1
|
Noack D, van Haperen A, van den Hout MCGN, Marshall EM, Koutstaal RW, van Duinen V, Bauer L, van Zonneveld AJ, van IJcken WFJ, Koopmans MPG, Rockx B. A three-dimensional vessel-on-chip model to study Puumala orthohantavirus pathogenesis. LAB ON A CHIP 2024. [PMID: 39292495 DOI: 10.1039/d4lc00543k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Puumala orthohantavirus (PUUV) infection in humans can result in hemorrhagic fever with renal syndrome. Endothelial cells (ECs) are primarily infected with increased vascular permeability as a central aspect of pathogenesis. Historically, most studies included ECs cultured under static two-dimensional (2D) conditions, thereby not recapitulating the physiological environment due to their lack of flow and inherent pro-inflammatory state. Here, we present a high-throughput model for culturing primary human umbilical vein ECs in 3D vessels-on-chip in which we compared host responses of these ECs to those of static 2D-cultured ECs on a transcriptional level. The phenotype of ECs in vessels-on-chip more closely resembled the in vivo situation due to higher similarity in expression of genes encoding described markers for disease severity and coagulopathy, including IDO1, LGALS3BP, IL6 and PLAT, and more diverse endothelial-leukocyte interactions in the context of PUUV infection. In these vessels-on-chip, PUUV infection did not directly increase vascular permeability, but increased monocyte adhesion. This platform can be used for studying pathogenesis and assessment of possible therapeutics for other endotheliotropic viruses even in high biocontainment facilities.
Collapse
Affiliation(s)
- Danny Noack
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Anouk van Haperen
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Mirjam C G N van den Hout
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eleanor M Marshall
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Rosanne W Koutstaal
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Vincent van Duinen
- Department of Internal Medicine, Division of Nephrology and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisa Bauer
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Anton Jan van Zonneveld
- Department of Internal Medicine, Division of Nephrology and the Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Wilfred F J van IJcken
- Department of Cell Biology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Center for Biomics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marion P G Koopmans
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| | - Barry Rockx
- Department of Viroscience, Erasmus University Medical Center, s-Gravendijkwal 230, 3015 CE, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
Yang ML, Lin CL, Chen YC, Lu IA, Su BH, Chen YH, Liu KT, Wu CL, Shiau AL. Prothymosin α accelerates dengue virus-induced thrombocytopenia. iScience 2024; 27:108422. [PMID: 38213625 PMCID: PMC10783621 DOI: 10.1016/j.isci.2023.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
Thrombocytopenia is the hallmark finding in dengue virus (DENV) infection. Prothymosin α (ProT) has both intracellular and extracellular functions involved in cell cycle progression, cell differentiation, gene regulation, oxidative stress response, and immunomodulation. In this study, we found that ProT levels were elevated in dengue patient sera as well as DENV-infected megakaryoblasts and their culture supernatants. ProT transgenic mice had reduced platelet counts with prolonged bleeding times. Upon treatment with DENV plus anti-CD41 antibody, they exhibited severe skin hemorrhage. Furthermore, overexpression of ProT suppressed megakaryocyte differentiation. Infection with DENV inhibited miR-126 expression, upregulated DNA (cytosine-5)-methyltransferase 1 (DNMT1), downregulated GATA-1, and increased ProT expression. Upregulation of ProT led to Nrf2 activation and reduced reactive oxygen species production, thereby suppressing megakaryopoiesis. We report the pathophysiological role of ProT in DENV infection and propose an involvement of the miR-126-DNMT1-GATA-1-ProT-Nrf2 signaling axis in DENV-induced thrombocytopenia.
Collapse
Affiliation(s)
- Mei-Lin Yang
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Lin
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-An Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hua Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kuan-Ting Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
3
|
Karamese M, Gumus A, Atalay E, Tutuncu EE. Assessment of the levels of some prognostic biomolecules (galectins, ACE2, SCUBE1/2/3) in COVID-19 patients. Future Microbiol 2023; 18:1329-1337. [PMID: 37910069 DOI: 10.2217/fmb-2023-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 11/03/2023] Open
Abstract
Aim: Our aim was to investigate the differences between healthy people and COVID-19 patients in terms of some immunological biomolecules, especially including those related to the inflammation process. Materials & methods: A total of 180 participants (90 healthy controls and 90 COVID-19 patients) were included. The expression levels of eight different inflammation-related biomolecules were measured by the ELISA technique. Results: The mean levels of ACE2, ANG1-7, GAL3, GAL9, SCUBE1, SCUBE2 and SCUBE3 were elevated in COVID-19 patients when compared with healthy controls, while the mean level of GAL2 was lower in COVID-19 patients than controls. Conclusion: To understand the cytokine storm mechanism and related parameters, more detailed studies should be performed investigating more related biomolecules and related signaling pathways.
Collapse
Affiliation(s)
- Murat Karamese
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Abdullah Gumus
- Department of Medical Microbiology, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Eray Atalay
- Department of Internal Medicine, Kafkas University, Faculty of Medicine, Kars, 36100, Turkey
| | - Emin E Tutuncu
- Department of Clinical Microbiology & Infectious Diseases, Etlik City Hospital, Ankara, 06100, Turkey
| |
Collapse
|
4
|
Jackson HR, Zandstra J, Menikou S, Hamilton MS, McArdle AJ, Fischer R, Thorne AM, Huang H, Tanck MW, Jansen MH, De T, Agyeman PKA, Von Both U, Carrol ED, Emonts M, Eleftheriou I, Van der Flier M, Fink C, Gloerich J, De Groot R, Moll HA, Pokorn M, Pollard AJ, Schlapbach LJ, Tsolia MN, Usuf E, Wright VJ, Yeung S, Zavadska D, Zenz W, Coin LJM, Casals-Pascual C, Cunnington AJ, Martinon-Torres F, Herberg JA, de Jonge MI, Levin M, Kuijpers TW, Kaforou M. A multi-platform approach to identify a blood-based host protein signature for distinguishing between bacterial and viral infections in febrile children (PERFORM): a multi-cohort machine learning study. Lancet Digit Health 2023; 5:e774-e785. [PMID: 37890901 DOI: 10.1016/s2589-7500(23)00149-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 06/08/2023] [Accepted: 07/26/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Differentiating between self-resolving viral infections and bacterial infections in children who are febrile is a common challenge, causing difficulties in identifying which individuals require antibiotics. Studying the host response to infection can provide useful insights and can lead to the identification of biomarkers of infection with diagnostic potential. This study aimed to identify host protein biomarkers for future development into an accurate, rapid point-of-care test that can distinguish between bacterial and viral infections, by recruiting children presenting to health-care settings with fever or a history of fever in the previous 72 h. METHODS In this multi-cohort machine learning study, patient data were taken from EUCLIDS, the Swiss Pediatric Sepsis study, the GENDRES study, and the PERFORM study, which were all based in Europe. We generated three high-dimensional proteomic datasets (SomaScan and two via liquid chromatography tandem mass spectrometry, referred to as MS-A and MS-B) using targeted and untargeted platforms (SomaScan and liquid chromatography mass spectrometry). Protein biomarkers were then shortlisted using differential abundance analysis, feature selection using forward selection-partial least squares (FS-PLS; 100 iterations), along with a literature search. Identified proteins were tested with Luminex and ELISA and iterative FS-PLS was done again (25 iterations) on the Luminex results alone, and the Luminex and ELISA results together. A sparse protein signature for distinguishing between bacterial and viral infections was identified from the selected proteins. The performance of this signature was finally tested using Luminex assays and by calculating disease risk scores. FINDINGS 376 children provided serum or plasma samples for use in the discovery of protein biomarkers. 79 serum samples were collected for the generation of the SomaScan dataset, 147 plasma samples for the MS-A dataset, and 150 plasma samples for the MS-B dataset. Differential abundance analysis, and the first round of feature selection using FS-PLS identified 35 protein biomarker candidates, of which 13 had commercial ELISA or Luminex tests available. 16 proteins with ELISA or Luminex tests available were identified by literature review. Further evaluation via Luminex and ELISA and the second round of feature selection using FS-PLS revealed a six-protein signature: three of the included proteins are elevated in bacterial infections (SELE, NGAL, and IFN-γ), and three are elevated in viral infections (IL18, NCAM1, and LG3BP). Performance testing of the signature using Luminex assays revealed area under the receiver operating characteristic curve values between 89·4% and 93·6%. INTERPRETATION This study has led to the identification of a protein signature that could be ultimately developed into a blood-based point-of-care diagnostic test for rapidly diagnosing bacterial and viral infections in febrile children. Such a test has the potential to greatly improve care of children who are febrile, ensuring that the correct individuals receive antibiotics. FUNDING European Union's Horizon 2020 research and innovation programme, the European Union's Seventh Framework Programme (EUCLIDS), Imperial Biomedical Research Centre of the National Institute for Health Research, the Wellcome Trust and Medical Research Foundation, Instituto de Salud Carlos III, Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Grupos de Refeencia Competitiva, Swiss State Secretariat for Education, Research and Innovation.
Collapse
Affiliation(s)
- Heather R Jackson
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Judith Zandstra
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Sanquin Blood Supply, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands; Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Stephanie Menikou
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Melissa Shea Hamilton
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Andrew J McArdle
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Roman Fischer
- Discovery Proteomics Facility, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adam M Thorne
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Honglei Huang
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Michael W Tanck
- Department of Epidemiology and Data Science, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Machiel H Jansen
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Tisham De
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Philipp K A Agyeman
- Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ulrich Von Both
- Infectious Diseases, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Enitan D Carrol
- Department of Clinical Infection Microbiology and Immunology, University of Liverpool Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Marieke Emonts
- Paediatric Infectious Diseases and Immunology Department, Newcastle upon Tyne Hospitals Foundation Trust, Great North Children's Hospital, Newcastle upon Tyne, UK
| | - Irini Eleftheriou
- Second Department of Paediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, Panagiotis & Aglaia, Kyriakou Children's Hospital, Athens, Greece
| | - Michiel Van der Flier
- Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands; Pediatric Infectious Diseases and Immunology Amalia Children's Hospital, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands; Laboratory of Infectious Diseases, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands
| | - Colin Fink
- Micropathology, University of Warwick, Warwick, UK
| | - Jolein Gloerich
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands
| | - Ronald De Groot
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands
| | | | - Marko Pokorn
- Division of Paediatrics, University Medical Centre Ljubljana and Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Andrew J Pollard
- Oxford Vaccine Group Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Luregn J Schlapbach
- Department of Intensive Care and Neonatology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Child Health Research Centre, The University of Queensland, Brisbane, NSW, Australia
| | - Maria N Tsolia
- Second Department of Paediatrics, National and Kapodistrian University of Athens (NKUA), School of Medicine, Panagiotis & Aglaia, Kyriakou Children's Hospital, Athens, Greece
| | - Effua Usuf
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Fajara, Gambia
| | - Victoria J Wright
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Shunmay Yeung
- Clinical Research Department, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, UK
| | - Dace Zavadska
- Children's Clinical University Hospital, Rīga Stradins University, Rïga, Latvia
| | - Werner Zenz
- University Clinic of Paediatrics and Adolescent Medicine, Department of General Paediatrics, Medical University Graz, Graz, Austria
| | - Lachlan J M Coin
- Department of Microbiology and Immunology, University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Climent Casals-Pascual
- Department of Clinical Microbiology, CDB, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Aubrey J Cunnington
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Federico Martinon-Torres
- Translational Pediatrics and Infectious Diseases Section, Pediatrics Department, Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Genetics, Vaccines, Infectious Diseases, and Pediatrics research group GENVIP, Instituto de Investigación Sanitaria de Santiago (IDIS), Universidade de Santiago de Compostela (USC), Santiago de Compostela, Spain; Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jethro A Herberg
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Marien I de Jonge
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands; Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud UMC, Nijmegen, Netherlands
| | - Michael Levin
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Taco W Kuijpers
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Sanquin Blood Supply, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands; Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Myrsini Kaforou
- Section of Paediatric Infectious Disease, Faculty of Medicine, and Centre for Paediatrics and Child Health, Imperial College London, London, UK.
| |
Collapse
|
5
|
Bosquillon de Jarcy L, Akbil B, Mhlekude B, Leyens J, Postmus D, Harnisch G, Jansen J, Schmidt ML, Aigner A, Pott F, Chua RL, Krist L, Gentile R, Mühlemann B, Jones TC, Niemeyer D, Fricke J, Keil T, Pischon T, Janke J, Conrad C, Iacobelli S, Drosten C, Corman VM, Ralser M, Eils R, Kurth F, Sander L, Goffinet C. 90K/LGALS3BP expression is upregulated in COVID-19 but may not restrict SARS-CoV-2 infection. Clin Exp Med 2023; 23:3689-3700. [PMID: 37162650 PMCID: PMC10170455 DOI: 10.1007/s10238-023-01077-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Glycoprotein 90K, encoded by the interferon-stimulated gene LGALS3BP, displays broad antiviral activity. It reduces HIV-1 infectivity by interfering with Env maturation and virion incorporation, and increases survival of Influenza A virus-infected mice via antiviral innate immune signaling. Its antiviral potential in SARS-CoV-2 infection remains largely unknown. Here, we analyzed the expression of 90K/LGALS3BP in 44 hospitalized COVID-19 patients at multiple levels. We quantified 90K protein concentrations in serum and PBMCs as well as LGALS3BP mRNA levels. Complementary, we analyzed two single cell RNA-sequencing datasets for expression of LGALS3BP in respiratory specimens and PBMCs from COVID-19 patients. Finally, we analyzed the potential of 90K to interfere with SARS-CoV-2 infection of HEK293T/ACE2, Calu-3 and Caco-2 cells using authentic virus. 90K protein serum concentrations were significantly elevated in COVID-19 patients compared to uninfected sex- and age-matched controls. Furthermore, PBMC-associated concentrations of 90K protein were overall reduced by SARS-CoV-2 infection in vivo, suggesting enhanced secretion into the extracellular space. Mining of published PBMC scRNA-seq datasets uncovered monocyte-specific induction of LGALS3BP mRNA expression in COVID-19 patients. In functional assays, neither 90K overexpression in susceptible cell lines nor exogenous addition of purified 90K consistently inhibited SARS-CoV-2 infection. Our data suggests that 90K/LGALS3BP contributes to the global type I IFN response during SARS-CoV-2 infection in vivo without displaying detectable antiviral properties in vitro.
Collapse
Affiliation(s)
- Laure Bosquillon de Jarcy
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
- Speciality Network: Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bengisu Akbil
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
| | - Baxolele Mhlekude
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
| | - Johanna Leyens
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Dylan Postmus
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
| | - Greta Harnisch
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Jenny Jansen
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Marie L Schmidt
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Annette Aigner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Fabian Pott
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
| | - Lilian Krist
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Barbara Mühlemann
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Terence C Jones
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Zoology, Centre for Pathogen Evolution, University of Cambridge, Downing St., Cambridge, CB2 3EJ, UK
| | - Daniela Niemeyer
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research, Associated Partner Charité, Berlin, Germany
| | - Julia Fricke
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Thomas Keil
- Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Josef-Schneiderstr. 2, 97080, Würzburg, Germany
- State Institute of Health, Bavarian Health and Food Safety Authority, Eggenreuther Weg 43, 91058, Erlangen, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Zu Berlin, 10117, Berlin, Germany
| | - Jürgen Janke
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
| | | | - Christian Drosten
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research, Associated Partner Charité, Berlin, Germany
| | - Victor M Corman
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Infection Research, Associated Partner Charité, Berlin, Germany
| | - Markus Ralser
- Department of Biochemistry, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, NW11AT, UK
| | - Roland Eils
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Lung Research (DZL), 35392, Gießen, Germany
- Health Data Science Unit, Heidelberg University Hospital and BioQuant, 69120, Heidelberg, Germany
| | - Florian Kurth
- Speciality Network: Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine, 20359, Hamburg, Germany
- Department of Medicine, University Medical Center, Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Leif Sander
- Speciality Network: Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Lung Research (DZL), 35392, Gießen, Germany
| | - Christine Goffinet
- Institute of Virology, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 , Berlin, Germany.
| |
Collapse
|
6
|
Ali H, Naseem A, Siddiqui ZI. SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication. J Clin Med 2023; 12:6079. [PMID: 37763019 PMCID: PMC10531702 DOI: 10.3390/jcm12186079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Collapse
Affiliation(s)
- Hashim Ali
- Department of Pathology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Asma Naseem
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1DZ, UK
| | - Zaheenul Islam Siddiqui
- Diabetes and Obesity Research Center, NYU Grossman Long Island School of Medicine, New York, NY 11501, USA
| |
Collapse
|
7
|
Puc I, Ho TC, Chien YW, Tan SS, Fong YC, Chen YJ, Wang SH, Li YH, Chen CH, Chen PL, Perng GC, Tsai JJ. Mobilization of Hematopoietic Stem and Progenitor Cells during Dengue Virus Infection. Int J Mol Sci 2022; 23:ijms232214330. [PMID: 36430807 PMCID: PMC9699116 DOI: 10.3390/ijms232214330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) mobilization is the movement of HSPCs from the bone marrow to the peripheral blood or tissue induced by stress. HSPC mobilization is a well-known response to protect the host during infection through urgent differentiation of HSPCs to immune cells. Dengue virus (DENV) infection is known to cause stress in infected humans and the mobilizing capacity of HSPCs during DENV infection in affected patients has not been fully investigated. Here, we investigated whether DENV infection can induce HSPC mobilization and if the mobilized HSPCs are permissive to DENV infection. White blood cells (WBCs) were collected from dengue patients (DENV+) and healthy donors and analyzed by flow cytometry and plaque assay. Elevated HSPCs levels were found in the WBCs of the DENV+ group when compared to the healthy group. Mobilization of HSPCs and homing markers (skin and gut) expression decreased as the patients proceeded from dengue without symptoms (DWoWS) to severe dengue (SD). Mobilizing HSPCs were not only permissive to DENV infection, but infectious DENV could be recovered after coculture. Our results highlight the need for further investigation into HSPC mobilization or alterations of hematopoiesis during viral infections such as DENV in order to develop appropriate countermeasures.
Collapse
Affiliation(s)
- Irwin Puc
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tzu-Chuan Ho
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Sia-Seng Tan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yu-Cin Fong
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yi-Ju Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Sheng-Hsuan Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Yun-Hsuan Li
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Chun-Hong Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan 350401, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan 350401, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, Tainan 701401, Taiwan
| | - Guey-Chuen Perng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701401, Taiwan
| | - Jih-Jin Tsai
- Tropical Medicine Center, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Reyes-Vallejo T, Conde-Rodríguez I, Serna-Villalobos J, Ramírez-Díaz I, Pérez-Villalobos G, Delgado-López G, Vazquez-Zamora VJ, Gutiérrez-Quiroz CT, Ávila-Jiménez L, García-Carrancá A, Martínez-Acosta L, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V. Serum Levels of Galectin-9 are Increased in Cervical Cancer Patients and are Higher in Advanced Clinical Stages. Onco Targets Ther 2022; 15:1211-1220. [PMID: 36246733 PMCID: PMC9556277 DOI: 10.2147/ott.s378933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Cervical cancer (CC) is the second most frequent cancer in undeveloped countries. Serum biomarkers could be useful for evaluation of the treatment response and as a complementary means to improve diagnosis. The expression of galectin-9 is altered in cancer tissue, and higher concentrations are found in the serum of cancer patients. The objectives of this study were (a) to determine the serum galectin-9 concentration in patients with intraepithelial lesions and CC, (b) to determine if the concentration was related to the clinicopathological characteristics and (c) to determine if the galectin-9 concentration was related to its expression level in tumour tissue. Patients and Methods In all, 222 serum samples from women with different diagnoses, including premalignant lesions and CC, as well as samples from women with normal cytology were included in the study. The serum galectin-9 concentration was determined by ELISA. To evaluate the expression level of galectin-9 in CC tissue, immunohistochemistry was performed in 34 CC biopsy specimens. Results The galectin-9 concentration in the serum of CC patients (8.171 ng/mL) was increased compared with serum from women with normal epithelia (4.654 ng/mL) and those with low-grade (4.806 ng/mL) and high-grade (5.354 ng/mL) intraepithelial lesions (p value < 0.0001). The area under the ROC curve considering the CC group and the control group was 0.882. The optimal cut-off value was ≥6.88 ng/mL, the specificity obtained was 100%, and the sensitivity was 68.2%. In the CC group, the analysis of the clinical stage showed an increase of galectin-9 in the advanced stage IV group. Serum galectin-9 was not related to the level of galectin-9 expression in tissue, which suggests that galectin-9 is not secreted by tumour cells. Conclusion The serum galectin-9 concentration is related to cancer progression, as the level of this protein is higher in patients with advanced-stage disease.
Collapse
Affiliation(s)
- Tania Reyes-Vallejo
- Departamento de Ciencias Químico-Biológicas, Universidad de las Américas Puebla, Puebla, México
| | - Ileana Conde-Rodríguez
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Ivonne Ramírez-Díaz
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | | | - Guadalupe Delgado-López
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Puebla, México
| | | | | | - Laura Ávila-Jiménez
- Organo de Operación Administrativa Desconcentrada Estatal Morelos, Instituto Mexicano del Seguro Social, Cuernavaca, Morelos, México
| | - Alejandro García-Carrancá
- Universidad Nacional Autónoma de México Instituto Nacional de Cancerología, Ciudad de México, México
| | | | - Gerardo Santos-López
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Puebla, México
| | - Julio Reyes-Leyva
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Verónica Vallejo-Ruiz
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Atlixco, Puebla, México,Correspondence: Verónica Vallejo-Ruiz, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km 4.5 Carretera Federal Atlixco-Metepec, s/n, Z.C, Atlixco, Puebla, 74360, México, Tel +52 24 44 440 122, Email ;
| |
Collapse
|
9
|
Ayechu-Muruzabal V, Poelmann B, Berends AJ, Kettelarij N, Garssen J, van’t Land B, Willemsen LEM. Human Milk Oligosaccharide 2'-Fucosyllactose Modulates Local Viral Immune Defense by Supporting the Regulatory Functions of Intestinal Epithelial and Immune Cells. Int J Mol Sci 2022; 23:ijms231810958. [PMID: 36142892 PMCID: PMC9506168 DOI: 10.3390/ijms231810958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Human milk contains bioactive components that provide protection against viral infections in early life. In particular, intestinal epithelial cells (IEC) have key regulatory roles in the prevention of enteric viral infections. Here we established an in vitro model to study the modulation of host responses against enteric viruses mimicked by poly I:C (pIC). The effects of 2′-fucosyllactose (2′FL), abundantly present in human milk, were studied on IEC and/or innate immune cells, and the subsequent functional response of the adaptive immune cells. IEC were pre-incubated with 2′FL and stimulated with naked or Lyovec™-complexed pIC (LV-pIC). Additionally, monocyte-derived dendritic cells (moDC) alone or in co-culture with IEC were stimulated with LV-pIC. Then, conditioned-moDC were co-cultured with naïve CD4+ T helper (Th)-cells. IEC stimulation with naked or LV-pIC promoted pro-inflammatory IL-8, CCL20, GROα and CXCL10 cytokine secretion. However, only exposure to LV-pIC additionally induced IFNβ, IFNλ1 and CCL5 secretion. Pre-incubation with 2′FL further increased pIC induced CCL20 secretion and LV-pIC induced CXCL10 secretion. LV-pIC-exposed IEC/moDC and moDC cultures showed increased secretion of IL-8, GROα, IFNλ1 and CXCL10, and in the presence of 2′FL galectin-4 and -9 were increased. The LV-pIC-exposed moDC showed a more pronounced secretion of CCL20, CXCL10 and CCL5. The moDC from IEC/moDC cultures did not drive T-cell development in moDC/T-cell cultures, while moDC directly exposed to LV-pIC secreted Th1 driving IL-12p70 and promoted IFNγ secretion by Th-cells. Hereby, a novel intestinal model was established to study mucosal host-defense upon a viral trigger. IEC may support intestinal homeostasis, regulating local viral defense which may be modulated by 2′FL. These results provide insights regarding the protective capacity of human milk components in early life.
Collapse
Affiliation(s)
- Veronica Ayechu-Muruzabal
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Bente Poelmann
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Alinda J. Berends
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | | | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Belinda van’t Land
- Danone Nutricia Research, 3584 CT Utrecht, The Netherlands
- Center for Translational Immunology, The Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands
| | - Linette E. M. Willemsen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence:
| |
Collapse
|
10
|
Gal-3BP in Viral Infections: An Emerging Role in Severe Acute Respiratory Syndrome Coronavirus 2. Int J Mol Sci 2022; 23:ijms23137314. [PMID: 35806317 PMCID: PMC9266551 DOI: 10.3390/ijms23137314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Galectin-3 binding protein (Gal-3BP) is a multifunctional glycoprotein involved in cell–cell and cell–matrix interactions known to be upregulated in cancer and various viral infections, including HIV-1, HCV, and SARS-CoV-2, with a key role in regulating the antiviral immune response. Studies have identified a direct correlation between circulating levels of Gal-3BP and the severity of disease and/or disease progression for some viral infections, including SARS-CoV-2, suggesting a role of Gal-3BP in these processes. Due to Gal-3BP’s complex biology, the molecular mechanisms underlying its role in viral diseases have been only partially clarified. Gal-3BP induces the expression of interferons (IFNs) and proinflammatory cytokines, including interleukin-6 (IL-6), mainly interacting with galectin-3, targeting the TNF receptor-associated factors (TRAF-6 and TRAF-3) complex, thus having a putative role in the modulation of TGF-β signaling. In addition, an antiviral activity of Gal-3BP has been ascribed to a direct interaction of the protein with virus components. In this review, we explored the role of Gal-3BP in viral infections and the relationship between Gal-3BP upregulation and disease severity and progression, mainly focusing on SARS-CoV-2. Augmented knowledge of Gal-3BP’s role in virus infections can be useful to evaluate its possible use as a prognostic biomarker and as a putative target to block or attenuate severe disease.
Collapse
|
11
|
Yehya N, Fazelinia H, Taylor DM, Lawrence GG, Spruce LA, Thompson JM, Margulies SS, Seeholzer SH, Worthen GS. Differentiating children with sepsis with and without acute respiratory distress syndrome using proteomics. Am J Physiol Lung Cell Mol Physiol 2022; 322:L365-L372. [PMID: 34984927 PMCID: PMC8873032 DOI: 10.1152/ajplung.00164.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Both sepsis and acute respiratory distress syndrome (ARDS) rely on imprecise clinical definitions leading to heterogeneity, which has contributed to negative trials. Because circulating protein/DNA complexes have been implicated in sepsis and ARDS, we aimed to develop a proteomic signature of DNA-bound proteins to discriminate between children with sepsis with and without ARDS. We performed a prospective case-control study in 12 children with sepsis with ARDS matched to 12 children with sepsis without ARDS on age, severity of illness score, and source of infection. We performed co-immunoprecipitation and downstream proteomics in plasma collected ≤ 24 h of intensive care unit admission. Expression profiles were generated, and a random forest classifier was used on differentially expressed proteins to develop a signature which discriminated ARDS. The classifier was tested in six independent blinded samples. Neutrophil and nucleosome proteins were over-represented in ARDS, including two S100A proteins, superoxide dismutase (SOD), and three histones. Random forest produced a 10-protein signature that accurately discriminated between children with sepsis with and without ARDS. This classifier perfectly assigned six independent blinded samples as having ARDS or not. We validated higher expression of the most informative discriminating protein, galectin-3-binding protein, in children with ARDS. Our methodology has applicability to isolation of DNA-bound proteins from plasma. Our results support the premise of a molecular definition of ARDS, and give preliminary insight into why some children with sepsis, but not others, develop ARDS.
Collapse
Affiliation(s)
- Nadir Yehya
- 1Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hossein Fazelinia
- 2Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Deanne M. Taylor
- 3Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania,6Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Gladys G. Lawrence
- 4Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn A. Spruce
- 2Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jill M. Thompson
- 1Department of Anesthesiology and Critical Care Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania, Philadelphia, Pennsylvania
| | - Susan S. Margulies
- 5Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Steven H. Seeholzer
- 2Proteomics Core, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - G. Scott Worthen
- 6Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Severity Biomarkers in Puumala Hantavirus Infection. Viruses 2021; 14:v14010045. [PMID: 35062248 PMCID: PMC8778356 DOI: 10.3390/v14010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Annually, over 10,000 cases of hemorrhagic fever with renal syndrome (HFRS) are diagnosed in Europe. Puumala hantavirus (PUUV) causes most of the European HFRS cases. PUUV causes usually a relatively mild disease, which is rarely fatal. However, the severity of the infection varies greatly, and factors affecting the severity are mostly unrevealed. Host genes are known to have an effect. The typical clinical features in PUUV infection include acute kidney injury, thrombocytopenia, and increased vascular permeability. The primary target of hantavirus is the endothelium of the vessels of different organs. Although PUUV does not cause direct cytopathology of the endothelial cells, remarkable changes in both the barrier function of the endothelium and the function of the infected endothelial cells occur. Host immune or inflammatory mechanisms are probably important in the development of the capillary leakage. Several immunoinflammatory biomarkers have been studied in the context of assessing the severity of HFRS caused by PUUV. Most of them are not used in clinical practice, but the increasing knowledge about the biomarkers has elucidated the pathogenesis of PUUV infection.
Collapse
|
13
|
Wei J, Sun J, Zeng J, Ji E, Xu J, Tang C, Huo H, Zhang Y, Li H, Yang H. Precise Investigation of the Efficacy of Multicomponent Drugs Against Pneumonia Infected With Influenza Virus. Front Pharmacol 2021; 12:604009. [PMID: 34867309 PMCID: PMC8636456 DOI: 10.3389/fphar.2021.604009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/01/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Viral pneumonia is one of the most serious respiratory diseases, and multicomponent traditional Chinese medicines have been applied in the management of infected patients. As a representative TCM, HouYanQing (HYQ) oral liquid shows antiviral activity. However, the unclear mechanisms, as well as the ambiguous clinical effects, limit widespread application of this treatment. Therefore, in this study, a proteomics-based approach was utilized to precisely investigate its efficacy. Methods: Based on the efficacy evaluation of HYQ in a mouse model of pneumonia caused by influenza A virus (H1N1) and the subsequent proteomics analysis, specific signatures regulated by HYQ treatment of viral pneumonia were identified. Results: Experimental verifications indicate that HYQ may show distinctive effects in viral pneumonia patients, such as elevated galectin-3-binding protein and glutathione peroxidase 3 levels. Conclusion: This study provides a precise investigation of the efficacy of a multicomponent drug against viral pneumonia and offers a promising alternative for personalized management of viral pneumonia.
Collapse
Affiliation(s)
- Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianhui Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiawei Zeng
- Department of Clinical Laboratory, Mianyang Central Hospital, Mianyang, China
| | - Enhui Ji
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunyu Tang
- Research Center of Anti-infection Chinese Medicine Engineering Technology, Yongzhou, China
| | - Hairu Huo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongmei Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongjun Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
14
|
Chou RH, Tsai CT, Lu YW, Guo JY, Lu CT, Tsai YL, Wu CH, Lin SJ, Lien RY, Lu SF, Yang SF, Huang PH. Elevated serum galectin-1 concentrations are associated with increased risks of mortality and acute kidney injury in critically ill patients. PLoS One 2021; 16:e0257558. [PMID: 34559847 PMCID: PMC8462742 DOI: 10.1371/journal.pone.0257558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/05/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Galectin-1 (Gal-1), a member of the β-galactoside binding protein family, is associated with inflammation and chronic kidney disease. However, the effect of Gal-1 on mortality and acute kidney injury (AKI) in critically-ill patients remain unclear. METHODS From May 2018 to March 2020, 350 patients admitted to the medical intensive care unit (ICU) of Taipei Veterans General Hospital, a tertiary medical center, were enrolled in this study. Forty-one patients receiving long-term renal replacement therapy were excluded. Serum Gal-1 levels were determined within 24 h of ICU admission. The patients were divided into tertiles according to their serum Gal-1 levels (low, serum Gal-1 < 39 ng/ml; median, 39-70 ng/ml; high, ≥71 ng/ml). All patients were followed for 90 days or until death. RESULTS Mortality in the ICU and at 90 days was greater among patients with elevated serum Gal-1 levels. In analyses adjusted for the body mass index, malignancy, sepsis, Sequential Organ Failure Assessment (SOFA) score, and serum lactate level, the serum Gal-1 level remained an independent predictor of 90-day mortality [median vs. low: adjusted hazard ratio (aHR) 2.11, 95% confidence interval (CI) 1.24-3.60, p = 0.006; high vs. low: aHR 3.21, 95% CI 1.90-5.42, p < 0.001]. Higher serum Gal-1 levels were also associated with a higher incidence of AKI within 48 h after ICU admission, independent of the SOFA score and renal function (median vs. low: aHR 2.77, 95% CI 1.21-6.34, p = 0.016; high vs. low: aHR 2.88, 95% CI 1.20-6.88, p = 0.017). The results were consistent among different subgroups with high and low Gal-1 levels. CONCLUSION Serum Gal-1 elevation at the time of ICU admission were associated with an increased risk of mortality at 90 days, and an increased incidence of AKI within 48 h after ICU admission.
Collapse
Affiliation(s)
- Ruey-Hsing Chou
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chuan-Tsai Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Wen Lu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiun-Yu Guo
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Ting Lu
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Tsai
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Hsueh Wu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Ru-Yu Lien
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Fen Lu
- Department of Nursing, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shang-Feng Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
15
|
Iwasaki-Hozumi H, Chagan-Yasutan H, Ashino Y, Hattori T. Blood Levels of Galectin-9, an Immuno-Regulating Molecule, Reflect the Severity for the Acute and Chronic Infectious Diseases. Biomolecules 2021; 11:biom11030430. [PMID: 33804076 PMCID: PMC7998537 DOI: 10.3390/biom11030430] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Galectin-9 (Gal-9) is a β-galactoside-binding lectin capable of promoting or suppressing the progression of infectious diseases. This protein is susceptible to cleavage of its linker-peptides by several proteases, and the resulting cleaved forms, N-terminal carbohydrate recognition domain (CRD) and C-terminal CRD, bind to various glycans. It has been suggested that full-length (FL)-Gal-9 and the truncated (Tr)-Gal-9s could exert different functions from one another via their different glycan-binding activities. We propose that FL-Gal-9 regulates the pathogenesis of infectious diseases, including human immunodeficiency virus (HIV) infection, HIV co-infected with opportunistic infection (HIV/OI), dengue, malaria, leptospirosis, and tuberculosis (TB). We also suggest that the blood levels of FL-Gal-9 reflect the severity of dengue, malaria, and HIV/OI, and those of Tr-Gal-9 markedly reflect the severity of HIV/OI. Recently, matrix metallopeptidase-9 (MMP-9) was suggested to be an indicator of respiratory failure from coronavirus disease 2019 (COVID-19) as well as useful for differentiating pulmonary from extrapulmonary TB. The protease cleavage of FL-Gal-9 may lead to uncontrolled hyper-immune activation, including a cytokine storm. In summary, Gal-9 has potential to reflect the disease severity for the acute and chronic infectious diseases.
Collapse
Affiliation(s)
- Hiroko Iwasaki-Hozumi
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
| | - Haorile Chagan-Yasutan
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
- Mongolian Psychosomatic Medicine Department, International Mongolian Medicine Hospital of Inner Mongolia, Hohhot 010065, China
| | - Yugo Ashino
- Department of Respiratory Medicine, Sendai City Hospital, Sendai 982-8502, Japan;
| | - Toshio Hattori
- Department of Health Science and Social Welfare, Kibi International University, Takahashi 716-8508, Japan; (H.I.-H.); (H.C.-Y.)
- Correspondence: ; Tel.: +81-866-22-9454
| |
Collapse
|
16
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|
17
|
Shete A, Dhayarkar S, Dhamanage A, Kulkarni S, Ghate M, Sangle S, Medhe U, Verma V, Rajan S, Hattori T, Gangakhedkar R. Possible role of plasma Galectin-9 levels as a surrogate marker of viremia in HIV infected patients on antiretroviral therapy in resource-limited settings. AIDS Res Ther 2020; 17:43. [PMID: 32678033 PMCID: PMC7364535 DOI: 10.1186/s12981-020-00298-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/07/2020] [Indexed: 01/09/2023] Open
Abstract
Background Early detection of viremia in HIV infected patients on anti-retroviral therapy (ART) is important to prevent disease progression as well as accumulation of drug resistance mutations. This makes HIV viral load (VL) monitoring indispensable in HIV infected patients on ART. However VL, being an expensive test, results in heavy financial burden on health services. Hence, cheaper surrogate markers of viremia are desired to reduce overall cost of management of HIV infected patients. Methods We enrolled aviremic (n = 63, M:F = 31:32) and viremic (n = 43, M:F = 21:22) HIV infected patients at 1 year after ART initiation. Viremic individuals were identified as those having a plasma VL of more than 1000 copies/µl and aviremic individuals as less than 40 copies/µl. The study participants also included immuno-virologically discordant patients as they demonstrate differential degrees of immune-reconstitution and are likely to harbour concomitant infections influencing levels of immune-activation markers screened as the surrogate markers. Immune activation markers viz. plasma hs-CRP, soluble-CD14 and Galectin-9 levels were estimated by ELISA, IL-6 by luminex assay and percentages of CD38+ CD8+ cells were determined by flow cytometry. The levels were compared between viremic and aviremic patients and correlated with plasma viral load. Receiver operated curve (ROC) analysis was done for plasma Galectin-9 levels. Results Viremic patients had significantly higher levels of Galectin-9 and %CD38+ CD8+ cells (p values < 0.0001) than aviremic patients. Levels of the other activation markers did not differ between viremic and aviremic individuals. Galectin-9 levels (r = 0.76) and %CD38+ CD8+ cells (r = 0.39) correlated positively with VL. Area under curve for Galectin-9 levels for distinguishing between viremic and aviremic individuals was 0.98. Youden index, sensitivity, specificity, positive predictive value and negative predictive value for Galectin-9 levels were 0.87, 0.97, 0.90, 0.87 and 0.98, respectively, at the cut-off value of 5.79 ng/ml. Conclusions Plasma Galectin-9 levels could identify viremic individuals with sensitivity and specificity of more than 90%. Thus, they showed a potential to serve as a surrogate marker of viremia in HIV infected patients on ART and would have cost implications on HIV management especially in resource-limited settings. However, the findings need to be confirmed in the patients on ART for different durations of time.
Collapse
|
18
|
Increased serum levels of galectin-9 in patients with chikungunya fever. Virus Res 2020; 286:198062. [PMID: 32565125 DOI: 10.1016/j.virusres.2020.198062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022]
Abstract
Chikungunya fever (CHIKF) is an arboviral disease that has caused an epidemic burst of chronic inflammatory joint disease in Latin America in the last few years. Efforts are being spent in understanding the mechanisms by which it may cause such articular damage and in determining possible biomarkers of the disease. Galectins (GAL) are a family of animal lectins with an affinity for beta-galactosides. They have multiple functions including working as receptors in innate immunity and as a control for inflammatory responses in both innate and adaptive immunity. They regulate functions of immune cells, such as lymphocytes and macrophages, which have a main role in the chikungunya inflammatory process. Galectins are also involved in chronification of viral diseases, participate in the immunopathogenesis of chronic joint diseases such as rheumatoid arthritis, and have a role in inflammation in other arboviral diseases, such as dengue. Thus, we intended to determine the serum levels of galectin-1, -3, -4, -7, and -9 in patients with subacute and chronic articular manifestations of CHIKF and to evaluate their associations with clinical manifestations. We evaluated 44 patients with clinical manifestations of CHIKF and serological confirmation with IgM and/or IgG chikungunya virus (CHIKV) antibodies. Forty-nine age- and gender-matched healthy individuals served as controls. Anti-CHIKV IgM and IgG antibodies and galectins serum levels were measured by ELISA. We found higher levels of GAL-9 (patients median 2192 [1500-2631] pg/mL, controls median 46.88 [46.88-46.88] pg/mL, p < 0.0001) and lower levels of GAL-3 (patients median 235.5 [175.5-351.8] pg/mL, controls median 2236.0 [1256.0-2236.0] pg/mL, p < 0.0001) in patients than in controls. There was no statistical difference in levels of GAL-1, -4 and -7 between patients and control groups. There was no difference in GAL-9 serum levels between patients with subacute or chronic symptoms (median 2148 [1500-2722] pg/mL x 2212 [1844-2500] pg/mL, p = 0.3626). A significant association of GAL-9 with joint stiffness, both in its duration and intensity, was found. These results may reflect the participation of GAL-9 in the immunopathogenesis of the inflammatory process in chikungunya fever, as morning stiffness may reflect the systemic inflammatory process.
Collapse
|
19
|
Xu G, Xia Z, Deng F, Liu L, Wang Q, Yu Y, Wang F, Zhu C, Liu W, Cheng Z, Zhu Y, Zhou L, Zhang Y, Lu M, Liu S. Inducible LGALS3BP/90K activates antiviral innate immune responses by targeting TRAF6 and TRAF3 complex. PLoS Pathog 2019; 15:e1008002. [PMID: 31404116 PMCID: PMC6705879 DOI: 10.1371/journal.ppat.1008002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/22/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
The galectin 3 binding protein (LGALS3BP, also known as 90K) is a ubiquitous multifunctional secreted glycoprotein originally identified in cancer progression. It remains unclear how 90K functions in innate immunity during viral infections. In this study, we found that viral infections resulted in elevated levels of 90K. Further studies demonstrated that 90K expression suppressed virus replication by inducing IFN and pro-inflammatory cytokine production. Upon investigating the mechanisms behind this event, we found that 90K functions as a scaffold/adaptor protein to interact with TRAF6, TRAF3, TAK1 and TBK1. Furthermore, 90K enhanced TRAF6 and TRAF3 ubiquitination and served as a specific ubiquitination substrate of TRAF6, leading to transcription factor NF-κB, IRF3 and IRF7 translocation from the cytoplasm to the nucleus. Conclusions: 90K is a virus-induced protein capable of binding with the TRAF6 and TRAF3 complex, leading to IFN and pro-inflammatory production. The innate immune system detects the presence of viruses through germline-encoded pattern-recognition receptors (PRRs) and leads to the production of proinflammatory cytokines and interferons (IFNs) as the first line of defense against viral infections. Here, we identified a host protein, LGALS3BP, as a positive regulator of PRR-mediated signal transduction pathways by interacting with TRAF6-TAK1 and TRAF3-TBK1 axes, enhancing their recruitment and promoting the ubiquitination of TRAF6 and TRAF3. LGALS3BP exhibited antiviral activity toward a broad range of viral infections. LGALS3BP-/- mice are highly susceptible to lethal influenza A virus infection with increasing pulmonary viral load, morbidity and mortality. Thus, our study highlight the importance of LGALS3BP in host antiviral innate immune responses.
Collapse
Affiliation(s)
- Gang Xu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhangchuan Xia
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Feiyan Deng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qiming Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan Province, China
| | - Yi Yu
- The Key Laboratory of Biosystems Homeostasis and Protection of the Ministry of Education and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Weiyong Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhikui Cheng
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Zhu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Zhou
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, School of Medicine, Wuhan University, Wuhan, China
| | - Yi Zhang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering, Hubei University of Technology, Wuhan, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Shi Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
20
|
Hong CS, Park MR, Sun EG, Choi W, Hwang JE, Bae WK, Rhee JH, Cho SH, Chung IJ. Gal-3BP Negatively Regulates NF-κB Signaling by Inhibiting the Activation of TAK1. Front Immunol 2019; 10:1760. [PMID: 31402917 PMCID: PMC6677151 DOI: 10.3389/fimmu.2019.01760] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/11/2019] [Indexed: 01/02/2023] Open
Abstract
Galectin-3-binding protein (Gal-3BP) is a member of the family of scavenger receptor cysteine-rich (SRCR) domain-containing proteins, which are associated with the immune system. However, the functional roles and signaling mechanisms of Gal-3BP in host defense and the immune response remain largely unknown. Here, we identified cellular Gal-3BP as a negative regulator of NF-κB activation and proinflammatory cytokine production in lipopolysaccharide (LPS)-stimulated murine embryonic fibroblasts (MEFs). Furthermore, cellular Gal-3BP interacted with transforming growth factor β-activated kinase 1 (TAK1), a crucial mediator of NF-κB activation in response to cellular stress. Gal-3BP inhibited the phosphorylation of TAK1, leading to suppression of its kinase activity and reduced protein stability. In vivo we found that Lgals3BP deficiency in mice enhanced LPS-induced proinflammatory cytokine release and rendered mice more sensitive to LPS-induced endotoxin shock. Overall, these results suggest that Gal-3BP is a novel suppressor of TAK1-dependent NF-κB activation that may have potential in the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Mi-Ra Park
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Eun-Gene Sun
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Wonyoung Choi
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Jun-Eul Hwang
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Woo-Kyun Bae
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea.,Combinatorial Tumor Immunotherapy MRC, Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Hwasun, South Korea
| | - Joon Haeng Rhee
- Combinatorial Tumor Immunotherapy MRC, Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Hwasun, South Korea
| | - Sang-Hee Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea
| | - Ik-Joo Chung
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun, South Korea.,Combinatorial Tumor Immunotherapy MRC, Clinical Vaccine R&D Center and Department of Microbiology, Chonnam National University Medical School, Hwasun, South Korea
| |
Collapse
|
21
|
Langer J, García I, Liz-Marzán LM. Real-time dynamic SERS detection of galectin using glycan-decorated gold nanoparticles. Faraday Discuss 2019; 205:363-375. [PMID: 28880321 DOI: 10.1039/c7fd00123a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We present the application of surface-enhanced Raman scattering (SERS) spectroscopy for the fast, sensitive and highly specific detection of the galectin-9 (Gal-9) protein in binding buffer (mimicking natural conditions). The method involves the use of specifically designed nanotags comprising glycan-decorated gold nanoparticles encoded with 4-mercaptobenzoic acid. At fast time scales Gal-9 can be detected down to a concentration of 1.2 nM by monitoring the SERS signal of the reporter, driven by aggregation of the functionalized Au NPs tags, induced by Gal-9 recognition. We additionally demonstrate that the sensitivity and concentration working range of the sensor can be tuned via control of aggregation dynamics and cluster size distribution.
Collapse
Affiliation(s)
- Judith Langer
- CIC biomaGUNE, Paseo de Miramón 182, 20014 Donostia-San Sebastián, Spain.
| | | | | |
Collapse
|
22
|
Ali H, Prana C, Nasrul E. Upregulation of SCUBE1 in Dengue Virus Infection. Open Access Maced J Med Sci 2019; 7:1602-1607. [PMID: 31210808 PMCID: PMC6560299 DOI: 10.3889/oamjms.2019.352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND: Dengue is a major communicable disease in tropical areas, with an increasing prevalence every year. Thrombocytopenia is one of the commonly used laboratory parameters for predicting the severity of the disease. It is detected on day 6 or day 7 after the febrile stage, and its presence indicates that the disease has become potentially fatal. Therefore, it is necessary to identify a marker for the early recognition of dengue virus infection during the febrile stage before the detection of thrombocytopenia on day 6 to prevent severe disease outcomes. Signal peptide-CUB- (complement C1r/C1s)-EGF (epidermal growth factor)-like domain-containing protein 1 (SCUBE1) is secreted in activated platelets under inflammatory conditions and enhances platelet-platelet adhesion and agglutination. This gene was first identified in human vascular endothelium, but its biological role in platelets remains unknown. AIM: This study aims to identify SCUBE1 expression during the febrile stage of dengue virus infection and examine the correlation of its expression with thrombocytopenia occurrence on day 6. MATERIAL AND METHODS: Blood samples were collected from 17 patients infected with dengue virus on day-3 fever and from 16 healthy controls who met the inclusion and exclusion criteria for dengue virus infection according to the World Health Organization (WHO) classification for dengue virus infection. All samples were subjected to SCUBE1 gene analysis using real-time reverse transcription quantitative PCR (RT-PCR). RESULTS: The results showed that upregulation of SCUBE1 gene in infected patients (8.9 ± 3.1-fold) compared to that in healthy controls, indicating SCUBE1 involvement in dengue virus infection. Furthermore, we analysed the laboratory parameters of infected patients on day 3 and day 6, when thrombocytopenia is usually detected. Platelet count was found to be significantly decreased from day 3 until day 6 in the infected patients. Unfortunately, our results showed no correlation between SCUBE1 expression in the febrile stage and the occurrence of thrombocytopenia on day 6. CONCLUSION: The conclusion of this study is SCUBE1 might play a role in dengue virus infection but does not correlate with thrombocytopenia on day-6 fever.
Collapse
Affiliation(s)
- Hirowati Ali
- Department of Biochemistry, Faculty of Medicine, Andalas University, Padang, Indonesia.,Graduate School of Biomedical Sciences, Andalas University, Padang, Indonesia
| | - Coyza Prana
- Graduate School of Biomedical Sciences, Andalas University, Padang, Indonesia
| | - Ellyza Nasrul
- Graduate School of Biomedical Sciences, Andalas University, Padang, Indonesia.,Department of Clinical Pathology, Faculty of Medicine, Andalas University, Padang, Indonesia
| |
Collapse
|
23
|
Ward MD, Brueggemann EE, Kenny T, Reitstetter RE, Mahone CR, Trevino S, Wetzel K, Donnelly GC, Retterer C, Norgren RB, Panchal RG, Warren TK, Bavari S, Cazares LH. Characterization of the plasma proteome of nonhuman primates during Ebola virus disease or melioidosis: a host response comparison. Clin Proteomics 2019; 16:7. [PMID: 30774579 PMCID: PMC6366079 DOI: 10.1186/s12014-019-9227-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Background In-depth examination of the plasma proteomic response to infection with a wide variety of pathogens can assist in the development of new diagnostic paradigms, while providing insight into the interdependent pathogenic processes which encompass a host’s immunological and physiological responses. Ebola virus (EBOV) causes a highly lethal infection termed Ebola virus disease (EVD) in primates and humans. The Gram negative non-spore forming bacillus Burkholderia pseudomallei (Bp) causes melioidosis in primates and humans, characterized by severe pneumonia with high mortality. We sought to examine the host response to infection with these two bio-threat pathogens using established animal models to provide information on the feasibility of pre-symptomatic diagnosis, since the induction of host molecular signaling networks can occur before clinical presentation and pathogen detection. Methods Herein we report the quantitative proteomic analysis of plasma collected at various times of disease progression from 10 EBOV-infected and 5 Bp-infected nonhuman primates (NHP). Our strategy employed high resolution LC–MS/MS and a peptide-tagging approach for relative protein quantitation. In each infection type, for all proteins with > 1.3 fold abundance change at any post-infection time point, a direct comparison was made with levels obtained from plasma collected daily from 5 naïve rhesus macaques, to determine the fold changes that were significant, and establish the natural variability of abundance for endogenous plasma proteins. Results A total of 41 plasma proteins displayed significant alterations in abundance during EBOV infection, and 28 proteins had altered levels during Bp infection, when compared to naïve NHPs. Many major acute phase proteins quantitated displayed similar fold-changes between the two infection types but exhibited different temporal dynamics. Proteins related to the clotting cascade, immune signaling and complement system exhibited significant differential abundance during infection with EBOV or Bp, indicating a specificity of the response. Conclusions These results advance our understanding of the global plasma proteomic response to EBOV and Bp infection in relevant primate models for human disease and provide insight into potential innate immune response differences between viral and bacterial infections. Electronic supplementary material The online version of this article (10.1186/s12014-019-9227-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael D Ward
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Ernst E Brueggemann
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Tara Kenny
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Raven E Reitstetter
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Christopher R Mahone
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Sylvia Trevino
- 2Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Kelly Wetzel
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Ginger C Donnelly
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Cary Retterer
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Robert B Norgren
- 3Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Rekha G Panchal
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Travis K Warren
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Sina Bavari
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| | - Lisa H Cazares
- 1Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702 USA
| |
Collapse
|
24
|
Machala EA, McSharry BP, Rouse BT, Abendroth A, Slobedman B. Gal power: the diverse roles of galectins in regulating viral infections. J Gen Virol 2019; 100:333-349. [PMID: 30648945 DOI: 10.1099/jgv.0.001208] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses, as a class of pathogenic microbe, remain a significant health burden globally. Viral infections result in significant morbidity and mortality annually and many remain in need of novel vaccine and anti-viral strategies. The development of effective novel anti-viral therapeutics, in particular, requires detailed understanding of the mechanism of viral infection, and the host response, including the innate and adaptive arms of the immune system. In recent years, the role of glycans and lectins in pathogen-host interactions has become an increasingly relevant issue. This review focuses on the interactions between a specific lectin family, galectins, and the broad range of viral infections in which they play a role. Discussed are the diverse activities that galectins play in interacting directly with virions or the cells they infect, to promote or inhibit viral infection. In addition we describe how galectin expression is regulated both transcriptionally and post-transcriptionally by viral infections. We also compare the contribution of known galectin-mediated immune modulation, across a range of innate and adaptive immune anti-viral responses, to the outcome of viral infections.
Collapse
Affiliation(s)
- Emily A Machala
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Brian P McSharry
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry T Rouse
- 2Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Allison Abendroth
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| | - Barry Slobedman
- 1Discipline of Infectious Diseases and Immunology, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
25
|
Park SY, Yoon S, Sun EG, Zhou R, Bae JA, Seo YW, Chae JI, Paik MJ, Ha HH, Kim H, Kim KK. Glycoprotein 90K Promotes E-Cadherin Degradation in a Cell Density-Dependent Manner via Dissociation of E-Cadherin-p120-Catenin Complex. Int J Mol Sci 2017; 18:ijms18122601. [PMID: 29207493 PMCID: PMC5751204 DOI: 10.3390/ijms18122601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/23/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022] Open
Abstract
Glycoprotein 90K (also known as LGALS3BP or Mac-2BP) is a tumor-associated protein, and high 90K levels are associated with poor prognosis in some cancers. To clarify the role of 90K as an indicator for poor prognosis and metastasis in epithelial cancers, the present study investigated the effect of 90K on an adherens junctional protein, E-cadherin, which is frequently absent or downregulated in human epithelial cancers. Treatment of certain cancer cells with 90K significantly reduced E-cadherin levels in a cell-population-dependent manner, and these cells showed decreases in cell adhesion and increases in invasive cell motility. Mechanistically, 90K-induced E-cadherin downregulation occurred via ubiquitination-mediated proteasomal degradation. 90K interacted with the E-cadherin–p120-catenin complex and induced its dissociation, altering the phosphorylation status of p120-catenin, whereas it did not associate with β-catenin. In subconfluent cells, 90K decreased membrane-localized p120-catenin and the membrane fraction of the p120-catenin. Particularly, 90K-induced E-cadherin downregulation was diminished in p120-catenin knocked-down cells. Taken together, 90K upregulation promotes the dissociation of the E-cadherin–p120-catenin complex, leading to E-cadherin proteasomal degradation, and thereby destabilizing adherens junctions in less confluent tumor cells. Our results provide a potential mechanism to explain the poor prognosis of cancer patients with high serum 90K levels.
Collapse
Affiliation(s)
- So-Yeon Park
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Somy Yoon
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Eun Gene Sun
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Rui Zhou
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Jeong A Bae
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, 567 Baekje-daero, Jeonju, Jeonbuk 54896, Korea.
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Hyung-Ho Ha
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, 255 Jungang-ro, Sunchon, Jeonnam 57922, Korea.
| | - Kyung Keun Kim
- Medical Research Center for Gene Regulation, Brain Korea 21 Project, Chonnam National University Medical School, 160 Baekseo-ro, Dong-gu, Gwangju 61469, Korea.
| |
Collapse
|
26
|
Translational Implication of Galectin-9 in the Pathogenesis and Treatment of Viral Infection. Int J Mol Sci 2017; 18:ijms18102108. [PMID: 28991189 PMCID: PMC5666790 DOI: 10.3390/ijms18102108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/16/2022] Open
Abstract
The interaction between galectin-9 and its receptor, Tim-3, triggers a series of signaling events that regulate immune responses. The expression of galectin-9 has been shown to be increased in a variety of target cells of many different viruses, such as hepatitis C virus (HCV), hepatitis B virus (HBV), herpes simplex virus (HSV), influenza virus, dengue virus (DENV), and human immunodeficiency virus (HIV). This enhanced expression of galectin-9 following viral infection promotes significant changes in the behaviors of the virus-infected cells, and the resulting events tightly correlate with the immunopathogenesis of the viral disease. Because the human immune response to different viral infections can vary, and the lack of appropriate treatment can have potentially fatal consequences, understanding the implications of galectin-9 is crucial for developing better methods for monitoring and treating viral infections. This review seeks to address how we can apply the current understanding of galectin-9 function to better understand the pathogenesis of viral infection and better treat viral diseases.
Collapse
|
27
|
Secretion of Galectin-9 as a DAMP during Dengue Virus Infection in THP-1 Cells. Int J Mol Sci 2017; 18:ijms18081644. [PMID: 28788062 PMCID: PMC5578034 DOI: 10.3390/ijms18081644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/17/2017] [Accepted: 07/22/2017] [Indexed: 01/24/2023] Open
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous cellular molecules released to the extracellular environment in response to stress conditions such as virus infection. Galectins are β-galactoside-binding proteins that are widely expressed in cells and tissues of the immune system, are localized in the cell cytoplasm, and have roles in inflammatory responses and immune responses against infection. Elevated levels of galectin-9 (Gal-9) in natural human infections have been documented in numerous reports. To investigate the effect of dengue virus (DENV) infection on expression of endogenous Gal-9, monocytic THP-1 cells were infected with varying doses of DENV-3 (multiplicity of infection (MOI) 0.01, 0.03 and 0.1) and incubated at varying time points (Day 1, Day 2, Day 3). Results showed augmentation of Gal-9 levels in the supernatant, reduction of Gal-9 levels in the cells and decreased expression of LGALS9 mRNA, while DENV-3 mRNA copies for all three doses remained stable through time. Dengue virus induced the secretion of Gal-9 as a danger response; in turn, Gal-9 and other inflammatory factors, and stimulated effector responses may have limited further viral replication. The results in this pilot experiment add to the evidence of Gal-9 as a potential DAMP.
Collapse
|