1
|
Chuang YT, Yen CY, Tang JY, Chang FR, Tsai YH, Wu KC, Chien TM, Chang HW. The modulation of immune cell death in connection to microRNAs and natural products. Front Immunol 2024; 15:1425602. [PMID: 39759512 PMCID: PMC11695430 DOI: 10.3389/fimmu.2024.1425602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
Immunogenic cell death (ICD) spatiotemporally regulates damage-associated molecular patterns (DAMPs) derived from dying cancer cells to signal the immune response. Intriguingly, these DAMPs and cytokines also induce cellular responses in non-immune cells, particularly cancer cells. Several ICD-modulating natural products and miRNAs have been reported to regulate the DAMP, cytokine, and cell death responses, but they lack systemic organization and connection. This review summarizes the impacts of natural products and miRNAs on the DAMP and cytokine responses and cancer cell death responses (apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis). We establish the rationale that ICD inducers of natural products have modulating effects on miRNAs, targeting DAMPs and cytokines for immune and cancer cell death responses. In conclusion, DAMP, cytokine, and cell death responses are intricately linked in cancer cells, and they are influenced by ICD-modulating natural products and miRNAs.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, Taiwan
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, Taiwan
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Laderian A, Ghasemi M, Mortazavi P, Mousavi Z, Ale-Ebrahim M. Hepatoprotective effect of astaxanthin against cholestasis liver fibrosis induced by bile duct ligation in adult Wistar rats. J Biochem Mol Toxicol 2024; 38:e23788. [PMID: 39087918 DOI: 10.1002/jbt.23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
In this study, we evaluated the hepatoprotective effects of astaxanthin, a natural carotenoid, against the cholestatic liver fibrosis induced by bile duct ligation (BDL). Toward this end, male rats were subjected to BDL and treated with astaxanthin for 35 days. Afterwards, their serum and liver biochemical factors were assessed. Also, histopathological and immunohistochemical analyses were performed to determine the fibrosis and the expression levels of alpha-smooth muscle actin (α-SMA) and transforming growth factor beta (TGF-ß1) in the liver tissue. Based on the results, BDL caused a significant increase in liver enzyme levels, blood lipids, and bilirubin, while decreasing the activity of superoxide dismutase(SOD), catalase (CAT), and glutathione (GSH) enzymes. Also, in the BDL rats, hepatocyte necrosis, infiltration of inflammatory lymphocytes, and hyperplasia of bile ducts were detected, along with a significant increase in α-SMA and TGF-ß1 expression. Astaxanthin, however, significantly prevented the BDL's detrimental effects. In all, 10 mg/kg of this drug maintained the bilirubin and cholesterol serum levels of BDL rats at normal levels. It also reduced the liver enzymes' activity and serum lipids, while increasing the SOD, CAT, and GSH activity in BDL rats. The expression of α-SMA and TGF-ß1 in the BDL rats treated with 10 mg/kg of astaxanthin was moderate (in 34%-66% of cells) and no considerable cholestatic fibrosis was observed in this group. However, administrating the 20 mg/kg of astaxanthin was not effective in this regard. These findings showed that astaxanthin could considerably protect the liver from cholestatic damage by improving the biochemical features and regulating the expression of related proteins.
Collapse
Affiliation(s)
- Azadeh Laderian
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pejman Mortazavi
- Department of Pathology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Mousavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences-Islamic Azad University, Tehran, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Mishra K, Khatib N, Barasch D, Kumar P, Garti S, Garti N, Kakhlon O. A New Tailored Nanodroplet Carrier of Astaxanthin Can Improve Its Pharmacokinetic Profile and Antioxidant and Anti-Inflammatory Efficacies. Int J Mol Sci 2024; 25:7861. [PMID: 39063101 PMCID: PMC11276774 DOI: 10.3390/ijms25147861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Astaxanthin (ATX) is a carotenoid nutraceutical with poor bioavailability due to its high lipophilicity. We tested a new tailored nanodroplet capable of solubilizing ATX in an oil-in-water micro-environment (LDS-ATX) for its capacity to improve the ATX pharmacokinetic profile and therapeutic efficacy. We used liquid chromatography tandem mass spectrometry (LC-MS/MS) to profile the pharmacokinetics of ATX and LDS-ATX, superoxide mutase (SOD) activity to determine their antioxidant capacity, protein carbonylation and lipid peroxidation to compare their basal and lipopolysaccharide (LPS)-induced oxidative damage, and ELISA-based detection of IL-2 and IFN-γ to determine their anti-inflammatory capacity. ATX and LDS-ATX corrected only LPS-induced SOD inhibition and oxidative damage. SOD activity was restored only by LDS-ATX in the liver and brain and by both ATX and LDS-ATX in muscle. While in the liver and muscle, LDS-ATX attenuated oxidative damage to proteins and lipids better than ATX; only oxidative damage to lipids was preferably corrected by LDS-ATX in the brain. IL-2 and IFN-γ pro-inflammatory response was corrected by LDS-ATX and not ATX in the liver and brain, but in muscle, the IL-2 response was not corrected and the IFN-γ response was mitigated by both. These results strongly suggest an organ-dependent improvement of ATX bioavailability and efficacy by the LDS-ATX nanoformulation.
Collapse
Affiliation(s)
- Kumudesh Mishra
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel; (K.M.); (P.K.)
| | - Nadin Khatib
- Lyotropic Delivery Systems Ltd., Hi-Tech Park, Row 5(1), Edmond J. Safra Campus, Jerusalem 9139002, Israel; (N.K.); (S.G.)
| | - Dinorah Barasch
- Mass Spectrometry Unit, Institute for Drug Research, School of Pharmacy, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Pradeep Kumar
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel; (K.M.); (P.K.)
| | - Sharon Garti
- Lyotropic Delivery Systems Ltd., Hi-Tech Park, Row 5(1), Edmond J. Safra Campus, Jerusalem 9139002, Israel; (N.K.); (S.G.)
| | - Nissim Garti
- Lyotropic Delivery Systems Ltd., Hi-Tech Park, Row 5(1), Edmond J. Safra Campus, Jerusalem 9139002, Israel; (N.K.); (S.G.)
| | - Or Kakhlon
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah-Hebrew University Medical Center, Jerusalem 9112001, Israel; (K.M.); (P.K.)
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| |
Collapse
|
4
|
Besharat M, Islami HR, Soltani M, Mousavi SA. Effects of dietary nanoliposome-coated astaxanthin on haematological parameters, immune responses and the antioxidant status of rainbow trout (Oncorhynchus mykiss). Vet Med Sci 2024; 10:e1461. [PMID: 38648257 PMCID: PMC11034635 DOI: 10.1002/vms3.1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/03/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Astaxanthin is the most prevalent carotenoid in the marine environment and is widely used as an additive in formulated aquafeeds. OBJECTIVES A 60-day feeding trial was conducted to consider the effect of dietary nanoliposome-coated astaxanthin (NA) on haematological parameters, serum antioxidant activities and immune responses of rainbow trout, Oncorhynchus mykiss. METHODS A total of 450 healthy fish weighing 31.00 ± 2.09 g were randomly assigned in triplicate (30 fish per replicate) to 5 dietary treatments: 0 (control), 25.00, 50.00, 75.00, and 100.00 mg kg-1 NA. RESULTS Fish fed the diet supplemented with 50.00 mg kg-1 NA exhibited the highest values of red blood cells, white blood cells, haemoglobin and haematocrit of 1.64 ± 0.01 × 106 mm-3, 5.54 ± 0.21 × 103 mm-3, 8.73 ± 0.24 g dL-1 and 46.67% ± 0.88%, respectively, which were significantly higher than those fed the basal diet (p < 0.05). The lowest and highest percentages of lymphocytes (67.67% ± 0.33%) and neutrophils (27.33% ± 1.20%) were also obtained in fish fed 50.00 mg kg-1 NA compared to those fed the basal diet (p < 0.05). Fish receiving diet supplemented with 50.00 mg kg-1 NA revealed the highest serum activity in superoxide dismutase, catalase, glutathione peroxidase, lysozyme and alternative complement and the lowest level of total cholesterol, cortisol, aspartate aminotransferase and alanine aminotransferase than fish receiving the basal diet (p < 0.05). Serum immunoglobulin (Ig) and ACH50 contents significantly increased with increasing dietary NA supplementation to the highest values of 43.17 ± 1.46 and 293.33 ± 2.03 U mL-1, respectively, in fish fed diet supplemented with 50 mg kg-1 NA (p < 0.05). CONCLUSIONS Supplementation of NA in rainbow trout diet at 50 mg kg-1 exhibited a positive effect on haematological parameters, antioxidant capacity and immune responses. Administration of such dosage can enhance rainbow trout immune responses against unfavourable or stressful conditions, for example disease outbreaks, hypoxic condition, thermal stress and sudden osmotic fluctuations, which usually happen in an intensive culture system.
Collapse
Affiliation(s)
- Mojdeh Besharat
- Department of Fisheries, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Houman Rajabi Islami
- Department of Fisheries, Science and Research BranchIslamic Azad UniversityTehranIran
| | - Mehdi Soltani
- Department of Aquatic Animal Health, Faculty of Veterinary MedicineUniversity of TehranTehranIran
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, School of Veterinary and Life ScienceMurdoch UniversityMurdochAustralia
| | | |
Collapse
|
5
|
Hwang EJ, Jeong YIL, Lee KJ, Yu YB, Ohk SH, Lee SY. Anticancer Activity of Astaxanthin-Incorporated Chitosan Nanoparticles. Molecules 2024; 29:529. [PMID: 38276606 PMCID: PMC10818874 DOI: 10.3390/molecules29020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Astaxanthin (AST)-encapsulated nanoparticles were fabricated using glycol chitosan (Chito) through electrostatic interaction (abbreviated as ChitoAST) to solve the aqueous solubility of astaxanthin and improve its biological activity. AST was dissolved in organic solvents and then mixed with chitosan solution, followed by a dialysis procedure. All formulations of ChitoAST nanoparticles showed small diameters (less than 400 nm) with monomodal distributions. Analysis with Fourier transform infrared (FT-IR) spectroscopy confirmed the specific peaks of AST and Chito. Furthermore, ChitoAST nanoparticles were formed through electrostatic interactions between Chito and AST. In addition, ChitoAST nanoparticles showed superior antioxidant activity, as good as AST itself; the half maximal radical scavenging concentrations (RC50) of AST and ChitoAST nanoparticles were 11.8 and 29.3 µg/mL, respectively. In vitro, AST and ChitoAST nanoparticles at 10 and 20 µg/mL properly inhibited the production of intracellular reactive oxygen species (ROSs), nitric oxide (NO), and inducible nitric oxide synthase (iNOS). ChitoAST nanoparticles had no significant cytotoxicity against RAW264.7 cells or B16F10 melanoma cells, whereas AST and ChitoAST nanoparticles inhibited the growth of cancer cells. Furthermore, AST itself and ChitoAST nanoparticles (20 µg/mL) efficiently inhibited the migration of cancer cells in a wound healing assay. An in vivo study using mice and a pulmonary metastasis model showed that ChitoAST nanoparticles were efficiently delivered to a lung with B16F10 cell metastasis; i.e., fluorescence intensity in the lung was significantly higher than in other organs. We suggest that ChitoAST nanoparticles are promising candidates for antioxidative and anticancer therapies of B16F10 cells.
Collapse
Affiliation(s)
- Eun Ju Hwang
- Marine Bio Research Center, Chosun University, Wando 59146, Jeonnam, Republic of Korea;
| | - Young-IL Jeong
- Research Institute of Convergence of Biomedical Sciences, Pusan National University Yangsan Hospital, Yangsan 50612, Gyeongnam, Republic of Korea;
| | - Kyong-Je Lee
- Department of Prosthodontics, Chosun University Dental Hospital, Gwangju 61452, Republic of Korea;
| | - Young-Bob Yu
- Department of Paramedicine, Nambu University, Gwangju 62271, Republic of Korea;
| | - Seung-Ho Ohk
- Department of Oral Microbiology, Chonnam National University School of Dentistry, Gwangju 61452, Republic of Korea
| | - Sook-Young Lee
- Marine Bio Research Center, Chosun University, Wando 59146, Jeonnam, Republic of Korea;
| |
Collapse
|
6
|
Liu X, Xie J, Zhou L, Zhang J, Chen Z, Xiao J, Cao Y, Xiao H. Recent advances in health benefits and bioavailability of dietary astaxanthin and its isomers. Food Chem 2023; 404:134605. [DOI: 10.1016/j.foodchem.2022.134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/22/2022]
|
7
|
Yang Q, He Y, Tian L, Zhang Z, Qiu L, Tao X, Wei H. Anti-tumor effect of infant-derived Enterococcus via the inhibition of proliferation and inflammation as well as the promotion of apoptosis. Food Funct 2023; 14:2223-2238. [PMID: 36757840 DOI: 10.1039/d2fo03045d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Probiotic Enterococcus hirae WEHI01 and Enterococcus faecium WEFA23 from infants were previously found to effectively inhibit the development of melanoma. In this study, their immunomodulatory and antitumor mechanisms were systemically studied. In vitro assay showed that E. hirae WEHI01 and E. faecium WEFA23 achieved biphasic immune regulation, which was revealed by the activation of resting spleen lymphocytes and RAW264.7 macrophages, as well as the anti-inflammation effect when immune cells were treated with LPS. The antitumor effects of E. hirae WEHI01 and E. faecium WEFA23 in vitro and vivo were then investigated. CCK8 and the cell scratch assay showed that the conditioned media, which were co-incubated with Enterococcus and spleen lymphocytes, significantly inhibited the proliferation and migration of B16F10, HepG-2 and HT-29 cells. The results of the tumor-bearing mice model experiment showed that E. faecium WEFA23 inhibition of the growth of tumors in mice, and the anti-tumor mechanism involved three aspects, namely tumor proliferation (decreasing expressions of LDHA, VEGF, MMP2, MMP9 and HIF-1α), inhibition of the pro-inflammation state (decreasing expressions of IL-6, TGF-β and IL-17) and the promotion of apoptosis (increasing expression of Bax/Bcl-2, caspase-3 and p53). The results suggest that the two strains of Enterococcus could be promising candidates for treating melanoma with a highly inhibitory effect.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Yao He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Linlin Tian
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, P. R. China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, P. R. China.
| |
Collapse
|
8
|
Duan X, Xie C, Hill DRA, Barrow CJ, Dunshea FR, Martin GJO, Suleria HA. Bioaccessibility, Bioavailability and Bioactivities of Carotenoids in Microalgae: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2165095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xinyu Duan
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Cundong Xie
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - David R. A. Hill
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Colin J. Barrow
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds, UK
| | - Gregory J. O. Martin
- Algal Processing Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Hafiz A.R. Suleria
- School of Agriculture and Food, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
- Centre for Chemistry and Biotechnology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| |
Collapse
|
9
|
Nanocarrier System: State-of-the-Art in Oral Delivery of Astaxanthin. Antioxidants (Basel) 2022; 11:antiox11091676. [PMID: 36139750 PMCID: PMC9495775 DOI: 10.3390/antiox11091676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Astaxanthin (3,3′-dihydroxy-4,4′-diketo-β-β carotene), which belongs to the xanthophyll class, has shown potential biological activity in in vitro and in vivo models including as a potent antioxidant, anti-lipid peroxidation and cardiovascular disease prevention agent. It is mainly extracted from an alga, Haematococcus pluvialis. As a highly lipid-soluble carotenoid, astaxanthin has been shown to have poor oral bioavailability, which limits its clinical applications. Recently, there have been several suggestions and the development of various types of nano-formulation, loaded with astaxanthin to enhance their bioavailability. The employment of nanoemulsions, liposomes, solid lipid nanoparticles, chitosan-based and PLGA-based nanoparticles as delivery vehicles of astaxanthin for nutritional supplementation purposes has proven a higher oral bioavailability of astaxanthin. In this review, we highlight the pharmacological properties, pharmacokinetics profiles and current developments of the nano-formulations of astaxanthin for its oral delivery that are believed to be beneficial for future applications. The limitations and future recommendations are also discussed in this review.
Collapse
|
10
|
El-Hawy AS, Abdel-Rahman HG, El-Bassiony MF, Anwar A, Hassan MA, Elnabtiti AAS, Abdelrazek HMA, Kamel S. Immunostimulatory effects of Nannochloropsis oculata supplementation on Barki rams growth performance, antioxidant assay, and immunological status. BMC Vet Res 2022; 18:314. [PMID: 35971171 PMCID: PMC9377079 DOI: 10.1186/s12917-022-03417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural feed supplements are gaining popularity in the animal production sector due to their safety and potential immunostimulatory properties, as well as the ban of some antibiotics and their negative residual effects. This study was carried out for 1 month to investigate the effect of Nannochloropsis oculata supplementation on growth performance and cell-mediated immunological status of rams assessed by leukogram assessment, lipid oxidation product malondialdehyde (MDA), total antioxidant capacity (TAC), interleukin assay after lymphocyte transformation test (LTT) including interleukin 6 (IL6), tumor necrosis factor-alpha (TNF-α), interleukin 12 (IL12), and gamma interferon (γ-IF), as well as Comet assay (% of DNA damage, tail length (px), % DNA in tail, tail moment and Olive tail moment). METHODS Eighteen Barki rams (26.21 ± 0.64 kg) were divided into 3 equal treatment groups (6 sheep/each), G1: animals served as the control group that was fed the basal diet only, while the other treated groups (G2 and G3 (Nan 1.5% and Nan 3%) were fed the basal diet supplemented with 1.5% and 3% N. oculata (dry matter basis), respectively. RESULTS The obtained results revealed that G3 showed a significant (P < 0.05) improvement in performance (body weight and body weight gain), the highest significant count (P < 0.05) in lymphocytes, and the lowest significant (P < 0.05) levels of neutrophils and neutrophils and lymphocytes ratio (N/L) ratio. Meanwhile, both levels of N. oculata significantly (P < 0.05) decreased MDA and increased TAC than control which seemed to be directly correlated with supplemented dose. There was a significant (P < 0.05) enhancement in the lymphocyte transformation assay produced significant (P < 0.05) high cytokines (IL6, γ-IF, IL12, and TNF-α) and the lowest significant (P <0.05) percent of DNA damage. The conducted principal component analysis estimated the inter-relationship between parameters and revealed that microalgae correlated strongly with cytokine assay and TAC, and negatively with Comet assay parameters; MDA, and neutrophils. CONCLUSIONS It can be noted that dietary addition of N. oculata 3% increased sheep's performance while also producing significant-high cytokines. It also enhanced sheep immunology by considerably enhancing lymphocyte transformation ability. The antioxidant activity of Nannochloropsis appears to influence these findings. It was proposed that the Barki rams' basal diet be supplemented with 3% N. oculata.
Collapse
Affiliation(s)
- A S El-Hawy
- Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Haidy G Abdel-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - M F El-Bassiony
- Animal and Poultry Production Division, Desert Research Center, Cairo, Egypt
| | - Abeer Anwar
- Immunology and Immunopharmacology Unit, Animal Reproduction Research Institute Cairo, Cairo, Egypt
| | - Marwa A Hassan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - A A S Elnabtiti
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Samar Kamel
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
11
|
Recent Advances and the Mechanism of Astaxanthin in Ophthalmological Diseases. J Ophthalmol 2022; 2022:8071406. [PMID: 35646393 PMCID: PMC9142330 DOI: 10.1155/2022/8071406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Astaxanthin (AST) is a naturally occurring carotenoid that has strong antioxidant, anti-inflammatory, and antiapoptosis effects and is used for the prevention of cancer. There is growing evidence that AST has multiple protective effects against various eye diseases. This article reviews the function and the potential mechanism of AST in dry eye syndrome, keratitis, cataract, diabetic retinopathy, age-related macular degeneration, high intraocular pressure, and other ocular diseases. It provides a theoretical basis for the clinical application of AST as a potential nutraceutical.
Collapse
|
12
|
Astaxanthin as a Potential Antioxidant to Improve Health and Production Performance of Broiler Chicken. Vet Med Int 2022; 2022:4919442. [PMID: 35465402 PMCID: PMC9023177 DOI: 10.1155/2022/4919442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/08/2022] [Accepted: 03/11/2022] [Indexed: 11/26/2022] Open
Abstract
Recent interest in carotenoids has increased due to their antioxidant and production performance. Astaxanthin (AST) is a xanthophyll carotenoid abundantly distributed in microalgae, which is described as a highly potent antioxidant. Therefore, recent studies have tended to investigate the role of antioxidants in improving metabolic processes and physiological functioning of the body. It is now evident that AST could significantly reduce free radicals and oxidative stress and help to maintain a healthy state. Moreover, AST also could improve the performance of broiler chicken by increasing the daily feed intake, followed by improvement in the food conversion rate.
Collapse
|
13
|
Jafari Z, Bigham A, Sadeghi S, Dehdashti SM, Rabiee N, Abedivash A, Bagherzadeh M, Nasseri B, Karimi-Maleh H, Sharifi E, Varma RS, Makvandi P. Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications. J Med Chem 2022; 65:2-36. [PMID: 34919379 PMCID: PMC8762669 DOI: 10.1021/acs.jmedchem.1c01144] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/13/2022]
Abstract
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Collapse
Affiliation(s)
- Zohreh Jafari
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Ashkan Bigham
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
| | - Sahar Sadeghi
- Department
of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Sayed Mehdi Dehdashti
- Cellular
and Molecular Biology Research Center, Shahid
Beheshti University of Medical Sciences, 19857-17443 Tehran, Iran
| | - Navid Rabiee
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
- Department
of Physics, Sharif University of Technology, 11155-9161 Tehran, Iran
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alireza Abedivash
- Department
of Basic Sciences, Sari Agricultural Sciences
and Natural Resources University, 48181-68984 Sari, Iran
| | - Mojtaba Bagherzadeh
- Department
of Chemistry, Sharif University of Technology, 11155-9161 Tehran, Iran
| | - Behzad Nasseri
- Department
of Medical Biotechnology, Faculty of Advance Medical Sciences, Tabriz University of Medical Sciences, 51664 Tabriz, Iran
| | - Hassan Karimi-Maleh
- School
of Resources and Environment, University
of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Avenue, 610054 Chengdu, PR China
- Department
of Chemical Engineering, Laboratory of Nanotechnology,
Quchan University of Technology, 94771-67335 Quchan, Iran
- Department
of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus,
2028, 2006 Johannesburg, South Africa
| | - Esmaeel Sharifi
- Institute
of Polymers, Composites and Biomaterials
- National Research Council (IPCB-CNR), Viale J.F. Kennedy 54 - Mostra D’Oltremare
pad. 20, 80125 Naples, Italy
- Department
of Tissue Engineering and Biomaterials, School of Advanced Medical
Sciences and Technologies, Hamadan University
of Medical Sciences, 6517838736 Hamadan, Iran
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Pooyan Makvandi
- Centre for
Materials Interfaces, Istituto Italiano
di Tecnologia, viale
Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
14
|
Dzhalilova D, Kosyreva A, Vishnyakova P, Zolotova N, Tsvetkov I, Mkhitarov V, Mikhailova L, Kakturskiy L, Makarova O. Age-related differences in hypoxia-associated genes and cytokine profile in male Wistar rats. Heliyon 2021; 7:e08085. [PMID: 34632150 PMCID: PMC8488852 DOI: 10.1016/j.heliyon.2021.e08085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/25/2021] [Accepted: 09/26/2021] [Indexed: 11/29/2022] Open
Abstract
Hypoxia tolerance of the organism depends on many factors, including age. High newborn organisms tolerance and high level of oxidative stress throughout aging were demonstrated by many studies. However, there is lack of investigations reflecting the expression of key hypoxia-inducible factor HIF in different age organisms in correlation to levels of pro-inflammatory and anti-inflammatory cytokines. Liver is a sensitive to hypoxia organ, and is an important organ in providing an acute reaction to infections – it synthesizes acute inflammation phase proteins, in particular, C-reactive protein. The aim of study was to determine relationship between age-related tolerance to hypoxia and HIF-1 and PHD2 (prolyl hydroxylase domain protein) expression levels in the liver and the production of cytokines in the spleen in newborn, prepubertal and adult Wistar rats. Newborn rats are characterized by high mRNA Hif-1α expression level in the liver, accompanied by a low content of HIF-1 protein and high level of PHD2. The growth in HIF-1α protein level throughout age is accompanied by the growth of pro-inflammatory cytokines level. Prepubertal animals are the least hypoxia resistant and their HIF-1α mRNA expression level was higher than in adult animals. The PHD2 activity in prepubertal animals was significantly reduced in comparison to newborn rats, and the HIF-1α protein level did not change. Further studies require the identification of additional mechanisms, determining the regulation of the HIF-1α level in prepubertal animals.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Anna Kosyreva
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia.,Histology Department, Peoples Friendship University of Russia (RUDN University), 117198, Miklukho-Maklaya st. 6, Moscow, Russia
| | - Polina Vishnyakova
- Histology Department, Peoples Friendship University of Russia (RUDN University), 117198, Miklukho-Maklaya st. 6, Moscow, Russia.,National Medical Research Center for Obstetrics, Gynecology and Perinatology Named After Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117997, Oparina st., 4, Moscow, Russia
| | - Natalia Zolotova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Ivan Tsvetkov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Vladimir Mkhitarov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Liliya Mikhailova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Lev Kakturskiy
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| | - Olga Makarova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution Research Institute of Human Morphology, 117418, Tsurupa st., 3, Moscow, Russia
| |
Collapse
|
15
|
Khalil A, Tazeddinova D, Aljoumaa K, Kazhmukhanbetkyzy ZA, Orazov A, Toshev AD. Carotenoids: Therapeutic Strategy in the Battle against Viral Emerging Diseases, COVID-19: An Overview. Prev Nutr Food Sci 2021; 26:241-261. [PMID: 34737985 PMCID: PMC8531419 DOI: 10.3746/pnf.2021.26.3.241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/23/2022] Open
Abstract
Carotenoids, a group of phytochemicals, are naturally found in the Plant kingdom, particularly in fruits, vegetables, and algae. There are more than 600 types of carotenoids, some of which are thought to prevent disease, mainly through their antioxidant properties. Carotenoids exhibit several biological and pharmaceutical benefits, such as anti-inflammatory, anti-cancer, and immunity booster properties, particularly as some carotenoids can be converted into vitamin A in the body. However, humans cannot synthesize carotenoids and need to obtain them from their diets or via supplementation. The emerging zoonotic virus severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19), originated in bats, and was transmitted to humans. COVID-19 continues to cause devastating international health problems worldwide. Therefore, natural preventive therapeutic strategies from bioactive compounds, such as carotenoids, should be appraised for strengthening physiological functions against emerging viruses. This review summarizes the most important carotenoids for human health and enhancing immunity, and their potential role in COVID-19 and its related symptoms. In conclusion, promising roles of carotenoids as treatments against emerging disease and related symptoms are highlighted, most of which have been heavily premeditated in studies conducted on several viral infections, including COVID-19. Further in vitro and in vivo research is required before carotenoids can be considered as potent drugs against such emerging diseases.
Collapse
Affiliation(s)
- Ayman Khalil
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Diana Tazeddinova
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | - Khaled Aljoumaa
- Department of Food technology, South Ural State University, Chelyabinsk 454080, Russian Federation
| | | | - Ayan Orazov
- Higher School of Technologies of Food and Processing Productions, Zhangir Khan University, Uralsk 090009, The Republic of Kazakhstan
| | | |
Collapse
|
16
|
Villaró S, Ciardi M, Morillas-España A, Sánchez-Zurano A, Acién-Fernández G, Lafarga T. Microalgae Derived Astaxanthin: Research and Consumer Trends and Industrial Use as Food. Foods 2021; 10:foods10102303. [PMID: 34681351 PMCID: PMC8534595 DOI: 10.3390/foods10102303] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin is a high-value carotenoid currently being produced by chemical synthesis and by extraction from the biomass of the microalga Haematococcus pluvialis. Other microalgae, such as Chlorella zofingiensis, have the potential for being used as sources of astaxanthin. The differences between the synthetic and the microalgae derived astaxanthin are notorious: not only their production and price but also their uses and bioactivity. Microalgae derived astaxanthin is being used as a pigment in food and feed or aquafeed production and also in cosmetic and pharmaceutical products. Several health-promoting properties have been attributed to astaxanthin, and these were summarized in the current review paper. Most of these properties are attributed to the high antioxidant capacity of this molecule, much higher than that of other known natural compounds. The aim of this review is to consider the main challenges and opportunities of microalgae derived products, such as astaxanthin as food. Moreover, the current study includes a bibliometric analysis that summarizes the current research trends related to astaxanthin. Moreover, the potential utilization of microalgae other than H. pluvialis as sources of astaxanthin as well as the health-promoting properties of this valuable compound will be discussed.
Collapse
Affiliation(s)
- Silvia Villaró
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Martina Ciardi
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ainoa Morillas-España
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Ana Sánchez-Zurano
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Gabriel Acién-Fernández
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
| | - Tomas Lafarga
- Department of Chemical Engineering, University of Almería, 04120 Almería, Almería, Spain; (S.V.); (M.C.); (A.M.-E.); (A.S.-Z.); (G.A.-F.)
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Almería, Spain
- Correspondence:
| |
Collapse
|
17
|
Ahmadi AR, Ayazi-Nasrabadi R. Astaxanthin protective barrier and its ability to improve the health in patients with COVID-19. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:434-441. [PMID: 34557270 PMCID: PMC8421583 DOI: 10.18502/ijm.v13i4.6965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inflammation acts like a double-edged sword and can be harmful if not appropriately controlled. COVID-19 is created through a novel species of coronavirus SARS-CoV-2 (2019-nCoV). Elevated levels of inflammatory factors such as interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), etc. lead to Acute Respiratory Distress Syndrome (ARDS) and severe complications of infection in the lungs of coronavirus-infected patients. Astaxanthin is a natural and potent carotenoid with powerful antioxidant activity as well as an anti-inflammatory agent that supports good health. The effects of astaxanthin on the regulation of cyclooxygenase-2 (COX-2) pathways and the reduction and suppression of cytokines and other inflammatory agents such as IL-6 and TNF-α have already been identified. Therefore, these unique features can make this natural compound an excellent option to minimize inflammation and its consequences.
Collapse
Affiliation(s)
- Ali-Reza Ahmadi
- Department of Biomedical Sciences, Women Research Center, Alzahra University, Tehran, Iran
| | - Roya Ayazi-Nasrabadi
- Department of Biomedical Sciences, Women Research Center, Alzahra University, Tehran, Iran
| |
Collapse
|
18
|
Lim KC, Yusoff FM, Shariff M, Kamarudin MS. Dietary astaxanthin augments disease resistance of Asian seabass, Lates calcarifer (Bloch, 1790), against Vibrio alginolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2021; 114:90-101. [PMID: 33838221 DOI: 10.1016/j.fsi.2021.03.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
This investigation describes the impacts of dietary provisioning with astaxanthin on hemato-biochemistry, non-specific immunity, and disease resistance of the Asian seabass, Lates calcarifer, against the virulent Vibrio alginolyticus; with specific reference to dose-response associations and variations over different post-infection periods (0-, 7-, and 14-day). Triplicate groups of fish weighing 28 g, on average, were fed various diets (C, the control or astaxanthin-free; AXT50, 50 mg astaxanthin kg-1 diet; AXT100, 100 mg astaxanthin kg-1 diet; and AXT150, 150 mg astaxanthin kg-1 diet) for 90 days and subsequently challenged with V. alginolyticus at the end of the feeding period. Experimental infection unveiled that supplemented fish demonstrated significant improvements (P < 0.05) of hematological parameters (white blood cell [WBC] and red blood cell [RBC] counts, and hemoglobin and hematocrit levels) when fed diets with elevating supplemental doses of astaxanthin through distinct post-infection periods (0-, 7-, and 14-day). Furthermore, the administration of dietary astaxanthin at escalating levels markedly enhanced (P < 0.05) the serum biochemical profile (aspartate aminotransferase [AST], alanine aminotransferase [ALT], glucose, cortisol, cholesterol, and triglyceride contents) of challenged fish, resulting in better welfare. Significantly higher (P < 0.05) contents of serum total protein were observed in supplemented fish, as opposed to the control. Additionally, immunological defense mechanisms (lysozyme activity, phagocytic activity, respiratory burst activity, and total serum immunoglobulin) of challenged fish were pronouncedly elicited (P < 0.05) following the ingestion of astaxanthin. Besides, the supplementation with dietary astaxanthin significantly augmented (P < 0.05) the post-challenge survival rate of fish. Collectively, the results manifest that supplementary feeding of astaxanthin is effective in reinforcing fish immunocompetence and disease resistance against V. alginolyticus infection.
Collapse
Affiliation(s)
- Keng Chin Lim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fatimah Md Yusoff
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Mohamed Shariff
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Aquatic Animal Health Unit, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mohd Salleh Kamarudin
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
19
|
Conboy Stephenson R, Ross RP, Stanton C. Carotenoids in Milk and the Potential for Dairy Based Functional Foods. Foods 2021; 10:1263. [PMID: 34199355 PMCID: PMC8226488 DOI: 10.3390/foods10061263] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/31/2022] Open
Abstract
Carotenoids are a family of over 1100 known natural pigments synthesized by plants, algae, fungi and bacteria. Dietary intake of carotenoids is necessary for mammals as they cannot be synthesized in the body. In cows, the nature of the diet consumed strongly influences the composition of milk produced and this includes carotenoid concentration and profile. Fresh forage is the richest source of carotenoids for cows. The main carotenoids identified in forages are lutein, β-carotene, zeaxanthin and epilutein. Manipulating cow feed via carotenoid supplementation increases the carotenoid content of bovine milk. In humans, carotenoids have anti-oxidant, anti-inflammatory and provitamin A activity. Lutein is a major carotenoid in human milk and the brain tissue of adults and infants. Lutein and zeaxanthin are linked to improved eye health and cognitive function. Traditionally for humans, fruit and vegetables have been the main source of carotenoid intake. Functional foods present an opportunity to incorporate these naturally occurring compounds into milk products for added health benefits, widening the range of dietary sources of carotenoids. We offer an overview of the literature to date on carotenoid-fortified dairy products and infant formula. This review will describe and summarize the key mechanisms by which the carotenoid profile of bovine milk can be manipulated. We present findings on the origin and role of carotenoids in bovine and human milk, outline factors that impact the carotenoid content of milk, evaluate carotenoid-fortified milk products and discuss the associated challenges, such as bioaccessibility and stability.
Collapse
Affiliation(s)
- Ruth Conboy Stephenson
- Vistamilk/Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- School of Microbiology, University College Cork, T12 YN60 Cork, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| | - Catherine Stanton
- Vistamilk/Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
| |
Collapse
|
20
|
Kanwugu ON, Glukhareva TV, Danilova IG, Kovaleva EG. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin. Crit Rev Food Sci Nutr 2021; 62:5005-5028. [PMID: 33591215 DOI: 10.1080/10408398.2021.1881434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetes remains a major health emergency in our entire world, affecting hundreds of millions of people worldwide. In conjunction with its much-dreaded complications (e.g., nephropathy, neuropathy, retinopathy, cardiovascular diseases, etc.) it substantially reduces the quality of life, increases mortality as well as economic burden among patients. Over the years, oxidative stress and inflammation have been highlighted as key players in the development and progression of diabetes and its associated complications. Much research has been devoted, as such, to the role of antioxidants in diabetes. Astaxanthin is a powerful antioxidant found mostly in marine organisms. Over the past years, several studies have demonstrated that astaxanthin could be useful in the treatment and management of diabetes. It has been shown to protect β-cells, neurons as well as several organs including the eyes, kidney, liver, etc. against oxidative injuries experienced during diabetes. Furthermore, it improves glucose and lipid metabolism along with cardiovascular health. Its beneficial effects are exerted through multiple actions on cellular functions. Considering these and the fact that foods and natural products with biological and pharmacological activities are of much interest in the 21st-century food and drug industry, astaxanthin has a bright prospect in the management of diabetes and its complications.
Collapse
Affiliation(s)
- Osman N Kanwugu
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| | - Tatiana V Glukhareva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia.,Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Irina G Danilova
- Institute of Immunology and Physiology, Ural Branch of the Russia Academy of Science, Yekaterinburg, Russia
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg, Russia
| |
Collapse
|
21
|
Fouad MA, Sayed-Ahmed MM, Huwait EA, Hafez HF, Osman AMM. Epigenetic immunomodulatory effect of eugenol and astaxanthin on doxorubicin cytotoxicity in hormonal positive breast Cancer cells. BMC Pharmacol Toxicol 2021; 22:8. [PMID: 33509300 PMCID: PMC7842008 DOI: 10.1186/s40360-021-00473-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Hormonal receptor positive (HR+) breast cancer is the most commonly diagnosed molecular subtype of breast cancer; which showed good response to doxorubicin (DOX)-based chemotherapy. Eugenol (EUG) and astaxanthin (AST) are natural compounds with proved epigenetic and immunomodulatory effects in several cancer cell lines. This study has been initiated to investigate the molecular mechanism (s) whereby EUG and AST could enhance DOX cytotoxicity in MCF7 cells. METHODS Cytotoxic activity of DOX alone and combined with either 1 mM EUG or 40 μM AST was performed using sulphorhodamine-B assay in MCF7 cells. Global histones acetylation and some immunological markers were investigated using ELISA, western blotting and quantitative RT-PCR techniques. Functional assay of multidrug resistance was performed using rhodamine 123 and Hoechst 3342 dyes. Flow cytometry with annexin V and propidium iodide were used to assess the change in cell cycle and apoptosis along with the expression of some differentiation, apoptosis and autophagy proteins. RESULTS DOX alone resulted in concentration-dependent cytotoxicity with IC50 of 0.5 μM. Both EUG and AST significantly increased DOX cytotoxicity which is manifested as a significant decrease in DOX IC50 from 0.5 μM to 0.088 μM with EUG and to 0.06 μM with AST. Combinations of DOX with 1 mM EUG or 40 μM AST significantly increased the level of histones acetylation and histone acetyl transferase expression, while reduced the expression of aromatase and epidermal growth factor receptor (EGFR) when compared with 0.25 μM DOX alone. Also both combinations showed higher uptake of rhodamine but lower of Hoechst stains, along with increased the percentage of caspase 3, and decreased the expression of CK7 and LC3BI/II ratio. EUG combination induced IFγ but reduced TNFα causing shifting of cells from G2/M to S and G0/ G1 phases. Combination of DOX with EUG induced apoptosis through the higher BAX/ BCl2 ratio, while with AST was through the increase in caspase 8 expressions. CONCLUSION EUG and AST potentiated the anticancer activity of DOX through epigenetic histones acetylation along with the immunonomodulation of different apoptotic approaches in MCF7 cells.
Collapse
Affiliation(s)
- Mariam A Fouad
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Etimad A Huwait
- Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Experimental Biochemistry Unit, King Fahad Medical Research Centre, Jeddah, Saudi Arabia
| | - Hafez F Hafez
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Abdel-Moneim M Osman
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt.
| |
Collapse
|
22
|
Natural Compounds of Marine Origin as Inducers of Immunogenic Cell Death (ICD): Potential Role for Cancer Interception and Therapy. Cells 2021; 10:cells10020231. [PMID: 33504012 PMCID: PMC7912082 DOI: 10.3390/cells10020231] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Regulated cell death (RCD) has always been considered a tolerogenic event. Immunogenic cell death (ICD) occurs as a consequence of tumour cell death accompanied by the release of damage-associated molecular patterns (DAMPs), triggering an immune response. ICD plays a major role in stimulating the function of the immune system in cancer during chemotherapy and radiotherapy. ICD can therefore represent one of the routes to boost anticancer immune responses. According to the recommendations of the Nomenclature Committee on Cell Death (2018), apoptosis (type I cell death) and necrosis (type II cell death) represent are not the only types of RCD, which also includes necroptosis, pyroptosis, ferroptosis and others. Specific downstream signalling molecules and death-inducing stimuli can regulate distinct forms of ICD, which develop and promote the immune cell response. Dying cells deliver different potential immunogenic signals, such as DAMPs, which are able to stimulate the immune system. The acute exposure of DAMPs can prime antitumour immunity by inducing activation of antigen-presenting cells (APC), such as dendritic cells (DC), leading to the downstream response by cytotoxic T cells and natural killer cells (NK). As ICD represents an important target to direct and develop new pharmacological interventions, the identification of bioactive natural products, which are endowed with low side effects, higher tolerability and preferentially inducing immunogenic programmed cell death, represents a priority in biomedical research. The ability of ICD to drive the immune response depends on two major factors, neither of which is intrinsic to cell death: ‘Antigenicity and adjuvanticity’. Indeed, the use of natural ICD-triggering molecules, alone or in combination with different (immuno)therapies, can result in higher efficacy and tolerability. Here, we focused on natural (marine) compounds, particularly on marine microalgae derived molecules such as exopolysaccharides, sulphated polysaccharides, glycopeptides, glycolipids, phospholipids, that are endowed with ICD-inducing properties and sulfavants. Here, we discuss novel and repurposed small-molecule ICD triggers, as well as their ability to target important molecular pathways including the IL-6, TNF-α and interferons (IFNs), leading to immune stimulation, which could be used alone or in combinatorial immunotherapeutic strategies in cancer prevention and therapies.
Collapse
|
23
|
Liu J, Obaidi I, Nagar S, Scalabrino G, Sheridan H. The antiviral potential of algal-derived macromolecules. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
24
|
Pereira CPM, Souza ACR, Vasconcelos AR, Prado PS, Name JJ. Antioxidant and anti‑inflammatory mechanisms of action of astaxanthin in cardiovascular diseases (Review). Int J Mol Med 2021; 47:37-48. [PMID: 33155666 PMCID: PMC7723678 DOI: 10.3892/ijmm.2020.4783] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/06/2022] Open
Abstract
Cardiovascular diseases are the most common cause of mortality worldwide. Oxidative stress and inflammation are pathophysiological processes involved in the development of cardiovascular diseases; thus, anti‑inflammatory and antioxidant agents that modulate redox balance have become research targets so as to evaluate their molecular mechanisms of action and therapeutic properties. Astaxanthin, a carotenoid of the xanthophyll group, has potent antioxidant properties due to its molecular structure and its arrangement in the plasma membrane, factors that favor the neutralization of reactive oxygen and nitrogen species. This carotenoid also has prominent anti‑inflammatory activity, possibly interrelated with its antioxidant effect, and is also involved in the modulation of lipid and glucose metabolism. Considering the potential beneficial effects of astaxanthin on cardiovascular health evidenced by preclinical and clinical studies, the aim of the present review was to describe the molecular and cellular mechanisms associated with the antioxidant and anti‑inflammatory properties of this carotenoid in cardiovascular diseases, particularly atherosclerosis. The beneficial properties and safety profile of astaxanthin indicate that this compound may be used for preventing progression or as an adjuvant in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Andrea Rodrigues Vasconcelos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | | | - José João Name
- Kilyos Assessoria, Cursos e Palestras, São Paulo, SP 01311-100
| |
Collapse
|
25
|
Wan X, Zhou XR, Moncalian G, Su L, Chen WC, Zhu HZ, Chen D, Gong YM, Huang FH, Deng QC. Reprogramming microorganisms for the biosynthesis of astaxanthin via metabolic engineering. Prog Lipid Res 2020; 81:101083. [PMID: 33373616 DOI: 10.1016/j.plipres.2020.101083] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
There is an increasing demand for astaxanthin in food, feed, cosmetics and pharmaceutical applications because of its superior anti-oxidative and coloring properties. However, naturally produced astaxanthin is expensive, mainly due to low productivity and limited sources. Reprogramming of microorganisms for astaxanthin production via metabolic engineering is a promising strategy. We primarily focus on the application of synthetic biology, enzyme engineering and metabolic engineering in enhancing the synthesis and accumulation of astaxanthin in microorganisms in this review. We also discuss the biosynthetic pathways of astaxanthin within natural producers, and summarize the achievements and challenges in reprogramming microorganisms for enhancing astaxanthin production. This review illuminates recent biotechnological advances in microbial production of astaxanthin. Future perspectives on utilization of new technologies for boosting microbial astaxanthin production are also discussed.
Collapse
Affiliation(s)
- Xia Wan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | | | - Gabriel Moncalian
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, PR China
| | - Wen-Chao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Hang-Zhi Zhu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Dan Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Yang-Min Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China
| | - Feng-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| | - Qian-Chun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan 430062, PR China; Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Wuhan 430062, PR China.
| |
Collapse
|
26
|
Talukdar J, Bhadra B, Dattaroy T, Nagle V, Dasgupta S. Potential of natural astaxanthin in alleviating the risk of cytokine storm in COVID-19. Biomed Pharmacother 2020; 132:110886. [PMID: 33113418 PMCID: PMC7566765 DOI: 10.1016/j.biopha.2020.110886] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Host excessive inflammatory immune response to SARS-CoV-2 infection is thought to underpin the pathogenesis of COVID-19 associated severe pneumonitis and acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Once an immunological complication like cytokine storm occurs, anti-viral based monotherapy alone is not enough. Additional anti-inflammatory treatment is recommended. It must be noted that anti-inflammatory drugs such as JAK inhibitors, IL-6 inhibitors, TNF-α inhibitors, colchicine, etc., have been either suggested or are under trials for managing cytokine storm in COVID-19 infections. Natural astaxanthin (ASX) has a clinically proven safety profile and has antioxidant, anti-inflammatory, and immunomodulatory properties. There is evidence from preclinical studies that supports its preventive actions against ALI/ARDS. Moreover, ASX has a potent PPARs activity. Therefore, it is plausible to speculate that ASX could be considered as a potential adjunctive supplement. Here, we summarize the mounting evidence where ASX is shown to exert protective effect by regulating the expression of pro-inflammatory factors IL-1β, IL-6, IL-8 and TNF-α. We present reports where ASX is shown to prevent against oxidative damage and attenuate exacerbation of the inflammatory responses by regulating signaling pathways like NF-ĸB, NLRP3 and JAK/STAT. These evidences provide a rationale for considering natural astaxanthin as a therapeutic agent against inflammatory cytokine storm and associated risks in COVID-19 infection and this suggestion requires further validation with clinical studies.
Collapse
Affiliation(s)
- Jayanta Talukdar
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India.
| | - Bhaskar Bhadra
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Tomal Dattaroy
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Vinod Nagle
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| | - Santanu Dasgupta
- Synthetic Biology Group, Reliance Research & Development Centre, Reliance Industries Limited, Navi Mumbai, Maharashtra, 400701, India
| |
Collapse
|
27
|
Cheng J, Eroglu A. The Promising Effects of Astaxanthin on Lung Diseases. Adv Nutr 2020; 12:850-864. [PMID: 33179051 PMCID: PMC8166543 DOI: 10.1093/advances/nmaa143] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/25/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Astaxanthin (ASX) is a naturally occurring xanthophyll carotenoid. Both in vitro and in vivo studies have shown that it is a potent antioxidant with anti-inflammatory properties. Lung cancer is the leading cause of cancer death worldwide, whereas other lung diseases such as chronic obstructive pulmonary disease, emphysema, and asthma are of high prevalence. In the past decade, mounting evidence has suggested a protective role for ASX against lung diseases. This article reviews the potential role of ASX in protecting against lung diseases, including lung cancer. It also summarizes the underlying molecular mechanisms by which ASX protects against pulmonary diseases, including regulating the nuclear factor erythroid 2-related factor/heme oxygenase-1 pathway, NF-κB signaling, mitogen-activated protein kinase signaling, Janus kinase-signal transducers and activators of transcription-3 signaling, the phosphoinositide 3-kinase/Akt pathway, and modulating immune response. Several future directions are proposed in this review. However, most in vitro and in vivo studies have used ASX at concentrations that are not achievable by humans. Also, no clinical trials have been conducted and/or reported. Thus, preclinical studies with ASX treatment within physiological concentrations as well as human studies are required to examine the health benefits of ASX with respect to lung diseases.
Collapse
Affiliation(s)
- Junrui Cheng
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | | |
Collapse
|
28
|
Novel Insights into the Biotechnological Production of Haematococcus pluvialis-Derived Astaxanthin: Advances and Key Challenges to Allow Its Industrial Use as Novel Food Ingredient. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100789] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Astaxanthin shows many biological activities. It has acquired a high economic potential and its current market is dominated by its synthetic form. However, due to the increase of the health and environmental concerns from consumers, natural forms are now preferred for human consumption. Haematococcus pluvialis is artificially cultured at an industrial scale to produce astaxanthin used as a dietary supplement. However, due to the high cost of its cultivation and its relatively low biomass and pigment productivities, the astaxanthin extracted from this microalga remains expensive and this has probably the consequence of slowing down its economic development in the lower added-value market such as food ingredient. In this review, we first aim to provide an overview of the chemical and biochemical properties of astaxanthin, as well as of its natural sources. We discuss its bioavailability, metabolism, and biological activities. We present a state-of-the-art of the biology and physiology of H. pluvialis, and highlight novel insights into the biotechnological processes which allow optimizing the biomass and astaxanthin productivities. We are trying to identify some lines of research that would improve the industrial sustainability and economic viability of this bio-production and to broaden the commercial potential of astaxanthin produced from H. pluvialis.
Collapse
|
29
|
Song J, Li Y, Li J, Wang H, Zhang Y, Suo H. Lactobacillus rhamnosus 2016SWU.05.0601 regulates immune balance in ovalbumin-sensitized mice by modulating expression of the immune-related transcription factors and gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4930-4939. [PMID: 32478427 DOI: 10.1002/jsfa.10554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/13/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Probiotics regulate host immune balance, which may reduce immune-related diseases. The effects and mechanisms of Lactobacillus rhamnosus 2016SWU.05.0601 (Lr-0601) on the immune response in ovalbumin (OVA)-sensitized mice were explored. RESULTS Lr-0601 reduced serum immunoglobulin (Ig)E and OVA-IgE and attenuated the alteration in lung pathology in OVA-sensitized mice. Lr-0601 blocked OVA-induced up-regulation in serum T helper (Th) 2 and Th17 cytokines but increased the serum levels of Th1 and regulatory T (Treg) cytokines in OVA-sensitized mice. OVA also markedly reduced the protein levels of spleen T-box transcription factor and forkhead/winged helix transcription factor p3, leading to the reduced mRNA expression of interferon-γ and interleukin (IL)-10. By contrast, OVA markedly increased the protein expression of spleen GATA-binding protein 3 and retinoid-related orphan receptor γt, as well as the mRNA expression of spleen IL-4 and IL-17. These changes induced by OVA were reversed by Lr-0601. Moreover, Lr-0601 helped alleviate OVA-induced intestinal microbiota dysbiosis. A correlation was found between specific genera and immune-associated cytokines. CONCLUSION The combined results indicate that Lr-0601 modulated the balance of Th1/Th2 and Treg/Th17 in OVA-sensitized mice, which was associated with the regulation of immune-related transcription factors and gut microbiota. Lr-0601 can potentially be used as a probiotic for preventing immune-related diseases. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
| | - Yang Li
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Li
- College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Hongwei Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Kosyreva AM, Dzhalilova DS, Makarova OV, Tsvetkov IS, Zolotova NA, Diatroptova MA, Ponomarenko EA, Mkhitarov VA, Khochanskiy DN, Mikhailova LP. Sex differences of inflammatory and immune response in pups of Wistar rats with SIRS. Sci Rep 2020; 10:15884. [PMID: 32985516 PMCID: PMC7522713 DOI: 10.1038/s41598-020-72537-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022] Open
Abstract
It is a common fact, that the content of sex hormones in humans and animals varies in different age periods. The functional state of the immune system also changes with age. However, sex differences studies of inflammatory and immune responses during puberty prevail in literature. Investigation of immune responses to LPS peculiarities in prepubertal females and males may contribute to the development of more effective immunotherapy and minimize side effects of children vaccination. Therefore, the aim of this work was to investigate the LPS-induced SIRS sex differences in prepubertal Wistar rats. Despite the absence of sex differences in estradiol and testosterone levels, LPS-induced inflammatory changes in liver and lungs are more pronounced among males. Males demonstrate the increasing neopterin, corticosterone levels and alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activity. Not less important is that in females, demonstrating less morphological changes in liver and lungs, endotoxin level is tenfold higher, and corticosterone level decreases. Thus, endotoxin cannot be used as a marker of the severity of multiple organ failure in prepubertal period. The LPS-induced immune reactions in females and males are similar and are characterized by immunosuppression. Both females and males have decreased production of cytokines (IL-2, IL-4, TNF-α, TGF-β) and the absolute number of CD3 + and CD3 + CD8 + lymphocytes in blood. The acute atrophy of thymus and apoptosis of thymic cells are revealed in animals of both sexes. However, the number of CD3 + CD4 + T-helpers and CD4 + CD25 + Foxp3 + T-cells decreases only in females with SIRS, and in males there was a decrease of CD45R + B-cells. The least expressed sex differences in immune responses in the prepubertal period can be determined by the low levels of sex steroids and the absence of their immunomodulatory effect. Further studies require the identification of mechanisms, determining the sex differences in the inflammatory and immune responses in prepubertal animals.
Collapse
Affiliation(s)
- Anna M Kosyreva
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia. .,Medical Institute of Peoples' Friendship, University of Russia (RUDN University), Moscow, Russia.
| | - Dzhuliia Sh Dzhalilova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Olga V Makarova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Ivan S Tsvetkov
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Natalia A Zolotova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Marina A Diatroptova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Elena A Ponomarenko
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Vladimir A Mkhitarov
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Dmitriy N Khochanskiy
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| | - Liliya P Mikhailova
- Department of Immunomorphology of Inflammation, Research Institute of Human Morphology, Tsyurupi str 3, 117418, Moscow, Russia
| |
Collapse
|
31
|
Structures of Astaxanthin and Their Consequences for Therapeutic Application. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2020; 2020:2156582. [PMID: 32775406 PMCID: PMC7391096 DOI: 10.1155/2020/2156582] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) are continuously generated as a by-product of normal aerobic metabolism. Elevated ROS formation leads to potential damage of biological structures and is implicated in various diseases. Astaxanthin, a xanthophyll carotenoid, is a secondary metabolite responsible for the red-orange color of a number of marine animals and microorganisms. There is mounting evidence that astaxanthin has powerful antioxidant, anti-inflammatory, and antiapoptotic activities. Hence, its consumption can result in various health benefits, with potential for therapeutic application. Astaxanthin contains both a hydroxyl and a keto group, and this unique structure plays important roles in neutralizing ROS. The molecule quenches harmful singlet oxygen, scavenges peroxyl and hydroxyl radicals and converts them into more stable compounds, prevents the formation of free radicals, and inhibits the autoxidation chain reaction. It also acts as a metal chelator and converts metal prooxidants into harmless molecules. However, like many other carotenoids, astaxanthin is affected by the environmental conditions, e.g., pH, heat, or exposure to light. It is hence susceptible to structural modification, i.e., via isomerization, aggregation, or esterification, which alters its physiochemical properties. Here, we provide a concise overview of the distribution of astaxanthin in tissues, and astaxanthin structures, and their role in tackling singlet oxygen and free radicals. We highlight the effect of structural modification of astaxanthin molecules on the bioavailability and biological activity. These studies suggested that astaxanthin would be a promising dietary supplement for health applications.
Collapse
|
32
|
Suppression of LPS-Induced Inflammation by Chalcone Flavokawain A through Activation of Nrf2/ARE-Mediated Antioxidant Genes and Inhibition of ROS/NF κB Signaling Pathways in Primary Splenocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3476212. [PMID: 32617135 PMCID: PMC7306849 DOI: 10.1155/2020/3476212] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/02/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023]
Abstract
Oxidative stress is an important contributing factor for inflammation. Piper methysticum, also known as Kava-kava, is a shrub whose root extract has been consumed as a drink by the pacific islanders for a long time. Flavokawain A (FKA) is a novel chalcone derived from the kava plant that is known to have medicinal properties. This study was aimed at demonstrating the antioxidant molecular mechanisms mediated by FKA on lipopolysaccharide- (LPS-) induced inflammation in BALB/c mouse-derived primary splenocytes. In vitro data show that the nontoxic concentrations of FKA (2-30 μM) significantly suppressed the proinflammatory cytokine (TNF-α, IL-1β, and IL-6) release but induced the secretion of interleukin-10 (IL-10), an anti-inflammatory cytokine. It was also shown that FKA pretreatment significantly downregulated the LPS-induced ROS production and blocked the activation of the NFκB (p65) pathway leading to the significant suppression of iNOS, COX-2, TNF-α, and IL-1β protein expressions. Notably, FKA favored the nuclear translocation of Nrf2 leading to the downstream expression of antioxidant proteins HO-1, NQO-1, and γ-GCLC via the Nrf2/ARE signaling pathway signifying the FKA's potent antioxidant mechanism in these cells. Supporting the in vitro data, the ex vivo data obtained from primary splenocytes derived from the FKA-preadministered BALB/c mice (orally) show that FKA significantly suppressed the proinflammatory cytokine (TNF-α, IL-1β, and IL-6) secretion in control-, LPS-, or Concanavalin A- (Con A-) stimulated cells. A significant decrease in the ratios of pro- and anti-inflammatory cytokines (IL-6/IL-10; TNF-α/IL-10) showed that FKA possesses strong anti-inflammatory properties. Furthermore, BALB/c mice induced with experimental pancreatitis using cholecystokinin- (CCK-) 8 showed decreased serum lipase levels due to FKA pretreatment. We conclude that with its potent antioxidant and anti-inflammatory properties, chalcone flavokawain A could be a novel therapeutic agent in the treatment of inflammation-associated diseases.
Collapse
|
33
|
An J, Feng Y, Zheng J, Addy M, Zhang L, Ren D. The immune-enhancing potential of peptide fractions from fermented Spirulina platensis by mixed probiotics. J Food Biochem 2020; 44:e13245. [PMID: 32462664 DOI: 10.1111/jfbc.13245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Mixed fermentation with different microorganisms can facilitate fermentation metabolism and increase the low molecular metabolites accumulation, thereby enhancing the bioactive activity. In this study, we evaluated the immune-stimulating activities of Spirulina platensis and different extracts from fermented S. platensis (FS) by mixed probiotics in vitro, by measuring the proliferation and Th1/Th2 immunomodulatory potential on murine primary splenic lymphocytes. The results showed that mixed fermentation enhanced the immunomodulatory activity of S. platensis with higher lymphocyte proliferation compared with non-fermented S. platensis (NFS). Notably, the low molecular weight (<3 kDa) peptide fraction from fermented S. platensis (L-PFS), especially at 40 μg/ml, presented the strongest activity in promoting lymphocytes proliferation and modulating cytokines (IL-2 and IL-10) secretion. Meanwhile, L-PFS enhanced the relative mRNA expression of Th1 cytokine (IFN-γ) and Th2 cytokine (IL-4), along with inhibiting the relative mRNA expression of Th1 cytokines (IL-2 and TNF-α) and Th2 cytokine (IL-10) compared with Concanavalin A-treated lymphocytes. PRACTICAL APPLICATIONS: Fermentation with mixed probiotics could effectively improve the bioactive activity of S. platensis. In particular, L-PFS screened from the FS could significantly contribute to the immune-enhancing activity of lymphocytes, promote the Th1/Th2 balance, and provide insights for the investigation of FS as the potential immunomodulatory food products.
Collapse
Affiliation(s)
- Jun An
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yanxia Feng
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jiahui Zheng
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Min Addy
- Department of Bioproducts and Biosystems Engineering, Center for Biorefining, University of Minnesota, St. Paul, MN, USA
| | - Li Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
34
|
Riccio G, Lauritano C. Microalgae with Immunomodulatory Activities. Mar Drugs 2019; 18:E2. [PMID: 31861368 PMCID: PMC7024220 DOI: 10.3390/md18010002] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Microalgae are photosynthetic microorganisms adapted to live in very different environments and showing an enormous biochemical and genetic diversity, thus representing an excellent source of new natural products with possible applications in several biotechnological sectors. Microalgae-derived compounds have shown several properties, such as anticancer, antimicrobial, anti-inflammatory, and immunomodulatory. In the last decade, compounds stimulating the immune system, both innate immune response and adaptive immune response, have been used to prevent and fight various pathologies, including cancer (cancer immunotherapy). In this review we report the microalgae that have been shown to possess immunomodulatory properties, the cells and the cellular mediators involved in the mechanisms of action and the experimental models used to test immunostimulatory activities. We also report information on fractions or pure compounds from microalgae identified as having immunostimulatory activity. Given the increasing interest in microalgae as new eco-friendly source of bioactive compounds, we also discuss their possible role as source of new classes of promising drugs to treat human pathologies.
Collapse
Affiliation(s)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, CAP80121 Naples, Italy
| |
Collapse
|
35
|
Lachance JC, Radhakrishnan S, Madiwale G, Guerrier S, Vanamala JKP. Targeting hallmarks of cancer with a food-system-based approach. Nutrition 2019; 69:110563. [PMID: 31622909 DOI: 10.1016/j.nut.2019.110563] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/27/2019] [Accepted: 07/24/2019] [Indexed: 11/29/2022]
Abstract
Although extensive resources are dedicated to the development and study of cancer drugs, the cancer burden is expected to rise by about 70% over the next 2 decade. This highlights a critical need to develop effective, evidence-based strategies for countering the global rise in cancer incidence. Except in high-risk populations, cancer drugs are not generally suitable for use in cancer prevention owing to potential side effects and substantial monetary costs (Sporn, 2011). There is overwhelming epidemiological and experimental evidence that the dietary bioactive compounds found in whole plant-based foods have significant anticancer and chemopreventative properties. These bioactive compounds often exert pleiotropic effects and act synergistically to simultaneously target multiple pathways of cancer. Common bioactive compounds in fruits and vegetables include carotenoids, glucosinolates, and polyphenols. These compounds have been shown to target multiple hallmarks of cancer in vitro and in vivo and potentially to address the diversity and heterogeneity of certain cancers. Although many studies have been conducted over the past 30 y, the scientific community has still not reached a consensus on exactly how the benefit of bioactive compounds in fruits and vegetables can be best harnessed to help reduce the risk for cancer. Different stages of the food processing system, from "farm-to-fork," can affect the retention of bioactive compounds and thus the chemopreventative properties of whole foods, and there are opportunities to improve handling of foods throughout the stages in order to best retain their chemopreventative properties. Potential target stages include, but are not limited to, pre- and postharvest management, storage, processing, and consumer practices. Therefore, there is a need for a comprehensive food-system-based approach that not only taking into account the effects of the food system on anticancer activity of whole foods, but also exploring solutions for consumers, policymakers, processors, and producers. Improved knowledge about this area of the food system can help us adjust farm-to-fork operations in order to consistently and predictably deliver desired bioactive compounds, thus better utilizing them as invaluable chemopreventative tools in the fight to reduce the growing burden of cancer worldwide.
Collapse
Affiliation(s)
- James C Lachance
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, California, USA
| | - Sridhar Radhakrishnan
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA; Research Diets, Inc., New Brunswick, New Jersey, USA
| | | | - Stéphane Guerrier
- Geneva School of Economics and Management & Faculty of Science, University of Geneva, Switzerland
| | - Jairam K P Vanamala
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA; The Pennsylvania State Hershey Cancer Institute, Penn State Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA.
| |
Collapse
|
36
|
Diao W, Chen W, Cao W, Yuan H, Ji H, Wang T, Chen W, Zhu X, Zhou H, Guo H, Zhao X. Astaxanthin protects against renal fibrosis through inhibiting myofibroblast activation and promoting CD8+ T cell recruitment. Biochim Biophys Acta Gen Subj 2019; 1863:1360-1370. [DOI: 10.1016/j.bbagen.2019.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
|
37
|
陈 赛, 李 智, 周 利, 张 云. [ Cbl- b gene silencing enhances H9 T lymphocyte-mediated killing of human laryngeal squamous cancer Hep-2 cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:554-560. [PMID: 31140419 PMCID: PMC6743940 DOI: 10.12122/j.issn.1673-4254.2019.05.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of sputum ubiquitin ligase (Cbl-b) gene known-down on the cytotoxicity of H9 T lymphocytes against human laryngeal squamous cancer Hep-2 cells and explore the underlying mechanism. METHODS CD4+ T lymphocytes isolated from 12 patients with laryngeal squamous carcinoma and 12 healthy individuals were examined for Cbl-b mRNA expressions using RT-PCR. H9 T lymphocytes cultured in 96-well plates were transfected with Cbl-b siRNA via liposomes followed by treatment with an anti-IL-2 monoclonal antibody, with H9 T lymphocytes transfected with a scrambled sequence as the negative control. The expressions of Cbl-b mRNA and protein in the cells were detected using real-time fluorescent quantitative PCR and Western blotting, respectively. The killing effect of the treated T lymphocytes against Hep-2 cells was assessed using the cell counting kit (CCK-8). The positive expression rates of CD69 and CD25 on the surface of H9 T lymphocytes were determined using flow cytometry, and the levels of interleukin-2 (IL-2) and interferon-gamma (INF-γ) in the culture supernatants of H9 T lymphocytes were detected with ELISA. RESULTS The CD4+ T lymphocytes from patients with laryngeal squamous carcinoma showed significantly increased Cbl-b mRNA level compared with those from healthy individuals (P < 0.05). Transfection of H9 T lymphocytes with Cbl-b siRNA significantly reduced the expression levels of Cbl-b mRNA and protein (P < 0.05), which were not significantly affected by subsequent treatment of the cells with the anti-IL-2 antibody (P>0.05). At different target-effector ratios, the Cbl-b siRNA-transfected cells showed significantly higher Hep-2 cell killing rates and higher positivity rates of CD69 and CD25 expressions than the blank and negative control cells and the cells with both Cbl-b siRNA transfection and anti-IL-2 treatment (P < 0.05). Cbl-b silencing in H9 T lymphocytes resulted in significantly increased levels of IL-2 and INF-γ in the supernatant as compared with those in the blank and negative control groups (P < 0.05). CONCLUSIONS Cbl-b gene silencing effectively enhances the killing effect of H9 T lymphocytes against Hep-2 cells in vitro probably as the result of enhanced IL-2 secretion and T lymphocyte activation.
Collapse
Affiliation(s)
- 赛明 陈
- 海南医学院第一附属医院耳鼻咽喉头颈外科Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Hainan Medical College
| | - 智群 李
- 海南医学院第一附属医院耳鼻咽喉头颈外科Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Hainan Medical College
| | - 利民 周
- 海南医学院科学实验中心,海南 海口 570102Scientific Experimental Center of Hainan Medical College, Haikou 570102, China
| | - 云霞 张
- 海南医学院科学实验中心,海南 海口 570102Scientific Experimental Center of Hainan Medical College, Haikou 570102, China
| |
Collapse
|
38
|
Dzhalilova DS, Kosyreva AM, Diatroptov ME, Ponomarenko EA, Tsvetkov IS, Zolotova NA, Mkhitarov VA, Khochanskiy DN, Makarova OV. Dependence of the severity of the systemic inflammatory response on resistance to hypoxia in male Wistar rats. J Inflamm Res 2019; 12:73-86. [PMID: 30881082 PMCID: PMC6417003 DOI: 10.2147/jir.s194581] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose The aim of the study was to characterize the severity of the systemic inflammatory response induced by lipopolysaccharide (LPS) in animals with different resistance levels to hypoxia. Materials and methods Two to three months old male Wistar rats (220–240 g) were divided according to hypoxia tolerance in a hypobaric chamber. After a month, they were injected intraperitoneally with Escherichia coli LPS at a dose of 1.5 mg/kg. After 3, 6 and 24 hours of LPS injection, we studied the levels of IL-1β, C-reactive protein (CRP) and TGF-β in the serum, the expression of Hif-1α and Nf-kb in the liver, morphological disorders in the lung and ex vivo production of IL-10 by splenic cells activated by ConA. Results In the early periods after the injection of LPS, increase in Nf-kb expression in the liver was observed only in the rats susceptible to hypoxia. After 6 hours of LPS injection, the number of neutrophils in the interalveolar septa of the lungs of rats susceptible to hypoxia was higher than in tolerant rats. This points to the development of more pronounced LPS-induced inflammation in the rats susceptible to hypoxia and is accompanied by increased expression of Hif-1α in the liver after 6 hours of LPS administration, serum IL-1β level after 3 hours and CRP level after 24 hours. The production of the anti-inflammatory cytokine IL-10 by the spleen was significantly decreased after 6 hours of LPS injection only in the animals tolerant to hypoxia. After 24 hours of LPS injection, a significant decrease in serum TGF-β level occurred in the rats tolerant to hypoxia in comparison with the control group, which improved the survival rates of the animals. Conclusion We have demonstrated the differences in the severity of the LPS-induced inflammatory response in male Wistar rats with different resistance levels to hypoxia. Rats susceptible to hypoxia are characterized by a more pronounced inflammatory response induced by LPS.
Collapse
Affiliation(s)
- Dzhuliia Sh Dzhalilova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Anna M Kosyreva
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Mikhail E Diatroptov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Elena A Ponomarenko
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Ivan S Tsvetkov
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Natalia A Zolotova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Vladimir A Mkhitarov
- Department of Informatics and Morphometry, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia
| | - Dmitry N Khochanskiy
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Olga V Makarova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| |
Collapse
|
39
|
Kosyreva AM, Makarova OV, Kakturskiy LV, Mikhailova LP, Boltovskaya MN, Rogov KA. Sex differences of inflammation in target organs, induced by intraperitoneal injection of lipopolysaccharide, depend on its dose. J Inflamm Res 2018; 11:431-445. [PMID: 30519071 PMCID: PMC6233486 DOI: 10.2147/jir.s178288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The aim of our research was to study sex differences and the severity of inflammatory changes in target organs and the peculiarities of immunological disorders when low and high doses of lipopolysaccharide (LPS) were administered to rats. Methods Male and female 2- to 3-month-old Wistar rats (200–250 g) were injected intraperitoneally with Escherichia coli LPS in one of two doses: 1.5 or 15 mg/kg. In a day after the LPS injection, we studied endotoxin, corticosterone, sex steroids, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activity levels in the serum; morphological disorders in the lung, liver, thymus, and spleen; ex vivo production of IL-2, IL-4, tumor necrosis factor (TNF), and interferon γ (IFNγ) by splenic cells activated by ConA; and relative amount of T- and B-lymphocytes in the peripheral blood. Results After the injection of low-dose LPS, the serum endotoxin level increased only in males and was combined with a more pronounced inflammatory response in the lungs and thymus and an increase in ALT and AST activity levels without any changes in corticosterone level. After the injection of high-dose LPS, the inflammatory and pathological changes in the target organs manifested as severe endotoxemia and sex differences of pathological changes in the lungs and liver were not revealed. The level of production of IL-2, IL-4, IFNγ, and TNF by splenic cells and the number of T-lymphocytes, including cytotoxic cells, in the peripheral blood, decreased in males, which is an evidence of a pronounced suppression of the immune response. Conclusion We have shown that the morphofunctional changes in the organs of the immune system in females and males, as well as the intensity of the sex differences of inflammation, depend on the severity of systemic inflammatory response, induced by different doses of LPS.
Collapse
Affiliation(s)
- Anna M Kosyreva
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Olga V Makarova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Lev V Kakturskiy
- Department of Pathology, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia
| | - Liliya P Mikhailova
- Department of Immunomorphology of Inflammation, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia,
| | - Marina N Boltovskaya
- Department of Reproductive Pathology, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia
| | - Konstantin A Rogov
- Department of Pathology, Federal State Budgetary Institution "Science Research Institute of Human Morphology", Moscow, Russia
| |
Collapse
|
40
|
Fakhri S, Abbaszadeh F, Dargahi L, Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol Res 2018; 136:1-20. [PMID: 30121358 DOI: 10.1016/j.phrs.2018.08.012] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022]
|
41
|
The Regulatory Roles of Toll-Like Receptor 4 in Secretions of Type 1/Type 2 Relative Cytokines by Splenocytes and Dendritic Cells Exposed to Clonorchis sinensis Excretory/Secretory Products. Inflammation 2018; 41:213-220. [PMID: 29047038 DOI: 10.1007/s10753-017-0679-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The roles of TLR4 in mediation of innate immune response and in regulation of adaptive immune responses triggered by Clonorchis sinensis remain unknown. In the present study, splenocytes derived from C3H/HeN (TLR4 wild ) and C3H/Hej mice (TLR4 mut ) that were infected with 45 metacercariae of C. sinensis were harvested, then stimulated by C. sinensis excretory/secretory products (ESP) or medium (control) for 48 h, respectively. Meanwhile, bone marrow-derived dendritic cells (BMDCs) from normal C3H/HeN and C3H/Hej mice were prepared and stimulated with medium, ESP, LPS, or ESP+LPS for 24 h, respectively. The supernatants were collected, and the concentrations of type 1 and type 2 relative cytokines were determined by ELISA. The maturation of BMDCs indicated by surface markers of CD80, CD86, and MHC II was evaluated by flow cytometry. The results showed that the levels of IFN-γ, IL-6, TNF-α, and IL-10 in the splenocytes from C. sinensis-infected TLR4 mut mice were significantly lower than those from TLR4 wild mice when they were further exposed to ESP. For BMDCs, the productions of the cytokines IL-12p70 and IL-10, but not IL-4, in the BMDCs from TLR4 mutation mice were predominantly decreased compared with those from TLR4 wild mice when the BMDCs were co-stimulated by ESP combined with LPS. Flow cytometry analysis showed that ESP could significantly decrease the high levels of CD80, CD86, and MHC II which were elevated by LPS. In conclusion, these data suggest that TLR4 may play a regulatory role in type 1 immune responses during C. sinensis infection.
Collapse
|
42
|
Davinelli S, Nielsen ME, Scapagnini G. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients 2018; 10:nu10040522. [PMID: 29690549 PMCID: PMC5946307 DOI: 10.3390/nu10040522] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/10/2018] [Accepted: 04/19/2018] [Indexed: 12/19/2022] Open
Abstract
Astaxanthin, a xanthophyll carotenoid, is a secondary metabolite naturally synthesized by a number of bacteria, microalgae, and yeasts. The commercial production of this pigment has traditionally been performed by chemical synthesis, but the microalga Haematococcus pluvialis appears to be the most promising source for its industrial biological production. Due to its collective diverse functions in skin biology, there is mounting evidence that astaxanthin possesses various health benefits and important nutraceutical applications in the field of dermatology. Although still debated, a range of potential mechanisms through which astaxanthin might exert its benefits on skin homeostasis have been proposed, including photoprotective, antioxidant, and anti-inflammatory effects. This review summarizes the available data on the functional role of astaxanthin in skin physiology, outlines potential mechanisms involved in the response to astaxanthin, and highlights the potential clinical implications associated with its consumption.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy.
| | | | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via de Sanctis s.n.c, 86100 Campobasso, Italy.
| |
Collapse
|
43
|
Zhang H, Yan H, Ying J, Du L, Zhang C, Yang Y, Wang H, Wang H. Resveratrol ameliorates ionizing irradiation-induced long-term immunosuppression in mice. Int J Radiat Biol 2017; 94:28-36. [DOI: 10.1080/09553002.2018.1408976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Heng Zhang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Hao Yan
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Jianzi Ying
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Yiling Yang
- Department of Breast Cancer Pathology and Research Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Huaqing Wang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Hui Wang
- Department of Oncology, Institute of Integrative Oncology, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
44
|
A synthetic biological secondary metabolite, Lycogen™, produced and extracted from Rhodobacter sphaeroides WL-APD911 in an optimizatioal scale-up strategy. FOOD SCIENCE AND HUMAN WELLNESS 2017. [DOI: 10.1016/j.fshw.2017.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Chalyk NE, Klochkov VA, Bandaletova TY, Kyle NH, Petyaev IM. Continuous astaxanthin intake reduces oxidative stress and reverses age-related morphological changes of residual skin surface components in middle-aged volunteers. Nutr Res 2017; 48:40-48. [PMID: 29246280 DOI: 10.1016/j.nutres.2017.10.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/04/2017] [Accepted: 10/05/2017] [Indexed: 02/04/2023]
Abstract
Oxidative stress accelerates skin aging, and dietary supplementation with antioxidants may alleviate it. Morphological analysis of the residual skin surface components (RSSCs) allows detecting age-related changes in corneocyte desquamation, microbial presence, and lipid droplet size. We hypothesized that continuous ingestion of carotenoid antioxidant astaxanthin (4 mg/d) for 4 weeks could influence RSCC morphology and evaluated RSSC samples taken from middle-aged subjects before and after this dietary intervention. The study included 31 volunteers (17 men and 14 women) over the age of 40. RSSC samples were collected from the surface of the facial skin at the beginning (day 0) and end (day 29) of the study. In addition, blood samples were taken on days 0, 15, and 29 for measuring plasma levels of malondialdehyde that allowed assessing systemic oxidative stress. The results demonstrated that plasma malondialdehyde consistently decreased during astaxanthin consumption (by 11.2% on day 15 and by 21.7% on day 29). The analysis of RSSC samples has revealed significantly decreased levels of corneocyte desquamation (P=.0075) and microbial presence (P=.0367) at the end of the study. These phenomena as well as a significant (P=.0214) increase in lipid droplet size were more strongly manifested among obese (body mass index >30 kg/m2) subjects. All described RSSC changes correspond to a shift toward characteristics of skin associated with a younger age. The results confirm our hypothesis by demonstrating that continuous astaxanthin consumption produces a strong antioxidant effect resulting in facial skin rejuvenation which is especially pronounced in obese subjects.
Collapse
Affiliation(s)
- Natalya E Chalyk
- Lycotec Ltd, Cambridge, UK; Saratov State Medical University, Research Institute of Cardiology, Saratov, Russia
| | - Viktor A Klochkov
- Lycotec Ltd, Cambridge, UK; Saratov State Medical University, Research Institute of Cardiology, Saratov, Russia
| | | | | | | |
Collapse
|
46
|
Li D, Tong W, Liu D, Zou Y, Zhang C, Xu W. Astaxanthin mitigates cobalt cytotoxicity in the MG-63 cells by modulating the oxidative stress. BMC Pharmacol Toxicol 2017; 18:58. [PMID: 28738843 PMCID: PMC5525213 DOI: 10.1186/s40360-017-0166-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/14/2017] [Indexed: 12/11/2022] Open
Abstract
Background With the re-popularity of metal-on-metal (MoM) bearing in recent years, the cobalt toxicity has been a cause for concern in the total hip replacement surgery by both physicians and patients. Methods MG-63 cell line was cultured in vitro and incubated with cobalt (II) chloride (CoCl2) and/or with astaxanthin (ASX) for 24 h. MTT assay was conducted to evaluate the cell viability after cobalt exposure and ASX treatment. Fluorescence-activated cell sorting (FACS) analysis was performed to examine the reactive oxygen species (ROS) level. Quantitative real-time polymerase chain reaction (PCR) was adopted to determine the mRNA levels of related targets. And western blot analysis was used to examine the protein expressions. One-way ANOVA with posttest Newman-Keuls multiple comparisons was adopted to analysis all the obtained data. Results In the current study, ASX exhibited significant protective effect against the Co(II)-induced cytotoxicity in MG-63 cell line. We also found that ASX protected the cells against Co-induced apoptosis by regulating the expression of Bcl-2 family proteins. Besides, heme oxygenase 1 (HO-1) could be activated by Co exposure; ASX treatment significantly inhibited HO-1 activation, suppressing the oxidative stress induced by Co exposure. Moreover, c-Jun N-terminal Kinase (JNK) phosphorylation was shown to participate in the signaling pathway of the protective effect of ASX. However, knockdown of JNK expression by siRNA transfection or JNK inhibitor SP600125 treatment did not affect the protective effect of ASX against cobalt cytotoxicity in MG-63 cells. Conclusions ASX mitigated cobalt cytotoxicity in the MG-63 cells by modulating the oxidative stress. And ASX could be a promising therapy against cobalt toxicity in the hip articulation surgery. Electronic supplementary material The online version of this article (doi:10.1186/s40360-017-0166-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dahe Li
- Department of Orthopedics, The Eighty-eighth Military Hospital, Tai'an, 271000, China
| | - Wenwen Tong
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Denghui Liu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuming Zou
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Chen Zhang
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Weidong Xu
- Department of Orthopedics, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
47
|
Contreras-Ortiz JME, Barbabosa-Pliego A, Oros-Pantoja R, Aparicio-Burgos JE, Zepeda-Escobar JA, Hassan-Moustafa WH, Ochoa-García L, Uxúa Alonso-Fresan M, Tenorio Borroto E, Vázquez-Chagoyán JC. Effects of astaxanthin in mice acutely infected with Trypanosoma cruzi. Parasite 2017; 24:17. [PMID: 28560955 PMCID: PMC5452104 DOI: 10.1051/parasite/2017018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
During Trypanosoma cruzi infection, oxidative stress is considered a contributing factor for dilated cardiomyopathy development. In this study, the effects of astaxanthin (ASTX) were evaluated as an alternative drug treatment for Chagas disease in a mouse model during the acute infection phase, given its anti-inflammatory, immunomodulating, and anti-oxidative properties. ASTX was tested in vitro in parasites grown axenically and in co-culture with Vero cells. In vivo tests were performed in BALB/c mice (4-6 weeks old) infected with Trypanosoma cruzi and supplemented with ASTX (10 mg/kg/day) and/or nifurtimox (NFMX; 100 mg/kg/day). Results show that ASTX has some detrimental effects on axenically cultured parasites, but not when cultured with mammalian cell monolayers. In vivo, ASTX did not have any therapeutic value against acute Trypanosoma cruzi infection, used either alone or in combination with NFMX. Infected animals treated with NFMX or ASTX/NFMX survived the experimental period (60 days), while infected animals treated only with ASTX died before day 30 post-infection. ASTX did not show any effect on the control of parasitemia; however, it was associated with an increment in focal heart lymphoplasmacytic infiltration, a reduced number of amastigote nests in cardiac tissue, and less hyperplasic spleen follicles when compared to control groups. Unexpectedly, ASTX showed a negative effect in infected animals co-treated with NFMX. An increment in parasitemia duration was observed, possibly due to ASTX blocking of free radicals, an anti-parasitic mechanism of NFMX. In conclusion, astaxanthin is not recommended during the acute phase of Chagas disease, either alone or in combination with nifurtimox.
Collapse
Affiliation(s)
- José María Eloy Contreras-Ortiz
-
Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM) Kilómetro 15.5 Carretera Panamericana Toluca-Atlacomulco C.P. 50200 Toluca Estado de México
| | - Alberto Barbabosa-Pliego
-
Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM) Kilómetro 15.5 Carretera Panamericana Toluca-Atlacomulco C.P. 50200 Toluca Estado de México
| | - Rigoberto Oros-Pantoja
-
Facultad de Medicina, Universidad Autónoma del Estado de México, Avenida Paseo Tollocan S/N, Moderna de la Cruz C.P. 50180 Toluca de Lerdo Estado de México
| | - José Esteban Aparicio-Burgos
-
Escuela Superior de Apan de la Universidad Autónoma del Estado de Hidalgo. Carr. Apan-Calpulalpan Km. 8, Chimalpa, Tlalayote S/N, Colonia Chimalpa Apan Hidalgo México
| | - José Antonio Zepeda-Escobar
-
Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM) Kilómetro 15.5 Carretera Panamericana Toluca-Atlacomulco C.P. 50200 Toluca Estado de México
| | - Wael Hegazy Hassan-Moustafa
-
Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM) Kilómetro 15.5 Carretera Panamericana Toluca-Atlacomulco C.P. 50200 Toluca Estado de México
| | - Laucel Ochoa-García
-
Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM) Kilómetro 15.5 Carretera Panamericana Toluca-Atlacomulco C.P. 50200 Toluca Estado de México
| | - María Uxúa Alonso-Fresan
-
Hospital Veterinario de Pequeñas Especies, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México, Jesús Carranza No. 203, Universidad 50130
Toluca de Lerdo México
| | - Esvieta Tenorio Borroto
-
Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM) Kilómetro 15.5 Carretera Panamericana Toluca-Atlacomulco C.P. 50200 Toluca Estado de México
| | - Juan Carlos Vázquez-Chagoyán
-
Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Autónoma del Estado de México (UAEM) Kilómetro 15.5 Carretera Panamericana Toluca-Atlacomulco C.P. 50200 Toluca Estado de México
| |
Collapse
|
48
|
PLCε1 regulates SDF-1α-induced lymphocyte adhesion and migration to sites of inflammation. Proc Natl Acad Sci U S A 2017; 114:2693-2698. [PMID: 28213494 DOI: 10.1073/pnas.1612900114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulation of integrins is critical for lymphocyte adhesion to endothelium and migration throughout the body. Inside-out signaling to integrins is mediated by the small GTPase Ras-proximate-1 (Rap1). Using an RNA-mediated interference screen, we identified phospholipase Cε 1 (PLCε1) as a crucial regulator of stromal cell-derived factor 1 alpha (SDF-1α)-induced Rap1 activation. We have shown that SDF-1α-induced activation of Rap1 is transient in comparison with the sustained level following cross-linking of the antigen receptor. We identified that PLCε1 was necessary for SDF-1α-induced adhesion using shear stress, cell morphology alterations, and crawling on intercellular adhesion molecule 1 (ICAM-1)-expressing cells. Structure-function experiments to separate the dual-enzymatic function of PLCε1 uncover necessary contributions of the CDC25, Pleckstrin homology, and Ras-associating domains, but not phospholipase activity, to this pathway. In the mouse model of delayed type hypersensitivity, we have shown an essential role for PLCε1 in T-cell migration to inflamed skin, but not for cytokine secretion and proliferation in regional lymph nodes. Our results reveal a signaling pathway where SDF-1α induces T-cell adhesion through activation of PLCε1, suggesting that PLCε1 is a specific potential target in treating conditions involving migration of T cells to inflamed organs.
Collapse
|
49
|
Anti-Fatigue Effects of the Unique Polysaccharide Marker of Dendrobium officinale on BALB/c Mice. Molecules 2017; 22:molecules22010155. [PMID: 28106808 PMCID: PMC6155575 DOI: 10.3390/molecules22010155] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/09/2017] [Accepted: 01/11/2017] [Indexed: 11/17/2022] Open
Abstract
Dendrobium officinale extract shows potent anti-fatigue effects; however, the active substance responsible for these effects remains undetermined. A glucomannan with a huge molecular size of 730 kDa, called DOP, was identified as the unique authentication marker of this expensive herb. DOP exhibited immunomodulating effects on macrophages and lymphocytes in our previous study. Clinical reports also showed that people with fatigue syndrome have a disturbed immune system. Because DOP is the unique and dominant component of D. officinale, we hypothesize that DOP may also have anti-fatigue activity. The present study aims to evaluate the anti-fatigue activity of DOP on BALB/c mice, with Rhodiola rosea extract as a positive control. DOP and Rhodiola rosea extract were orally administered at doses of 50 mg/kg and 100 mg/kg, respectively, for four weeks, and the anti-fatigue activity of DOP on BALB/c mice was evaluated using the weight-loaded swimming test. The contents of lactic dehydrogenase (LDH), creatine phosphokinase (CK), triglyceride (TG), blood urea nitrogen (BUN), superoxide dismutase (SOD), malondialdehyde (MDA), lactic acid (LD), and glutathione peroxidase (GSH-Px) in serum, glycogen of liver and gastrocnemius muscle were also determined. Their effects on variability of T cells and B cells were determined by using tetrazolium compound (MTS) method. The weight-loaded swimming exercise caused fatigue syndrome, mainly including the decreases of serum SOD/GSH-Px and gastrocnemius glycogen, as well as the increases of LDH, BUN, MDA, CK, TG, and LD in serum. All of these indicators of fatigue were inhibited to a certain extent by both DOP and Rhodiola rosea extract; however, the effects of DOP were much stronger than those of Rhodiola rosea extract. Compared to the positive control, mice dosed with DOP showed increases in endurance, body weight, and food intake. Furthermore, DOP-feeding mice significantly increased the cell variability of T lymphocytes and B lymphocytes, compared with that of mice in control group. This study indicates that the unique and dominant polysaccharide DOP of D. officinale has stronger anti-fatigue activity than Rhodiola rosea extract. As such, DOP has promising potential for pharmaceutical development into health products to reduce fatigue.
Collapse
|