1
|
Dahrendorff J, Currier G, Uddin M. Leveraging DNA methylation to predict treatment response in major depressive disorder: A critical review. Am J Med Genet B Neuropsychiatr Genet 2024; 195:e32985. [PMID: 38650309 DOI: 10.1002/ajmg.b.32985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Major depressive disorder (MDD) is a debilitating and prevalent mental disorder with a high disease burden. Despite a wide array of different treatment options, many patients do not respond to initial treatment attempts. Selection of the most appropriate treatment remains a significant clinical challenge in psychiatry, highlighting the need for the development of biomarkers with predictive utility. Recently, the epigenetic modification DNA methylation (DNAm) has emerged to be of great interest as a potential predictor of MDD treatment outcomes. Here, we review efforts to date that seek to identify DNAm signatures associated with treatment response in individuals with MDD. Searches were conducted in the databases PubMed, Scopus, and Web of Science with the concepts and keywords MDD, DNAm, antidepressants, psychotherapy, cognitive behavior therapy, electroconvulsive therapy, transcranial magnetic stimulation, and brain stimulation therapies. We identified 32 studies implicating DNAm patterns associated with MDD treatment outcomes. The majority of studies (N = 25) are focused on selected target genes exploring treatment outcomes in pharmacological treatments (N = 22) with a few studies assessing treatment response to electroconvulsive therapy (N = 3). Additionally, there are few genome-scale efforts (N = 7) to characterize DNAm patterns associated with treatment outcomes. There is a relative dearth of studies investigating DNAm patterns in relation to psychotherapy, electroconvulsive therapy, or transcranial magnetic stimulation; importantly, most existing studies have limited sample sizes. Given the heterogeneity in both methods and results of studies to date, there is a need for additional studies before existing findings can inform clinical decisions.
Collapse
Affiliation(s)
- Jan Dahrendorff
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Glenn Currier
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, Florida, USA
| | - Monica Uddin
- Genomics Program, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
2
|
Pires CS, da Rocha MJ, Presa MH, Zuge NP, Kuntz NEB, Godoi B, Bortolatto CF, Brüning CA. N-(3-((3-(trifluoromethyl)phenyl)selanyl)prop-2-yn-1-yl) benzamide induces antidepressant-like effect in mice: involvement of the serotonergic system. Psychopharmacology (Berl) 2024; 241:1663-1678. [PMID: 38635075 DOI: 10.1007/s00213-024-06588-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
RATIONALE Major Depressive Disorder (MDD) significantly impairs the quality of life for those affected. While the exact causes of MDD are not fully understood, the deficit of monoamines, especially serotonin and noradrenaline, is widely accepted. Resistance to long-term treatments and adverse effects are often observed, highlighting the need for new pharmacological therapies. Synthetic organic compounds containing selenium have exhibited pharmacological properties, including potential antidepressant effects. OBJECTIVE To evaluate the antidepressant-like effect of N-(3-((3-(trifluoromethyl)phenyl)selenyl)prop-2-yn-1-yl) benzamide (CF3SePB) in mice and the involvement of the serotonergic and noradrenergic systems. METHODS Male Swiss mice were treated with CF3SePB (1-50 mg/kg, i.g.) and 30 min later the forced swimming test (FST) or tail suspension test (TST) was performed. To investigate the involvement of the serotonergic and noradrenergic systems in the antidepressant-like effect of CF3SePB, mice were pre-treated with p-CPA (a 5-HT depletor, 100 mg/kg, i.p.) or the receptor antagonists WAY100635 (0.1 mg/kg, s.c., a 5-HT1A receptor antagonist), ketanserin (1 mg/kg, i.p., a 5-HT2A/2C receptor antagonist), ondansetron (1 mg/kg, i.p., a 5-HT3 receptor antagonist), GR110838 (0.1 mg/kg, i.p., a 5-HT4 receptor antagonist), prazosin (1 mg/kg, i.p., an α1-adrenergic receptor antagonist), yohimbine (1 mg/kg, i.p., an α2-adrenergic receptor antagonist) and propranolol (2 mg/kg, i.p., a non-selective beta-adrenergic receptor antagonist) at specific times before CF3SePB (50 mg/kg, i.g.), and after 30 min of CF3SePB administration the FST was performed. RESULTS CF3SePB showed an antidepressant-like effect in both FST and TST and this effect was related to the modulation of the serotonergic system, specially the 5-HT1A and 5-HT3 receptors. None of the noradrenergic antagonists prevented the antidepressant-like effect of CF3SePB. The compound exhibited a low potential for inducing acute toxicity in adult female Swiss mice. CONCLUSION This study pointed a new compound with antidepressant-like effect, and it could be considered for the development of new antidepressants.
Collapse
Affiliation(s)
- Camila Simões Pires
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Marcia Juciele da Rocha
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Marcelo Heinemann Presa
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Narryman Pinto Zuge
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil
| | - Natália Emanuele Biolosor Kuntz
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo,, Cerro Largo, RS, Brazil
| | - Benhur Godoi
- Nucleus of Synthesis and Application of Organic and Inorganic Compounds (NUSAACOI), Federal University of Fronteira Sul (UFFS), Campus Cerro Largo,, Cerro Largo, RS, Brazil
| | - Cristiani Folharini Bortolatto
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| | - César Augusto Brüning
- Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), Capão do Leão Campus, Pelotas, RS, 96010-900, Brazil.
| |
Collapse
|
3
|
Maia JM, de Oliveira BSA, Branco LGS, Soriano RN. Therapeutic potential of psychedelics: History, advancements, and unexplored frontiers. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110951. [PMID: 38307161 DOI: 10.1016/j.pnpbp.2024.110951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Psychedelics (serotonergic hallucinogens) are psychoactive substances that can alter perception and mood, and affect cognitive functions. These substances activate 5-HT2A receptors and may exert therapeutic effects. Some of the disorders for which psychedelic-assisted therapy have been studied include depression, addiction, anxiety and post-traumatic stress disorder. Despite the increasing number of studies reporting clinical effectiveness, with fewer negative symptoms and, additionally, minimal side effects, questions remain to be explored in the field of psychedelic medicine. Although progress has been achieved, there is still little understanding of the relationship among human brain and the modulation induced by these drugs. The present article aimed to describe, review and highlight the most promising findings in the literature regarding the (putative) therapeutic effects of psychedelics.
Collapse
Affiliation(s)
- Juliana Marino Maia
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | | | - Luiz G S Branco
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-904, Brazil; Department of Physiology, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-900, Brazil.
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35020-360, Brazil
| |
Collapse
|
4
|
Qin Y, Zhao J, Yang Y, Liu Y, Xiang H, Tong J, Huang C. Association of HTR1A Gene Polymorphisms with Efficacy and Plasma Concentrations of Atypical Antipsychotics in the Treatment of Male Patients with Schizophrenia. Neuropsychiatr Dis Treat 2024; 20:185-193. [PMID: 38312123 PMCID: PMC10838100 DOI: 10.2147/ndt.s449096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 02/06/2024] Open
Abstract
Purpose We investigate the association of HTR1A rs10042486 and rs6295 with efficacy and plasma concentrations of atypical antipsychotics in the treatment of male patients with schizophrenia. Patients and Methods A total of 140 male patients diagnosed with schizophrenia who were treated with any single atypical antipsychotic between May 2020 and May 2022 were retrospectively included. Clinical symptoms were assessed using Positive and Negative Syndrome Scale (PANSS). All SNPs were typed using Agena Bioscience MassARRAY DNA mass spectrometry. Plasma concentrations of antipsychotics at week 3, 6 and 12 after treatment commence were analyzed using mass spectrometry. Results For efficacy of atypical antipsychotics, we observed no significant difference between HTR1A rs10042486, rs6295 and positive symptom improvement, where the patients with heterozygous mutant at the rs10042486 and rs6295 locus were superior to those with wild-type or homozygous mutant genotypes on negative symptom improvement, especially at 12 weeks of follow-up when the difference between genotypes at the rs6295 locus have statistical significance (P = 0.037). For plasma concentration, we found that quetiapine plasma concentrations were significantly lower in patients with mutation-heterozygous types than in wild-type and homozygous mutation genotypes at week 6. In contrast, higher plasma concentrations were found for mutant heterozygous than wild genotypes in the risperidone monotherapy analysis, and the difference among genotypes at the rs6295 locus was statistically significant at 6 weeks of follow-up. Conclusion The assessment of the correlation of genetic polymorphisms of HTR1A rs6295 and rs10042486 in male patients with schizophrenia with the monitoring of therapeutic drug concentrations and therapeutic efficacy provides a constructive foundation for the clinical individualization of antipsychotics, such as quetiapine and risperidone, which is important in selecting the dose of the medication and improving the improvement of negative symptoms.
Collapse
Affiliation(s)
- Ying Qin
- Department of Psychiatry, the Second People’s Hospital of Guizhou Province, Guiyang, 550004, People’s Republic of China
| | - Jingwen Zhao
- Department of Psychiatry, the Second People’s Hospital of Guizhou Province, Guiyang, 550004, People’s Republic of China
| | - Yong Yang
- Department of Psychiatry, the Second People’s Hospital of Guizhou Province, Guiyang, 550004, People’s Republic of China
| | - Yanjing Liu
- Department of Psychiatry, the Second People’s Hospital of Guizhou Province, Guiyang, 550004, People’s Republic of China
| | - Hui Xiang
- Department of Psychology, Guizhou Provincial People’s Hospital, Guiyang, 550002, People’s Republic of China
| | - Jingfeng Tong
- Shanghai Conlight Medical Laboratory, Co, Ltd, Shanghai, 200032, People’s Republic of China
| | - Chengchen Huang
- Shanghai Conlight Medical Laboratory, Co, Ltd, Shanghai, 200032, People’s Republic of China
| |
Collapse
|
5
|
Kadiyala S, Bhamidipati P, Malla RR. Neuroplasticity: Pathophysiology and Role in Major Depressive Disorder. Crit Rev Oncog 2024; 29:19-32. [PMID: 38989735 DOI: 10.1615/critrevoncog.2024051197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Neuroplasticity is characterized by the brain's ability to change its activity in response to extrinsic and intrinsic factors and is thought to be the mechanism behind all brain functions. Neuroplasticity causes structural and functional changes on a molecular level, specifically the growth of different regions in the brain and changes in synaptic and post-synaptic activities. The four types of neuroplasticity are homologous area adaption, compensatory masquerade, cross-modal reassignment, and map expansion. All of these help the brain work around injuries or new information inputs. In addition to baseline physical functions, neuroplasticity is thought to be the basis of emotional and mental regulations and the impairment of it can cause various mental illnesses. Concurrently, these mental illnesses further the damage of synaptic plasticity in the brain. Major depressive disorder (MDD) is one of the most common mental illnesses. It is affected by and accelerates the impairment of neuroplasticity. It is characterized by a chronically depressed state of mind that can impact the patient's daily life, including work life and interests. This review will focus on highlighting the physiological aspects of the disease and the role of neuroplasticity in the pathogenesis and pathology of the disorder. Moreover, the role of monoamine regulation and ketamine uptake will be discussed in terms of their antidepressant effects on the outcomes of MDD.
Collapse
Affiliation(s)
| | - Priyamvada Bhamidipati
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, School of Science, Gandhi Institute of Technology and Management (GITAM) (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India; Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be University), Visakhapatnam-530045, Andhra Pradesh, India
| |
Collapse
|
6
|
Xie CT, Tan ML, Li YW, Chen QL, Shen YJ, Liu ZH. Chronic exposure to environmentally relevant concentrations of carbamazepine interferes with anxiety response of adult female zebrafish through GABA /5-HT pathway and HPI axis. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109574. [PMID: 36781090 DOI: 10.1016/j.cbpc.2023.109574] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Carbamazepine (CBZ) is one of the widely distributed pharmaceutical residues in aquatic environments, yet few researches have addressed its chronic effect on the anxiety of fish, and the mechanisms possibly involved remained elusive. In this study, adult female zebrafish (Danio rerio) were exposed to environmental relevant concentrations of CBZ (CBZ-low, 10 μg/L; CBZ-high, 100 μg/L) for 28 days. After exposure, CBZ-high didn't affect the anxiety of fish. However, the onset time to the higher half of the tank was delayed and the total duration in the lower half of the tank was increased in CBZ-low fish, suggesting an increased anxiety. Further investigation indicated that CBZ-low significantly decreased the gamma-aminobutyric acid (GABA) level in the brain, while increased the serotonin (5-HT) level in the brain and cortisol level in plasma. Accordingly, the mRNA levels of genes in GABA (gad2, abat, gabrb2, gabrg2, gria1a and slc12a2) pathway and HPI (crha, actha, pc1 and pc2) axis were also altered. Despite the upregulation of tph2 was consistent with increased 5-HT level in the brain, significantly downregulated htr1aa and htr1b may indicate attenuated 5-HT potency. Although CBZ-high significantly reduced GABA level in the brain and increased cortisol level in plasma, the effects were dramatically alleviated than that of CBZ-low. Consistently, the expression of genes in HPI (crha, actha, pc1 and pc2) axis and GABA (gad2 and abat) pathway were also altered by CBZ-high, probably due to inconspicuous anxiety response of CBZ-high. Briefly, our data suggested that low concentration of CBZ disrupted zebrafish anxiety by interfering with neurotransmission and endocrine system, thereby bringing about adverse ecological consequences.
Collapse
Affiliation(s)
- Cheng-Ting Xie
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Mei-Ling Tan
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ying-Wen Li
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qi-Liang Chen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yan-Jun Shen
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhi-Hao Liu
- Chongqing Key Laboratory of Animal Biology, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
7
|
Penjišević JZ, Šukalović VB, Dukic-Stefanovic S, Deuther-Conrad W, Andrić DB, Kostić-Rajačić SV. Synthesis of novel 5-HT1A arylpiperazine ligands: Binding data and computer-aided analysis of pharmacological potency. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
8
|
Jha P, Chaturvedi S, Bhat R, Jain N, Mishra AK. Insights of ligand binding in modeled h5-HT 1A receptor: homology modeling, docking, MM-GBSA, screening and molecular dynamics. J Biomol Struct Dyn 2022; 40:11625-11637. [PMID: 34387135 DOI: 10.1080/07391102.2021.1961865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pharmacologically characterized receptor subtype of the serotonin family, the 5HT1A receptor is implicated in the pathophysiology and treatment of depression and anxiety-related disorders. Being the most extensively targeted receptor for developing novel antidepressants and anxiolytics, a near-ideal theoretical model can aid in high-throughput screening of promising drug candidates. However, the design of potential drug candidates suffers owing to a lack of complete structural information. In this work, homology models of 5-HT1A receptor are generated using two distinct alignments (CW and PSTA) and model building methods (KB and EB). The developed models are validated for virtual screening using a ligand dataset of agonists and antagonists. The best-suited model was efficient in discriminating agonist/antagonist binding. Correlation plots between pKi and docking (R2agonist≥ 0.6, R2antagonist≥ 0.7) and MM-GBSA dG bind values (R2agonist≥ 0.5, R2antagonist≥ 0.7) revealed optimum corroboration between in vitro and in silico outcomes, which further suggested the usefulness of the developed model for the design of high-affinity probes for the neurological disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Immunology, Genetics and Pathology, Medical Radiation Science, Rudbeck Laboratory, Uppsala, Sweden.,Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India.,Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Ruchika Bhat
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.,SCFBio, Indian Institute of Technology Delhi, New Delhi, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
9
|
Tasker NR, Wipf P. A Short Synthesis of Ergot Alkaloids and Evaluation of the 5-HT 1/2 Receptor Selectivity of Lysergols and Isolysergols. Org Lett 2022; 24:7255-7259. [PMID: 35993579 DOI: 10.1021/acs.orglett.2c02569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Key transformations in a four-step synthesis of the ergot alkaloid scaffold include a novel cesium carbonate-mediated hydrogen autotransfer alkylation to generate the C(3)-C(4) bond and an intramolecular Heck reaction that directly establishes the C(9)-C(10) alkene of methyl lysergate. An ester reduction and a streamlined experimental procedure establish a readily scalable, expedient total synthesis of all four stereoisomers of lysergol and isolysergol, including the previously unknown (-)-lysergol, for pharmacological evaluation at 5-HT1A and 5HT2A,B,C receptors. A bicyclic scaffold is also characterized for the first time in the intramolecular Heck coupling.
Collapse
Affiliation(s)
- Nikhil R Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
A comprehensive review on bioavailability, safety and antidepressant potential of natural bioactive components from tea. Food Res Int 2022; 158:111540. [DOI: 10.1016/j.foodres.2022.111540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/12/2022] [Accepted: 06/18/2022] [Indexed: 11/22/2022]
|
11
|
Li M, Chen X, Cao N, lv R, Gu B. Improvement of urethral dysfunction by 5‐HT
1A
receptor agonist NLX‐112 in diabetic rats. Neurourol Urodyn 2022; 41:1528-1538. [PMID: 35870169 DOI: 10.1002/nau.24993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/30/2022] [Accepted: 06/04/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Mingzhuo Li
- Department of Urology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Xun Chen
- Department of Urology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Nailong Cao
- Department of Urology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Rong lv
- Department of Urology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Baojun Gu
- Department of Urology Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| |
Collapse
|
12
|
Jiang YL, Wang XS, Li XB, Liu A, Fan QY, Yang L, Feng B, Zhang K, Lu L, Qi JY, Yang F, Song DK, Wu YM, Zhao MG, Liu SB. Tanshinone IIA improves contextual fear- and anxiety-like behaviors in mice via the CREB/BDNF/TrkB signaling pathway. Phytother Res 2022; 36:3932-3948. [PMID: 35801985 DOI: 10.1002/ptr.7540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/11/2022]
Abstract
Posttraumatic stress disorder (PTSD) is one of the most common psychiatric diseases, which is characterized by the typical symptoms such as re-experience, avoidance, and hyperarousal. However, there are few drugs for PTSD treatment. In this study, conditioned fear and single-prolonged stress were employed to establish PTSD mouse model, and we investigated the effects of Tanshinone IIA (TanIIA), a natural product isolated from traditional Chinese herbal Salvia miltiorrhiza, as well as the underlying mechanisms in mice. The results showed that the double stress exposure induced obvious PTSD-like symptoms, and TanIIA administration significantly decreased freezing time in contextual fear test and relieved anxiety-like behavior in open field and elevated plus maze tests. Moreover, TanIIA increased the spine density and upregulated synaptic plasticity-related proteins as well as activated CREB/BDNF/TrkB signaling pathway in the hippocampus. Blockage of CREB remarkably abolished the effects of TanIIA in PTSD model mice and reversed the upregulations of p-CREB, BDNF, TrkB, and synaptic plasticity-related protein induced by TanIIA. The molecular docking simulation indicated that TanIIA could interact with the CREB-binding protein. These findings indicate that TanIIA ameliorates PTSD-like behaviors in mice by activating the CREB/BDNF/TrkB pathway, which provides a basis for PTSD treatment.
Collapse
Affiliation(s)
- Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qing-Yu Fan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jing-Yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Fan Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Beecher K, Wang J, Chehrehasa F, Depoortere R, Varney MA, Newman-Tancredi A, Bartlett SE, Belmer A. Dissecting the contribution of 5-HT1A auto- and heteroreceptors in sucrose overconsumption in mice. Biomed Pharmacother 2022; 148:112699. [DOI: 10.1016/j.biopha.2022.112699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 01/04/2023] Open
|
14
|
Design, synthesis, and behavioral evaluation of dual-acting compounds as phosphodiesterase type 10A (PDE10A) inhibitors and serotonin ligands targeting neuropsychiatric symptoms in dementia. Eur J Med Chem 2022; 233:114218. [DOI: 10.1016/j.ejmech.2022.114218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 01/21/2023]
|
15
|
Zaręba P, Śliwa P, Satała G, Zajdel P, Latacz G, Jaśkowska J. New N-aryl-N′-aryl-/(thio)ureido-/sulfamoylamino-derivatives of alkyl/alkylcarbamoyl piperazines: Effect of structural modifications on selectivity over 5-HT1A receptor. Eur J Med Chem 2022; 235:114319. [DOI: 10.1016/j.ejmech.2022.114319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
16
|
Samaddar S, Purkayastha S, Diallo S, Tantry SJ, Schroder R, Chanthrakumar P, Flory MJ, Banerjee P. The G Protein-Coupled Serotonin 1A Receptor Augments Protein Kinase Cε-Mediated Neurogenesis in Neonatal Mouse Hippocampus-PKCε-Mediated Signaling in the Early Hippocampus. Int J Mol Sci 2022; 23:1962. [PMID: 35216076 PMCID: PMC8878481 DOI: 10.3390/ijms23041962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/14/2023] Open
Abstract
The neurotransmitter serotonin (5-HT) plays an important role in mood disorders. It has been demonstrated that 5-HT signaling through 5-HT1A receptors (5-HT1A-R) is crucial for early postnatal hippocampal development and later-life behavior. Although this suggests that 5-HT1A-R signaling regulates early brain development, the mechanistic underpinnings of this process have remained unclear. Here we show that stimulation of the 5-HT1A-R at postnatal day 6 (P6) by intrahippocampal infusion of the agonist 8-OH-DPAT (D) causes signaling through protein kinase Cε (PKCε) and extracellular receptor activated kinase ½ (ERK1/2) to boost neuroblast proliferation in the dentate gyrus (DG), as displayed by an increase in bromodeoxy-uridine (BrdU), doublecortin (DCX) double-positive cells. This boost in neuroproliferation was eliminated in mice treated with D in the presence of a 5-HT1A-R antagonist (WAY100635), a selective PKCε inhibitor, or an ERK1/2-kinase (MEK) inhibitor (U0126). It is believed that hippocampal neuro-progenitors undergoing neonatal proliferation subsequently become postmitotic and enter the synaptogenesis phase. Double-staining with antibodies against bromodeoxyuridine (BrdU) and neuronal nuclear protein (NeuN) confirmed that 5-HT1A-R → PKCε → ERK1/2-mediated boosted neuroproliferation at P6 also leads to an increase in BrdU-labeled granular neurons at P36. This 5-HT1A-R-mediated increase in mature neurons was unlikely due to suppressed apoptosis, because terminal deoxynucleotidyl transferase dUTP nick-end labeling analysis showed no difference in DNA terminal labeling between vehicle and 8-OH-DPAT-infused mice. Therefore, 5-HT1A-R signaling through PKCε may play an important role in micro-neurogenesis in the DG at P6, following which many of these new-born neuroprogenitors develop into mature neurons.
Collapse
Affiliation(s)
- Sreyashi Samaddar
- Department of Physical Therapy, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA;
| | | | | | | | - Ryan Schroder
- Eurofins Lancaster PSS, Merck Sharp and Dohme, Rahway, NJ 07065, USA;
| | | | - Michael J. Flory
- Research Design and Analysis Service, New York State Institute for Developmental Disabilities, Staten Island, NY 10314, USA;
| | - Probal Banerjee
- Department of Chemistry, Center for Developmental Neuroscience, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| |
Collapse
|
17
|
Xu Z, Chen Z, Shen T, Chen L, Tan T, Gao C, Chen B, Yuan Y, Zhang Z. The impact of HTR1A and HTR1B methylation combined with stress/genotype on early antidepressant efficacy. Psychiatry Clin Neurosci 2022; 76:51-57. [PMID: 34773671 DOI: 10.1111/pcn.13314] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/21/2022]
Abstract
AIMS Antidepressants are effective in the treatment of major depressive disorder (MDD), while many patients fail to respond to antidepressants. Both 5-HT1A (HTR1A) and 5-HT1B (HTR1B) receptors play an important role in antidepressant activity. Meanwhile, DNA methylation is associated with MDD and antidepressant efficacy. In this study we investigate the influence of HTR1A and HTR1B methylation combined with stress/genotype on antidepressant efficacy. METHODS A total of 291 MDD patients and 100 healthy controls received the Life Events Scale (LES) and the Childhood Trauma Questionnaire (CTQ) as stress assessment. Eight single nucleotide polymorphisms (SNPs) of HTR1A and HTR1B involved in antidepressant mechanisms were tested. Methylation status in 181 cytosine-phosphate-guanine (CpG) sites of HTR1A and HTR1B were assessed. All MDD patients were divided into response (RES) and non-response (NRES) after 2 weeks of antidepressant treatment. Logistic regression was conducted for interactions between methylation, NLES/CTQ score and genotype. RESULTS Low HTR1A-2-143 methylation is connected with better antidepressant efficacy in subgroup. Low HTR1A-2-143 methylation combined with low CTQ score is related to better antidepressant efficacy. The interaction between high HTR1B methylation with the rs6298 AA/AG genotype affects better antidepressant efficacy. CONCLUSIONS HTR1A and HTR1B methylation combined with stress/genotype is associated with antidepressant efficacy.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zimu Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tian Shen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Chen
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Tingting Tan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chenjie Gao
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhijun Zhang
- Department of Neurology, ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Wang J, Gao X, Gao P, Liu J. A Cross-Sectional Study on the Relationship Among Cytokines, 5-HT2A Receptor Polymorphisms, and Sleep Quality of Non-manual Workers in Xinjiang, China. Front Psychiatry 2022; 13:777566. [PMID: 35463508 PMCID: PMC9019505 DOI: 10.3389/fpsyt.2022.777566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/18/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Studies have shown that cytokine activity changes during the sleep-wake process, suggesting that inflammatory factors may be involved in a mechanism affecting sleep quality. Furthermore, the serotonergic system is also one of the essential components of airway relaxation during sleep, especially the serotonin 2A receptor (5-HTR2A) type that plays an important role in the sleep-wake process. Therefore, this research aimed to investigate the effects of cytokines and 5-HTR2A polymorphisms on sleep quality in non-manual workers in Urumqi, Xinjiang in order to explore the relationship between the three. METHODS This study used a cluster sampling method to randomly select non-manual workers who worked in Urumqi, Xinjiang for at least 1 year. From July 2016 and December 2017, this study recruited 1,500 non-manual workers for physical examination in the First Affiliated Hospital of Xinjiang Medical University. According to the inclusion and exclusion criteria, 1,329 non-manual workers were finally included in the questionnaire study. It used the Pittsburgh Sleep Quality Index questionnaire to assess sleep quality. Moreover, another 15% of respondents were randomly selected as the experimental study group. The polymerase chain reaction restriction fragment length polymorphism was used to detect 5-HTR2A gene genotypes. Simultaneously, the cytokine (IL-1β, IL-2, IL-6, and TNF-α) content was evaluated using an enzyme-linked immunoassay. RESULTS The results showed that among the 1,329 respondents, 870 had sleep quality problems, and the detection rate was 65.46%. The distribution of -1438G/A genotypes in the 5-HTR2A gene was significantly different among different sleep quality groups (p < 0.05), with no statistical significance present when comparing to T102C (p > 0.05). Logistic regression analysis showed that the AG [odds ratio (OR) = 2.771, 95% confidence interval (CI): 1.054-7.287] and GG (OR = 4.037, 95% CI: 1.244-13.105) genotypes at -1438G/A loci were both associated with poor sleep quality and were thus considered the susceptibility genotypes for sleep problems. Furthermore, IL-1β was shown to be a protective factor for sleep quality (OR = 0.949, 95% CI: 0.925-0.974). The interaction results showed that AG × IL-1β (OR = 0.952, 95% CI: 0.918-0.987) was associated with a lower risk of sleep problems than AA × IL-1β. CONCLUSION Cytokines and 5-HTR2A polymorphisms not only have independent effects on sleep but also may have cumulative effects. Therefore, it is necessary to further explore the related mechanisms affecting sleep quality to improve the sleep quality of non-manual workers.
Collapse
Affiliation(s)
- Juan Wang
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| | - Xiaoyan Gao
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| | - Pengcheng Gao
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| | - Jiwen Liu
- Department of Public Health, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
19
|
Kamarchuk L, Pospelov A, Harbuz D, Belan V, Volkova Y, Tkachenko A, Kamarchuk G. Noninvasive real-time breath test for controlling hormonal background of the human body: detection of serotonin and melatonin with quantum point-contact sensors. J Breath Res 2021; 16. [PMID: 34731836 DOI: 10.1088/1752-7163/ac361c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2021] [Indexed: 11/11/2022]
Abstract
Significant progress in development of noninvasive diagnostic tools based on breath analysis can be expected if one employs a real-time detection method based on finding a spectral breath profile which would contain some energy characteristics of the analyzed gas mixture. Using the fundamental energy parameters of a quantum system, it is possible to determine with a high accuracy its quantitative and qualitative composition. Among the most efficient tools to measure energy characteristics of quantum systems are sensors based on Yanson point contacts. This paper reports the results of serotonin and melatonin detection as an example of testing the human hormonal background with point-contact sensors, which have already demonstrated their high efficiency in detecting carcinogenic strains ofHelicobacter pyloriand selective detection of complex gas mixtures. When comparing the values of serotonin and melatonin with the characteristic parameters of the spectral profile of the exhaled breath of each patient, high correlation dependences of the concentration of serotonin and melatonin with a number of characteristic parameters of the response curve of the point-contact sensor were found. The performed correlation analysis was complemented with the regression analysis. As a result, empiric regression relations were proposed to realize in practice the new non-invasive breath test for evaluation of the human hormonal background. Registration of the patient's breath profile using point-contact sensors makes it possible to easily monitor the dynamics of changes in the human hormonal background and perform a quantitative evaluation of serotonin and melatonin levels in the human body in real time without invasive interventions (blood collection) and expensive equipment or reagents.
Collapse
Affiliation(s)
- Lyudmila Kamarchuk
- SI 'Institute for Children and Adolescents Health Care' of NAMS of Ukraine, 52-A Yuvileinyi Ave., 61153 Kharkiv, Ukraine
| | - Alexander Pospelov
- National Technical University 'Kharkiv Polytechnic Institute', 2 Kyrpychov Str., 61002 Kharkiv, Ukraine
| | - Dmytro Harbuz
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., 61103 Kharkiv, Ukraine
| | - Victor Belan
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., 61103 Kharkiv, Ukraine
| | - Yuliya Volkova
- SI 'Institute for Children and Adolescents Health Care' of NAMS of Ukraine, 52-A Yuvileinyi Ave., 61153 Kharkiv, Ukraine
| | - Anna Tkachenko
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., 61103 Kharkiv, Ukraine
| | - Gennadii Kamarchuk
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., 61103 Kharkiv, Ukraine
| |
Collapse
|
20
|
Prinholato da Silva C, Oliveira DD, Benincasa BI, Barbar B, Facchin AL, Beleboni RO. Antidepressant activity of Riparin A in murine model. Behav Pharmacol 2021; 32:599-606. [PMID: 34483245 DOI: 10.1097/fbp.0000000000000654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Depression and anxiety are common neuropsychiatric disorders that usually appear as comorbidities. The development of new drugs is crucial for safer and more effective clinical management of both disorders. Riparin A is a synthetic chemical analog of riparins that naturally occur in several medicinal plants. Marked pharmacological effects such as anxiolytic and antidepressant properties characterize this class of compounds. However, little is known about the potential anxiolytic and antidepressant effects of Riparin A. In this work, we showed that, unlike other riparins, Riparin A exerts only a very mild anxiolytic-like effect as demonstrated by the results of classical behavioral tests such as the elevated plus-maze, light-dark box and open-field tests in rats. However, all doses of Riparin A (2.5; 5.0 and 10 mg/kg; intraperitoneal) have shown significant antidepressant activity in rats submitted to forced swimming test. In addition to this interesting pharmacological property, Riparin A did not promote any important alterations in the locomotor performance of the animals as specifically demonstrated by the rotarod test. Furthermore, Riparin A did not induce sedation in treated animals; instead, this compound appears to increase the animal's state of alertness as measured by the latency time to loss of reflexes and time to recovery from sleep in rats submitted to the pentobarbital-induced sleep time test. The present results point to an antidepressant effect of Riparin A and reinforce the pharmaceutical interest in the group of riparins, particularly their high potential for use in new studies investigating the structure-activity relationships between member compounds.
Collapse
Affiliation(s)
| | | | | | - Bruna Barbar
- Department of Biotechnology
- School of Medicine, University of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Ana Lúcia Facchin
- Department of Biotechnology
- School of Medicine, University of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Rene Oliveira Beleboni
- Department of Biotechnology
- School of Medicine, University of Ribeirão Preto, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Głuch-Lutwin M, Sałaciak K, Gawalska A, Jamrozik M, Sniecikowska J, Newman-Tancredi A, Kołaczkowski M, Pytka K. The selective 5-HT 1A receptor biased agonists, F15599 and F13714, show antidepressant-like properties after a single administration in the mouse model of unpredictable chronic mild stress. Psychopharmacology (Berl) 2021; 238:2249-2260. [PMID: 33973045 PMCID: PMC8292235 DOI: 10.1007/s00213-021-05849-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/12/2021] [Indexed: 01/12/2023]
Abstract
RATIONALE The prevalence of depression is ever-increasing throughout the population. However, available treatments are ineffective in around one-third of patients and there is a need for more effective and safer drugs. OBJECTIVES The antidepressant-like and procognitive effects of the "biased agonists" F15599 (also known as NLX-101) which preferentially targets postsynaptic 5-HT1A receptors and F13714, which targets 5-HT1A autoreceptors, were investigated in mice. METHODS Antidepressant-like properties of the compounds and their effect on cognitive functions were assessed using the forced swim test (FST) and the novel object recognition (NOR), respectively. Next, we induced a depressive-like state by an unpredictable chronic mild stress (UCMS) procedure to test the compounds' activity in the depression model, followed by measures of sucrose preference, FST, and locomotor activity. Levels of phosphorylated cyclic AMP response element-binding protein (p-CREB) and phosphorylated extracellular signal-regulated kinase (p-ERK1/2) were also determined. RESULTS F15599 reduced immobility time in the FST over a wider dose-range (2 to 16 mg/kg po) than F13714 (2 and 4 mg/kg po), suggesting accentuated antidepressant-like properties in mice. F15599 did not disrupt long-term memory consolidation in the NOR at any dose tested, while F13714 impaired memory formation, notably at higher doses (4-16 mg/kg). In UCMS mice, a single administration of F15599 and F13714 was sufficient to robustly normalize depressive-like behavior in the FST but did not rescue disrupted sucrose preference. Both F15599 and F13714 rescued cortical and hippocampal deficits in p-ERK1/2 levels of UCMS mice but did not influence the p-CREB levels. CONCLUSIONS Our studies showed that 5-HT1A receptor biased agonists such as F13714 and especially F15599, due to its less pronounced side effects, might have potential as fast-acting antidepressants.
Collapse
Affiliation(s)
- Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Alicja Gawalska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Jamrozik
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Sniecikowska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | | | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
22
|
Aguiar RPD, Newman-Tancredi A, Prickaerts J, Oliveira RMWD. The 5-HT 1A receptor as a serotonergic target for neuroprotection in cerebral ischemia. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110210. [PMID: 33333136 DOI: 10.1016/j.pnpbp.2020.110210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia due to stroke or cardiac arrest greatly affects daily functioning and the quality of life of patients and has a high socioeconomic impact due to the surge in their prevalence. Advances in the identification of an effective pharmacotherapy to promote neuroprotection and recovery after a cerebral ischemic insult are, however, limited. The serotonin 1A (5-HT1A) receptor has been implicated in the regulation of several brain functions, including mood, emotions, memory, and neuroplasticity, all of which are deleteriously affected by cerebral ischemia. This review focuses on the specific roles and mechanisms of 5-HT1A receptors in neuroprotection in experimental models of cerebral ischemia. We present experimental evidence that 5-HT1A receptor agonists can prevent neuronal damage and promote functional recovery induced by focal and transient global ischemia in rodents. However, indiscriminate activation of pre-and postsynaptic by non-biased 5-HT1A receptor agonists may be a limiting factor in the anti-ischemic clinical efficacy of these compounds since 5-HT1A receptors in different brain regions can mediate diverging or even contradictory responses. Current insights are presented into the 'biased' 5-HT1A post-synaptic heteroreceptor agonist NLX-101 (also known as F15599), a compound that preferentially and potently stimulates postsynaptic cortical pyramidal neurons without inhibiting firing of serotoninergic neurons, as a potential strategy providing neuroprotection in cerebral ischemic conditions.
Collapse
Affiliation(s)
- Rafael Pazinatto de Aguiar
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil
| | | | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rúbia Maria Weffort de Oliveira
- Department of Pharmacology and Therapeutics, State University of Maringá, Av. Colombo, 5790, CEP 87020-900, Maringá, Paraná, Brazil.
| |
Collapse
|
23
|
Newman-Tancredi A, Depoortère RY, Kleven MS, Kołaczkowski M, Zimmer L. Translating biased agonists from molecules to medications: Serotonin 5-HT 1A receptor functional selectivity for CNS disorders. Pharmacol Ther 2021; 229:107937. [PMID: 34174274 DOI: 10.1016/j.pharmthera.2021.107937] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022]
Abstract
Biased agonism (or "functional selectivity") at G-protein-coupled receptors has attracted rapidly increasing interest as a means to improve discovery of more efficacious and safer pharmacotherapeutics. However, most studies are limited to in vitro tests of cellular signaling and few biased agonists have progressed to in vivo testing. As concerns 5-HT1A receptors, which exert a major control of serotonergic signaling in diverse CNS regions, study of biased agonism has previously been limited by the poor target selectivity and/or partial agonism of classically available ligands. However, a new generation of highly selective, efficacious and druggable agonists has advanced the study of biased agonism at this receptor and created new therapeutic opportunities. These novel agonists show differential properties for G-protein signaling, cellular signaling (particularly pERK), electrophysiological effects, neurotransmitter release, neuroimaging by PET and pharmacoMRI, and behavioral tests of mood, motor activity and side effects. Overall, NLX-101 (a.k.a. F15599) exhibits preferential activation of cortical and brain stem 5-HT1A receptors, whereas NLX-112 (a.k.a. befiradol or F13640) shows prominent activation of 5-HT1A autoreceptors in Raphe nuclei and in regions associated with motor control. Accordingly, NLX-101 is potently active in rodent models of depression and respiratory control, whereas NLX-112 shows promising activity in models of Parkinson's disease across several species - rat, marmoset and macaque. Moreover, NLX-112 has also been labeled with 18F to produce the first agonist PET radiopharmaceutical (known as [18F]-F13640) for investigation of the active state of 5-HT1A receptors in rodent, primate and human. The structure-functional activity relationships of biased agonists have been investigated by receptor modeling and novel compounds have been identified which exhibit increased affinity at 5-HT1A receptors and new profiles of cellular signaling bias, notably for β-arrestin recruitment versus pERK. Taken together, the data suggest that 5-HT1A receptor biased agonists constitute potentially superior pharmacological agents for treatment of CNS disorders involving serotonergic mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Luc Zimmer
- Université Claude Bernard Lyon1, Lyon, France; Hospices Civils de Lyon, Lyon, France; Lyon Neuroscience Research Center, CNRS-INSERM, France
| |
Collapse
|
24
|
Paudel P, Seong SH, Park SE, Ryu JH, Jung HA, Choi JS. In Vitro and In Silico Characterization of G-Protein Coupled Receptor (GPCR) Targets of Phlorofucofuroeckol-A and Dieckol. Mar Drugs 2021; 19:326. [PMID: 34199834 PMCID: PMC8228075 DOI: 10.3390/md19060326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022] Open
Abstract
Phlorotannins are polyphenolic compounds in marine alga, especially the brown algae. Among numerous phlorotannins, dieckol and phlorofucofuroeckol-A (PFF-A) are the major ones and despite a wider biological activity profile, knowledge of the G protein-coupled receptor (GPCR) targets of these phlorotannins is lacking. This study explores prime GPCR targets of the two phlorotannins. In silico proteocheminformatics modeling predicted twenty major protein targets and in vitro functional assays showed a good agonist effect at the α2C adrenergic receptor (α2CAR) and an antagonist effect at the adenosine 2A receptor (A2AR), δ-opioid receptor (δ-OPR), glucagon-like peptide-1 receptor (GLP-1R), and 5-hydroxytryptamine 1A receptor (5-TH1AR) of both phlorotannins. Besides, dieckol showed an antagonist effect at the vasopressin 1A receptor (V1AR) and PFF-A showed a promising agonist effect at the cannabinoid 1 receptor and an antagonist effect at V1AR. In silico molecular docking simulation enabled us to investigate and identify distinct binding features of these phlorotannins to the target proteins. The docking results suggested that dieckol and PFF-A bind to the crystal structures of the proteins with good affinity involving key interacting amino acid residues comparable to reference ligands. Overall, the present study suggests α2CAR, A2AR, δ-OPR, GLP-1R, 5-TH1AR, CB1R, and V1AR as prime receptor targets of dieckol and PFF-A.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, The University of Mississippi, Oxford, MS 38677, USA
| | - Su Hui Seong
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
- Natural Products Research Division, Honam National Institute of Biological Resource, Mokpo 58762, Korea
| | - Se Eun Park
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
- Department of Biomedical Science, Asan Medical Institute of Convergence Science and Technology, Seoul 05505, Korea
| | - Jong Hoon Ryu
- Department of Life and Nanopharmaceutical Science, Kyung Hee University, Seoul 02447, Korea;
| | - Hyun Ah Jung
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Korea
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University, Busan 48513, Korea; (P.P.); (S.H.S.); (S.E.P.)
| |
Collapse
|
25
|
Yu Z, Bai R, Zhou J, Huang H, Zhao W, Huo X, Yang Y, Luan Z, Zhang B, Sun C, Ma X. Uncarialins J—M from
Uncaria rhynchophylla
and Their Anti‐depression Mechanism in Unpredictable Chronic Mild
Stress‐Induced
Mice
via
Activating
5‐HT
1A
Receptor. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhen‐Long Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Rong Bai
- Department of Pharmacy, Shanghai East Hospital, Tongji University Shanghai 200120 China
| | - Jun‐Jun Zhou
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Hui‐Lian Huang
- Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang Jiangxi 330103 China
| | - Wen‐Yu Zhao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Xiao‐Kui Huo
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Ya‐Hui Yang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Zhi‐Lin Luan
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Bao‐Jing Zhang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Cheng‐Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| | - Xiao‐Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine Intervention, National & Local Joint Engineering Research Center for Drug Development of Neurodegenerative Disease, College of Pharmacy, College (Institute) of Integrative Medicine, Dalian Medical University Dalian Liaoning 116044 China
| |
Collapse
|
26
|
Repeated fluoxetine treatment induces transient and long-term astrocytic plasticity in the medial prefrontal cortex of normal adult rats. Prog Neuropsychopharmacol Biol Psychiatry 2021; 107:110252. [PMID: 33484756 DOI: 10.1016/j.pnpbp.2021.110252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/15/2022]
Abstract
Fluoxetine (Flx)-induced neuronal plasticity plays an important role in the effective treatment of depression and mood disorders. It is less understood whether repeated Flx treatment induces astrocytic plasticity that outlasts the presence of the drug in the body. We showed previously that Flx-induced neuronal plasticity in the medial prefrontal cortex (mPFC) persisted up to 20 days after the treatment. In this study, adult rats were subjected to a 15-day repeated Flx treatment at a daily dose of 20 mg/kg body weight. Astrocytic metabolites and markers were assessed in the mPFC at day 1 (d1) and day 20 (d20) after the treatment. Significant transient reductions in the concentrations of astrocytic metabolites taurine and myo-inositol and the expressions of glial fibrillary acidic protein (GFAP) and aquaporin-4 (AQP4) were observed in the mPFC of Flx-treated rats at d1, which recovered to the control levels at d20. Further, Flx treatment resulted in long-lasting changes in Kir4.1 expression in the mPFC, which remained downregulated at d20. The expression of 5-HT1A receptor in the mPFC of Flx-treated rats was downregulated at d1 but became upregulated at d20. In summary, repeated Flx treatment induces both transient and long-term astrocytic plasticity in the mPFC of adult rats. The changes observed at d1 are consistent with disturbed water homeostasis and astrocytic de-maturation in the mPFC. The persistent changes in the expressions of Kir4.1 and 5-HT1A at d20, presumably of the astrocytic origin, might have contributed to the long-term neurotrophic effects of repeated Flx treatment in the mPFC.
Collapse
|
27
|
Martínez-Hernández GB, Jiménez-Ferrer E, Román-Ramos R, Zamilpa A, González-Cortazar M, León-Rivera I, Vargas-Villa G, Herrera-Ruiz M. A mixture of quercetin 4'-O-rhamnoside and isoquercitrin from Tilia americana var. mexicana and its biotransformation products with antidepressant activity in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113619. [PMID: 33248185 DOI: 10.1016/j.jep.2020.113619] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The aerial parts of Tilia americana var. mexicana (Malvaceae, formerly Tiliaceae) or "sirimo" are used in Mexican traditional medicine for the relief of mild symptoms of mental stress, commonly referred to as "nerve diseases". Individuals use this plant to fall asleep, to calm states of nervous excitement, headaches, mood disorders, and general discomfort. Recent studies indicated that fractions standardized in their flavonoid content possess antidepressant activity in behavioral assays in mice. The present study aims to focus on the evaluation of the antidepressant effect of the mixture of two flavonoids (FMix), and its interaction with serotonergic drugs. Also, the pharmacological effect of the products of the metabolism of aglycone, quercetin, was evaluated in mice subjected to forced swimming test (FST) and open field test (OFT). MATERIALS AND METHODS A methanol-soluble extract obtained from leaves of Tilia americana was fractionated in an open column chromatographic separation. One of the fractions contained FMix wich is constituted of the mixture of quercetin 4'-O-rhamnoside (1, 47%) y isoquercitrin (2, 53%). The mice were divided into the several following groups: FMix (0.01, 0.1, 0.5, 1.0, and 2 mg/kg); FMix (1.0 mg/kg) and agonist DOI (2.0 mg/kg); FMix (1.0 mg/kg) and antagonist ketanserin (KET, 0.03 mg/kg) of 5-HT2A receptors; FMix (1.0 mg/kg) and selective agonist 8-OH-DPAT (8-OH, 0.01 mg/kg); FMix (1.0 mg/kg) and antagonist WAY100635 (WAY, 0.5 mg/kg) of 5HT1 receptors; Phloroglucinol (PHL); 3,4-dihydroxy-phenyl acid (DOPAC); p-hydroxyphenyl acetic acid (p-HPAA); and m-hydroxyphenyl acetic acid (m-HPAA) were tested in FST or OFT. RESULTS FMix induced dependent-dose antidepressant activity and, at the highest dose administered, a sedative effect was also observed. The 8-OH-DPAT, or the DOI, or the KET combination with FMix (1.0 mg/kg) induced a higher antidepressant effect than compounds alone; there was no effect exerted with WAY. The activity on OFT increased only with the FMix and KET combination. At the same time, the products of the aglycone metabolism of quercetin, that is, DOPAC and p-HPAA, decreased the immobility time of the mice in FST at 1.0 mg/kg, and a dose-curve was formed for these. CONCLUSION The antidepressant effect of FMix could depend, at least in part, on the degradation products of quercetin and with a possible action mode through interaction with the serotoninergic system.
Collapse
Affiliation(s)
- Gabriela Belen Martínez-Hernández
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social (IMSS), Argentina 1, 62790, Xochitepec, Morelos, Mexico; Doctorado en Ciencias Biológicas y de La Salud, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana (UAM), México City, Mexico; Departamento de Ciencias de La Salud, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana- Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina C.P.09340, Iztapalapa, México D.F, Mexico
| | - Enrique Jiménez-Ferrer
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social (IMSS), Argentina 1, 62790, Xochitepec, Morelos, Mexico
| | - Rubén Román-Ramos
- Departamento de Ciencias de La Salud, División de Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana- Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina C.P.09340, Iztapalapa, México D.F, Mexico
| | - Alejandro Zamilpa
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social (IMSS), Argentina 1, 62790, Xochitepec, Morelos, Mexico
| | - Manasés González-Cortazar
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social (IMSS), Argentina 1, 62790, Xochitepec, Morelos, Mexico
| | - Ismael León-Rivera
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma Del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, Mexico
| | - Gabriela Vargas-Villa
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social (IMSS), Argentina 1, 62790, Xochitepec, Morelos, Mexico
| | - Maribel Herrera-Ruiz
- Centro de Investigación Biomédica Del Sur, Instituto Mexicano Del Seguro Social (IMSS), Argentina 1, 62790, Xochitepec, Morelos, Mexico.
| |
Collapse
|
28
|
Villas-Boas GR, Lavorato SN, Paes MM, de Carvalho PMG, Rescia VC, Cunha MS, de Magalhães-Filho MF, Ponsoni LF, de Carvalho AAV, de Lacerda RB, da S. Leite L, da S. Tavares-Henriques M, Lopes LAF, Oliveira LGR, Silva-Filho SE, da Silveira APS, Cuman RKN, de S. Silva-Comar FM, Comar JF, do A. Brasileiro L, dos Santos JN, de Freitas WR, Leão KV, da Silva JG, Klein RC, Klein MHF, da S. Ramos BH, Fernandes CKC, de L. Ribas DG, Oesterreich SA. Modulation of the Serotonergic Receptosome in the Treatment of Anxiety and Depression: A Narrative Review of the Experimental Evidence. Pharmaceuticals (Basel) 2021; 14:ph14020148. [PMID: 33673205 PMCID: PMC7918669 DOI: 10.3390/ph14020148] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) receptors are found throughout central and peripheral nervous systems, mainly in brain regions involved in the neurobiology of anxiety and depression. 5-HT receptors are currently promising targets for discovering new drugs for treating disorders ranging from migraine to neuropsychiatric upsets, such as anxiety and depression. It is well described in the current literature that the brain expresses seven types of 5-HT receptors comprising eighteen distinct subtypes. In this article, we comprehensively reviewed 5-HT1-7 receptors. Of the eighteen 5-HT receptors known today, thirteen are G protein-coupled receptors (GPCRs) and represent targets for approximately 40% of drugs used in humans. Signaling pathways related to these receptors play a crucial role in neurodevelopment and can be modulated to develop effective therapies to treat anxiety and depression. This review presents the experimental evidence of the modulation of the “serotonergic receptosome” in the treatment of anxiety and depression, as well as demonstrating state-of-the-art research related to phytochemicals and these disorders. In addition, detailed aspects of the pharmacological mechanism of action of all currently known 5-HT receptor families were reviewed. From this review, it will be possible to direct the rational design of drugs towards new therapies that involve signaling via 5-HT receptors.
Collapse
Affiliation(s)
- Gustavo R. Villas-Boas
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
- Correspondence: ; Tel.: +55-(77)-3614-3152
| | - Stefânia N. Lavorato
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Marina M. Paes
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Pablinny M. G. de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Vanessa C. Rescia
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Mila S. Cunha
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Manoel F. de Magalhães-Filho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Luis F. Ponsoni
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Adryano Augustto Valladao de Carvalho
- Research Group on Development of Pharmaceutical Products (P & DProFar), Center for Biological and Health Sciences, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (S.N.L.); (M.M.P.); (P.M.G.d.C.); (V.C.R.); (M.S.C.); (M.F.d.M.-F.); (L.F.P.); (A.A.V.d.C.)
| | - Roseli B. de Lacerda
- Department of Pharmacology, Center for Biological Sciences, Federal University of Paraná, Jardim das Américas, Caixa. postal 19031, Curitiba CEP 81531-990, PR, Brazil;
| | - Lais da S. Leite
- Collegiate Biomedicine, SulAmérica College, Rua Gláuber Rocha, 66, Jardim Paraíso, Luís Eduardo Magalhães CEP 47850-000, BA, Brazil;
| | - Matheus da S. Tavares-Henriques
- Laboratory of Pharmacology of Toxins (LabTox), Graduate Program in Pharmacology and Medicinal Chemistry (PPGFQM), Institute of Biomedical Sciences (ICB) Federal Universityof Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro CEP 21941-590, RJ, Brazil;
| | - Luiz A. F. Lopes
- Teaching and Research Manager at the University Hospital—Federal University of Grande Dourados (HU/EBSERH-UFGD), Federal University of Grande Dourados, Rua Ivo Alves da Rocha, 558, Altos do Indaiá, Dourados CEP 79823-501, MS, Brazil;
| | - Luiz G. R. Oliveira
- Nucleus of Studies on Infectious Agents and Vectors (Naive), Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil;
| | - Saulo E. Silva-Filho
- Pharmaceutical Sciences, Food and Nutrition College, Federal University of Mato Grosso do Sul, Avenida Costa e Silva, s/n°, Bairro Universitário, Campo Grande CEP 79070-900, MS, Brazil;
| | - Ana P. S. da Silveira
- Faculty of Biological and Health Sciences, Unigran Capital University Center, RuaBalbina de Matos, 2121, Jarddim Universitário, Dourados CEP 79.824-900, MS, Brazil;
| | - Roberto K. N. Cuman
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Francielli M. de S. Silva-Comar
- Department of Pharmacology and Therapeutics, State University of Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil; (R.K.N.C.); (F.M.d.S.S.-C.)
| | - Jurandir F. Comar
- Department of Biochemistry, State Universityof Maringá, Avenida Colombo, n° 5790, Jardim Universitário, Maringá CEP 87020-900, PR, Brazil;
| | - Luana do A. Brasileiro
- Nacional Cancer Institute (INCA), Rua Visconde de Santa Isabel, 274, Rio de Janeiro CEP 20560-121, RJ, Brazil;
| | | | - William R. de Freitas
- Research Group on Biodiversity and Health (BIOSA), Center for Training in Health Sciences, Federal University of Southern Bahia, Praça Joana Angélica, 58, São José, Teixeira de Freitas CEP 45988-058, BA, Brazil;
| | - Katyuscya V. Leão
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Jonatas G. da Silva
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Raphael C. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Mary H. F. Klein
- Pharmacy Department, Federal University of Western Bahia, Rua Bertioga, 892, Morada Nobre II, Barreiras CEP 47810-059, BA, Brazil; (K.V.L.); (J.G.d.S.); (R.C.K.); (M.H.F.K.)
| | - Bruno H. da S. Ramos
- Institute of the Spine and Pain Clinic, Rua Dr. Renato Gonçalves, 108, Renato Gonçalves, Barreiras CEP 47806-021, BA, Brazil;
| | - Cristiane K. C. Fernandes
- University Center of Montes Belos, Av. Hermógenes Coelho s/n, Setor Universitário, São Luís de Montes Belos CEP 76100-000, GO, Brazil;
| | - Dayane G. de L. Ribas
- Gaus College and Course, Rua Severino Vieira, 60, Centro, Barreiras CEP 47800-160, BA, Brazil;
| | - Silvia A. Oesterreich
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados Rodovia Dourados, Itahum Km 12, Cidade Universitaria, Caixa postal 364, Dourados CEP 79804-970, MS, Brazil;
| |
Collapse
|
29
|
Qiao YL, Zhou JJ, Liang JH, Deng XP, Zhang ZJ, Huang HL, Li S, Dai SF, Liu CQ, Luan ZL, Yu ZL, Sun CP, Ma XC. Uncaria rhynchophylla ameliorates unpredictable chronic mild stress-induced depression in mice via activating 5-HT 1A receptor: Insights from transcriptomics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 81:153436. [PMID: 33360346 DOI: 10.1016/j.phymed.2020.153436] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Depression is a pervasive or persistent mental disorder that causes mood, cognitive and memory deficits. Uncaria rhynchophylla has been widely used to treat central nervous system diseases for a long history, although its efficacy and potential mechanism are still uncertain. PURPOSE The present study aimed to investigate anti-depression effect and potential mechanism of U. rhynchophylla extract (URE). STUDY DESIGN AND METHODS A mouse depression model was established using unpredictable chronic mild stress (UCMS). Effects of URE on depression-like behaviours, neurotransmitters, and neuroendocrine hormones were investigated in UCMS-induced mice. The potential target of URE was analyzed by transcriptomics and bioinformatics methods and validated by RT-PCR and Western blot. The agonistic effect on 5-HT1A receptor was assayed by dual-luciferase reporter system. RESULTS URE ameliorated depression-like behaviours, and modulated levels of neurotransmitters and neuroendocrine hormones, including 5-hydroxytryptamine (5-HT), 5-hydroxyindole acetic acid (5-HIAA), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), corticosterone (CORT), corticotropin-releasing hormone (CRH), and adrenocorticotropic hormone (ACTH), in UCMS-induced mice. Transcriptomics and bioinformatics results indicated that URE could regulate glutamatergic, cholinergic, serotonergic, and GABAergic systems, especially neuroactive ligand-receptor and cAMP signaling pathways, revealing that Htr1a encoding 5-HT1A receptor was a potential target of URE. The expression levels of downstream proteins of 5-HT1A signaling pathway 5-HT1A, CREB, BDNF, and PKA were increased in UCMS-induced mice after URE administration, and URE also displayed an agonistic effect against 5-HT1A receptor with an EC50 value of 17.42 μg/ml. CONCLUSION U. rhynchophylla ameliorated depression-like behaviours in UCMS-induced mice through activating 5-HT1A receptor.
Collapse
Affiliation(s)
- Yan-Ling Qiao
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jun-Jun Zhou
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jia-Hao Liang
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Xiao-Peng Deng
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhan-Jun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Hui-Lian Huang
- Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Song Li
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Shu-Fang Dai
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Chun-Qing Liu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhi-Lin Luan
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Zhen-Long Yu
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China.
| | - Xiao-Chi Ma
- Dalian Key Laboratory of Metabolic Target Characterization and Traditional Chinese Medicine, College of Pharmacy, College of Integrative Medicine, Department of Neurosurgery, The First and Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| |
Collapse
|
30
|
Biosynthesis, total synthesis, and biological profiles of Ergot alkaloids. THE ALKALOIDS: CHEMISTRY AND BIOLOGY 2021; 85:1-112. [DOI: 10.1016/bs.alkal.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Depoortère R, Auclair AL, Newman-Tancredi A. NLX-101, a highly selective 5-HT 1A receptor biased agonist, mediates antidepressant-like activity in rats via prefrontal cortex 5-HT 1A receptors. Behav Brain Res 2020; 401:113082. [PMID: 33358917 DOI: 10.1016/j.bbr.2020.113082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/25/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023]
Abstract
NLX-101 (also known as F15599) exhibits nanomolar affinity, exceptional selectivity and biased agonist activation of serotonin 5-HT1A receptors. Given systemically, it displays antidepressant-like activity in the rat forced swim test (FST), and preferentially activates 5-HT1A post-synaptic heteroreceptors in the prefrontal cortex (PFC), a brain region involved in the control of mood. Here, we assessed the ability of NLX-101 to produce antidepressant-like activity in the FST following in-situ PFC unilateral microinjection. (+)8-OH-DPAT and F13714, two 5-HT1A receptor agonists that do not display cortical biased agonism, were tested as comparators. NLX-101 decreased time spent in immobility in a bi-modal manner, with a first MED of 0.25 μg (immobility reduced from 160 to 80 s) but immobility returned to control levels at the next dose (1 μg). At higher doses, immobility decreased monotonically, with a second MED of 16 μg and a maximal effect (36 s) at 32 μg. (+)8-OH-DPAT and F13714 also diminished immobility but, unlike NLX-101, they did so in a unimodal manner, with MEDs of 1 and 4 μg, and maximal responses of 31 and 4 s, for (+)8-OH-DPAT and F13714, respectively. The effects of (+)8-OH-DPAT (16 μg) and of both active doses of NLX-101 (0.25 and 16 μg) were prevented by the 5-HT1A receptor antagonist WAY-100,635 (0.63 mg/kg s.c.). In conclusion, activation of 5-HT1A receptors in the PFC by NLX-101 produces robust antidepressant-like effects in the rat FST, with a distinctive bimodal dose-response pattern. These data suggest that NLX-101 may target specific 5-HT1A receptor subpopulations in PFC, likely located on GABAergic and/or glutamatergic neurons.
Collapse
Affiliation(s)
- R Depoortère
- Neurolixis SAS, 2 Rue Georges Charpak, 81100, Castres, France.
| | - A L Auclair
- Pierre Fabre Laboratories, CEPC, Bel Air De Campans, 81100, Castres, France
| | | |
Collapse
|
32
|
Ding L, Maloney SK, Wang M, Rodger J, Chen L, Blache D. Association between temperament related traits and single nucleotide polymorphisms in the serotonin and oxytocin systems in Merino sheep. GENES BRAIN AND BEHAVIOR 2020; 20:e12714. [PMID: 33161622 DOI: 10.1111/gbb.12714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/26/2023]
Abstract
Animal temperament is defined as the consistent behavioral and physiological differences that are seen between individuals in response to the same stressor. Neurotransmitter systems, like serotonin and oxytocin in the central nervous system, underlie variation in behavioral traits in humans and other animals. Variations like single nucleotide polymorphisms (SNPs) in the genes for tryptophan 5-hydroxylase (TPH2), the serotonin transporter (SLC6A4), the serotonin receptor (HTR2A), and the oxytocin receptor (OXTR) are associated with behavioral phenotype in humans. Thus, the objective of this study was to identify SNPs in those genes and to test if those variations are associated with the temperament in Merino sheep. Using ewes from the University of Western Australia temperament flock, which has been selected on emotional reactivity for more than 20 generations, eight SNPs (rs107856757, rs107856818, rs107856856 and rs107857156 in TPH2, rs20917091 in SLC6A4, rs17196799 and rs17193181 in HTR2A, and rs17664565 in OXTR) were found to be distributed differently between calm and nervous sheep. These eight SNPs were then genotyped in 260 sheep from a flock that has never been selected on emotional reactivity, followed by the estimation of the behavioral traits of those 260 sheep using an arena test and an isolation box test. We found that several SNPs in TPH2 (rs107856757, rs107856818, rs107856856 and rs107857156) were in strong linkage disequilibrium, and all were associated with behavioral phenotype in the nonselected sheep. Similarly, rs17196799 in HTR2A was also associated with the behavioral phenotype.
Collapse
Affiliation(s)
- Luoyang Ding
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shane K Maloney
- School of Human Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mengzhi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jennifer Rodger
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Lianmin Chen
- Department of Genetics and Pediatrics, University of Groningen, Groningen, Netherlands
| | - Dominique Blache
- School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
33
|
Jiang T, Kong B, Yan W, Wu C, Jiang M, Xu X, Xi X. Network Pharmacology to Identify the Pharmacological Mechanisms of a Traditional Chinese Medicine Derived from Trachelospermum jasminoides in Patients with Rheumatoid Arthritis. Med Sci Monit 2020; 26:e922639. [PMID: 32840241 PMCID: PMC7466841 DOI: 10.12659/msm.922639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND This study used a network pharmacology approach to identify the pharmacological mechanisms of a traditional Chinese medicine derived from Trachelospermum jasminoides (Lindl.) Lem. in patients with rheumatoid arthritis (RA). MATERIAL AND METHODS Known compounds of T. jasminoides were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, the Shanghai Institute of Organic Chemistry of Chinese Academy of Science, Chemistry (CASC) database, and a literature search. Putative targets of identified compounds were predicted by SwissTargetPrediction. RA-related targets were achieved from the Therapeutic Target database, Drugbank database, Pharmacogenomics Knowledgebase, and Online Mendelian Inheritance in Man database. The protein-protein interaction (PPI) network was built by STRING. CluGO was utilized for Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis. RESULTS A total of 354 potential targets were predicted for the 17 bioactive compounds in T. jasminoides; 69 of these targets overlapped with RA-related targets. A PPI network was composed and 2 clusters of 59 and 42 nodes each were excavated. GO and KEGG enrichment analysis of the overlapping targets and the 2 clusters was mainly grouped into immunity, inflammation, estrogen, anxiety, and depression processes. CONCLUSIONS Our study illustrated that T. jasminoides alleviates RA through the interleukin-17 signaling pathway, the tumor necrosis factor signaling pathway, and other immune and inflammatory-related processes. It also may exert effects in regulating cell differentiation and potentially has anti-anxiety, anti-depression, and estrogen-like effects.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland).,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Bo Kong
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Wei Yan
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Changgui Wu
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Min Jiang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Xing Xu
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Xiaobing Xi
- Department of Traumatology, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland).,Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
34
|
Antidepressant-like activity and safety profile evaluation of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione derivatives as 5-HT1A receptor partial agonists. PLoS One 2020; 15:e0237196. [PMID: 32764777 PMCID: PMC7413516 DOI: 10.1371/journal.pone.0237196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/21/2020] [Indexed: 01/27/2023] Open
Abstract
Current antidepressant therapy has several disadvantages related to the properties of antidepressants. Considering their unfavourable features, the process of searching for new antidepressant drugs with better safety and tolerability requires consistent efforts and many complementary studies. Serotonin 5-HT1A receptor is considered as an interesting target of antidepressant therapy. In the present study, the intrinsic activity at different signaling pathways coupled to serotonin 5-HT1A receptor, antidepressant-like and pharmacokinetic properties, and the safety profile of two novel imidazopurine-2,4-dione derivatives, namely compounds AZ-853 (8-(4-(4-(2-fluorophenyl)piperazin-1-yl)butyl)-1,3-dimethyl-1H- imidazo[2,1-f]purine-2,4(3H,8H)-dione) and AZ-861 (1,3-dimethyl-8-(4-(4-(3-(trifluoromethyl)phenyl)piperazin-1-yl)butyl)-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione), were studied in animal models through in vitro and in vivo experiments. We demonstrated that AZ-853 and AZ-861, which structurally differ by one substituent and its placement in the phenyl ring, showed varied functional, pharmacological, and pharmacokinetic properties as well as side effect profiles. AZ-861 exhibited stronger agonistic action in all functional assays. After acute and repeated administration in mice, both compounds showed antidepressant-like activity in the forced swim test, which was partially mediated by 5-HT1A receptor activation. AZ-853 showed a more potent antidepressant-like effect, presumably due to its better penetration into brain structures. Both compounds did not show anticholinergic properties, but after repeated administration, they induced weak sedation and lipid metabolism disturbances without affecting serum glucose level. The stronger α1-adrenolytic effect of AZ-853 is responsible for decreased systolic blood pressure, and in contrast to AZ-861, AZ-853 induced weight gain in mice. The interesting comparative pharmacological profiles of AZ-853 and AZ-861 encourage to conduct further experiments to fully understand their mechanisms and differences in action.
Collapse
|
35
|
The functional cooperation of 5-HT 1A and mGlu4R in HEK-293 cell line. Pharmacol Rep 2020; 72:1358-1369. [PMID: 32472388 PMCID: PMC7550284 DOI: 10.1007/s43440-020-00114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 10/28/2022]
Abstract
BACKGROUND The serotonin 5-HT1A receptor (5-HT1AR) and metabotropic glutamate receptor 4 (mGlu4) have been implicated as sites of antipsychotic drug action. 5-HT1AR belongs to the A class of G protein-coupled receptors (GPCRs); mGlu4 is a representative of class C GPCRs. Both receptors preferentially couple with Gi protein to inhibit cAMP formation. The present work aimed to examine the possibility of mGlu4 and 5-HT1A receptor cross-talk, the phenomenon that could serve as a molecular basis of the interaction of these receptor ligands observed in behavioral studies. METHODS First, in vitro studies were performed to examine the pharmacological modulation of interaction of the mGlu4 and 5-HT1A receptors in the T-REx 293 cell line using SNAP- or HALO-tag and cAMP accumulation assay. Next, the colocalization of these two receptors was examined in some regions of the mouse brain by applying RNAScope dual fluorescence in situ hybridization, immunohistochemical labeling, and proximity ligation assay (PLA). RESULTS The ex vivo and in vitro results obtained in the present work suggest the existence of interactions between mGlu4 and 5-HT1A receptors. The changes were observed in cAMP accumulation assay and were dependent on expression and activation of mGlu4R in T-REx 293cell line. Moreover, the existence of spots with proximity expression of both receptors were showed by PLA, immunofluorescence labeling and RNAscope methods. CONCLUSION The existence of interactions between mGlu4 and 5-HT1A receptors may represent another signaling pathway involved in the development and treatment psychiatric disorders such as schizophrenia or depression.
Collapse
|
36
|
Liu QQ, Yao XX, Gao SH, Li R, Li BJ, Yang W, Cui RJ. Role of 5-HT receptors in neuropathic pain: potential therapeutic implications. Pharmacol Res 2020; 159:104949. [PMID: 32464329 DOI: 10.1016/j.phrs.2020.104949] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 10/24/2022]
Abstract
5-HT plays a crucial role in the progress and adjustment of pain both centrally and peripherally. The therapeutic action of the 5-HT receptors` agonist and antagonist in neuropathic pain have been widely reported in many studies. However, the specific roles of 5-HT subtype receptors have not been reviewed comprehensively. Therefore, we summarized the recent findings on multiple subtypes of 5-HT receptors in both central and peripheral nervous system in neuropathic pain, particularly, 5-HT1, 5-HT2, 5-HT3 and 5-HT7 receptors. In addition, 5-HT4, 5-HT5 and 5-HT6 receptors were also reviewed. Most of studies focused on the function of 5-HT subtype receptors in spinal level compared to brain areas. Based on these evidences, the pain process can be facilitated or inhibited that depending on the specific subtypes and the distribution of 5-HT receptors. Therefore, this review may provide potential therapeutic implications in treatment of neuropathic pain.
Collapse
Affiliation(s)
- Qian Qian Liu
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China; Hand Surgery Department, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiao Xiao Yao
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Shuo Hui Gao
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rui Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China; Hand Surgery Department, The Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Bing Jin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| | - Ran Ji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
37
|
Li X, Sun X, Sun J, Zu Y, Zhao S, Sun X, Li L, Zhang X, Wang W, Liang Y, Wang W, Liang X, Sun C, Guan X, Tang M. Depressive-like state sensitizes 5-HT 1A and 5-HT 1B auto-receptors in the dorsal raphe nucleus sub-system. Behav Brain Res 2020; 389:112618. [PMID: 32360167 DOI: 10.1016/j.bbr.2020.112618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/14/2022]
Abstract
Dorsal raphe (DR) and median raphe (MR) 5-HT neurons are two distinct sub-systems known to be regulated by 5-HT1A and 5-HT1B auto-receptors. Whether the auto-receptors in each sub-system are functionally altered in depressive-like state remains unknown. The present study is aimed to study a specific circuit (DR-ventral hippocampus and MR-dorsal hippocampus) within each sub-system to investigate changes in receptor sensitivity in the pathogenesis of depression. A mouse model of depression was developed through the social defeat paradigm, and was then treated with fluoxetine (FLX). 5-HT1A auto-receptor in the neuronal cell body (DR or MR) and 5-HT1B auto-receptor in the axonal terminal (ventral or dorsal hippocampus) were directly targeted by local perfusion of antagonists (5-HT1A: WAY100635; 5-HT1B: GR127935) through reverse microdialysis. Time courses of dialysate 5-HT measured at the axonal terminal were subsequently determined for each circuit. At baseline, 5-HT1A and 5-HT1B antagonists dose-dependently increased dialysate 5-HT, with sub-circuit specificity. In the depressive-like state, greater increases in dialysate 5-HT were observed only in the DR-ventral hippocampus circuit following local delivery of both antagonists, which were then fully restored following the FLX treatment. In contrast, no changes were observed in the MR-dorsal hippocampus circuit. Our results demonstrate differential changes in sensitivities of 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus and MR-dorsal hippocampus circuits. 5-HT1A and 5-HT1B auto-receptors in the DR-ventral hippocampus circuit are sensitized in the depressive-like state. Taken together, these results suggest that the DR sub-system maybe the neural substrate mediating depressive phenotypes.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacy, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xianan Sun
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Jing Sun
- Department of Outpatient, Rocket Force University of Engineering Clinic Affiliated to 986 Hospital of Air Force, Xi'an, 710043, China
| | - Yi Zu
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Shulei Zhao
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Xiao Sun
- Department of Internal Medicine, Shenyang Women's and Children's Hospital, Shenyang, 110011, China
| | - Lu Li
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xinjing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wei Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Yuezhu Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wenyao Wang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xuankai Liang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Chi Sun
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Xue Guan
- Department of Academic Quality Assurance, China Medical University, Shenyang, 110122, China
| | - Man Tang
- Department of Clinical Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
38
|
Feature of Heart Rate Variability and Metabolic Mechanism in Female College Students with Depression. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5246350. [PMID: 32190670 PMCID: PMC7064846 DOI: 10.1155/2020/5246350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/19/2023]
Abstract
Purpose To explore the effects of depression on cardiac autonomic nerve function and related metabolic pathways, the heart rate variability (HRV) and urinary differential metabolites were detected on the college students with depression. Methods 12 female freshmen with depression were filtered by the Beck Depression Inventory (BDI-II) and Self-rating Depression Scale (SDS). By wearing an HRV monitoring system, time domain indexes and frequency domain indexes were measured over 24 hours. Liquid chromatography–mass spectrometry (LC-MS) was used to detect their urinary differential metabolites. Differential metabolites were identified by principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis (OPLS-DA). The metabolic pathways related to these differential metabolites were analyzed by the MetPA database. Results Stress time was significantly increased, and recovery time was markedly decreased in the depression group compared with the control group (p < 0.001). Standard deviation of the normal-to-normal R interval (SDNN), root mean square of the beat-to-beat differences (RMSSD), high frequency (HF), and low frequency (LF) were decreased significantly (p < 0.001). Standard deviation of the normal-to-normal R interval (SDNN), root mean square of the beat-to-beat differences (RMSSD), high frequency (HF), and low frequency (LF) were decreased significantly ( Conclusion Some autonomic nervous system disruption, high stress, and poor fatigue recovery were confirmed in college students with depression. The metabolic mechanism involved the disruption of coenzyme Q biosynthesis, glycine-serine-threonine metabolism, tyrosine metabolism, pyrimidine metabolism, and steroid metabolism under daily stress.
Collapse
|
39
|
Synthesis and biological evaluation of new multi-target 3-(1H-indol-3-yl)pyrrolidine-2,5-dione derivatives with potential antidepressant effect. Eur J Med Chem 2019; 183:111736. [DOI: 10.1016/j.ejmech.2019.111736] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/31/2022]
|
40
|
Edes AE, McKie S, Szabo E, Kokonyei G, Pap D, Zsombok T, Hullam G, Gonda X, Kozak LR, McFarquhar M, Anderson IM, Deakin JFW, Bagdy G, Juhasz G. Spatiotemporal brain activation pattern following acute citalopram challenge is dose dependent and associated with neuroticism: A human phMRI study. Neuropharmacology 2019; 170:107807. [PMID: 31593709 DOI: 10.1016/j.neuropharm.2019.107807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/29/2022]
Abstract
BACKGROUND The initial effects of selective serotonin reuptake inhibitors (SSRIs) in the human living brain are poorly understood. We carried out a 3T resting state fMRI study with pharmacological challenge to determine the brain activation changes over time following different dosages of citalopram. METHODS During the study, 7.5 mg i.v. citalopram was administered to 32 healthy subjects. In addition, 11.25 mg citalopram was administered to a subset of 9 subjects to investigate the dose-response. Associations with neuroticism (assessed by the NEO PI-R) of the emerging brain activation to citalopram was also investigated. RESULTS Citalopram challenge evoked significant activation in brain regions that are part of the default mode network, the visual network and the sensorimotor network, extending to the thalamus, and midbrain. Most effects appeared to be dose-dependent and this was statistically significant in the middle cingulate gyrus. Individual citalopram-induced brain responses were positively correlated with neuroticism scores and its subscales in specific brain areas; anxiety subscale scores in thalamus and midbrain and self-consciousness scores in middle cingulate gyrus. There were no sex differences. LIMITATIONS We investigated only healthy subjects and we used a relatively low sample size in the 11.25 mg citalopram analysis. DISCUSSION Our results suggest that SSRIs acutely induce an increased arousal-like state of distributed cortical and subcortical systems that is mediated by enhanced serotonin neurotransmission according to levels of neuroticism and underpins trait sensitivity to environmental stimuli and stressors. Studies in depression are needed to determine how therapeutic effects eventually emerge. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.
Collapse
Affiliation(s)
- Andrea Edit Edes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Shane McKie
- Faculty of Biological, Medical and Human Sciences Platform Sciences, Enabling Technologies & Infrastructure, Faculty of Biological, Medical and Human Sciences Research and Innovation, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Edina Szabo
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Doctoral School of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary; Institute of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary
| | - Gyongyi Kokonyei
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Institute of Psychology, ELTE Eotvos Loránd University, Budapest, Hungary
| | - Dorottya Pap
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Terezia Zsombok
- Department of Neurology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gabor Hullam
- Department of Measurement and Information Systems, Budapest University of Technology and Economics, Faculty of Electrical Engineering and Informatics, Budapest, Hungary
| | - Xenia Gonda
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Department of Psychiatry and Psychotherapy, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Lajos R Kozak
- MR Research Center, Semmelweis University, Budapest, Hungary
| | - Martyn McFarquhar
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Ian M Anderson
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Semmelweis University, Budapest, Hungary; Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary; Neuroscience and Psychiatry Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biological, Medical and Human Sciences, The University of Manchester and Manchester Academic Health Sciences Centre, Manchester, United Kingdom.
| |
Collapse
|
41
|
Sarrouilhe D, Mesnil M, Dejean C. Targeting Gap Junctions: New Insights into the Treatment of Major Depressive Disorder. Curr Med Chem 2019; 26:3775-3791. [DOI: 10.2174/0929867325666180327103530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 12/22/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
Background:Major depressive disorder (MDD) is a multifactorial chronic and debilitating mood disease with high lifetime prevalence and associated with excess mortality. Treatments for this disease are not effective in all patients showing the need to find new therapeutic targets.Objective:This review aims to update our knowledge on the involvement of astroglial gap junctions and hemichannels in MDD and to show how they have become potential targets for the treatment of this pathology.Methods:The method applied in this review includes a systematic compilation of the relevant literature.Results and Conclusion:The use of rodent models of depression, gene analysis of hippocampal tissues of MDD patients and post-mortem studies on the brains from MDD patients suggest that astrocytic gap junction dysfunction may be a part of MDD etiologies. Chronic antidepressant treatments of rats, rat cultured cortical astrocytes and human astrocytoma cell lines support the hypothesis that the up-regulation of gap junctional coupling between astrocytes could be an underlying mechanism for the therapeutic effect of antidepressants. However, two recent functional studies suggest that connexin43 hemichannel activity is a part of several antidepressants’ mode of action and that astrocyte gap junctional intercellular communication and hemichannels exert different effects on antidepressant drug response. Even if they emerge as new therapeutic targets for new and more active treatments, further studies are needed to decipher the sophisticated and respective role of astrocytic gap junctions and hemichannels in MDD.
Collapse
Affiliation(s)
- Denis Sarrouilhe
- Laboratoire de Physiologie Humaine, Faculte de Medecine et Pharmacie, Universite de Poitiers, 6 rue de la Miletrie, Bat D1, TSA 51115, 86073 Poitiers, Cedex 9, France
| | - Marc Mesnil
- STIM, ERL 7003, CNRS-Universite de Poitiers, Pole Biologie Sante, Bat B36, TSA 51106, 1 rue Georges Bonnet, 86073 Poitiers, Cedex 9, France
| | - Catherine Dejean
- Service Pharmacie, Pavillon Janet, Centre Hospitalier Henri Laborit, 370 avenue Jacques Coeur, 86021 Poitiers Cedex, France
| |
Collapse
|
42
|
Wu L, Deng T, Wang CY, Ren XQ, Wang YY, Zeng XT, Geng PL. Serotonin Transporter (5-HTT) Gene Polymorphisms and Susceptibility to Chronic Periodontitis: A Case-Control Study. Front Genet 2019; 10:706. [PMID: 31428137 PMCID: PMC6690263 DOI: 10.3389/fgene.2019.00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: The current study is aimed at exploring the relationship between chronic periodontitis and serotonin transporter (5-HTT) gene polymorphisms (rs6354 and rs12449783) in the Chinese Han population. Methods: This study included a total of 120 patients with chronic periodontitis and 125 healthy control subjects. The 5-HTT gene (rs6354 and rs12449783) was genotyped using oral mucosal tissue with a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Linkage disequilibrium was examined using Haploview. Genotype and allele frequencies were compared between the cases and controls using a χ2 test. Results: Genotype distribution of the 5-HTT gene polymorphisms rs6354 and rs12449783 in the control group conformed to Hardy–Weinberg equilibrium. The frequency of the AC genotype, the AC + CC genotype and C allele of the 5-HTT rs6354 polymorphism was higher in cases (P < 0.05) vs. the healthy control. The adjusted odds ratio (OR) was 1.910 (95%CI = 1.049–3.476) for the AC genotype, 2.026 (95%CI = 1.115–3.680) for the AC+CC genotype, and 1.875 for the C allele (95%CI = 1.089–3.228. Such an association was particularly strong in women for the AC genotype (OR = 2.167, 95%CI = 1.034–4.542). The genotype and allele frequencies of rs12449783 did not differ between the cases and controls. Haplotype C-C (rs6354-rs12449783) was also more frequent in the cases (OR = 2.372, 95%CI = 1.154–4.875, P = 0.016). Conclusion: Chronic periodontitis is associated with the 5-HTT gene rs6354 polymorphism, as well as rs6354/rs12449783 interaction.
Collapse
Affiliation(s)
- Lan Wu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tong Deng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
| | - Chao-Yang Wang
- Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
| | - Xue-Qun Ren
- Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
| | - Yun-Yun Wang
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xian-Tao Zeng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Xian-Tao Zeng, ; Pei-Liang Geng,
| | - Pei-Liang Geng
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Evidence-Based Medicine, Institute of Evidence-Based Medicine and Knowledge Translation, Henan University, Kaifeng, China
- *Correspondence: Xian-Tao Zeng, ; Pei-Liang Geng,
| |
Collapse
|
43
|
Keasling AW, Pandey P, Doerksen RJ, Pedrino GR, Costa EA, da Cunha LC, Zjawiony JK, Fajemiroye JO. Salvindolin elicits opioid system-mediated antinociceptive and antidepressant-like activities. J Psychopharmacol 2019; 33:865-881. [PMID: 31192780 DOI: 10.1177/0269881119849821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Salvinorin A is known as a highly selective kappa opioid receptor agonist with antinociceptive but mostly pro-depressive effects. AIMS In this article, we present its new semisynthetic analog with preferential mu opioid affinity, and promising antinociceptive, as well as antidepressant-like activities. METHODS Competitive binding studies were performed for salvindolin with kappa opioid and mu opioid. The mouse model of nociception (acetic-acid-induced writhing, formalin, and hot plate tests), depression (forced swim and tail suspension tests), and the open field test, were used to evaluate antinociceptive, antidepressant-like, and locomotion effects, respectively, of salvindolin. We built a 3-D molecular model of the kappa opioid receptor, using a mu opioid X-ray crystal structure as a template, and docked salvindolin into the two proteins. RESULTS/OUTCOMES Salvindolin showed affinity towards kappa opioid and mu opioid receptors but with 100-fold mu opioid preference. Tests of salvindolin in mice revealed good oral bioavailability, antinociceptive, and antidepressive-like effects, without locomotor incoordination. Docking of salvindolin showed strong interactions with the mu opioid receptor which matched well with experimental binding data. Salvindolin-induced behavioral changes in the hot plate and forced swim tests were attenuated by naloxone (nonselective opioid receptor antagonist) and/or naloxonazine (selective mu opioid receptor antagonist) but not by nor-binaltorphimine (selective kappa opioid receptor antagonist). In addition, WAY100635 (a selective serotonin 1A receptor antagonist) blocked the antidepressant-like effect of salvindolin. CONCLUSIONS/INTERPRETATION By simple chemical modification, we were able to modulate the pharmacological profile of salvinorin A, a highly selective kappa opioid receptor agonist, to salvindolin, a ligand with preferential mu opioid receptor affinity and activity on the serotonin 1A receptor. With its significant antinociceptive and antidepressive-like activities, salvindolin has the potential to be an analgesic and/or antidepressant drug candidate.
Collapse
Affiliation(s)
- Adam W Keasling
- 1 Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, USA.,2 Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - Pankaj Pandey
- 3 Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS, USA
| | - Robert J Doerksen
- 2 Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA.,3 Department of BioMolecular Sciences, Division of Medicinal Chemistry, University of Mississippi, University, MS, USA
| | - Gustavo R Pedrino
- 4 Department of Physiology, Federal University of Goiás, Goiânia, Brazil
| | - Elson A Costa
- 5 Department of Pharmacology, Federal University of Goiás, Goiânia, Brazil
| | - Luiz C da Cunha
- 6 Center for Studies and Toxicological-Pharmacological Research, Federal University of Goiás, Goiânia, Brazil
| | - Jordan K Zjawiony
- 1 Department of BioMolecular Sciences, Division of Pharmacognosy, University of Mississippi, University, MS, USA.,2 Department of BioMolecular Sciences, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS, USA
| | - James O Fajemiroye
- 5 Department of Pharmacology, Federal University of Goiás, Goiânia, Brazil.,6 Center for Studies and Toxicological-Pharmacological Research, Federal University of Goiás, Goiânia, Brazil.,7 Department of Pharmaceutical Science, University Center of Anápolis - Unievangélica, Anápolis, Brazil
| |
Collapse
|
44
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
45
|
Del Bello F, Bonifazi A, Giorgioni G, Quaglia W, Amantini C, Morelli MB, Santoni G, Battiti FO, Vistoli G, Cilia A, Piergentili A. Chemical manipulations on the 1,4-dioxane ring of 5-HT1A receptor agonists lead to antagonists endowed with antitumor activity in prostate cancer cells. Eur J Med Chem 2019; 168:461-473. [DOI: 10.1016/j.ejmech.2019.02.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 12/24/2022]
|
46
|
Sniecikowska J, Gluch-Lutwin M, Bucki A, Więckowska A, Siwek A, Jastrzebska-Wiesek M, Partyka A, Wilczyńska D, Pytka K, Pociecha K, Cios A, Wyska E, Wesołowska A, Pawłowski M, Varney MA, Newman-Tancredi A, Kolaczkowski M. Novel Aryloxyethyl Derivatives of 1-(1-Benzoylpiperidin-4-yl)methanamine as the Extracellular Regulated Kinases 1/2 (ERK1/2) Phosphorylation-Preferring Serotonin 5-HT 1A Receptor-Biased Agonists with Robust Antidepressant-like Activity. J Med Chem 2019; 62:2750-2771. [PMID: 30721053 DOI: 10.1021/acs.jmedchem.9b00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel 1-(1-benzoylpiperidin-4-yl)methanamine derivatives were designed as "biased agonists" of serotonin 5-HT1A receptors. The compounds were tested in signal transduction assays (ERK1/2 phosphorylation, cAMP inhibition, Ca2+ mobilization, and β-arrestin recruitment) which identified ERK1/2 phosphorylation-preferring aryloxyethyl derivatives. The novel series showed high 5-HT1A receptor affinity, >1000-fold selectivity versus noradrenergic α1, dopamine D2, serotonin 5-HT2A, histamine H1, and muscarinic M1 receptors, and favorable druglike properties (CNS-MPO, Fsp3, LELP). The lead structure, (3-chloro-4-fluorophenyl)(4-fluoro-4-(((2-(pyridin-2-yloxy)ethyl)amino)methyl)piperidin-1-yl)methanone (17, NLX-204), displayed high selectivity in the SafetyScreen44 panel (including hERG channel), high solubility, metabolic stability, and Caco-2 penetration and did not block CYP3A4, CYP2D6 isoenzymes, or P-glycoprotein. Preliminary in vivo studies confirmed its promising pharmacokinetic profile. 17 also robustly stimulated ERK1/2 phosphorylation in rat cortex and showed highly potent (MED = 0.16 mg/kg) and efficacious antidepressant-like activity, totally eliminating immobility in the rat Porsolt test. These data suggest that the present 5-HT1A receptor-biased agonists could constitute promising antidepressant drug candidates.
Collapse
Affiliation(s)
- Joanna Sniecikowska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Monika Gluch-Lutwin
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Adam Bucki
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Anna Więckowska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Agata Siwek
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | | | - Anna Partyka
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Daria Wilczyńska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Karolina Pytka
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Krzysztof Pociecha
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Agnieszka Cios
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Elżbieta Wyska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Anna Wesołowska
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Maciej Pawłowski
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| | - Mark A Varney
- Neurolixis Inc. , 34145 Pacific Coast Highway #504 , Dana Point , 92629 California , United States
| | - Adrian Newman-Tancredi
- Neurolixis Inc. , 34145 Pacific Coast Highway #504 , Dana Point , 92629 California , United States
| | - Marcin Kolaczkowski
- Faculty of Pharmacy , Jagiellonian University Medical College , 9 Medyczna Street , 30-688 Kraków , Poland
| |
Collapse
|
47
|
Kędzierska E, Fiorino F, Magli E, Poleszak E, Wlaź P, Orzelska-Górka J, Knap B, Kotlińska JH. New arylpiperazine derivatives with antidepressant-like activity containing isonicotinic and picolinic nuclei: evidence for serotonergic system involvement. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:743-754. [DOI: 10.1007/s00210-019-01620-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/16/2019] [Indexed: 01/09/2023]
|
48
|
Kędzierska E, Fiorino F, Gibuła E, Corvino A, Giordano F, Herbet M, Dudka J, Poleszak E, Wlaź P, Kotlińska JH. Anxiolytic‐like effects of the new arylpiperazine derivatives containing isonicotinic and picolinic nuclei: behavioral and biochemical studies. Fundam Clin Pharmacol 2019; 33:254-266. [DOI: 10.1111/fcp.12443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/14/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ewa Kędzierska
- Department of Pharmacology and Pharmacodynamics Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 4a 20‐093 Lublin Poland
| | - Ferdinando Fiorino
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Ewa Gibuła
- Department of Pharmacology and Pharmacodynamics Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 4a 20‐093 Lublin Poland
| | - Angela Corvino
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Flavia Giordano
- Department of Pharmacy University of Naples Federico II Via D. Montesano 49 80131 Naples Italy
| | - Mariola Herbet
- Department of Toxicology Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 8 20‐093 Lublin Poland
| | - Jarosław Dudka
- Department of Toxicology Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 8 20‐093 Lublin Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 1 20‐093 Lublin Poland
| | - Piotr Wlaź
- Department of Animal Physiology Faculty of Biology and Biotechnology Maria Curie‐Skłodowska University Akademicka 19 20‐033 Lublin Poland
| | - Jolanta H. Kotlińska
- Department of Pharmacology and Pharmacodynamics Faculty of Pharmacy with Division of Medical Analytics Medical University of Lublin Chodźki 4a 20‐093 Lublin Poland
| |
Collapse
|
49
|
Oncotoxic Properties of Serotonin Transporter Inhibitors and 5-HT 1A Receptor Ligands. Int J Mol Sci 2018; 19:ijms19103260. [PMID: 30347827 PMCID: PMC6214143 DOI: 10.3390/ijms19103260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
The cytotoxic activity of several serotonin transporter (SERT) inhibitors and subtype of serotonin receptor 1A (5-HT1A receptor) ligands have been examined in androgen-insensitive human PC-3 prostate and neuroblastoma SH-SY5Y cancer cells. Almost all of the studied compounds (except 5-HT1A receptor agonist (2R)-(+)-8-Hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT)) exhibited absolute cytotoxic activity against the examined cancer cells. The compound 4-Fluoro-N-[2-[4-(7-methoxy-1-naphthalenyl)-1-piperazinyl]ethyl]benzamide hydrochloride (S14506) that showed highest activity against neuroblastoma tumors was the 5-HT1A receptor agonist (although not alike other 5-HT1A receptor agonists). On the other hand, the compound 6-nitro-2-(4-undecylpiperazin-1-yl)quinoline hydrochloride (AZ07) that had the highest activity against PC-3 prostate cancer cells was a compound exhibiting antagonistic activity against the 5-HT1A receptor. Thus, compounds of oncotoxic properties S14506 and AZ07 should be evaluated further for their potential use in the prevention and treatment of cancer. Most of the 15 compounds tested exhibited either agonistic or antagonistic activity for both the cyclic adenosine monophosphate (cAMP) and extracellular signal-regulated kinase 1 and 2 (ERK1/2) pathways in human embryonic kidney 293 (HEK293) cells that overexpress the 5HT1AR gene. However, compounds paroxetine, N-Ac-paroxetine and 2-[4-(cyclobutylmethyl)piperazin-1-yl]-6-nitroquinoline hydrochloride (AB22) simultaneously exhibited antagonistic activity on the cAMP pathway and agonistic activity on the ERK1/2 pathway. Fluoxetine relative to compound AZ07 had almost three times lower cytotoxic activity against PC-3 prostate cancer cells. However, the proapoptotic activity of fluoxetine compared to compound AZ07 is almost two times higher which would suggest that the cytotoxic activity of both compounds may be dependent on different cell death mechanisms. Compound S14506 was found to be an antagonist of the serine-threonine protein kinase B (Akt) pathway. Prosurvival Akt activity may be reversed by Akt antagonists. Therefore, the antagonistic activity of S14506 on the Akt pathway may evoke caspase-3 expression and cytotoxicity. It appears that one should not expect a straightforward relationship between the activation of particular serotonergic pathways by selective serotonin reuptake inhibitors (SSRIs) and 5-HT1A receptor ligands and their cytotoxic or cytoprotective activity. Additionally, nuclear transcription factor κB (NF-κB), which may be involved in 5-HT-dependent biochemical pathways by coordinating different subunits in the formation of a dimer, may regulate the transcription of different transduction pathways. Therefore, it can be suggested that the mechanism of the cytotoxic activity of certain compounds (serotonergic against nonserotonergic) may depend on the compound and cancer type being examined. Docking studies showed that S14506, buspirone and spiperone bind in similar ways in the 5-HT1A receptor model and interacted with similar 5-HT1A receptor residues. S14506 and spiperone were found to be located closer to both phenylalanines in TM6 than buspirone, thus exhibiting more antagonist binding modes.
Collapse
|
50
|
Pytka K, Głuch-Lutwin M, Żmudzka E, Sałaciak K, Siwek A, Niemczyk K, Walczak M, Smolik M, Olczyk A, Gałuszka A, Śmieja J, Filipek B, Sapa J, Kołaczkowski M, Pańczyk K, Waszkielewicz A, Marona H. HBK-17, a 5-HT 1A Receptor Ligand With Anxiolytic-Like Activity, Preferentially Activates ß-Arrestin Signaling. Front Pharmacol 2018; 9:1146. [PMID: 30410441 PMCID: PMC6209770 DOI: 10.3389/fphar.2018.01146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/21/2018] [Indexed: 12/14/2022] Open
Abstract
Numerous studies have proven that both stimulation and blockade of 5-HT1A and the blockade of 5-HT7 receptors might cause the anxiolytic-like effects. Biased agonists selectively activate specific signaling pathways. Therefore, they might offer novel treatment strategies. In this study, we investigated the anxiolytic-like activity, as well as the possible mechanism of action of 1-[(2,5-dimethylphenoxy)propyl]-4-(2-methoxyphenyl)piperazine hydrochloride (HBK-17). In our previous experiments, HBK-17 showed high affinity for 5-HT1A and 5-HT7 receptors and antidepressant-like properties. We performed the four plate test and the elevated plus maze test to determine anxiolytic-like activity. Toward a better understanding of the pharmacological properties of HBK-17 we used various functional assays to determine its intrinsic activity at 5-HT1A, 5-HT2A, 5-HT7, and D2 receptors and UHPLC-MS/MS method to evaluate its pharmacokinetic profile. We observed the anxiolytic-like activity of HBK-17 in both behavioral tests and the effect was reversed by the pretreatment with WAY-100635, which proves that 5-HT1A receptor activation was essential for the anxiolytic-like effect. Moreover, the compound moderately antagonized D2, weakly 5-HT7 and very weakly 5-HT2A receptors. We demonstrated that HBK-17 preferentially activated ß-arrestin signaling after binding to the 5-HT1A receptor. HBK-17 was rapidly absorbed after intraperitoneal administration and had a half-life of about 150 min. HBK-17 slightly penetrated the peripheral compartment and showed bioavailability of approximately 45%. The unique pharmacological profile of HBK-17 encourages further experiments to understand its mechanism of action fully.
Collapse
Affiliation(s)
- Karolina Pytka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Elżbieta Żmudzka
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Kinga Sałaciak
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Niemczyk
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Magdalena Smolik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Adrian Olczyk
- Control and Robotics Group, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Adam Gałuszka
- Control and Robotics Group, Faculty of Automatic Control, Electronics and Computer Science, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Jarosław Śmieja
- Systems Engineering Group, Faculty of Automatic Control, Electronics and Informatics, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Kołaczkowski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Katarzyna Pańczyk
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|