1
|
Vojtisek-Lom M, Dittrich L, Pechout M, Cervena T, Vimrova A, Sikorova J, Zavodna T, Ondracek J, Aakko-Saksa P, Topinka J, Rössner P. Portable emissions toxicity system: Evaluating the toxicity of emissions or polluted air by exposure of cell cultures at air-liquid interface in a compact field-deployable setup. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178010. [PMID: 39709836 DOI: 10.1016/j.scitotenv.2024.178010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/24/2024]
Abstract
Exposure of cell cultures at air-liquid interface (ALI), mimicking i.e. human lung surface, is believed to be one of the most realistic means to model toxicity of complex mixtures of pollutants on human health. The complexity of the close cooperation of "emissions source" and toxicology groups and of the instrumentation are among the limiting factors of ALI. In this work, the concepts of ALI exposure and real-world emissions monitoring using portable emissions monitoring systems (PEMS) are combined into a portable emissions or air toxicity system, for field deployment, including operation in moving vehicles. Cell cultures grown on 6 mm inserts are placed in an airtight 17x13x9 cm exposure box, where the sample is symmetrically distributed into 8 wells of a standard Transwell 24-well holder at 25 cm3/min/insert. In a 40x35x45 cm inner dimensions incubator, sample and control air are conditioned to 5 % CO2, 37 °C and >85 % humidity and drawn through 2-4 exposure boxes. Characterization with silver nanoparticles revealed 50 % particle losses at 15 nm and deposition rate of approximately 1.5 % at both 10 and 21 nm mean diameter. The system has undergone an extensive field validation, including 4 h of exposure and 2 h transport in a vehicle each day for 5 days, 5-day operation outside in vans and tents at -7 to +32 °C, long transport and test on a heavy-duty truck, during which cells were exposed to the diluted exhaust from the truck, this being the first known use of ALI exposure chamber as PEMS. The portable exposure chamber, along with a field-deployable auxiliary mobile base including a small laminar flow box, additional incubator and freezer, can be easily used to study the toxicity of various emissions, effluents and polluted air, aiming for a more relevant toxicity measure than chemical composition alone.
Collapse
Affiliation(s)
- Michal Vojtisek-Lom
- Faculty of Mechatronics and Interdisciplinary Studies, Technical University of Liberec, 46117, Czech Republic.
| | - Lubos Dittrich
- Faculty of Mechatronics and Interdisciplinary Studies, Technical University of Liberec, 46117, Czech Republic
| | - Martin Pechout
- Faculty of Mechatronics and Interdisciplinary Studies, Technical University of Liberec, 46117, Czech Republic; Department of Vehicles and Ground Transport, Technical Faculty, Czech University of Life Sciences, 165 00 Prague 6, Czech Republic
| | - Tereza Cervena
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1084, Prague 4, Czech Republic
| | - Anezka Vimrova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1084, Prague 4, Czech Republic
| | - Jitka Sikorova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1084, Prague 4, Czech Republic
| | - Tana Zavodna
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1084, Prague 4, Czech Republic
| | - Jakub Ondracek
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, Rozvojová 135, 165 00 Prague 6, Czech Republic
| | | | - Jan Topinka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1084, Prague 4, Czech Republic
| | - Pavel Rössner
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1084, Prague 4, Czech Republic
| |
Collapse
|
2
|
Pino JS, Alvarado PN, Larrea AM, Rojas W, Gomez-Lopera N. Analysis of cytotoxicity and genotoxicity of diesel exhaust PM2.5 generated from diesel and dual natural gas-diesel engines. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 114:104638. [PMID: 39765323 DOI: 10.1016/j.etap.2025.104638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/26/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Diesel exhaust particles (DEPs) are atmospheric pollutants associated with adverse health effects. In response to their impact, natural gas (NG) has emerged as a promising alternative fuel due to its cleaner combustion. Although the cytotoxicity and genotoxicity of DEPs from diesel or NG engines have been extensively studied, the impact of dual natural gas-diesel systems remains unexplored. This study evaluated the toxicity of DEPs (PM2.5) emitted by an engine in diesel mode and dual natural gas-diesel mode on cellular parameters such as viability, apoptosis, oxidative stress, and DNA damage. The results showed that diesel DEPs reduced cell viability by up to 31 %, compared to a 19.2 % reduction with dual-mode DEPs. Apoptosis induction was also higher with diesel DEPs, with a 7 % increase compared to the dual mode. While dual-mode DEPs increased the production of reactive oxygen species (ROS) without causing DNA damage, diesel DEPs generated high ROS levels and measurable DNA damage. These differences could be attributed to the physicochemical characteristics of each mode, as diesel DEPs contained higher concentrations of polycyclic aromatic hydrocarbons (PAHs). This study addresses a research gap by quantifying the health effects of emissions from dual-fuel engines and highlights the potential of these systems to reduce DEP-induced toxicity.
Collapse
Affiliation(s)
- Juan Sebastian Pino
- Facultad de Ciencias Exactas y Naturales. Grupo de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Pedro N Alvarado
- Facultad de Ingenierías. Grupo de Investigación Materiales Avanzados y Energía, Instituto Tecnológico Metropolitano, Medellín, Colombia
| | - Ana Maria Larrea
- Facultad de Ciencias Exactas y Naturales. Grupo de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Winston Rojas
- Facultad de Ciencias Exactas y Naturales. Grupo de Genética Molecular, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Gomez-Lopera
- Facultad de Medicina. Grupo de Genética Médica, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
3
|
Saveleva L, Cervena T, Mengoni C, Sima M, Krejcik Z, Vrbova K, Sikorova J, Mussalo L, de Crom TOE, Šímová Z, Ivanova M, Shahbaz MA, Penttilä E, Löppönen H, Koivisto AM, Ikram MA, Jalava PI, Malm T, Chew S, Vojtisek-Lom M, Topinka J, Giugno R, Rössner P, Kanninen KM. Transcriptomic and epigenomic profiling reveals altered responses to diesel emissions in Alzheimer's disease both in vitro and in population-based data. Alzheimers Dement 2024; 20:8825-8843. [PMID: 39579047 DOI: 10.1002/alz.14347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/15/2024] [Accepted: 09/21/2024] [Indexed: 11/25/2024]
Abstract
INTRODUCTION Studies have correlated living close to major roads with Alzheimer's disease (AD) risk. However, the mechanisms responsible for this link remain unclear. METHODS We exposed olfactory mucosa (OM) cells of healthy individuals and AD patients to diesel emissions (DE). Cytotoxicity of exposure was assessed, mRNA, miRNA expression, and DNA methylation analyses were performed. The discovered altered pathways were validated using data from the human population-based Rotterdam Study. RESULTS DE exposure resulted in an almost four-fold higher response in AD OM cells, indicating increased susceptibility to DE effects. Methylation analysis detected different DNA methylation patterns, revealing new exposure targets. Findings were validated by analyzing data from the Rotterdam Study cohort and demonstrated a key role of nuclear factor erythroid 2-related factor 2 signaling in responses to air pollutants. DISCUSSION This study identifies air pollution exposure biomarkers and pinpoints key pathways activated by exposure. The data suggest that AD individuals may face heightened risks due to impaired cellular defenses. HIGHLIGHTS Healthy and AD olfactory cells respond differently to DE exposure. AD cells are highly susceptible to DE exposure. The NRF2 oxidative stress response is highly activated upon air pollution exposure. DE-exposed AD cells activate the unfolded protein response pathway. Key findings are also confirmed in a population-based study.
Collapse
Affiliation(s)
- Liudmila Saveleva
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tereza Cervena
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Claudia Mengoni
- Department of Computer Science, University of Verona, Verona, Italy
| | - Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zdenek Krejcik
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kristyna Vrbova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Sikorova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Laura Mussalo
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tosca O E de Crom
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Zuzana Šímová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mariia Ivanova
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Muhammad Ali Shahbaz
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Elina Penttilä
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Heikki Löppönen
- Department of Otorhinolaryngology, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Anne M Koivisto
- Department Driving Assessment, Neuro Centre, Kuopio University Hospital, Kuopio, Finland
- Department of Geriatrics, Helsinki University Hospital, Helsinki, Finland
- Department of Neurosciences, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Pasi I Jalava
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tarja Malm
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sweelin Chew
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Michal Vojtisek-Lom
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Mechatronics and Computer Engineering, the Technical University of Liberec, Liberec, Czech Republic
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Pavel Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katja M Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Uski OJ, Rankin G, Wingfors H, Magnusson R, Boman C, Lindgren R, Muala A, Blomberg A, Bosson JA, Sandström T. The Toxic Effects of Petroleum Diesel, Biodiesel, and Renewable Diesel Exhaust Particles on Human Alveolar Epithelial Cells. J Xenobiot 2024; 14:1432-1449. [PMID: 39449421 PMCID: PMC11503417 DOI: 10.3390/jox14040080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity.
Collapse
Affiliation(s)
- Oskari J. Uski
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Gregory Rankin
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Håkan Wingfors
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Roger Magnusson
- CBRN Defence and Security, Swedish Defence Research Agency, 90182 Umeå, Sweden
| | - Christoffer Boman
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Robert Lindgren
- Department of Applied Physics and Electronics, Thermochemical Energy Conversion Laboratory, Umeå University, 90187 Umeå, Sweden
| | - Ala Muala
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Jenny A. Bosson
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| | - Thomas Sandström
- Department of Public Health and Clinical Medicine, Umeå University, 90187 Umeå, Sweden; (G.R.)
| |
Collapse
|
5
|
Landwehr KR, Hillas J, Mead-Hunter R, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Biodiesel feedstock determines exhaust toxicity in 20% biodiesel: 80% mineral diesel blends. CHEMOSPHERE 2023; 310:136873. [PMID: 36252896 DOI: 10.1016/j.chemosphere.2022.136873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
To address climate change concerns, and reduce the carbon footprint caused by fossil fuel use, it is likely that blend ratios of renewable biodiesel with commercial mineral diesel fuel will steadily increase, resulting in biodiesel use becoming more widespread. Exhaust toxicity of unblended biodiesels changes depending on feedstock type, however the effect of feedstock on blended fuels is less well known. The aim of this study was to assess the impact of biodiesel feedstock on exhaust toxicity of 20% blended biodiesel fuels (B20). Primary human airway epithelial cells were exposed to exhaust diluted 1/15 with air from an engine running on conventional ultra-low sulfur diesel (ULSD) or 20% blends of soy, canola, waste cooking oil (WCO), tallow, palm or cottonseed biodiesel in diesel. Physico-chemical exhaust properties were compared between fuels and the post-exposure effect of exhaust on cellular viability and media release was assessed 24 h later. Exhaust properties changed significantly between all fuels with cottonseed B20 being the most different to both ULSD and its respective unblended biodiesel. Exposure to palm B20 resulted in significantly decreased cellular viability (96.3 ± 1.7%; p < 0.01) whereas exposure to soy B20 generated the greatest number of changes in mediator release (including IL-6, IL-8 and TNF-α, p < 0.05) when compared to air exposed controls, with palm B20 and tallow B20 closely following. In contrast, canola B20 and WCO B20 were the least toxic with only mediators G-CSF and TNF-α being significantly increased. Therefore, exposure to palm B20, soy B20 and tallow B20 were found to be the most toxic and exposure to canola B20 and WCO B20 the least. The top three most toxic and the bottom three least toxic B20 fuels are consistent with their unblended counterparts, suggesting that feedstock type greatly impacts exhaust toxicity, even when biodiesel only comprises 20% of the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, 6151, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth, 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, 6009, Western Australia, Australia
| |
Collapse
|
6
|
The impact of extractable organic matter from gasoline and alternative fuel emissions on bronchial cell models (BEAS-2B, MucilAir™). Toxicol In Vitro 2022; 80:105316. [DOI: 10.1016/j.tiv.2022.105316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/23/2022]
|
7
|
Líbalová H, Závodná T, Vrbová K, Sikorová J, Vojtíšek-Lom M, Beránek V, Pechout M, Kléma J, Ciganek M, Machala M, Neča J, Rössner P, Topinka J. Transcription profiles in BEAS-2B cells exposed to organic extracts from particulate emissions produced by a port-fuel injection vehicle, fueled with conventional fossil gasoline and gasoline-ethanol blend. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 872:503414. [PMID: 34798934 DOI: 10.1016/j.mrgentox.2021.503414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/08/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022]
Abstract
Emissions from road traffic are among the major contributors to air pollution worldwide and represent a serious environmental health risk. Although traffic-related pollution has been most commonly associated with diesel engines, increasing evidence suggests that gasoline engines also produce a considerable amount of potentially hazardous particulate matter (PM). The primary objective of this study was to compare the intrinsic toxic properties of the organic components of PM, generated by a conventional gasoline engine fueled with neat gasoline (E0), or gasoline-ethanol blend (15 % ethanol, v/v, E15). Our results showed that while E15 has produced, compared to gasoline and per kg of fuel, comparable particle mass (μg PM/kg fuel) and slightly more particles by number, the organic extract from the particulate matter produced by E15 contained a larger amount of harmful polycyclic aromatic hydrocarbons (PAHs), as determined by the chemical analysis. To examine the toxicity, we monitored genome-wide gene expression changes in human lung BEAS-2B cells, exposed for 4 h and 24 h to a subtoxic dose of each PM extract. After 4 h exposure, numerous dysregulated genes and processes such as oxidative stress, lipid and steroid metabolism, PPARα signaling and immune response, were found to be common for both extract treatments. On the other hand, 24 h exposure resulted in more distinctive gene expression patterns. Although we identified several common modulated processes indicating the metabolism of PAHs and activation of aryl hydrocarbon receptor (AhR), E15 specifically dysregulated a variety of other genes and pathways related to cancer promotion and progression. Overall, our findings suggest that the ethanol addition to gasoline changed the intrinsic properties of PM emissions and increased the PAH content in PM organic extract, thus contributing to a more extensive toxic response particularly after 24 h exposure in BEAS-2B cells.
Collapse
Affiliation(s)
- Helena Líbalová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Táňa Závodná
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Kristýna Vrbová
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jitka Sikorová
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Michal Vojtíšek-Lom
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Vít Beránek
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 166 07, Prague, Czech Republic.
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Faculty of Engineering, Czech University of Life Sciences, Kamycka 127, 165 21, Prague, Czech Republic.
| | - Jiří Kléma
- Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo namesti 13, 121 35, Prague, Czech Republic.
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic.
| | - Pavel Rössner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20, Prague, Czech Republic.
| |
Collapse
|
8
|
An J, Tang W, Wang L, Xue W, Yao W, Zhong Y, Qiu X, Li Y, Chen Y, Wang H, Shang Y. Transcriptomics changes and the candidate pathway in human macrophages induced by different PM 2.5 extracts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117890. [PMID: 34358868 DOI: 10.1016/j.envpol.2021.117890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a worldwide environmental problem and is posing a serious threat to human health. Until now, the molecular toxicological mechanisms and the crucial toxic components of PM2.5 remain to be clarified. This study investigated the whole transcriptomic changes in THP-1 derived macrophages treated with different types of PM2.5 extracts using RNA sequencing technique. Bioinformatics analyses covering biological functions, signal pathways, protein networks and node genes were performed to explore the candidate pathways and critical genes, and to find the potential molecular mechanisms. Results of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), and protein-protein interaction (PPI) networks revealed that water extracts (WEs) of PM2.5 obviously influenced genes and molecular pathways responded to oxidative stress and inflammation. Dichloromethane extracts (DEs) specifically affected genes and signal cascades related to cell cycle progress process. Furthermore, compared with WEs collected in heating season, non-heating season WEs induced much higher expression levels of Ca-associated genes (including phosphodiesterase 4B and cyclooxygenase-2), which may consequently result in more severe inflammatory responses. While, for DEs exposure, the heating season (DH) group showed extensive induction of deferentially expressed genes (DEGs) related to cell cycle pathway, which may be caused by the higher polycyclic aromatic hydrocarbons (PAHs) contents in DH samples than those from non-heating season. In conclusion, the oxidative stress and inflammation response are closely correlated with cellular responses in THP-1 derived macrophages induced by water soluble components of PM2.5, and cell cycle dysregulation may play an important role in biological effects induced by organic components. The different transcriptomic changes induced by seasonal PM2.5 extracts may partially depend on the contents of PAHs and metal ions, respectively.
Collapse
Affiliation(s)
- Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Waner Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Weiwei Yao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yi Li
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai, 200233, China.
| |
Collapse
|
9
|
Landwehr KR, Hillas J, Mead-Hunter R, Brooks P, King A, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126637. [PMID: 34329109 DOI: 10.1016/j.jhazmat.2021.126637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Biodiesel is promoted as a sustainable replacement for commercial diesel. Biodiesel fuel and exhaust properties change depending on the base feedstock oil/fat used during creation. The aims of this study were, for the first time, to compare the exhaust exposure health impacts of a wide range of biodiesels made from different feedstocks and relate these effects with the corresponding exhaust characteristics. METHOD Primary airway epithelial cells were exposed to diluted exhaust from an engine running on conventional diesel and biodiesel made from Soy, Canola, Waste Cooking Oil, Tallow, Palm and Cottonseed. Exhaust properties and cellular viability and mediator release were analysed post exposure. RESULTS The exhaust physico-chemistry of Tallow biodiesel was the most different to diesel as well as the most toxic, with exposure resulting in significantly decreased cellular viability (95.8 ± 6.5%) and increased release of several immune mediators including IL-6 (+223.11 ± 368.83 pg/mL) and IL-8 (+1516.17 ± 2908.79 pg/mL) above Air controls. In contrast Canola biodiesel was the least toxic with exposure only increasing TNF-α (4.91 ± 8.61). CONCLUSION This study, which investigated the toxic effects for the largest range of biodiesels, shows that exposure to different exhausts results in a spectrum of toxic effects in vitro when combusted under identical conditions.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia.
| | - Jessica Hillas
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Peter Brooks
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Andrew King
- Fluid Dynamics Research Group, School of Civil and Mechanical Engineering, Curtin University, Perth, Western Australia, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth 6000, Western Australia, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth 6009, Western Australia, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, PO Box U1987, Perth 6845, Western Australia, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth 6009, Western Australia, Australia
| |
Collapse
|
10
|
Tooker BC, Quinn K, Armstrong M, Bauer AK, Reisdorph N. Comparing the effects of an exposure to a polycyclic aromatic hydrocarbon mixture versus individual polycyclic aromatic hydrocarbons during monocyte to macrophage differentiation: Mixture exposure results in altered immune metrics. J Appl Toxicol 2021; 41:1568-1583. [PMID: 33559210 PMCID: PMC8349383 DOI: 10.1002/jat.4147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/13/2021] [Accepted: 01/24/2021] [Indexed: 11/08/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are generated by the incomplete combustion of carbon. Exposures correlate with systemic immune dysfunction and overall immune suppression. Real-world exposures to PAHs are almost always encountered as mixtures; however, research overwhelmingly centers on isolated exposures to a single PAH, benzo[a]pyrene (B[a]P). Here, a human monocyte line (U937) was exposed to B[a]P, benz[a]anthracene (B[a]A), or a mixture of six PAHs (6-MIX) to assess the differential toxicity on monocytes. Further, monocytes were exposed to PAHs with and without CYP1A1 inhibitors during macrophage differentiation to delineate PAH exposure and PAH metabolism-driven alterations to the immune response. U937 monocytes exposed to B[a]P, B[a]A, or 6-MIX had higher levels of cellular health and growth not observed following equimolar exposures to other individual PAHs. PAH exposures during differentiation did not alter monocyte-derived macrophage (MDM) numbers; however, B[a]A and 6-MIX exposures significantly altered M1/M2 polarization in a CYP1A1-dependent manner. U937-MDM adherence was differentially suppressed by all three PAH treatments with 6-MIX exposed U937-MDM having significantly more adhesion than U937-MDM exposed to either individual PAH. Finally, 6-MIX exposures during differentiation reduced U937-MDM endocytic function significantly less than B[a]A exposed cells. Exposure to a unique PAH mixture during U937-MDM differentiation resulted in mixture-specific alterations of pro-inflammatory markers compared to individual PAH exposures. While subtle, these differences highlight the probability that using a model PAH, B[a]P, may not accurately reflect the effects of PAH mixture exposures. Therefore, future studies should include various PAH mixtures that encompass probable real-world PAH exposures for the endpoints under investigation.
Collapse
Affiliation(s)
- Brian C. Tooker
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Kevin Quinn
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael Armstrong
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Alison K. Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Nichole Reisdorph
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
11
|
Brózman O, Novák J, Bauer AK, Babica P. Airborne PAHs inhibit gap junctional intercellular communication and activate MAPKs in human bronchial epithelial cell line. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103422. [PMID: 32492535 PMCID: PMC7486243 DOI: 10.1016/j.etap.2020.103422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Inhalation exposures to polycyclic aromatic hydrocarbons (PAHs) have been associated with various adverse health effects, including chronic lung diseases and cancer. Using human bronchial epithelial cell line HBE1, we investigated the effects of structurally different PAHs on tissue homeostatic processes, namely gap junctional intercellular communication (GJIC) and MAPKs activity. Rapid (<1 h) and sustained (up to 24 h) inhibition of GJIC was induced by low/middle molecular weight (MW) PAHs, particularly by those with a bay- or bay-like region (1- and 9-methylanthracene, fluoranthene), but also by fluorene and pyrene. In contrast, linear low MW (anthracene, 2-methylanthracene) or higher MW (chrysene) PAHs did not affect GJIC. Fluoranthene, 1- and 9-methylanthracene induced strong and sustained activation of MAPK ERK1/2, whereas MAPK p38 was activated rather nonspecifically by all tested PAHs. Low/middle MW PAHs can disrupt tissue homeostasis in human airway epithelium via structure-dependent nongenotoxic mechanisms, which can contribute to their human health hazards.
Collapse
Affiliation(s)
- Ondřej Brózman
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - Jiří Novák
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| | - Alison K Bauer
- Department of Environmental and Occupational Health, University of Colorado, Anschutz Medical Center, Aurora, Colorado 80045, USA.
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno 62500, Czech Republic.
| |
Collapse
|
12
|
Møller P, Scholten RH, Roursgaard M, Krais AM. Inflammation, oxidative stress and genotoxicity responses to biodiesel emissions in cultured mammalian cells and animals. Crit Rev Toxicol 2020; 50:383-401. [PMID: 32543270 DOI: 10.1080/10408444.2020.1762541] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biodiesel fuels are alternatives to petrodiesel, especially in the transport sector where they have lower carbon footprint. Notwithstanding the environmental benefit, biodiesel fuels may have other toxicological properties than petrodiesel. Particulate matter (PM) from petrodiesel causes cancer in the lung as a consequence of delivery of genotoxic polycyclic aromatic hydrocarbons, oxidative stress and inflammation. We have reviewed articles from 2002 to 2019 (50% of the articles since 2015) that have described toxicological effects in terms of genotoxicity, oxidative stress and inflammation of biodiesel exhaust exposure in humans, animals and cell cultures. The studies have assessed first generation biodiesel from different feedstock (e.g. rapeseed and soy), certain second generation fuels (e.g. waste oil), and hydrogenated vegetable oil. It is not possible to rank the potency of toxicological effects of specific biodiesel fuels. However, exposure to biodiesel exhaust causes oxidative stress, inflammation and genotoxicity in cell cultures. Three studies in animals have not indicated genotoxicity in lung tissue. The database on oxidative stress and inflammation in animal studies is larger (13 studies); ten studies have reported increased levels of oxidative stress biomarkers or inflammation, although the effects have been modest in most studies. The cell culture and animal studies have not consistently shown a different potency in effect between biodiesel and petrodiesel exhausts. Both increased and decreased potency have been reported, which might be due to differences in feedstock or combustion conditions. In conclusion, combustion products from biodiesel and petrodiesel fuel may evoke similar toxicological effects on genotoxicity, oxidative stress and inflammation.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Rebecca Harnung Scholten
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Copenhagen K, Denmark
| | - Annette M Krais
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Ahmed CMS, Yang J, Chen JY, Jiang H, Cullen C, Karavalakis G, Lin YH. Toxicological responses in human airway epithelial cells (BEAS-2B) exposed to particulate matter emissions from gasoline fuels with varying aromatic and ethanol levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135732. [PMID: 31818575 DOI: 10.1016/j.scitotenv.2019.135732] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/31/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
In this study, we assessed the toxicological potencies of particulate matter (PM) emissions from a modern vehicle equipped with a gasoline direct injection (GDI) engine when operated on eight different fuels with varying aromatic hydrocarbon and ethanol contents. Testing was conducted over the LA92 driving cycle using a chassis dynamometer with a constant volume sampling system, where particles were collected onto Teflon filters. The extracted PM constituents were analyzed for their oxidative potential using the dithiothreitol (DTT) chemical assay and exposure-induced gene expression in human airway epithelial cells (BEAS-2B). Different trends of DTT activities were seen when testing PM samples in 100% aqueous buffer solutions versus elevated fraction of methanol in aqueous buffers (50:50), indicating the effect of solubility of organic PM constituents on the measured oxidative potential. Higher aromatics content in fuels corresponded to higher DTT activities in PM. Exposure to PM exhaust upregulated the expression of HMOX-1, but downregulated the expression of IL-6, TNF-α, CCL5 and NOS2 in BEAS-2B cells. The principal component regression analysis revealed different patterns of correlations. Aromatics content contributed to more significant PAH-mediated IL-6 downregulation, whereas ethanol content was associated with decreased downregulation of IL-6. Our findings highlighted the key role of fuel composition in modulating the toxicological responses to GDI PM emissions.
Collapse
Affiliation(s)
- C M Sabbir Ahmed
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Jiacheng Yang
- Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Jin Y Chen
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA
| | - Huanhuan Jiang
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Cody Cullen
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Georgios Karavalakis
- Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, CA 92521, USA; Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Ying-Hsuan Lin
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, USA; Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
14
|
Rossner P, Cervena T, Vojtisek-Lom M, Vrbova K, Ambroz A, Novakova Z, Elzeinova F, Margaryan H, Beranek V, Pechout M, Macoun D, Klema J, Rossnerova A, Ciganek M, Topinka J. The Biological Effects of Complete Gasoline Engine Emissions Exposure in a 3D Human Airway Model (MucilAir TM) and in Human Bronchial Epithelial Cells (BEAS-2B). Int J Mol Sci 2019; 20:E5710. [PMID: 31739528 PMCID: PMC6888625 DOI: 10.3390/ijms20225710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/30/2019] [Accepted: 11/12/2019] [Indexed: 01/31/2023] Open
Abstract
The biological effects induced by complete engine emissions in a 3D model of the human airway (MucilAirTM) and in human bronchial epithelial cells (BEAS-2B) grown at the air-liquid interface were compared. The cells were exposed for one or five days to emissions generated by a Euro 5 direct injection spark ignition engine. The general condition of the cells was assessed by the measurement of transepithelial electrical resistance and mucin production. The cytotoxic effects were evaluated by adenylate kinase (AK) and lactate dehydrogenase (LDH) activity. Phosphorylation of histone H2AX was used to detect double-stranded DNA breaks. The expression of the selected 370 relevant genes was analyzed using next-generation sequencing. The exposure had minimal effects on integrity and AK leakage in both cell models. LDH activity and mucin production in BEAS-2B cells significantly increased after longer exposures; DNA breaks were also detected. The exposure affected CYP1A1 and HSPA5 expression in MucilAirTM. There were no effects of this kind observed in BEAS-2B cells; in this system gene expression was rather affected by the time of treatment. The type of cell model was the most important factor modulating gene expression. In summary, the biological effects of complete emissions exposure were weak. In the specific conditions used in this study, the effects observed in BEAS-2B cells were induced by the exposure protocol rather than by emissions and thus this cell line seems to be less suitable for analyses of longer treatment than the 3D model.
Collapse
Affiliation(s)
- Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Tereza Cervena
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
- Department of Physiology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic
| | - Michal Vojtisek-Lom
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Antonin Ambroz
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Zuzana Novakova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Fatima Elzeinova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Hasmik Margaryan
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Vit Beranek
- Center of Vehicles for Sustainable Mobility, Faculty of Mechanical Engineering, Czech Technical University in Prague, Technicka 4, 160 00 Prague, Czech Republic; (M.V.-L.); (V.B.)
| | - Martin Pechout
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - David Macoun
- Department of Vehicles and Ground Transport, Czech University of Life Sciences in Prague, Kamycka 129, 165 21 Prague, Czech Republic; (M.P.); (D.M.)
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, 12135 Prague, Czech Republic;
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic;
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the CAS, Videnska 1083, 142 20 Prague, Czech Republic; (T.C.); (K.V.); (A.A.); (Z.N.); (F.E.); (H.M.); (A.R.); (J.T.)
| |
Collapse
|
15
|
Xenobiotica-metabolizing enzymes in the lung of experimental animals, man and in human lung models. Arch Toxicol 2019; 93:3419-3489. [PMID: 31673725 DOI: 10.1007/s00204-019-02602-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/15/2019] [Indexed: 12/15/2022]
Abstract
The xenobiotic metabolism in the lung, an organ of first entry of xenobiotics into the organism, is crucial for inhaled compounds entering this organ intentionally (e.g. drugs) and unintentionally (e.g. work place and environmental compounds). Additionally, local metabolism by enzymes preferentially or exclusively occurring in the lung is important for favorable or toxic effects of xenobiotics entering the organism also by routes other than by inhalation. The data collected in this review show that generally activities of cytochromes P450 are low in the lung of all investigated species and in vitro models. Other oxidoreductases may turn out to be more important, but are largely not investigated. Phase II enzymes are generally much higher with the exception of UGT glucuronosyltransferases which are generally very low. Insofar as data are available the xenobiotic metabolism in the lung of monkeys comes closed to that in the human lung; however, very few data are available for this comparison. Second best rate the mouse and rat lung, followed by the rabbit. Of the human in vitro model primary cells in culture, such as alveolar macrophages and alveolar type II cells as well as the A549 cell line appear quite acceptable. However, (1) this generalization represents a temporary oversimplification born from the lack of more comparable data; (2) the relative suitability of individual species/models is different for different enzymes; (3) when more data become available, the conclusions derived from these comparisons quite possibly may change.
Collapse
|
16
|
Godri Pollitt KJ, Chhan D, Rais K, Pan K, Wallace JS. Biodiesel fuels: A greener diesel? A review from a health perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:1036-1055. [PMID: 31726536 DOI: 10.1016/j.scitotenv.2019.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/27/2019] [Accepted: 06/01/2019] [Indexed: 06/10/2023]
Abstract
Biodiesels have been promoted as a greener alternative to diesel with decreased emissions and health effects. To investigate the scientific basis of the suggested environmental and health benefits offered by biodiesel, this review examines the current state of knowledge and key uncertainties of pollutant profiles of biodiesel engine exhaust and the associated the respiratory and cardiovascular outcomes. The ease and low cost of biodiesel production has facilitated greater distribution and commercial use. The pollutant profile of biodiesel engine exhaust is distinct from diesel, characterised by increased NOx and aldehyde emissions but decreased CO and CO2. Lower engine-out particulate matter mass concentrations have also been observed over a range of feedstocks. However, these reduced emissions have been attributable to a shift towards smaller sized particulate emissions. The toxicity of biodiesel engine exhaust has been investigated in vitro using various lung cell, in vivo evaluating responses induced in animals and through several human exposure studies. Discrepancies exist across results reported by in vitro and in vivo studies, which may be attributable to differences in biodiesel feedstocks, engine characteristics, operating conditions or use of aftertreatment systems across test scenarios. The limited human testing further suggests short-term exposure to biodiesel engine exhaust is associated with cardiopulmonary outcomes that are comparable to diesel. Additional information about the health effects of biodiesel engine exhaust exposure is required for effective public health policy.
Collapse
Affiliation(s)
- Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, Laboratory of Epidemiology and Public Health, 60 College Street, Room 444, New Haven, CT 06520, USA.
| | - Dany Chhan
- Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Khaled Rais
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kang Pan
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - James S Wallace
- Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Rynning I, Neca J, Vrbova K, Libalova H, Rossner P, Holme JA, Gützkow KB, Afanou AKJ, Arnoldussen YJ, Hruba E, Skare Ø, Haugen A, Topinka J, Machala M, Mollerup S. In Vitro Transformation of Human Bronchial Epithelial Cells by Diesel Exhaust Particles: Gene Expression Profiling and Early Toxic Responses. Toxicol Sci 2019; 166:51-64. [PMID: 30010986 PMCID: PMC6204768 DOI: 10.1093/toxsci/kfy183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Occupational exposure to diesel exhaust may cause lung cancer in humans. Mechanisms include DNA-damage and inflammatory responses. Here, the potential of NIST SRM2975 diesel exhaust particles (DEP) to transform human bronchial epithelial cells (HBEC3) in vitro was investigated. Long-term exposure of HBEC3 to DEP led to increased colony growth in soft agar. Several DEP-transformed cell lines were established and based on the expression of epithelial-to-mesenchymal-transition (EMT) marker genes, one of them (T2-HBEC3) was further characterized. T2-HBEC3 showed a mesenchymal/fibroblast-like morphology, reduced expression of CDH1, and induction of CDH2 and VIM. T2-HBEC3 had reduced migration potential compared with HBEC3 and little invasion capacity. Gene expression profiling showed baseline differences between HBEC3 and T2-HBEC3 linked to lung carcinogenesis. Next, to assess differences in sensitivity to DEP between parental HBEC3 and T2-HBEC3, gene expression profiling was carried out after DEP short-term exposure. Results revealed changes in genes involved in metabolism of xenobiotics and lipids, as well as inflammation. HBEC3 displayed a higher steady state of IL1B gene expression and release of IL-1β compared with T2-HBEC3. HBEC3 and T2-HBEC3 showed similar susceptibility towards DEP-induced genotoxic effects. Liquid-chromatography-tandem-mass-spectrometry was used to measure secretion of eicosanoids. Generally, major prostaglandin species were released in higher concentrations from T2-HBEC3 than from HBEC3 and several analytes were altered after DEP-exposure. In conclusion, long-term exposure to DEP-transformed human bronchial epithelial cells in vitro. Differences between HBEC3 and T2-HBEC3 regarding baseline levels and DEP-induced changes of particularly CYP1A1, IL-1β, PGE2, and PGF2α may have implications for acute inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Iselin Rynning
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Jiri Neca
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Helena Libalova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Jørn A Holme
- Division of Infection Control, Environment and Health, Department of Air and Noise
| | - Kristine B Gützkow
- Division of Infection Control, Department of Molecular Biology, Norwegian Institute of Public Health, N-0304 Oslo, Norway
| | - Anani K Johnny Afanou
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Yke J Arnoldussen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Eva Hruba
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Aage Haugen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Steen Mollerup
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, N-0304 Oslo, Norway
| |
Collapse
|
18
|
Novotná B, Sikorová J, Milcová A, Pechout M, Dittrich L, Vojtíšek-Lom M, Rossner P, Brzicová T, Topinka J. The genotoxicity of organic extracts from particulate truck emissions produced at various engine operating modes using diesel or biodiesel (B100) fuel: A pilot study. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:403034. [DOI: 10.1016/j.mrgentox.2019.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
|
19
|
Yang X, Zhang C, Jiang L, Li Z, Liu Y, Wang H, Xing Y, Yang RT. Molecular Simulation of Naphthalene, Phenanthrene, and Pyrene Adsorption on MCM-41. Int J Mol Sci 2019; 20:ijms20030665. [PMID: 30717495 PMCID: PMC6387010 DOI: 10.3390/ijms20030665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/25/2019] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
The adsorption of three typical polycyclic aromatic hydrocarbons (PAHs), naphthalene, phenanthrene, and pyrene with different ring numbers, on a common mesoporous material (MCM-41) was simulated based on a well-validated model. The adsorption equilibriums (isotherms), states (angle distributions and density profiles), and interactions (radial distribution functions) of three PAHs within the mesopores were studied in detail. The results show that the simulated isotherms agreed with previous experimental results. Each of the PAHs with flat molecules showed an adsorption configuration that was parallel to the surface of the pore, in the following order according to the degree of arrangement: pyrene (Pyr) > phenanthrene (Phe) > naphthalene (Nap). In terms of the interaction forces, there were no hydrogen bonds or other strong polar forces between the PAHs and MCM-41, and the O⁻H bond on the adsorbent surface had a unique angle in relation to the PAH molecular plane. The polarities of different H atoms on the PAHs were roughly the same, while those of the C atoms on the PAHs decreased from the molecular centers to the edges. The increasing area of the π-electron plane on the PAHs with the increasing ring number could lead to stronger adsorption interactions, and thus a shorter distance between the adsorbate and the adsorbent.
Collapse
Affiliation(s)
- Xiong Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, Beijing 100083, China.
| | - Chuanzhao Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Lijun Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Ziyi Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, Beijing 100083, China.
| | - Yingshu Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, Beijing 100083, China.
| | - Haoyu Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, China.
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing Higher Institution Engineering Research Center of Energy Conservation and Environmental Protection, Beijing 100083, China.
| | - Ralph T Yang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Brzicova T, Sikorova J, Milcova A, Vrbova K, Klema J, Pikal P, Lubovska Z, Philimonenko V, Franco F, Topinka J, Rossner P. Nano-TiO2 stability in medium and size as important factors of toxicity in macrophage-like cells. Toxicol In Vitro 2019; 54:178-188. [DOI: 10.1016/j.tiv.2018.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 08/30/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022]
|
21
|
Selley L, Phillips DH, Mudway I. The potential of omics approaches to elucidate mechanisms of biodiesel-induced pulmonary toxicity. Part Fibre Toxicol 2019; 16:4. [PMID: 30621739 PMCID: PMC6504167 DOI: 10.1186/s12989-018-0284-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Combustion of biodiesels in place of fossil diesel (FD) has been proposed as a method of reducing transport-related toxic emissions in Europe. While biodiesel exhaust (BDE) contains fewer hydrocarbons, total particulates and carbon monoxide than FD exhaust (FDE), its high nitrogen oxide and ultrafine particle content may still promote pulmonary pathophysiologies. MAIN BODY Using a complement of in vitro and in vivo studies, this review documents progress in our understanding of pulmonary responses to BDE exposure. Focusing initially on hypothesis-driven, targeted analyses, the merits and limitations of comparing BDE-induced responses to those caused by FDE exposure are discussed within the contexts of policy making and exploration of toxicity mechanisms. The introduction and progression of omics-led workflows are also discussed, summarising the novel insights into mechanisms of BDE-induced toxicity that they have uncovered. Finally, options for the expansion of BDE-related omics screens are explored, focusing on the mechanistic relevance of metabolomic profiling and offering rationale for expansion beyond classical models of pulmonary exposure. CONCLUSION Together, these discussions suggest that molecular profiling methods have identified mechanistically informative, novel and fuel-specific signatures of pulmonary responses to biodiesel exhaust exposure that would have been difficult to detect using traditional, hypothesis driven approaches alone.
Collapse
Affiliation(s)
- Liza Selley
- MRC Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, Leicester, LE1 9HN UK
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| | - Ian Mudway
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment & Health, School of Population Health and Environmental Sciences, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
- NIHR HPRU in Health Impact of Environmental Hazards, Franklin-Wilkins Building, King’s College London, London, SE1 9NH UK
| |
Collapse
|
22
|
Rynning I, Arlt VM, Vrbova K, Neča J, Rossner Jr P, Klema J, Ulvestad B, Petersen E, Skare Ø, Haugen A, Phillips DH, Machala M, Topinka J, Mollerup S. Bulky DNA adducts, microRNA profiles, and lipid biomarkers in Norwegian tunnel finishing workers occupationally exposed to diesel exhaust. Occup Environ Med 2019; 76:10-16. [PMID: 30425118 PMCID: PMC6327869 DOI: 10.1136/oemed-2018-105445] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/21/2018] [Indexed: 01/27/2023]
Abstract
OBJECTIVES This study aimed to assess the biological impact of occupational exposure to diesel exhaust (DE) including DE particles (DEP) from heavy-duty diesel-powered equipment in Norwegian tunnel finishing workers (TFW). METHODS TFW (n=69) and referents (n=69) were investigated for bulky DNA adducts (by 32P-postlabelling) and expression of microRNAs (miRNAs) (by small RNA sequencing) in peripheral blood mononuclear cells (PBMC), as well as circulating free arachidonic acid (AA) and eicosanoid profiles in plasma (by liquid chromatography-tandem mass spectrometry). RESULTS PBMC from TFW showed significantly higher levels of DNA adducts compared with referents. Levels of DNA adducts were also related to smoking habits. Seventeen miRNAs were significantly deregulated in TFW. Several of these miRNAs are related to carcinogenesis, apoptosis and antioxidant effects. Analysis of putative miRNA-gene targets revealed deregulation of pathways associated with cancer, alterations in lipid molecules, steroid biosynthesis and cell cycle. Plasma profiles showed higher levels of free AA and 15-hydroxyeicosatetraenoic acid, and lower levels of prostaglandin D2 and 9-hydroxyoctadecadienoic acid in TFW compared with referents. CONCLUSION Occupational exposure to DE/DEP is associated with biological alterations in TFW potentially affecting lung homoeostasis, carcinogenesis, inflammation status and the cardiovascular system. Of particular importance is the finding that tunnel finishing work is associated with an increased level of DNA adducts formation in PBMC.
Collapse
Affiliation(s)
- Iselin Rynning
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Kristyna Vrbova
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Neča
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Rossner Jr
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Klema
- Department of Computer Science, Czech Technical University in Prague, Prague, Czech Republic
| | - Bente Ulvestad
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Elisabeth Petersen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | - Øivind Skare
- Department of Occupational Medicine and Epidemiology, National Institute of Occupational Health, Oslo, Norway
| | - Aage Haugen
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King’s College London in Partnership with Public Health England and Imperial College London, London, UK
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Steen Mollerup
- Section for Toxicology and Biological Work Environment, Department of Chemical and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
23
|
Valand R, Magnusson P, Dziendzikowska K, Gajewska M, Wilczak J, Oczkowski M, Kamola D, Królikowski T, Kruszewski M, Lankoff A, Mruk R, Marcus Eide D, Sapierzyński R, Gromadzka-Ostrowska J, Duale N, Øvrevik J, Myhre O. Gene expression changes in rat brain regions after 7- and 28 days inhalation exposure to exhaust emissions from 1st and 2nd generation biodiesel fuels - The FuelHealth project. Inhal Toxicol 2018; 30:299-312. [DOI: 10.1080/08958378.2018.1520370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Renate Valand
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Magnusson
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Katarzyna Dziendzikowska
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Malgorzata Gajewska
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jacek Wilczak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał Oczkowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dariusz Kamola
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Tomasz Królikowski
- Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
| | - Anna Lankoff
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Jan Kochanowski University, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dag Marcus Eide
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rafał Sapierzyński
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Nur Duale
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Johan Øvrevik
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Oddvar Myhre
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
24
|
Abstract
Traffic-related particulate matter (PM) is a major source of outdoor air pollution worldwide. It has been recently hypothesized to cause cardiometabolic syndrome, including cardiovascular dysfunction, obesity, and diabetes. The environmental and toxicological factors involved in the processes, and the detailed mechanisms remain to be explored. The objective of this study is to assess the current scientific evidence of traffic-related PM-induced cardiometabolic syndrome. We conducted a literature review by searching the keywords of “traffic related air pollution”, “particulate matter”, “human health”, and “metabolic syndrome” from 1980 to 2018. This resulted in 25 independent research studies for the final review. Both epidemiological and toxicological findings reveal consistent correlations between traffic-related PM exposure and the measured cardiometabolic health endpoints. Smaller sizes of PM, particularly ultrafine particles, are shown to be more harmful due to their greater concentrations, reactive compositions, longer lung retention, and bioavailability. The active components in traffic-related PM could be attributed to metals, black carbon, elemental carbon, polyaromatic hydrocarbons, and diesel exhaust particles. Existing evidence points out that the development of cardiometabolic symptoms can occur through chronic systemic inflammation and increased oxidative stress. The elderly (especially for women), children, genetically susceptible individuals, and people with pre-existing conditions are identified as vulnerable groups. To advance the characterization of the potential health risks of traffic-related PM, additional research is needed to investigate the detailed chemical compositions of PM constituents, atmospheric transformations, and the mode of action to induce adverse health effects. Furthermore, we recommend that future studies could explore the roles of genetic and epigenetic factors in influencing cardiometabolic health outcomes by integrating multi-omics approaches (e.g., genomics, epigenomics, and transcriptomics) to provide a comprehensive assessment of biological perturbations caused by traffic-related PM.
Collapse
|
25
|
Transcriptional response to organic compounds from diverse gasoline and biogasoline fuel emissions in human lung cells. Toxicol In Vitro 2018; 48:329-341. [PMID: 29432896 DOI: 10.1016/j.tiv.2018.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/30/2018] [Accepted: 02/05/2018] [Indexed: 01/15/2023]
Abstract
Modern vehicles equipped with Gasoline Direct Injection (GDI) engine have emerged as an important source of particulate emissions potentially harmful to human health. We collected and characterized gasoline exhaust particles (GEPs) produced by neat gasoline fuel (E0) and its blends with 15% ethanol (E15), 25% n-butanol (n-But25) and 25% isobutanol (i-But25). To study the toxic effects of organic compounds extracted from GEPs, we analyzed gene expression profiles in human lung BEAS-2B cells. Despite the lowest GEP mass, n-But25 extract contained the highest concentration of polycyclic aromatic hydrocarbons (PAHs), while i-But25 extract the lowest. Gene expression analysis identified activation of the DNA damage response and other subsequent events (cell cycle arrest, modulation of extracellular matrix, cell adhesion, inhibition of cholesterol biosynthesis) following 4 h exposure to all GEP extracts. The i-But25 extract induced the most distinctive gene expression pattern particularly after 24 h exposure. Whereas E0, E15 and n-But25 extract treatments resulted in persistent stress signaling including DNA damage response, MAPK signaling, oxidative stress, metabolism of PAHs or pro-inflammatory response, i-But25 induced changes related to the metabolism of the cellular nutrients required for cell recovery. Our results indicate that i-But25 extract possessed the weakest genotoxic potency possibly due to the low PAH content.
Collapse
|
26
|
Lankoff A, Brzoska K, Czarnocka J, Kowalska M, Lisowska H, Mruk R, Øvrevik J, Wegierek-Ciuk A, Zuberek M, Kruszewski M. A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties-the FuelHealth project. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:19357-19374. [PMID: 28674953 PMCID: PMC5556143 DOI: 10.1007/s11356-017-9561-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/14/2017] [Indexed: 05/05/2023]
Abstract
Biodiesels represent more carbon-neutral fuels and are introduced at an increasing extent to reduce emission of greenhouse gases. However, the potential impact of different types and blend concentrations of biodiesel on the toxicity of diesel engine emissions are still relatively scarce and to some extent contradictory. The objective of the present work was to compare the toxicity of diesel exhaust particles (DEP) from combustion of two 1st-generation fuels: 7% fatty acid methyl esters (FAME; B7) and 20% FAME (B20) and a 2nd-generation 20% FAME/HVO (synthetic hydrocarbon biofuel (SHB)) fuel. Our findings indicate that particulate emissions of each type of biodiesel fuel induce cytotoxic effects in BEAS-2B and A549 cells, manifested as cell death (apoptosis or necrosis), decreased protein concentrations, intracellular ROS production, as well as increased expression of antioxidant genes and genes coding for DNA damage-response proteins. The different biodiesel blend percentages and biodiesel feedstocks led to marked differences in chemical composition of the emitted DEP. The different DEPs also displayed statistically significant differences in cytotoxicity in A549 and BEAS-2B cells, but the magnitude of these variations was limited. Overall, it seems that increasing biodiesel blend concentrations from the current 7 to 20% FAME, or substituting 1st-generation FAME biodiesel with 2nd-generation HVO biodiesel (at least below 20% blends), affects the in vitro toxicity of the emitted DEP to some extent, but the biological significance of this may be moderate.
Collapse
Affiliation(s)
- Anna Lankoff
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland.
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195, Warsaw, Poland.
| | - Kamil Brzoska
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195, Warsaw, Poland
| | - Joanna Czarnocka
- Automotive Industry Institute, 55 Jagiellońska Str., 03-301, Warsaw, Poland
| | - Magdalena Kowalska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland
| | - Halina Lisowska
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland
| | - Remigiusz Mruk
- Faculty of Production Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska Str., 02-787, Warsaw, Poland
| | - Johan Øvrevik
- Division of Environmental Medicine Norwegian Institute of Public Health, Norwegian Institute of Public Health, P.O. Box 4404 Nydalen, 0403, Oslo, Norway
| | - Aneta Wegierek-Ciuk
- Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, 15 Swietokrzyska Str., 25-406, Kielce, Poland
| | - Mariusz Zuberek
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, 141/143 Pomorska St., 90-236, Lodz, Poland
| | - Marcin Kruszewski
- Center for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195, Warsaw, Poland
- Independent Laboratory of Molecular Biology, Institute of Rural Health, Jaczewskiego 2, 20-090, Lublin, Poland
| |
Collapse
|
27
|
Cervena T, Rossnerova A, Sikorova J, Beranek V, Vojtisek-Lom M, Ciganek M, Topinka J, Rossner P. DNA Damage Potential of Engine Emissions Measured In Vitro
by Micronucleus Test in Human Bronchial Epithelial Cells. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:102-108. [DOI: 10.1111/bcpt.12693] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/19/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Tereza Cervena
- Department of Genetic Toxicology and Nanotoxicology; Institute of Experimental Medicine; Czech Academy of Sciences; Prague Czech Republic
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Nanotoxicology; Institute of Experimental Medicine; Czech Academy of Sciences; Prague Czech Republic
| | - Jitka Sikorova
- Department of Genetic Toxicology and Nanotoxicology; Institute of Experimental Medicine; Czech Academy of Sciences; Prague Czech Republic
- Institute for Environmental Studies; Faculty of Science; Charles University in Prague; Prague Czech Republic
| | - Vit Beranek
- Center of Vehicles for Sustainable Mobility; Faculty of Mechanical Engineering; Czech Technical University in Prague; Prague Czech Republic
| | - Michal Vojtisek-Lom
- Center of Vehicles for Sustainable Mobility; Faculty of Mechanical Engineering; Czech Technical University in Prague; Prague Czech Republic
| | - Miroslav Ciganek
- Department of Chemistry and Toxicology; Veterinary Research Institute; Brno Czech Republic
| | - Jan Topinka
- Department of Genetic Toxicology and Nanotoxicology; Institute of Experimental Medicine; Czech Academy of Sciences; Prague Czech Republic
| | - Pavel Rossner
- Department of Genetic Toxicology and Nanotoxicology; Institute of Experimental Medicine; Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|