin and Antibiotic Releasing Coatings. COATINGS 2021. [DOI: 10.3390/coatings11081006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Surface treatment of metallic implants plays a crucial role in orthopedics and orthodontics. Metallic implants produce side-effects such as physical, chemical/electro-chemical irritations, oligodynamic/catalytic and carcinogenic effects. These effects cause bacterial infections and account for huge medical expenses. Treatment for these infections comprises repeated radical debridement, replacement of the implant device and intravenous or oral injection antibiotics. Infection is due to the presence of bacteria in the patient or the surrounding environment. The antibiotic-based medication prevents prophylaxis against bacterial colonization, which is an emphatic method that may otherwise be catastrophic to a patient. Therefore, preventive measures are essential. A coating process was developed with its drug infusion and effect opposing biofilms. Modification in the medical implant surface reduces the adhesion of bacterial and biofilms, the reason behind bacterial attachment. Other polymer-based and nanoparticle-based carriers are used to resolve implant infections. Therefore, using an implant coating is a better approach to prevent infection due to biofilm.
Collapse
|
46
|
Wong Wei Kang N, Tan WPJ, Phua YMC, Min ATG, Naidu K, Umapathysivam K, Smitham PJ. Intramedullary nail: the past, present and the future - a review exploring where the future may lead us. Orthop Rev (Pavia) 2021; 13:25546. [PMID: 34745479 PMCID: PMC8567815 DOI: 10.52965/001c.25546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Intramedullary nails (IMNs) are the current gold standard treatment for long bone diaphyseal and selected metaphyseal fractures. The design of IMNs has undergone many revisions since its invention in the 16th century, with a dramatic increase in novel designs in recent years aiming to further improve intramedullary fixation techniques. AIMS To map the evolution of IMNs in orthopedic surgery, discuss the limitations and complications of current IMNs and identify novel IMNs that may influence future design innovations. METHODS We undertook a scoping review on the status of orthopedic IMNs by reviewing Google Scholar with the following keywords. Publications and patents selected for retrieval were initially assessed on the title and abstract by five independent reviewers. 52 papers were retrieved for complete text examination, and secondary references were checked from these papers. The results were discussed within the research group and consensus was obtained describing novel IMNs. RESULTS Novel IMN designs include growth factor and/or antimicrobial coatings targeting fracture healing and perioperative infection risk, respectively; minimally invasive expandable IMNs to avoid the need for interlocking screws; and novel materials such as carbon fiber for their theoretically superior biomechanical properties and avoidance of artifact on CT and MRI imaging. CONCLUSION The novel IMNs proposed in recent years collectively aim to improve intramedullary fixation techniques by reducing operative time and radiation exposure, improving fracture healing or monitoring bone cancer progression. However, more research and development are necessary to solve these complex problems.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peter Jonathan Smitham
- Adelaide Medical School; Department of Orthopedics and Trauma, Royal Adelaide Hospital & Discipline of Orthopedics & Trauma, The University of Adelaide
| |
Collapse
|
47
|
Strömdahl AC, Ignatowicz L, Petruk G, Butrym M, Wasserstrom S, Schmidtchen A, Puthia M. Peptide-coated polyurethane material reduces wound infection and inflammation. Acta Biomater 2021; 128:314-331. [PMID: 33951491 DOI: 10.1016/j.actbio.2021.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 01/24/2023]
Abstract
There is an urgent need for treatments that not only reduce bacterial infection that occurs during wounding but that also target the accompanying excessive inflammatory response. TCP-25, a thrombin-derived antibacterial peptide, scavenges toll-like receptor agonists such as endotoxins and lipoteichoic acid and prevents toll-like receptor-4 dimerization to reduce infection-related inflammation in vivo. Using a combination of biophysical, cellular, and microbiological assays followed by experimental studies in mouse and pig models, we show that TCP-25, when delivered from a polyurethane (PU) material, exerts anti-infective and anti-inflammatory effects in vitro and in vivo. Specifically, TCP-25 killed the common wound pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, in both in vitro and in vivo assays. Furthermore, after its release from the PU material, the peptide retained its capacity to induce its helical conformation upon endotoxin interaction, yielding reduced activation of NF-κB in THP-1 reporter cells, and diminished accumulation of inflammatory cells and subsequent release of IL-6 and TNF-α in subcutaneous implant models in vivo. Moreover, in a porcine partial thickness wound infection model, TCP-25 treated infection with S. aureus, and reduced the concomitant inflammatory response. Taken together, these findings demonstrate a combined antibacterial and anti-inflammatory effect of TCP-25 delivered from PU in vitro, and in mouse and porcine in vivo models of localized infection-inflammation. STATEMENT OF SIGNIFICANCE: Local wound infections may result in systemic complications and can be difficult to treat due to increasing antimicrobial resistance. Surgical site infections and biomaterial-related infections present a major challenge for hospitals. In recent years, various antimicrobial coatings have been developed for infection prevention and current concepts focus on various matrices with added anti-infective components, including various antibiotics and antiseptics. We have developed a dual action wound dressing concept where the host defense peptide TCP-25, when delivered from a PU material, targets both bacterial infection and the accompanying inflammation. TCP-25 PU showed efficacy in in vitro and experimental wound models in mouse and minipigs.
Collapse
|
48
|
Liu S, Wang Q, Liu W, Tang Y, Liu J, Zhang H, Liu X, Liu J, Yang J, Zhang LC, Wang Y, Xu J, Lu W, Wang L. Multi-scale hybrid modified coatings on titanium implants for non-cytotoxicity and antibacterial properties. NANOSCALE 2021; 13:10587-10599. [PMID: 34105578 DOI: 10.1039/d1nr02459k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Titanium and its alloys are among the widely used materials in the biomedical field, but they have poor wear resistance and antibacterial properties. In the present study, anodization, photo-reduction, and spin-coating technologies were integrated to prepare a hybrid modified coating for bio-inert titanium implants, having excellent comprehensive performance. The surface roughness of Ti-35Nb-2Ta-3Zr was specifically optimized by surface modification leading to improved wear resistance. Ag ions are still detectable after 28 days of submersion in saline. The antibacterial rate of the composite coating group reaches 100% by plate counting due to the antibacterial mechanism of direct and indirect contact. Both bacteria morphology and fluorescence staining experiments confirm these results. Besides, no cytotoxicity was detected in our fabricated implants during the CCK-8 assay. Accordingly, fabrication of hybrid modified coatings on Ti-35Nb-2Ta-3Zr is an effective strategy for infection and cytotoxicity prevention. These hybrid modified coatings can be regarded as promising multifunctional biomaterials.
Collapse
Affiliation(s)
- Shifeng Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Qingge Wang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China and State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
| | - Wei Liu
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Yujin Tang
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Jia Liu
- Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| | - Haifeng Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jingxian Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Junlin Yang
- Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Lai-Chang Zhang
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, Perth, WA 6027, Australia
| | - Yan Wang
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an, 710055, China
| | - Jing Xu
- Department of Pediatric Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Weijie Lu
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China.
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai, 200240, China. and Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China.
| |
Collapse
|
49
|
Nawaz A, Ur Rehman MA. Chitosan/gelatin‐based bioactive and antibacterial coatings deposited via electrophoretic deposition. J Appl Polym Sci 2021. [DOI: 10.1002/app.50220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Aneeqa Nawaz
- Department of Materials Science and Engineering Institute of Space Technology Islamabad Islamabad Pakistan
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering Institute of Space Technology Islamabad Islamabad Pakistan
| |
Collapse
|
50
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|